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Abstract 

Reinforced concrete (RC) coupled wall systems, compared with RC shear wall without opening, have more com-
plex nonlinear behavior under the extreme earthquake loads due to the existence of coupling beams. The behavior 
characteristics induced by nonlinear shear deformation such as shear–flexure interaction, pinching effect, strength 
and stiffness deterioration are clearly observed in numerous cyclic tests of RC coupling beams and shear walls. To 
develop an analytical model capable of accurately and efficiently assessing the expected seismic performance of RC 
coupled wall systems, it is critical to define the appropriate key components models (i.e., nonlinear models of RC wall 
piers/shear walls and coupling beams). Classic fiber beam element based on the theory of Euler–Bernoulli beam is 
frequently adopted to simulate the nonlinear responses of slender RC wall piers and coupling beams in the literature 
because it is able to accurately model the response characters from interaction of axial–bending moment at the 
section level. However, classic fiber beam element cannot capture the nonlinear behaviors of non-slender structures 
mainly controlled by nonlinear shear deformation. To overcome this shortcoming, a modified force-based fiber 
element (MFBFE) including shear effect is introduced and used as the analysis element of non-slender RC coupling 
beams and shear walls. At the section level, a novel shear model for RC coupling beams and an existed shear model 
for RC shear walls are respectively added to this fiber element to simulate nonlinear responses of these two key 
components. The analytical model for RC coupled walls hence is formed through integrating the proposed models 
of these two key components. The validations with different experimental results of cyclic tests including key compo-
nents and structural system reported in the literature using these proposed models are performed. Good agreements 
are achieved for all of these proposed models via comparisons between predicted results and experimental data.

Keywords:  reinforced concrete coupled wall systems, fiber element including shear effect, reversed-cyclic loading, 
nonlinear analysis, shear model
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1  Introduction
Reinforced concrete (RC) coupled wall systems consist-
ing of RC wall piers and coupling beams are efficiently 
lateral forces resisting systems and can provide enough 
lateral stiffness for mid- to high-rise buildings to with-
stand earthquake-type loads. Recent earthquake investi-
gations have demonstrated that this structural type is a 
reliable and robust design scheme to resist earthquake 
excitations. Compared to global collapse failure of RC 
frame structures subjected to strong ground motions, 
RC coupled walls are generally able to avoid complete 
collapse yet expose to local fractures in the key compo-
nents such as shear failure of RC coupling beams and 
flexural failure at the bottom of wall piers. Shear brittle 
failure is sudden and unexpected, and occurs with no 
any symptoms, leading to serious risk for people’s lives 
and property. As such, engineers and researchers all 
dedicate to developing effective and reliable strategies 
to forbid occurrence of such danger failure modes. ACI 
building code (ACI-318-11 2011) indicates that RC cou-
pling beams with aspect ratio less than 2 and shear stress 
demand greater than 0.33 

√

f
′
c  MPa (4 

√

f
′
c  psi) need to 

be arranged a special diagonal reinforcement layout to 
prevent the occurrence of shear failure, where f ′c is the 
compressive strength of concrete.

Wall piers behavior is generally classified according 
to wall aspect ratio (AR), as either shear-controlled (AR 
less than 1.0–1.5) or flexure-controlled (AR greater than 
2.5–3.0). For walls between these aspect ratios (referred 
to as moderate aspect ratio walls), nonlinear responses 
associated with both axial/bending and shear behavior. 
Recently, a large number of experimental investigations 
have shown that flexural and shear yielding of moderate 
aspect ratio walls occur near-simultaneously, even this 
interaction has been observed on slender RC walls with 
aspect ratios greater than 2.0 (Wang et al. 1975; Vallenas 
et  al. 1979; Hines et  al. 1995, 2002; Sayre 2003; Thom-
sen and Wallace 2004; Massone et  al. 2004; Dazio et  al. 
2009; Lowes et  al. 2012). This interaction between non-
linear flexural and shear behavior, commonly referred to 
as shear–flexure interaction. Coupling beam behavior is 
commonly judged according to span–depth ratio. The 
results obtained from the test conducted by Paulay (1971) 
on conventionally reinforced coupling beams presented 
dominant shear behavior with span–depth ratios of 1.02 
and 1.29. Failure mechanisms such as diagonal tension or 
sliding shear were encountered during the tests. Jun et al. 
(2018) pointed that coupling beams with a span–depth 
ratio of no more than 2.5 tend to fail in shear-dominant 
rather than in flexure. Fisher et  al. (2018) presents the 
results from a recent experiment on a coupling beam at 
the University of Toronto. The results show that a flex-
ure-only analysis would account for only 53% of the total 

predicted deformation. Addition of the effect of curva-
ture resulting from shear (but not shear strain) increases 
the predicted percentage to 57%, while, inclusion of shear 
strains increases the percentage to 100%. To improve the 
ductility of concrete coupling beams and to suppress the 
shear failure mode, many studies have been carried out 
through last decades (Paulay 1974; Tassios et  al. 1996; 
Galano and Vignoli 2000; Lequesne et al. 2012; Han et al. 
2015). These experimental studies revealed that coupling 
beams, when they are diagonally reinforced with enough 
confinement, can provide adequate stability and excellent 
ductility.

Numerical analysis has been developed to simulate 
the seismic behavior of coupled wall systems by many 
researchers (Takayanagi and Schnobrich 1979; Saat-
cioglu et  al. 1983; Hung and El-Tawil 2011; Hung 2012; 
Eljadei and Harries 2014; Fox et  al. 2014; Harries et  al. 
2004; Vuran and Aydinoglu 2016; Kim 2016; Kim and 
Choi 2017). In the reference (Takayanagi and Schnobrich 
1979), researchers developed a model used for nonlinear 
static and dynamic analyses of a 10-story coupled wall 
structure, in which wall piers and coupling beams were 
simulated with line elements, and the two ends of every 
line element defined zero-length springs with assigning 
the corresponding inelastic materials that was used for 
modeling the plastic hinges. Saatcioglu et al. (1983) per-
formed nonlinear dynamic analysis of a 20-story coupled 
wall structure with the scheme that each structural mem-
ber was idealized as a line element and inelastic behavior 
was simulated through defining plasticity hinges at mem-
ber ends; each hinge was designated a hysteretic model 
that incorporates effects of axial force-moment inter-
action, shear yielding, strength degradation, pinching, 
reloading and unloading branches of hysteresis loops. 
Hung (2012) implemented the hybrid simulation strategy 
of a 12-story composite coupled wall system in which the 
displacement-based beam column element was employed 
to simulate RC shear walls and steel coupling beams 
respectively; the shear wall cross section was modeled 
using fiber sections and the steel coupling beams were 
modeled with considering nonlinear shear and flexural 
behaviors through the tactic that the moment of inertia 
of the full cross section was used for bending and the full 
web area was used for shear; however, the shear behavior 
of wall was not taken into account in this scheme. Eljadei 
and Harries (2014) conducted nonlinear static (pusho-
ver) and dynamic analyses of a 12-story prototype cou-
pled wall structure; the wall piers were modeled using a 
general quadratic beam-column model, and the Giberson 
one-component beams were used for representing the 
coupling beams. Fox et  al. (2014) proposed a simplified 
capacity design method, with which nonlinear time-his-
tory analyses of a set of 15 coupled walls were performed; 
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the flexural and axial responses of coupled walls were 
simulated by distributed plasticity fiber beam elements 
with defining the nonlinearity materials at the section 
level, and additional transverse springs between wall ele-
ments were chosen to model shear response of coupling 
beams; nevertheless, these transverse springs just exhibit 
linear shear behaviors.

Although aforementioned models can represent the 
inelastic dynamic characteristics of RC coupled walls, 
there are many shortcomings that need to be resolved. 
Especially considering the shear–flexure interaction and 
nonlinear shear deformation in nonlinear models used 
for predicting the static cyclic behaviors of RC coupling 
beams, wall piers, and overall coupled wall systems are 
not presented in the mentioned models. To develop an 
analytical model that is able to accurately represent the 
static cyclic behavior of RC coupled wall systems, the 
models of RC coupling beams and wall piers must be 
selected reasonably. This is because the resistant mech-
anism of coupled wall systems is exhibited through a 
combination of flexural behavior of wall piers and frame 
action contributed by coupling beams (axial forces from 
wall piers are transferred to coupling beams and lead to 
a frame character, as shown in Fig.  1), and the behav-
ior performances of coupling beams and wall piers have 

a great influence on the overall response of a coupled 
wall system (Harries et  al. 2004). As the shear stresses 
occurred in the non-slender RC coupling beams and 
wall piers are generally large, the shear response of these 
two key components in a coupled wall system needs to 
be taken into account when building their finite element 
(FE) models.

By reviewing the existed coupled wall models above 
(Takayanagi and Schnobrich 1979; Saatcioglu et al. 1983; 
Hung and El-Tawil 2011; Hung 2012; Eljadei and Har-
ries 2014; Fox et al. 2014; Harries et al. 2004; Vuran and 
Aydinoglu 2016), they can be classified as two categories, 
that is, lumped plasticity models and distributed nonlin-
earity models. It has been validated that the distributed 
plasticity models (e.g., classic fiber beam elements) can 
not only reflect the real plasticity development but pro-
duce the accurate response results of RC structures under 
both static and dynamic loads (Spacone et al. 1996). Clas-
sic fiber beam elements (i.e., displacement-based and 
force-based fiber elements) based on the cross-sectional 
discretization in a series of fibers have been developed to 
simulate nonlinear responses of RC structures governed 
by flexural deformation. With assigning the correspond-
ing uniaxial constitutive models at the section level, the 
section behavior under axial and bending forces is cap-
tured through integrating fiber stresses over the whole 
cross-section. However, classic fiber beam elements are 
not capable of considering shear stresses, and thus shear 
behavior at the section level cannot be directly acquired. 
To eliminate this limitation, many researchers carried 
out various studies by introducing the Timoshenko beam 
theory into the force-based fiber element (FBFE) due to 
its simplicity, efficiency, and robustness to account for 
the shear effects of RC structures (Petrangeli et al. 1999; 
Marini and Spacone 2006). Petrangeli et  al. (1999) suc-
cessfully conducted a fiber section model that can allow 
for shear stresses, deformations, and stiffness at the sec-
tion level using a new concrete law based on micro-plane 
theory. But this model demands extra computation cost 
at the section level because the additional equilibrium is 
imposed. A two-dimensional (2D) modified force-based 
fiber beam element (MFBFE) allowing for uniaxial bend-
ing and shear effect based on the Timoshenko beam 
theory is introduced by (Marini and Spacone 2006), in 
which the axial and bending responses follow the tradi-
tional fiber section model, and shear effect is simulated 
by a nonlinear V-γ constitutive law at the section level. 
The shear deformation is decoupled from axial and bend-
ing effects in the section stiffness. The shear and flex-
ural forces, nonetheless, are coupled at the element level 
because of enforced equilibrium along the element. It is 
noteworthy that this strategy has an unrivaled advan-
tage in simulating shear-critical components, because 

Fig. 1  The diagram of RC coupled wall systems subjected to lateral 
loads.
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the element bending moments are constrained by the 
element shear forces if shear failure at the section level 
occurs before flexural failure. A large number of numeri-
cal analyses of RC structures have been conducted 
considering flexure-shear interaction using modified 
force-based fiber beam element (Ferreira et al. 2014; Cor-
reia et al. 2015; Almeida et al. 2015; Lucchini et al. 2017; 
Zimos et  al. 2018; Feng and Xu 2018; Bitar et  al. 2018). 
However, these models were developed for RC beams 
and columns, not suit for coupled walls.

To develop simple, accurate, and efficient models capa-
ble of capturing the cyclic behaviors of key components 
(i.e., diagonally reinforced coupling beams and RC wall 
piers) and overall coupled wall systems, new modified 
force-based beam element (MFBBE) and wall element 
(MFBWE) composed of MFBFE and shear models were 
developed in MATLAB (2014). This paper presents the 
formulations of MFBBE and MFBWE, and also the non-
linear force–deformation constitutive laws of concrete, 
reinforcement bars, and shear models used in these 
formulations. To examine the efficiency, stability, and 
accuracy of MFBBE and MFBWE, comparisons with 
the existed test data of the key components (Lequesne 
et  al. 2012; Han et  al. 2015; Gulec and Whittaker 2009) 
are performed. As confinement effect of the stirrups can 
improve the plasticity deformation capacity of RC struc-
tures, appropriate confined concrete models (Mander 

et al. 1988; Legeron and Paultre 2003) for the nonlinear 
cyclic simulation are thus discussed and summarized. At 
last, a comprehensive structural system model named 
CWE for RC coupled wall, integrating MFBBE and 
MFBWE, is proposed and validated through comparison 
with the experimental data of cyclic tests of two RC cou-
pled wall specimens.

2 � Formulation of the MFBFE
The MFBFE including a nonlinear section model for 
shear behavior presented herein is based on the FBFE 
originally developed by [15]. The total nodal forces Q at 
two end nodes of the MFBFE shown in Fig. 2, and section 
forces D(x) and deformations d(x) at the x location along 
the length L of the MFBFE are grouped in the following 
arrays, respectively. The torsion deformation in this ele-
ment is assumed to remain linear elastic.

Q =
[

M1y M1z M2y M2z N T
]T

D(x) =
[

My(x) Mz(x) Vy(x) Vz(x) N (x) T (x)
]T

d(x) =
[

χy(x) χz(x) γxy(x) γxz(x) ε(x) γt(x)
]T

2 yM

N

2zM
1zM

1yM z

y,i iy z

x

y

z

T

Fig. 2  The local coordinate system of modified force-based fiber element.
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The equilibrium equation at the element level relates 
the nodal forces Q with the section forces D(x), that is, 
the bending moments My (x) and Mz (x) about the y and 
z axes, the shear forces Vy (x) and Vz (x) along the y and 
z axes, the axial force N, and the torsional moment T, 
respectively. The equilibrium equation is given by

where b(x) is the force interpolation functions defined as

The force–deformation relationship is defined at the 
section level and relates section forces D(x) with section 
deformations d(x), that is, the curvatures χy (x) and χz (x) 
about the y and z axes, the shear deformations γxy (x) and 
γxz (x) along the y and z axes, the axial deformation ε(x), 
and the torsional deformation γt (x), respectively. The 
incremental force–deformation relation states that

where k(x) is the sectional stiffness matrix at the x loca-
tion along the length L of the element defined as

where n is the number of fibers; Eit is the tangent modu-
lus of fibers; Ai is the fiber area; yi is the distance from 
fiber centroid to the section reference z axis; zi is the dis-
tance from fiber centroid to the section reference y axis; 
dVy (x)/dγxy, dVz (x)/dγxz, and dT (x)/dγt represent the 
shear stiffness in the y, z, and torsion directions.

The section flexibility matrix f(x) is obtained through 
inversing the section stiffness matrix k(x), and the incre-
mental force–deformation equation at the section level is 
also stated as

(1)D(x) = b(x)Q

b(x) =















x
L − 1 0 x

L 0 0 0

0 x
L − 1 0 x

L 0 0
1
L 0 1

L 0 0 0

0 1
L 0 1

L 0 0

0 0 0 0 1 0
0 0 0 0 0 1















(2)�D(x) = k(x)�d(x)

k(x) =

































n
�

i=1

EitAiz
2
i −

n
�

i=1

EitAiyizi 0 0
n
�

i=1

EitAizi 0

−
n
�

i=1

EitAiyizi
n
�

i=1

EitAiy
2
i 0 0 −

n
�

i=1

EitAiyi 0

0 0
dVy(x)

dγxy
0 0 0

0 0 0 dVz(x)
dγxz

0 0
n
�

i=1

EitAizi −
n
�

i=1

EitAiyi 0 0
n
�

i=1

EitAi 0

0 0 0 0 0 dT (x)
dγt

































(3)f(x) = k−1(x)

(4)�d(x) = f(x)�D(x)

The final compatibility equation can be established 
according to the principle of virtual forces, which takes 
the form

After substituting Eqs. (1)–(4) in Eq. (5), and after elim-
inating the δ(Q)T on the basis of arbitrary argument, the 
element compatibility equation is also written as

where Δq is the increment of the element node displace-
ment vector and F is the element flexibility matrix. It 
should be noted that the aforementioned equations are 
formally identical to those of the classic FBFE, but the 
element force interpolation function b(x) and element 
flexibility matrix F couple the shear with the axial and 
bending responses at the element level.

To calculate the element resisting forces Q, the element 
needs to be subdivided into several integration points (or 
monitor sections) along its length L and Gauss–Lobatto 
quadrature method is adopted to integrate the flexibility 
matrix F. Each of monitor sections is in turn discretized 
in several inelastic fibers, and section resisting forces 

DR(x) can be obtained through integrating the fiber 
stresses over the section. Different from the formulations 
of the displacement-based fiber elements, the element 
force determination of the FBFE is not straightforward 
and requires an iteration algorithm that has been devel-
oped by Spacone et al. (1996). In this work, another state 
determination for shear at the section and element levels 
must be carried out. The iteration algorithm for axial and 
bending components has been explained elsewhere (Spa-
cone et al. 1996), and the completed algorithm associated 
with axial, bending, and shear deformations is presented 
in Fig. 3.

(5)δ(Q)Tq =

L
∫

0

δ(D(x))Td(x)dx

(6)�q =





L
�

0

b(x)Tf(x)b(x)dx



Q = F�Q
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Within each of the monitored sections in the MFBFE, 
concrete and reinforcement fibers are taken into account. 
The concrete fibers, in turn, are classified as three seg-
ments, that is, cover, unconfined, and confined concrete 
models. For cover and unconfined concrete fibers, the 
modified Kent and Park model is adopted (Scott et  al. 
1982). The unload-reload paths of this model are assumed 
to remain straight lines with ignoring the tension effect 
of concrete. The cyclic behavior of the concrete model 
is shown schematically in Fig.  4 where the maximum 
strength locates at point (εc, σc) and the beginning point 
of the residual strength is (εcu, σcu). Note that the uncon-
fined concrete fibers have a residual stress σcu = 0.2  σc, 
while the cover concrete model has no residual stress due 

Fig. 3  Schematic statement of the iteration involved in the MFBFE algorithm.

Fig. 4  The stress–strain constitutive relationships of modified Kent–
Park concrete model.
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to concrete spalling. For confined concrete fibers, Man-
der model (1988) is used to represent the confinement 
effect of the stirrups. As the behaviors of reinforcement 
fibers have a great effect on the section response, their 
model should be selected reasonably so that the behavior 
characteristics of target structures are able to be exhib-
ited. For this, the Menegotto and Pinto (1973) allowing 
for the bar buckling and fracture and Bauschinger effect 
is chosen to simulate the cyclic behavior of reinforcement 
fibers. The detailed formulations of the confined concrete 
and reinforcement models can be found (Mander et  al. 
1988; Menegotto and Pinto 1973).

3 � Fomulation and Validation of the MFBBE
The MFBBE is formulated by integrating a MFBFE and 
a shear model for diagonally reinforced coupling beams. 
The MFBFE has been introduced in the previous section. 
The shear model will be introduced in this section. The 
shear response of diagonally reinforced coupling beams is 
simulated using a nonlinear V-γ constitutive law. Consid-
ering the specified behavior characteristics of diagonally 
reinforced coupling beams (e.g., stiffness and strength 
degradation, and pinching effect induced by nonlinear 
shear deformations), the hysteretic model needs to be 
reasonably developed to represent its shear response. For 
diagonally reinforced coupling beams, the four nonlinear 
phases corresponding to concrete cracking, longitudi-
nal bars yielded, maximum shear capacity, and ultimate 
shear failure are experienced during the loading history. 
The backbone curve of the hysteretic model, therefore, 

should be determined using four control points in a sin-
gle load direction so as to describe the nonlinear behav-
ior characters of diagonally reinforced coupling beams, 
and the hysteretic rules should exhibit the effect of pinch-
ing, strength and stiffness deterioration.

3.1 � Determination of the Shear Model for Diagonally 
Reinforced Coupling Beams

To simulate the pinching, strength and stiffness dete-
rioration caused by the shear deformation of diagonally 
reinforced coupling beams, a simple but accurate hys-
teretic model is proposed in this section to represent 
its shear response. The predicted idealization of a load-
deformation history using this hysteretic model is shown 
in Fig. 5. The backbone is multi-linear including cracking, 
yielding, maximum, and failure points, and the unload-
ing–reloading path is tri-linear. The first step is deter-
mining the backbone curve, which is shown as follows. 
It is worth noting that the control points in the back-
bone curve in the positive and negative directions are 
symmetric.

3.2 � Determination of Shear Force at the Cracking Point
The modification of Wallace (2007) to the ASCE 41-06 
backbone curve was added a cracking point in load–dis-
placement relationship. Figure  6 is the simplified calcu-
lation diagram of cross-section of diagonally reinforced 
coupling beams. The whole of the component is in an 
elastic state before concrete cracks. Assuming that lon-
gitudinal reinforced bars, diagonal reinforced bars, 

Fig. 5  Hysteretic shear model for diagonally reinforced coupling beams.
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stirrups, and concrete are robustly anchored, and that 
the centroids of diagonal and longitudinal bars are con-
sistent and bar-slip is neglected, the equations below can 
be expressed according to compatibility condition at the 
longitudinal bars.

Given εsd = σsd
Esd cosα

 , εsl =
σsl
Esl

 , and εt = σt
Ec

 , the stress 
relation between longitudinal and diagonal bars and con-
crete thus can be written as follows:

When the cross-section cracks, the edge strain of con-
crete at the tensile side is equal to the limit tensile strain 
of concrete, that is, εcx = εtu . The section curvature keeps 
constant under the condition of cross-sections remain 
plan and normal to the deformed longitudinal axis. 
According to the compatible condition, the strains of lon-
gitudinal and diagonal bars can be calculated by the fol-
lowing equations.

Section curvature: 

Strain of longitudinal bars: 

Stress of longitudinal bars: 

(7)εsd cosα = εsl = εt

(8)σsl = Eslεsl = Eslεt =
Esl

Ec
σt

(9)σsd = Esdεsd =
Esdεt

cosα
=

Esd

Ec cosα
σt

(10)χcr =
εtu

h− xcr

(11)εsl = χcr(h0 − xcr)

(12)σsl = Eslεsl =
Eslεtu

h− xcr
(h0 − xcr)

Strain of diagonal bars: 

Stress of diagonal bars: 

As εtu = 2εt0 and ft = Ecεto , Eqs.  (6) and (8) can be 
also written respectively as follows:

In the same way, the edge stress of concrete at the com-
pressive side can be also determined, which is written by:

As is shown in Fig.  3, the component is in an elastic 
state before the section cracks, so the stress is triangu-
lar distribution along the section depth. The height of 
compressive concrete is: xcr = 0.5 h . Ignoring the tensile 
effect of concrete, taking the moment from the tensile 
longitudinal bars to compressive longitudinal bars, the 
moment equation at the crack point can be expressed by:

(13)εsd =
εsl

cosα
=

χcr(h0 − xcr)

cosα

(14)σsd = Esdεsd =
Esdεtu

(h− xcr) cosα
(h0 − xcr)

(15)σsl =
2ftEsl

Ec(h− xcr)
(h0 − xcr)

(16)σsd =
2ftEsd

Ec(h− xcr) cosα
(h0 − xcr)

(17)σ ′
cx = Ecεtu = 2ft

(18)
Mcr2 = n1σslAsl

(

h0 − a
′
s

)

+ n2σsdAsd

(

h0 − a
′
s

)

× cosα − σ ′
cx

bxcr

2

(

xcr

3
− a

′
s

)

Fig. 6  The computational diagram for cross-section of diagonally reinforced coupling beams.
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Substitution of Eqs.  (15–17) in Eq.  (18), the moment 
equation at the cracking point is written as

As Mcr1 = Mcr2 , the shear force at the crack point is 
given by

where εsl indicates the strain of longitudinal bar; εsd indi-
cates the strain of diagonal bar; εt indicates the tensile 
strain of the concrete at the tensile longitudinal bar; σsl 
indicates the stress of longitudinal bar; σsd indicates the 
stress of diagonal bar; σt indicates the tensile stress of 
concrete at the tensile longitudinal bar; Esl indicates the 
elastic modulus of tensile longitudinal bar; Esd indicates 
the elastic modulus of tensile diagonal bar; Ec indicates 
the elastic modulus of concrete; εtu indicates the limit 
tensile strain of concrete; εt0 indicates the tensile strain 
of concrete where the tensile stress is ft ; Asl indicates the 
area of single longitudinal bar; Asd indicates the area of 
single diagonal bar; n1 indicates the number of unilat-
eral tensile longitudinal bars; n2 indicates the number 
of unilateral tensile diagonal bars; α indicates the angle 
between longitudinal and diagonal bars.

3.3 � Determination of Shear Displacement at the Cracking 
Point

For rectangular section, the shear stress is parabolic dis-
tribution along the section y direction. The component is 
considered as an elastic solid before the concrete cracks. 
The average shear distortion at the cracking point there-
fore is given by

So, the shear displacement can be written as follows.

where Vcr indicates the shear force at the cracking point; 
δcr indicates the shear displacement at the cracking point; 
Gc = Ec/2(1+ u) indicates the shear modulus of con-
crete, u is Poisson’s ratio; A indicates the cross-section 
area; L indicates the span of the component; k is equal 

(19)

Mcr2 =
4n1ftEslAsl

hEc
(h0 − 0.5h)

(

h0 − a
′
s

)

+
4n2ftEsdAsd

hEc
(h0 − 0.5h)

(

h0 − a
′
s

)

−
ftbh

2

(

h

6
− a

′
s

)

(20)Vcr =
Mcr1 +Mcr2

L

(21)γcr = k
Vcr

GcA

(22)δcr = γcrL = k
VcrL

GcA

to 1.2 for a rectangular section, indicating the sectional 
modified factor.

3.4 � Determination of Shear Force at the Yielding Point
The component begins to enter into yielding phase when 
the longitudinal bars of diagonally reinforced coupling 
beams reach yielding strength. As is shown in Fig.  7, 
the influence of longitudinal and diagonal bars on the 
component reaching the yielding stage is obvious, while 
Hindi and Hassan (2004) note that contribution of con-
crete core to the diagonal compression force could be 
noticeable since the concrete compressive strength is 
usually quite high in coupled wall systems. The diagonal 
compression is carried by the diagonal reinforcement and 
the concrete core surrounded by the diagonal bars in that 
direction, while the diagonal tension is carried only by 
the diagonal reinforcement. The detailed calculation pro-
cess is shown below.

Assuming that the centroids of diagonal and longitu-
dinal bars are coincidence, and taking moment from the 
tensile reinforcements including longitudinal and diago-
nal bars, the sectional yielding moment in tension there-
fore can be derived as follows

Following the same way, the yielding moment in com-
pression can be also derived by taking moment from the 
compression reinforcements including longitudinal and 
diagonal bars and the concrete core surrounded by the 
diagonal bars,

The yielding shear force therefore can be easily 
obtained by the following equation:

where fyl , f ′yl indicates the yield strength of longitudinal 
bar; σsd indicates the stress of diagonal bar, which can be 
computed by the equation: σsd = ξ fyd , ξ indicates the 
strength reduction factor; Asd indicates the area of single 
tensile diagonal bar; A′

sd indicates the area of single com-
pressive diagonal bar; n1 indicates the number of unilat-
eral longitudinal bars; n2 indicates the number of tensile 
diagonal bars; n3 indicates the number of compressive 
diagonal bars, fc indicates the compression strength of 
concrete core surrounded by the diagonal bars, Ac indi-
cates the area of concrete core.

(23)
My1 =

(

n1fylAsl + n2σsdAsd cosα
)(

h− as − a′s
)

.

(24)
My2 =

(

n1f
′
ylAsl + n3σ

′
sdA

′
sd cosα + fcAc

)

(

h− as − a′s
)

(25)Vy =
My1 +My2

L
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3.5 � Determination of Shear Displacement at the Yielding 
Point

Assuming that longitudinal bars, stirrups, and diagonal 
bars are all able to interact with concrete well, and that 
these components all meet the requirement of compat-
ibility condition, the average shear distortion can be 
expressed through strain relationship of plane.

When longitudinal bars of diagonally reinforced cou-
pling beams begin to yield, the component reaches the 
yielding phase. The horizontal strain of the component is 
given by

The vertical strain is expressed by

The shear force acted on the component at this time 
is equal to yielding shear force Vy . Assuming that Vy is 
mainly carried by diagonal bars and stirrups, the expres-
sion of Vy can be easily obtained through summation of 
forces in the y-direction.

(26)γxy = εx + εy − 2ε45◦

(27)εx = εsl = fyl/Esl

(28)εy = εst = σst/Esl

(29)Vy = (n2 + n3)σsdAsd sin α + 2nσstAst

The stress–strain of concrete in the direction of prin-
cipal compressive stress follows linear relation due to the 
principal compressive stress of concrete less than its peak 
stress. Assuming that the angle direction between princi-
pal compressive stress of concrete and stirrups or longi-
tudinal bars is 45°, the strain at the 45° is:

Ignoring the influence of principal tensile stress of con-
crete, as the shear stress acted on the component is τy , 
the equation below can be easily obtained by the planar 
stress relationship.

Substitution of Eqs.  (27–30) in Eq.  (26), the average 
shear distortion at the yielding point can be written as

Therefore, the shear displacement at the yielding point 
can be easily derived

where τy = 1.2Vy/bh0 indicates the average yielding shear 
stress of rectangular section; σst indicates the stress of 

(30)ε45◦ = σ2/Ec

(31)τy = −σ2/2

(32)γy =
fyl

Esl
+

σst

Est
+

4τy

Ec

(33)δy = γyL

Fig. 7  The simplified computational diagram for cross-section of diagonally reinforced coupling beams at longitudinal reinforcement yielded.



Page 11 of 26Du et al. Int J Concr Struct Mater           (2019) 13:34 

stirrups when longitudinal bars reaches yielding strength; 
σ2 indicates the principal compressive stress of concrete 
when longitudinal bars reaches yielding strength; Est 
indicates the elastic modulus of stirrups; Esl indicates the 
elastic modulus of longitudinal bars; n indicates the num-
ber of stirrups; Ast indicates the area of single limb stir-
rup; other symbols are the same as previous chapters.

3.6 � Determination of Shear Force at the Maximum Point
When the diagonal and longitudinal bars of diagonally 
reinforced coupling beams both reach yielding strength, 
as is shown in Fig. 7, at this time σsd = fyd , σ ′

sd = f ′yd , the 
component reaches the maximum shear capacity. 
Assuming that the maximum shear force acted on the 
component is mainly carried by diagonal, longitudinal 
bars, and concrete core. Taking moment from the tensile 
reinforcements including longitudinal and diagonal bars 
to the compressive reinforcements, the equation for the 
sectional maximum moment in tensile is expressed as 
follows

In the same way, the sectional maximum moment in 
compression can be easily derived by taking moment 
from the compression reinforcements including longitu-
dinal and diagonal bars and the concrete core surrounded 
by the diagonal bars,

Thus, the maximum shear force can be calculated by 
the following equation.

where fyd indicates the yielding strength of tensile diago-
nal bar; f ′yd indicates the yield strength of compressive 
diagonal bar; other symbols are the same as above.

3.7 � Determination of Shear Displacement at the Maximum 
Point

Gerin and Adebar (2004) built a relationship between 
average yielding shear distortion and average maximum 
shear distortion through regression analyses of experi-
mental data of 21 membrane elements subjected to 
reversed shear force. This equation is shown below.

(34)
Mm1 =

(

n1fylAsl + n2fydAsd cosα
)

(h− as − a′s).

(35)
Mm2 =

(

n1f
′
ylAsl + n3f

′
ydA

′
sd cosα + fcAc

)

(

h− as − a′s
)

(36)Vm =
Mm1 +Mm2

L

(37)
γm

γy
= 4 − 12

τy

fc

where τy ≤ 0.25fc , this is to prevent the concrete from 
shear failure before reinforcements reach its yielding 
strength.

The equation described above herein is adopted to cal-
culate the shear displacement at the maximum point, 
which can be easily obtained by:

3.8 � Determination of Failure Point
As the experimental tests associated with the diagonally 
reinforced coupling beams subjected to reversed cyclic 
loading in the literatures are generally terminated before 
component shear strength dropped significantly, the 
residual strength for the backbone curve at the failure 
point thus is hard to identify. The residual shear strength 
here is defined as the 0.2 Vm. To determine the shear dis-
placement at the failure point, the stiffness of softening 
branch should be identified. Gong and Fang (1988a, b) 
determined the equation used for calculating the soften-
ing branch stiffness of coupling beams through regres-
sion analyses of experimental data of 15 RC coupling 
beams specimens subjected to reversed cyclic loading 
tests. Herein, the softening stiffness equation proposed 
by Gong and Fang (1988b) is adopted to calculate the 
shear displacement at the failure point, which is shown 
below.

where β is the ratio of residual shear force to maximum 
shear force; τ0 is the ratio of nominal shear stress to con-
crete strength; Ky is the tangent stiffness at yield.

3.9 � Determination of Hysteretic Rules
Figure 5 shows a typical reversed shear cycle. The load-
ing starts in the positive load direction and follows the 
backbone curve for the unload-reload paths described 
in the previous section when the crack shear force is not 
reached. Once the crack shear force is exceeded, at point 
A the load direction is reversed. Unloading from point A 
follows a straight line shooting for point B whose coor-
dinates are (0.85 δA, 0) according to the reference (Said 
et  al. 2005). As loading continues in the negative direc-
tion, a significant reduction in the tangent stiffness 
occurs and this allows for the pinching effect experienced 
by non-slender RC structures under reversed-cyclic load-
ing. Loading in the negative direction proceeds until 
point C (0.85  δD, Vcr) is reached and the loading path 
is changed and leads the response to point D, at which 
loading in the negative direction follows the negative 
backbone curve. As the loading is re-reversed at point E, 

(38)δm = γmL =
(

4 − 12
τy

fc

)

γyL

Kg = −
1

6
β
√
τ0Ky
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the unloading stiffness to point F (0.85 δE, 0) is calculated 
in the same way as for the positive direction. After point 
F, positive loading continues with a reduced stiffness 
calculated based on the coordinates of point H until the 
positive reloading branch is reached at point G (0.85 δH, 
Vcr). Reloading then follows that of the previous reload-
ing branch until the positive backbone curve is reached.

3.10 � Model Evaluation and Validation
To validate the efficiency and accuracy of the proposed 
MFBBE in simulating the nonlinear response of diago-
nally reinforced coupling beams, 4 components speci-
mens subjected to reversed cyclic loading tested by 
Lequesne et al. (2012) and Han et al. (2015) are chosen as 
the simulation objects. The detailed design information 
about these 4 specimens is summarized in Table 1. In the 
process of building the FE model of diagonally reinforced 
coupling beams, there are many factors that can influence 
the reliability and accuracy of analytical results, such 
as the number of fibers in the section and the confine-
ment effect of the stirrups. Specifically, it is confirmed 
that the plastic deformation capacity of RC members can 
be effectively improved by considering the confinement 
effect of the stirrups (Mander et  al. 1988; Legeron and 
Paultre 2003). Although numerous stirrup-confined con-
crete models are available, further verification through 
comparison with the experimental data is required to 
determine the most appropriate model for simulating RC 
coupling beams subjected to reversed cyclic loading.

Given the abovementioned requirements, the Man-
der et  al. (1988) and Legeron and Paultre (2003) con-
fined concrete models are compared using SD-2.0 as an 
example. Concrete and reinforcing steels are respectively 

simulated with the corresponding models introduced 
in the Sect.  2. The modeling strategy is that the SD-2.0 
specimen is modeled using a single MFBFE with five 
Gauss–Lobatto integration points (i.e., monitored sec-
tions). Besides, the additional section with assigning the 
proposed shear model is also attached to each of these 
five monitored sections to simulate the shear response. A 
comparison between the experimental data and the sim-
ulation results using different confined concrete models 
is presented in Fig. 8a, b. Figure 8a demonstrates that the 
predicted backbone curve and hysteresis loops using the 
Mander model are compared to the test data with closer 
agreement. In contrast, the results shown in Fig. 8b sim-
ulated by Legeron model somewhat underestimate the 
softening speed and overestimate the ductility. To exam-
ine the influence of nonlinear shear deformation on the 
diagonally reinforced coupling beams, another modeling 
scheme that the SD-2.0 is solely simulated using a single 
FBFE with classical fiber model and without attaching the 
extra shear model is taken into account. The cover and 
unconfined concrete and reinforcing bars are simulated 
using the same models as the MFBBE used. The con-
fined concrete model is simulated using Mander model. 
The simulation result is compared in Fig. 8c showing an 
apparent discrepancy in both predicted backbone curve 
and hysteretic loop. This implies that the nonlinear 
shear deformation has a great effect on the total lateral 
displacement, and that the classical fiber model fails to 
exhibit these nonlinear behavior characteristics of diag-
onally reinforced coupling beams in simulating pinch-
ing effect, strength and stiffness deterioration. Here we 
note that because the element shear and flexural forces 
are coupled in MFBFE, flexural and shear deformation 

Table 1  Design parameters.

Specimen Lequesne et al. (2012) Han et al. (2015)

CB-1 CB-2 SD-2.0 BD-2.0

f
′

c , MPa 41 41 40 40

fy (longitudinal reinforcement), Mpa 430 440 506 506

fy (ties), Mpa 525 475 506 506

fy (diagonal reinforcement), Mpa 430 430 438 438

fu (diagonal reinforcement), Mpa 680 680 587 587

b (beam width), mm 150 150 250 250

h (beam height), mm 600 600 525 525

L (beam length), mm 1050 1050 1050 1050

ρd (diagonal bars ratio), % 1.11 1.11 2.35 2.35

ρs (stirrup ratio), % 1.24 1.43 2.84 2.43

ρl (longitudinal bars ratio), % 1.9 1.9 1.42 1.42

α, degree 24.6 24.6 20.4 22.1

Span–depth ratio, L/h 1.75 1.75 2.0 2.0
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cannot be separated independently in analysis. Based on 
the above simulation of SD-2.0, it can be concluded that 
the accuracy of the simulation results for diagonally rein-
forced coupling beams relies largely on the employment 
of the proposed shear model. The different confined con-
crete models, on the other hand, have slight influence on 
the accuracy of the predicted results.

Based on this validation, the proposed MFBBE asso-
ciated with the modeling strategy using Mander con-
fined concrete model is adopted to simulate all of the 
rest specimens presented in Table  1. The comparisons 
between the experimental data and simulation results 
are shown in Fig. 9. Good agreements are also achieved 
for all of these specimens. This outcome confirms that 
the strength deterioration and pinching observed in the 
tests can be well captured using the proposed MFBBE. 
The backbone curve and the hysteretic behavior are also 
proven to agree well with the experimental data, thus 

conclusively validating the efficiency and accuracy of the 
proposed MFBBE in simulating the nonlinear response of 
diagonally reinforced coupling beams dominated by the 
shear deformation.

4 � Fomulation and Validation of the MFBWE
The formulation of the MFBWE is formally identical to 
that of the MFBBE, but the only thing that is different 
from the MFBBE is the shear model. For RC shear walls, 
the three stages regarding reinforcement yielded, maxi-
mum shear capacity, and ultimate shear failure are con-
sidered as the primary nonlinear behavior. Therefore, the 
most suitable shear model for RC shear walls should have 
a backbone curve capable of defining three control points 
and hysteretic rules that can describe the pinching, 
strength and stiffness deterioration. The Ibarra-Krawin-
kle Pinching (IKP) material model (Ibarra et al. 2005) that 
incorporates energy-controlled stiffness and strength 

Fig. 8  Comparison of the hysteretic curves of SD-2.0 using a Mander confined concrete model and proposed shear model. b Legeron confined 
concrete model and proposed shear model, c Mander confined concrete model.
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deterioration herein is utilized as the shear model of RC 
shear walls.

To reflect the nonlinear behavior characteristics of RC 
shear walls, calibration of the IKP model is required. A 
critical issue for the IKP model is how to determine its 
backbone curve (Fig. 10). There are numerous analytical 
models available in the literature that can accurately sim-
ulate the nonlinear response of RC shear wall subjected 
to reversed cyclic loading (Vulcano et  al. 1988; Kabeya-
sawa et  al. 1982; Massone et  al. 2004, 2009; Kolozvari 
et  al. 2015; Hirosawa 1975; Gulec and Whittaker 2009). 
The empirical formula proposed by Hirosawa (1975) is 
usually recommended to calculate the yielding shear 
force of RC shear wall.

(39)

Vy =
[

0.0679ρ0.23

t

(

f ′c + 17.6
)

/(M/VL+ 0.12)0.5
]

bej

+
[

0.845
(

fwhρwh
)0.5 + 0.1σ0

]

bej

The initial elastic shear stiffness of the wall is defined as

The shear displacement at the yielding point thus is 
given by

where Vy is the yielding shear force; f ′c  is the compres-
sive strength of concrete; ρt is the effective tensile 

(40)j =
7(L− a/2)

8

(41)Ke =
GcAw

χhw

(42)χ = 3(1+ u)
[

1− u2(1− v)
]

/4
[

1− u3(1− v)
]

(43)δy =
Vy

Ke

Fig. 9  Comparison of the hysteretic curves of a BD-2.0, b CB-1, c CB-2 using Mander confined concrete model and proposed shear model.
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reinforcement ratio; M/VL is the ratio of the shear span 
to depth; be is the width of wall section; fwh is the yield 
strength of horizontal wall reinforcement; ρwh is the 
effective horizontal wall reinforcement ratio; σ0 is the 
average stress over entire wall cross section area; Aw 
is the section area of shear wall; Ke is the initial elastic 
shear stiffness; Gc is the shear module of concrete; χ is 
the shape factor for shear deformation, δy is the yielding 
shear displacement, hw is the wall height; L , a , u , and v 
are the geometrical parameters that can be found in the 
literature (Vulcano et al. 1988).

The maximum point can be determined once the maxi-
mum shear force and post-yielding shear stiffness are 
established. As the post-yielding shear stiffness cannot 
be obtained directly from relevant theory, it must be esti-
mated in terms of experimental data of RC shear walls. 
Kabeyasawa et al. (1982) suggested an empirical formula 
to determine the ratio αs of the stiffness after shear yield-
ing to the initial elastic shear stiffness.

The maximum shear-resistant formula is mainly related 
to the shape of shear wall section, which can be found in 
the literature (Gulec and Whittaker 2009).

For rectangular walls, the maximum shear capacity is 
written as

(44)αs = 0.14 + 0.46ρwhfwh/f
′
c

(45)Ks = αsKe

For symmetric shear-critical walls with boundary ele-
ments, the maximum shear capacity equation is defined 
by

where Vm is the maximum shear strength, At is the gross 
area for barbell walls and the effective area for flanged 
walls, Fvw is the force provided by vertical web reinforce-
ment, Fvbe is the force attributed to vertical boundary ele-
ment reinforcement, P is the axial force, lw is the length 
of wall, other symbols are the same as the contents pre-
sented above.

The residual shear strength for the skeleton curve could 
be difficult to be either estimated in an empirical formula 
or calibration in experimental data, because the most of 
quasi-static cyclic tests were terminated in general before 
the walls shear strength dropped significantly. For the 
post-capping stiffness Kc , it can be estimated through fit-
ting the experimental data.

The hysteretic rules associated with unload-reload 
paths, strength and stiffness degradation developed 
by Ibarra et  al. (2005) are utilized herein to represent 

(46)Vm =
1.5

√

f ′c Aw + 0.25Fvw + 0.20Fvbe + 0.40P
√

hw/lw

(47)

Vm =

(

0.04f ′c
)

At + 0.40Fvw + 0.15Fvbe + 0.35P
√

hw/lw

Fig. 10  Backbone curve for IKP model material.
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the cyclic response. To verify the accuracy and reliabil-
ity of the proposed analytical method, 9 RC shear walls 
specimens tested by Zhang et al. (2007), having different 
axial compression ratios, aspect ratios, longitudinal bars 
ratios, concrete strengths, are used as analytical exam-
ples. The mechanics properties of concrete and reinforce-
ments as well as the detailed design parameters of these 
nine RC shear wall specimens are presented in Tables 2, 
3, and 4, respectively. The modeling strategy is similar to 
the diagonally reinforced coupling beams above. When 
constructing their FE models, each of these nine speci-
mens is simulated using a single MFBFE with five Guass-
Lobatto integration points; meanwhile, the P-Delta 
effect at the element level is also taken into account. At 
the section level, the validated confined concrete model 
above (i.e., Mander confined concrete model) is adopted 
to model the confinement of stirrups, and the cover 

concrete and reinforcements are also simulated as same 
as the MFBBE; besides, an extra sectional constitutive 
law of shear force versus shear displacement representing 
the shear behavior of RC shear wall is also added to each 
of these five integration points. Comparisons between 
hysteretic curves observed by test and analytical predic-
tions of the lateral load versus wall top displacement are 
presented in Figs.  11, 12. It can be observed from the 
Figs. 11, 12 that overall cyclic behavior characteristics of 
these nine RC shear walls are accurately reflected by the 
proposed MFBWE, including the hysteretic loop shape 
of lateral load versus top displacement response, deterio-
ration of unload-reload stiffness, maximum shear force, 
and moderate pinching behavior, validating that the 
proposed MFBWE is capable of capturing the nonlinear 
behavior characteristics of RC shear walls observed from 
test.

5 � Fomulation and Validation of the Cwe
The formulation of the CWE is integrating the MFBBE 
and MFBWE as shown in Fig. 13. Note that the loading 
strategy in simulation is identical to that of the test. The 
modeling scheme is that the RC wall piers and diago-
nally reinforced coupling beams are simulated using the 

Table 2  Properties of concrete.

Concrete type fcu, 150 mm (MPa) fc, 150 mm (MPa)

C30 20.7 19.7

C40 37.7 30.8

Table 3  Properties of reinforcing bars.

Reinforcement type Φ4 Φ6 Φ8 Φ10 Φ10 Φ12

Diameter (mm) 3.91 6.54 8.05 9.41 9.74 12.55

Yielding strength (MPa) 348 392 343 352 379 325

Ultimate strength (MPa) 409 479 447 493 554 195

Elastic modulus (MPa) 198,800 200,600 206,800 202,700 181,200 169,000

Table 4  Details parameter of specimens.

Specimen Section dimension (mm)
(span × depth × width)

Aspect ratio Concrete 
strength

Axial compression 
ratio

Longitudinal bar Stirrup

SW1-1 2000 × 1000 × 125 2.0 C30 0.1 6Φ10 Φ6@80

SW1-2 2000 × 1000 × 125 2.0 C30 0.2 6Φ10 Φ6@80

SW1-3 2000 × 1000 × 125 2.0 C30 0.3 6Φ10 Φ6@80

SW2-1 1000 × 1000 × 125 1.0 C40 0.3 6Φ10 Φ6@80

SW2-2 1500 × 1000 × 125 1.5 C40 0.3 6Φ10 Φ6@80

SW2-3 2000 × 1000 × 125 2.0 C40 0.3 6Φ10 Φ6@80

SW3-1 2000 × 1000 × 125 2.0 C30 0.2 6Φ10 Φ6@80

SW3-2 2000 × 1000 × 125 2.0 C40 0.3 6Φ10 Φ6@80

SW4-1 2000 × 1000 × 125 2.0 C40 0.3 6Φ8 Φ6@80

SW4-2 2000 × 1000 × 125 2.0 C40 0.3 6Φ10 Φ6@80

SW5-1 2000 × 1000 × 125 2.0 C40 0.3 6Φ10 Φ6@80

SW5-2 2000 × 1000 × 125 2.0 C40 0.3 6Φ10 Φ6@80

SW6-1 2000 × 1000 × 125 2.0 C40 0.3 6Φ10 Φ4@80

SW6-2 2000 × 1000 × 125 2.0 C40 0.3 6Φ10 Φ6@80
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Fig. 11  Comparisons between the experimental data and the analytical results using the proposed MFBWE.
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proposed MFBWE and MFBBE models respectively. It is 
worth noting that the rigid element is employed to con-
nect the shear wall and coupling beam so as to represent 
the physical size of wall piers. To verify the efficiency and 
accuracy of the proposed CWE in modeling the nonlin-
ear response of RC coupled walls, two large-scale 4-story 
RC coupled wall specimens constructed at approximately 
1/3 scale (Lequesne et al. 2012) are used as the simulation 
examples. To account for the consistent with the test, 
the wall piers are simulated using the proposed MFBWE 
with a T-shaped section. The two specimens have differ-
ent properties of concrete and reinforcements, reinforce-
ment ratios, stirrup ratios, and coupling ratios, which can 

effectively demonstrate the reasonability of the CWE. 
The detailed design information of two coupled wall 
specimens regarding the mechanics properties of materi-
als, physical dimensions, and reinforcement layout can be 
found in the literature (Lequesne 2011).

Comparisons between the hysteretic base shear force 
versus top displacement relation curves obtained from 
the experimental test and predicted by the proposed 
CWE are presented in Fig.  14. Figure  14 indicates that 
closer agreements in unload-reload paths, shapes of hys-
teretic loops, strength and stiffness deterioration, maxi-
mum shear forces, and backbone curves are reached 
using the proposed CWE. To illustrate the influence of 

-20 -15 -10 -5 0 5 10 15 20
-300

-200

-100

0

100

200

300

 Test
 MFBWE

]
Nk[raehS

esaB

Top Displacement [mm]
-20 -15 -10 -5 0 5 10 15 20

-400

-300

-200

-100

0

100

200

300

400
 Test
 MFBWE

]
Nk[raehS

esaB

Top Displacement [mm]

SW4-1 SW5-1

-20 -15 -10 -5 0 5 10 15 20
-400

-300

-200

-100

0

100

200

300
 Test
 Analysis

]
Nk[raeh

S
esa

B

Top Displacement [mm]

SW6-1
Fig. 12  Comparisons between the experimental data and the analytical results using the proposed MFBWE.



Page 19 of 26Du et al. Int J Concr Struct Mater           (2019) 13:34 

nonlinear shear deformations of diagonally reinforced 
coupling beams and RC wall piers on the overall RC cou-
pled wall systems, another modeling strategy that the 
sections of these two components both are simulated 
using the classical fiber models identical to the Sects.  3 
and 4 is also utilized. The simulation results are com-
pared with the experimental data in Fig.  15. Figure  15 
demonstrates that the discrepancies in predicted and 
test backbone curves, hysteretic loops, and maximum 
shear forces are obvious. To illustrate the differences in 

backbone curves, maximum shear forces, and energy 
dissipations predicted by the proposed CWE and fiber 
model, the associated analytical results are compared to 
corresponding experimental data respectively, which are 
presented in Figs.  16, 17, and 18. The backbone curve 
simulated using proposed CWE in Fig.  16a has a good 
agreement with the test one in predicted strength dete-
rioration, yielding and maximum shear forces, while the 
fiber model overestimates the maximum shear force and 
cannot simulate the characteristic of strength deterio-
ration. Figure 16b shows that the maximum shear force 
simulated from proposed CWE in the positive load-
ing direction approximates to the test one but the result 
in the negative loading direction is underestimated, 
and that the fiber model overestimates the maximum 
shear force in the positive direction yet the result in the 
negative direction agrees with the test one well. This is 
because the test result for specimen CW-2 has an appar-
ent discrepancy in the positive and negative loading 
directions, and the proposed and fiber models both are 
approximately symmetric in the positive and negative 
directions. The strength deterioration is captured well 
by the proposed CWE but fails to be simulated using the 
fiber model. The maximum shear force in each number 
of loading cycle is compared with the experimental data 
in Fig.  17. Figure  17a indicates that the proposed CWE 
is able to accurately predict the maximum shear force in 
each loading cycle and the fiber model overestimates the 
one, while Fig.  17b shows an apparent dispersion. The 
reason is identical to that described above. Hysteretic 
energy dissipation is an important indicator in reflecting 
nonlinear behavior of component. Thus the energy dis-
sipation in each of loading cycle numbers is also com-
pared in Fig. 18. Both Fig. 18a and b demonstrate that the 

Fig. 13  Analytical model of RC coupled wall element (CWE).

Fig. 14  Comparisons between the experimental data and the analytical results using the proposed CWE models: a CW-1 and b CW-2.
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proposed CWE model can capture the energy dissipation 
well in each number of cyclic loading and the fiber model 
overestimates the result.

This reversed cyclic loading test sets up two actua-
tors located at 2- and 4-story of coupled wall specimens 
respectively, the two actuators can record the observed 
shear forces (Lequesne 2011). To discuss the advantage of 
the proposed CWE in detail, the quantifications of maxi-
mum shear forces at lower actuator, upper actuator, and 
base, as well as overall energy dissipation from proposed 
CWE and classic fiber models are also considered as indi-
cators and compared with corresponding experimental 
data respectively, which are summarized in Table 5.

The curvature and shear distortion of six monitored 
sections (six Gauss–Lobatto integration points) in the 

first story of specimen CW-1 are presented in Figs.  19 
and 20 respectively. Figure 19 shows that curvatures are 
large enough to cause flexural yielding throughout the 
first story. There is a clear trend of large curvature duc-
tility near the foundation, and diminishing ductility 
demands further up the wall. Comparing the curvatures 
calculated for the compression wall to those of the ten-
sion wall, larger curvatures were observed in the com-
pression wall than in the tension wall throughout the 
first story. The primary explanation for the larger curva-
tures recorded in the compression walls is that the sepa-
rate wall foundations allow for coupling beams to rotate 
towards the compression wall. This rotation reduces the 
deformation demands placed on the tension wall and 
requires the plastic hinge region in the compression wall 

Fig. 15  Comparisons between the experimental data and the analytical results using the classical fiber models: a CW-1 and b CW-2.

Fig. 16  Comparisons in backbone curves obtained from experimental data, proposed CWE model, and fiber model: a CW-1 and b CW-2.
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to develop larger deformations than in the tension wall. 
The shear distortion in the first story of specimen CW-1 
is shown in Fig. 20. It indicates that the shear distortion 

generally increased closer to the foundation. The larger 
shear distortion near the foundation was primarily due 
to a reduction in the wall shear stiffness caused by larger 

Fig. 17  Comparisons in maximum shear forces obtained from experimental data, proposed CWE model, and fiber model in each number of load 
cycle: a CW-1 and b CW-2.

Table 5  The comparisons of selected indicators from CWE and test ones.

Specimen Type Lower actuator maximum 
shear/kN

Upper actuator maximum 
shear/kN

Base maximum shear/kN Energy 
dissipation/J

Positive Negative Positive Negative Positive Negative

CW-1 Test 423 − 423 987 − 973 1410 − 1396 443,108

CWE 436 − 436 992 − 977 1428 − 1413 475,195

Fiber Model 458 − 449 1063 − 1051 1521 − 1500 558,292

CW-2 Test 596 − 646 1014 − 1064 1610 − 1710 562,755

CWE 579 − 579 1003 − 987 1582 − 1566 595,810

Fiber Model 637 − 612 1051 − 1031 1688 − 1643 676,166

Fig. 18  Comparisons in energy dissipations obtained from experimental data, proposed CWE model, and fiber model in each number of cycle: a 
CW-1 and b CW-2.
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flexural rotations near the base of the wall. A general 
trend of larger shear distortion in the compression wall 
was observed. The primary cause is the shift of shear 
force to the compression wall, which has been well docu-
mented in coupled wall systems test (Santhakumar 1974; 
Shiu et al. 1981; Ozselcuk 1989; Lequesne 2011; Lehman 
et al. 2013).

Figure 21 indicates that the simulated maximum shear 
forces of CW-1 from proposed model whether in the 
positive direction or negative direction have higher level 
of agreement than those obtained by classic fiber model. 
However, as the corresponding relationships between 
forces and deformations for CW-2 from test are asym-
metric, the results simulated by the proposed CWE 
are just approximation to the test ones in the positive 

direction, while those in the negative are not perfect fit, 
as shown in Fig. 22.

From the viewpoint of hysteretic energy dissipation, the 
advantage of the proposed CWE is much more apparent, 
while the energy absorption capacity simulated by classi-
cal fiber model shows a significant error. This phenome-
non is mainly caused by the situation where the proposed 
CWE accounts for nonlinear shear effect at both cou-
pling beams and shear walls levels and thus the simulated 
results include the extra part induced by shear response 
of coupled walls; the classic fiber model however is just 
able to model the interaction between axial and flex-
ural response, and the shear response fails to be repre-
sented by this scheme. Therefore, the nonlinear response 
received from the former is more close to the actual test 
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response than that from the latter. To clearly recognize 
the difference between the proposed methodology and 
classic fiber method, the detailed error quantifications of 
the selected indicators are also presented in the Table 6.

6 � Discussion of the Models
The modified force-based fiber element (MFBFE) takes 
into account the element shear deformation, which ena-
bles this element to handle a coupled axial–shear–bend-
ing response at the element level. At the section level, a 
novel shear model for RC coupling beams (MFBBE) and 
an existed shear model for RC shear walls (MFBWE) 
are respectively added to MFBFE to simulate nonlinear 
responses of these two key components. The analytical 

model for RC coupled walls (CWE) is developed through 
integrating the proposed models of these two key com-
ponents. The proposed models are validated against cou-
pling beams, shear walls and coupled walls specimens 
under cyclic loading, compared to the very limited exper-
imental data. It is found that the models can provide a 
more precise prediction on the response compared with 
the traditional fiber element, in regards to the initial stiff-
ness, peak shear strength, strength and stiffness degrada-
tion, and especially pinching effects.

However, the proposed models have several limita-
tions. First, curvature and shear distortion are uncoupled 
at the section level and sectional analysis under flexure 
assumes plane-sections-remain plane in these models. 
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Fig. 21  Comparisons of maximum shear forces of CW-1using the experimental data, proposed CWE, and fiber models.
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This approach, although practical and sufficient for many 
cases, will not represent the actual mechanical behav-
ior of coupling beams with diagonal cracking and “real” 
shear failure (diagonal tension or compression), and 
cannot be considered as generalized approach to repre-
sent the physical behavior of coupling beams. Wall piers 
in coupled walls will undergo significant fluctuations in 
axial loads during seismic responses, and uncoupling 
their nonlinear shear behavior from their axial/flexural 
response at the section level is also not a generalized 
approach for characterization of their shear behavior. 
Second, the Menegotto–Pinto reinforcement model is 
employed for the cyclic behavior. Although the model 
can effectively reproduce the Bauschinger effect, bar 
buckling, and bar fracture because of high tensile strain, 
it fails to account for fracture because of fatigue. Further-
more, modeling approaches have not been sufficiently 
validated against local deformation characteristics (rota-
tions, curvatures, strains) because of a lack of detailed 
experimental data. In addition, the proposed models are 
validated only under cyclic loading in this study, the vali-
dation of nonlinear dynamic analysis should be further 
studied.

7 � Conclusions
A novel analytical model for nonlinear simulation of RC 
coupled wall systems under reversed cyclic loading is 
proposed in this paper. The model incorporates two key 
components, which are analytical models of RC shear 
wall and diagonally reinforced coupling beams. The 
critical issues associated with the numerical modeling 
schemes for these two key components are discussed in 
detail and depth through comparisons using the observed 
experimental data and analytical results. To validate 
accuracy and accuracy of the proposed analytical model 
for diagonally reinforced coupling beams, four experi-
mental specimens are used as analytical examples, one of 
which is analyzed by different modeling strategies to find 
out the optimum modeling method including definition 

of four control points in the backbone curve, utilization 
of Mander and Legeron confined concrete models, and 
effect of sectional shear deformation, and other speci-
mens are thus simulated by the selected optimum mod-
eling scheme. Good agreements are achieved for all of 
these four specimens through comparisons of hysteretic 
curves analyzed from analytical means and observed by 
experimental tests. This outcome confirms that the pro-
posed analytical model is able to capture the nonlinear 
behavior observed in the tests including strength and 
stiffness deterioration, maximum shear force, and pinch-
ing characteristic.

For the nonlinear simulation of RC shear wall, the 
modeling method similar to the diagonally reinforced 
coupling beams is adopted to simulate two 1/2 scale RC 
shear wall specimens. Validation of accuracy and effi-
ciency via comparisons between the experimental data 
and the simulated results is received. This illustrates the 
reasonability of the proposed RC shear wall model in 
modeling nonlinear response of RC shear wall, and fur-
ther demonstrates that the validated modeling method is 
appropriate to the simulation of RC shear wall.

Using the validated modeling strategy, an overall RC 
coupled wall system model, integrating the proposed 
analytical models of diagonally reinforced coupling 
beams and RC shear wall is presented to simulate two 
large-scaled RC coupled wall specimens. The predicted 
results including degradation of stiffness and strength, 
moderate pinching behavior, hysteretic energy dissipa-
tion as well as maximum shear force compared to cor-
responding test findings show a good level of agreement, 
verifying that the proposed RC coupled wall model is 
capable of describing the nonlinear behavior observed 
from test.

In order for indicating that the influence of nonlinear 
shear deformations from diagonally reinforced coupling 
beams and RC wall piers on the nonlinear response of 
overall RC coupled wall systems is apparent, another 
modeling scheme in terms of classical fiber model is 

Table 6  The error comparisons of the selected indicators.

Specimen Type Errors in lower actuator 
maximum shear

Errors in upper actuator 
maximum shear

Errors in base maximum 
shear

Errors 
in energy 
dissipation

Positive Negative Positive Negative Positive Negative

CW-1 Test 0 0 0 0 0 0 0

CWE 3.07% 3.07% 0.51% 0.41% 1.28% 1.22% 7.24%

Fiber model 8.27% 6.15% 7.70% 8.02% 7.87% 7.45% 25.99%

CW-2 Test 0 0 0 0 0 0 0

CWE − 2.85% − 10.37% − 1.08% − 7.23% − 1.74% − 8.42% 5.87%

Fiber model 6.88% − 5.26% 2.64% − 3.10% 4.20% − 3.92% 20.15%
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adopted to simulate these two RC coupled walls. Note 
that all of the material models as well as various param-
eters are identical other than the adoption of the shear 
models for diagonally reinforced coupling beams and 
RC shear wall. Comparisons between experimental data 
and simulation results show that the predicted nonlinear 
behavior characteristics including hysteresis energy dis-
sipation, maximum shear force, and strength and stiff-
ness deterioration have obvious discrepancy with the 
corresponding experimental findings. This further proves 
that the nonlinear shear deformations of coupling beams 
and wall piers in a coupled wall system are not able to be 
ignored.
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