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Abstract 

A dual-horizon peridynamics (DH-PD) model is proposed for the simulation of debonding process in fiber-reinforced 
polymer (FRP)-to-concrete bonded joints. In the novel procedure of implementing DH-PD in the framework of finite 
element method (FEM), truss elements are employed to represent the bonds and dual-bonds. The quadtree approach 
is utilized to generate the multi-scale discretization and a volume correction scheme based on the background grid is 
proposed for the non-uniform grid. A benchmark numerical example is performed to test the accuracy and efficiency 
of the developed model in analysis of the bond behavior. The predicted results are consistent with the experimental 
findings, the FEM results and the analytical solutions. Additionally, these results demonstrate that the bond strength 
and the debonding ductility are visibly affected by concrete strength and the thickness of FRP plate, while the adhe-
sive thickness has no significant impact on the debonding behavior.
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1  Introduction
Fiber-reinforced polymer (FRP) is a kind of high perfor-
mance material with high strength-to-weight ratio, good 
durability and ease of application. The external bonding 
of FRP to concrete members has been accepted as an 
effective technology to strengthen and retrofit concrete 
structures (Täljsten 1996; Ronagh and Baji 2014). In FRP 
strengthened concrete structures, the interfacial bond 
between FRP and concrete is often the weakest region 
and can contribute to the debonding failure. Therefore, 
ensuring the safety of FRP strengthened concrete struc-
tures necessitates a realistic description of the bond 
behavior.

Over the past two decades, extensive experimental 
studies have been conducted to investigate the bond 
behavior in FRP strengthened concrete structures. Gen-
erally, the shear tests of FRP-to-concrete bonded joints 

are the most commonly used test methodology, in which 
an FRP plate is bonded to a concrete prism and subjected 
to tension (Chen et al. 2001; Yao et al. 2005; Ali-Ahmad 
et al. 2006; Carrara et al. 2011; Benzarti et al. 2011; Wu 
and Jiang 2013; Kabir et al. 2017). Typical debonding fail-
ure in the shear test is observed generally in concrete at 
a few millimeters from the adhesive layer. Unfortunately, 
the data directly measured from the shear tests always 
have significant variations due to bending effect of the 
thin FRP plate and irregularity of aggregates in concrete. 
In order to reduce the scattering of the directly meas-
ured results, substantial analytical models were devel-
oped (Yuan et al. 2004; Dai et al. 2005; Zhou et al. 2010; 
Liu and Wu 2012; Pan and Wu 2014; Moein and Tasn-
imi 2016). However, because such analytical models are 
based on empirical parameter calibrations and the theory 
of elasticity, they are limited to describe the nonlinear 
debonding process.

Apart from experimental and analytical studies, the 
numerical simulation is a convenient and powerful 
alternative for the study of the interfacial bond. In cur-
rent available numerical methods, finite element method 
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(FEM) is generally used and existing FEM studies can 
be classified into two approaches. One approach is the 
interface modeling approach, in which the bond behavior 
is modeled using a layer of interface elements (Diab and 
Wu 2007; Chen et al. 2011; Sun et al. 2017a, b). The other 
is the direct modeling approach, in which debonding is 
simulated by modeling the failure of concrete adjacent to 
the adhesive layer (Lu et  al. 2005a, 2006; Pham and Al-
Mahaidi 2007; Tao and Chen 2015; Xu et al. 2015). The 
success of the former approach depends on the consti-
tutive law of the interface elements; as a result, it is not 
truly predictive. In the latter approach, the principle 
of equivalent stiffness, namely the thickness of the FRP 
plate is amplified and the modulus of elasticity is modi-
fied to keep the axial stiffness of FRP constant, is often 
utilized to enlarge the size of elements in FEM model. 
Consequently the computational cost is significantly 
reduced, however, the equivalence can trigger numerical 
errors. Additionally, in FEM, singularities in the presence 
of discontinuities caused by cracks usually are unavoid-
able, which makes the construction of a corresponding 
numerical model cumbersome and time-consuming.

Alternatively, a new non-local method of continuum 
called peridynamics (PD) has been developed by Silling 
(2000), Silling et al. (2007) to overcome the limitations of 
traditional FEM. PD employs spatial integral equations 
rather than partial differential equations, making it more 
suitable for solving practical problems involving discon-
tinuities and significant non-local effects. It has been 
applied successfully to a wide range of traditional prob-
lems including crack propagation in brittle materials (Ha 
and Bobaru 2011), the fracture of concrete structures (Li 
and Guo 2018), composites delamination (Hu et al. 2012), 
thermal diffusion (Bobaru and Duangpanya 2012) and 
flow in porous media (Jabakhanji and Mohtar 2015).

In the original PD formulation developed by Silling, 
the discretization is uniform and the horizon sizes are 
constant in the whole domain. However, heterogene-
ous materials and structures, such as FRP strengthened 
concrete structures necessitate the non-uniform and 
multi-scale discretization to model different constitutive 
materials separately and reduce the computational cost. 
Recently, a dual-horizon peridynamics (DH-PD) formu-
lation was proposed by Ren et al. (2016) and Rabczuk and 
Ren (2017) to incorporate non-uniform material point 
distribution and variable horizons into PD. DH-PD can 
completely solve the issues of spurious wave reflections 
and simulate the crack propagation in composite materi-
als. Therefore, DH-PD is suitable for simulating debond-
ing failure of FRP strengthened concrete structures.

In present paper, DH-PD is extended and applied for 
investigating debonding failure in FRP-to-concrete bonded 
joints. To keep the efficiency of FEM without losing the 

generality of DH-PD, DH-PD is implemented in the frame-
work of FEM and the quasi-static simulations are carried 
out by solving the equilibrium equations. Furthermore, 
in order to reduce the computational cost and increase 
the accuracy, a non-uniform discretization and a volume 
correction scheme are proposed. The remainder of the 
paper is organized as follows. Section  2 is devoted to a 
brief review of PD and DH-PD. In Sect.  3, the numerical 
implementation of DH-PD within the framework of FEM 
is proposed. In Sect. 4, a DH-PD model of FRP-to-concrete 
bonded joints is established and a comparison between 
DH-PD predictions with test results is carried out to vali-
date the proposed method on debonding failure. In Sect. 5, 
the effects of concrete strength, the FRP thickness and the 
thickness of the adhesive layer on the bond behavior are 
evaluated. Finally, some concluding remarks are addressed 
in Sect. 6.

2 � Theoretical Basis of Peridynamics
2.1 � Basic Equations of PD and Constitutive Modeling
Peridynamics is a non-local continuum theory, which 
assumes that every material point interacts with all others 
within its horizon. Horizon with radius of δ refers to the 
size of non-local interaction and such interaction is called 
bond. The PD equation of motion at a material point x in 
the continuum R0 and time t is defined as

where f = f
(

x, x′,u(x, t),u
(

x′, t
)

, t
)

 is the pairwise force 
function of the bond xx′ , which describes the interac-
tions between x and any point x′ within its horizon, 
Hx =

{

x′ ∈ R0| ||x − x′|| ≤ δ
}

 is the horizon of material 
point x, �·� is the Euclidean norm, ρ is the density, u is 
the displacement, ü is the acceleration, dVx′ is the volume 
element, b is the prescribed loading force density.

For brittle micro-elastic materials, the pairwise force 
function f of the bond xx′ is expressed as

where ξ = x − x′ and η = u− u′ denote the relative 
position and the relative displacement of material points 
at x and x′in the reference configuration, respectively; 
η + ξ represents the current relative position between 
the material points; c is the micro-modulus function and 
denotes the stiffness of the bond. In present study, the 
two dimensional (2D) conical micro-modulus function is 
adopted, which takes the form of

(1)

ρ(x)ü(x, t) =

∫

Hx

f
(

x, x′,u(x, t),u
(

x′, t
)

, t
)

dVx′ + b(x, t)

(2)
f
(

u′ − u, x′ − x
)

= f (η, ξ) = (η + ξ)/||η + ξ ||cs

(3)c = 24E(1− ||ξ ||/δ)/

[

πδ3(1− ν)

]
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where E is Young’s modulus; ν is Poisson’s ratio, which is 
equal to 1/3 for a 2D continuum. s is the bond stretch, 
which is defined as

In order to incorporate damage into the constitutive 
model, a critical bond stretch s0 is introduced. Once the 
critical bond stretch is reached, the bond breaks and con-
sequently the bond forces vanish. A history-dependent 
function μ is used to implement it, which is defined as

The local damage at material point x is defined as the 
ratio of the number of broken bonds to the total number 
of bonds relevant to point x,

The value of φ(x, t) ranges from 0 to 1. Zero denotes 
virgin material, while one indicates complete damage.

2.2 � Dual‑Horizon Peridynamics
In DH-PD formulation, the horizon Hx is still the neigh-
borhood of material point x with the horizon radius of 
δx, where the bond xx′ will exert the direct force fxx′ on 
x. Based on Newton’s third law, x′ will suffer the reaction 
force − fxx′. The dual-horizon H ′

x =
{

x′ ∈ R0|x ∈ Hx′
}

 is 
a set of points whose horizons contain x. The bond from 
the dual-horizon is named as dual-bond. Similarly, the 
dual-bond x′x will exert the direct force fx′x on x′ and x 
will suffer the reaction force − fx′x. When uniform discre-
tization and constant horizon are used, DH-PD reduces 
to the traditional PD (Ren et  al. 2016). The equation 
of motion, the bond force and the dual-bond force in 
DH-PD are given as

Note that the micro-modulus c(x, δx) depends on the 
horizon radius of material point x and takes half of the 
corresponding micro-modulus used in the constant-hori-
zon PD. Furthermore, the bond and the dual-bond break 
independently considering that they may have different 
critical stretches.

(4)s = (||η + ξ || − ||ξ ||)/||ξ ||

(5)µ(t, ξ) =

{

1, if s
(

t ′, ξ
)

< s0, ∀0 < t ′ < t,
0, otherwise.

(6)ϕ(x, t) = 1−

(
∫

Hx

µ(x, ξ , t)dVξ

)

/

(
∫

Hx

dVξ

)

(7)
ρ(x)ü(x, t) =

∫

Hx

f xx′(η, ξ)dVx′

+

∫

H ′
x

−f x′x(−η,−ξ)dVx′
+ b(x, t)

(8)

{

f xx′ = µc
(

x′, δx′
)

s η+ξ
||η+ξ ||

f x′x = −µc(x, δx)s
η+ξ

||η+ξ ||

3 � Finite Element Discretization of Dual‑Horizon 
Peridynamics

Macek and Silling (2007) pointed out that the basis 
equations of PD are consistent with FEM code archi-
tectures. Additionally, compared with FEM, PD and 
DH-PD are computationally expensive. Therefore, to 
gain the efficiency from FEM and exploit the generality 
of DH-PD, we implement DH-PD into the framework 
of FEM. The implementation process is comprised of 
two steps, namely, generating non-uniform grid and 
solving governing equations.

3.1 � Non‑uniform Grid
The value of horizon depends on the physical nature 
of the application being modeled (Silling and Askari 
2005). In order to achieve acceptable accuracy, the 
horizon radius has to be determined in accordance with 
the lowest material point resolution locally required. 
However, the dense material point distribution and 
the sufficiently small horizon size can result in longer 
computational time. For sake of computational effi-
ciency, non-uniform modeling is required, in which the 
regions of interest utilize dense material points and the 
other regions coarse material points.

The quadtree approach is one of the most popu-
lar algorithms to generate new material points in the 
implementation of multi-scale modeling, as shown in 
Fig. 1. Bobaru et al. (2009), Bobaru and Ha (2011) firstly 
introduced the quadtree approach in PD to implement 
the adaptive refinement process. Unfortunately, the 
so called hanging nodes are generated in their works, 
which would trigger the quadrature errors. Dipasquale 
et al. (2014) inserted new material points in a recursive 
manner at the mid points of the lines connecting adja-
cent material points of the same refinement level. The 
generation approach is simple. However, the proper-
ties of the interface material points, such as the shape 
and the size, are modified. Consequently, the proper-
ties of material points need to update, which is com-
plex to implement, especially for the case of successive 
refinements. In present study, the quadtree approach 
is adopted, whereas the hanging nodes are eliminated. 
The details of the process are as follows.

Firstly, geometry of the specimen is meshed by uni-
form quadrate solid elements in commercial FEM 
software ABAQUS and the edge length is ∆x. In what 
follows, we export the nodal data of the mesh and take 
the center (xc, yc) and the area of each element as the 
position and the associated area of the correspond-
ing material point, respectively, as shown in Fig. 2a. If 
an element is refined, four sub-elements will be gen-
erated and their areas are one quarter of the original. 
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Furthermore, the centers and vertexes of the sub-ele-
ments could be calculated from the center and vertexes 
of the original element. It can be noticed from Fig. 2b 
that the positions of all material points are at the cent-
ers of their associated domains, that is, the hanging 
nodes are not generated. In the same pattern, level 
2 points can be generated from level 1 points, level 3 
points from level 2 points and so on. Hence, the non-
uniform discretization is obtained.

After discretization, the mesh of bonds are generated 
by a preprocessor in MATLAB, which connects each 
material point to all others within its horizon. The hori-
zon of each material point is defined as three times the 
corresponding edge length.

3.2 � Numerical Implementation
3.2.1 � Volume Correction Scheme
For numerical purpose, the integral Eq. (7) is discretized 
into the following form

(9)

ρüi =

NHx
∑

j

f ij(η, ξ , t)�Vj +

NH ′
x

∑

j

(

−f ji(−η,−ξ , t)�Vj

)

+ b(xi)

where NHx is the number of material points included in 
the horizon of point xi; NH ′

x
 is the number of material 

points whose horizons include point xi; ΔVj is the portion 
of the volume of point xj covered by the horizon of point 
xi. When uniform quadrate discretization is adopted, the 
volume of point xj usually takes the value of ΔVj = |Δxj|2. 
Considering that some points are partially covered, a cor-
rection scheme of volume fraction for point xj were pro-
posed by Bobaru and Ha (2011) as

When using non-uniform grid, however, Eq. (10) will 
still introduce certain numerical errors. To improve the 
accuracy of volume approximation, we propose a method 
based on the background grid. The main idea of the 
method is to split the associated domain of point xj into 
many sub-domains based on the background grid, calcu-
late the volume fraction of each sub-domain covered by 
the horizon of point xi with Eq. (10), and summate the 

(10)

�Vj =







�Vj , ||ξ || ≤ δ − 0.5�x;
δ+0.5�x−||ξ ||

�x �Vj , δ − 0.5�x < ||ξ || ≤ δ + 0.5�x;
0, ||ξ || > δ + 0.5�x.

Fig. 1  Illustration of the quadtree approach.

Fig. 2  Representation of the nodes with the associated area: a uniform grid and details of a quadrate element, and b nodes generated by the 
application of the quadtree approach to a node.
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covered volumes of all sub-domains. The summation is 
the portion of the volume of point xj covered by the hori-
zon of point xi.

Take the grid with 2 levels in Fig.  3a as an example. 
First, all the points at level 0 are refined to level 1 points 
and the inheritance relationship between old and new 
points are recorded. Then, the grid with all level 1 points 
(the blue dashed lines in Fig. 3b) is the background grid. 
With the background grid, calculating the volume frac-
tion ΔVj of point xj covered by the horizon of point xi is 
actually to calculate and summate the covered volume 
of all sub-domains. In the same way, the covered volume 
of other points could be obtained. It is a remarkable fact 
that the points xj , xk , xm, xn are out of the horizon of 
point xi, and their distances from point xi are more than 
δ + 0.5Δx. If only Eq. (10) is utilized without the back-
ground grid, the covered volume of the four points (the 
black shadows in Fig. 3b) are zero, which will trigger large 
errors. Furthermore, the denser the background grid is, 
the more accurate the volume approximation is; contra-
dictorily, the more expensive the computational cost is. 
Therefore, to balance the accuracy and efficiency, the 
background grid in level (k + 1) is used to calculate the 
volume covered by the horizon of point xi in level k in the 
following simulations.

3.2.2 � Solving Algorithms for Quasi‑Static Problem
In its original formulation, PD has been developed 
to solve dynamic problems, such as dynamic crack 
propagation in brittle materials. In recent years, some 
researchers have applied PD in static problems with two 
methods. Kilic and Madenci (2010), Huang et al. (2015) 
introduced an adaptive dynamic relaxation method into 

the PD equations of motion for quasi-static fracture 
analysis. Gerstle et  al. (2007), Zaccariotto et  al. (2015) 
converted the PD equations of motion into equilib-
rium equations by letting the acceleration be zero, and 
solved the equilibrium equations in the framework of 
FEM. The former method is time-consuming and the 
computational efficiency and accuracy is dependent on 
the artificial damping. In present study, truss elements 
are used to represent the bonds and dual-bonds, and 
the quasi-static simulations are carried out by solving 
the equilibrium equations.

In the case of quasi-static motion, the acceleration is 
zero. Hence, Eq. (9) is rewritten into Eq. (11) or Eq. (12) 
in the form of FEM.

where [K] is the global stiffness matrix, 
{u} = [u1, v1, · · ·ui, vi, · · ·un, vn]

T is the vector of nodal 
displacements and n is the number of material points, 
{F } = [f1x, f1y, · · · fix, fiy, · · · fnx, fny]

T is the vector of exter-
nal forces, in which fix = bixΔVi.
[

k̄p
]e

 and [kp]e are the element stiffness matrix of the 
bond xixj in local and global coordinates, respectively; 
and take the forms of

(11)

NHx
∑

j

f ij(η, ξ , t)�Vj +

NH ′
x

∑

j

(

−f ji(−η,−ξ , t)�Vj

)

+ b(xi) = 0

(12)[K ]{u} = {F }

(13)
�

k̄p
�e

=
cij

||ξij||







1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0







Fig. 3  Illustration of the volume correction scheme based on the background grid: a the grid with 2 levels, and b the background grid.
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where [Te] is the coordinate transformation matrix.

The pairwise force functions of the bond xixj and the 
dual-bond xjxi take the following forms

where [kp]e, {up}e, [kq]e and {uq}e denote element stiffness 
matrix and the vector of element nodal displacements 
of the bond xixj and the dual-bond xjxi in global coordi-
nates, respectively.

The global stiffness matrix [K] can be assembled by the 
superimposing method in FEM. Let row (2i − 1) and (2i) 
about point xi in [K] be [Ki], which can be expressed as

An in-house 2D peridynamic code in MATLAB is 
used to solve the equilibrium equations. With the micro-
elastic damage model described in Eq. (5), damage is 
incorporated into the model. Once its critical stretch is 
reached, the bond fails and the global stiffness matrix is 
updated.

4 � Simulation of the Shear Test in FRP‑to‑Concrete 
Bonded Joints

4.1 � DH‑PD Modeling
As a new approach in analysis of the bond behav-
ior between FRP and concrete, the validity and accu-
racy of the proposed DH-PD approach need to be 
verified. Similar to the reliability-based analysis with a 
large database of joint tests in literatures (Zhang et al. 

2 2

2 2
T

2 2

2 2

|| ||

p p
ee ii ijijp e p e

p p
ij ji jj

l lm l lm
k kc lm m lm m

k T k T
l lm l lm k k
lm m lm m

ξ

 − −
   − −       = = =          − −    
− − 

(14)

(15)

�

Te
�

=







l m 0 0
−m l 0 0
0 0 l m
0 0 −m l






,

�

l =
�

xj − xi
�

/||ξij||

m =
�

yj − yi
�

/||ξij||

(16)
{

f ij(η, ξ , t) = µ(t, ξ)[kp]e
{

up
}e

f ji(−η,−ξ , t) = µ(t, ξ)[kq]e{uq}e

(17)Ki =
[

Ki1, · · ·Kii, · · ·Kij , · · ·Kin

]

(18a)Kii =

NHx
∑

p

k
p
ii�Vi�Vj +

NH ′
x

∑

q

k
q
ii�Vi�Vj

(18b)Kij = k
p
ij�Vi�Vj + k

q
ij�Vi�Vj

2018; Shi et  al. 2015), the single shear tests reported 
in Yao et  al. (2005) were employed to compare with 
the DH-PD predictions. Yao et  al. (2005) reported a 
total of 72 tests, but 16 of them failed in other modes 
rather than debonding in concrete and 4 of them were 
designed to investigate the effect of the loading offset 
so they were excluded in present study. The reported 
specimens had two kinds of FRP (CFRP and GFRP), 
the FRP width ranging from 25 to 100  mm, the bond 
length increasing from 75 to 240  mm, concrete cylin-
der strength varying from 19 to 27 MPa and the height 
of free concrete edge changing from 5 to 120  mm. 
As shown in Fig.  4, a concrete prism bonded with an 
FRP plate was adopted in the DH-PD simulations, in 
which the geometry of the concrete prism was 350 mm 
(L) × 150  mm (H), and hc ranged from 5 to 120  mm. 
In the numerical model, the specimen was restrained 
vertically along the base and horizontally along part of 
the right edge. To reduce the computational cost, the 
three dimensional specimen was modeled as a plane 
stress problem and the non-uniform grid was adopted 
in present study. The grid spacing of concrete increases 
from the top to the bottom of the concrete prism, 
and the maximum and minimum grid spacing were 
1 mm and 0.125 mm, respectively. The grid spacing of 
the adhesive layer and FRP plate was 0.0625  mm and 
0.03125  mm, respectively. The material properties for 
specimens were given in Table 1. 

In order to correctly model real materials, some mate-
rial properties have to be mathematically transformed 
to equivalent parameters used in DH-PD. The micro-
modulus of bonds in FRP, the adhesive layer and concrete 
could be obtained from Eq. (3). The critical stretch of 
each phase is equal to the corresponding ultimate ten-
sile strain. It is worth noting that the material model of 
DH-PD bonds in all three phases is assumed to be line-
arly elastic brittle. Once the critical stretch is exceeded, 
the bond is broken and removed from the analysis.

4.2 � Comparison of DH‑PD Predictions with Test Results
In present study, the shear test was modeled as a plane 
stress problem, while the actual behavior is three-dimen-
sional. Therefore, the width ratio factor βw proposed by 
Chen and Teng (2001) was adopted to correct the dis-
crepancy. The predicted load, displacement, stress and 
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strain in the FRP plate were all adjusted with the width 
ratio factor βw. The width ratio factor took the form of 

where bf and bc are the widths of the FRP plate and the 
concrete prism, respectively.

Figure 5 shows the comparison of DH-PD predictions 
with test results. It can be clearly seen that the DH-PD 
predicted results are overall in very close agreement with 
the 52 test data. The typical specimen (specimen II-5) 
is chosen from the aforementioned database for further 
comparison between the DH-PD prediction, test data, 
FEM results and the analytical solution.

Damage contour of debonding failure for specimen II-5 
is shown in Fig. 6, in which only the part of concrete near 
the adhesive-to-concrete interface is exhibited for easier 
observation. It can be observed that debonding failure 
occurs in concrete at a small distance (1–4 mm) beneath 

(19)βw =

√

2− bf /bc

1+ bf /bc

Fig. 4  The geometrical configure and boundary conditions of FRP-to-concrete bonded joints.

Table 1  Material properties of each phase in FRP-to-concrete bonded joints (Yao et al. 2005; Bai 2013).

Material Thickness (mm) Tensile strength (MPa) Elastic modulus (GPa) Ultimate tensile strain (%)

CFRP 0.165 4114 256 1.61

GFRP 1.27 351 22.5 1.56

Adhesive 1 60 2 3

Concrete 150 1.01–1.89 23.9–34.3 0.00423–0.00551

Fig. 5  Comparison of the DH-PD predictions with test results.
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the adhesive-to-concrete interface. Additionally, the dis-
tribution of damage is not uniform along the bond inter-
face and the cracks are at about 45° to the horizontal. 
These phenomena are consistent with the experimental 
observations (Yao et al. 2005; Ali-Ahmad et al. 2006; Car-
rara et al. 2011; Benzarti et al. 2011; Wu and Jiang 2013) 
and the FEM results (Lu et al. 2005a, 2006; Pham and Al-
Mahaidi 2007; Tao and Chen 2015; Xu et al. 2015).

A comparison of the load–displacement curves for 
specimen II-5 between the experiment, the FEM simu-
lation, the analytical solution and present simulation is 
shown in Fig. 7. It is clear that the numerically predicted 
response agrees well with the experimental and FEM 
results. Point A and B marked on the curves represent 
the softening initiation and the debonding initiation, 
respectively. Initially, the load increases linearly with the 
displacement until Point A is reached. Subsequently, the 
concrete under the adhesive-to-concrete interface near 

the loaded end exhibits damage and the softening phase 
initializes. When Point B is reached, the FRP starts to 
debond from concrete and thereafter the debonding 
propagates rapidly towards the free end of the FRP. It is 
worth noting that, similar to the trend of the experimen-
tal and FEM results, the load increases slowly after the 
debonding initiation, which is probably caused by the 
friction in the debonded zone and the stochastic nature 
of the cracking process.

Figure 8 shows the normal stress distributions of FRP 
plate in the experiment, the FEM simulation, the analyti-
cal study, and present DH-PD simulation at Point A, B 
and C marked in Fig. 7. There is a very close agreement 
between the four curves at Point A. At Point B and C, 
the DH-PD predictions are consistent with the FEM and 
analytical curves and in agreement with the experimen-
tal results in terms of the overall trend, despite the large 
fluctuations in the experimental results. Fig 9 shows the 

Fig. 6  Damage contour of debonding failure in the DH-PD simulation.

Fig. 7  Comparison of load–displacement curves between the experiment, the FEM simulation, the analytical study and present simulation.
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comparison of the normal strain distributions in FRP 
plate between the experiment and present simulation. 
Similar to the normal stress, the DH-PD predictions are 
in agreement with the experimental results in overall 
trend and the test strain fluctuates as a result of probable 
measurement errors and plate bending due to the thin-
ness of the plate and the roughness along the crack.

Bond-slip curves for specimen II-5 at different dis-
tances from the free end are shown in Fig. 10, in which the 

interfacial slip of a particular point is defined as the relative 
displacement between the FRP plate and concrete at that 
point, and the shear stress at the corresponding location 
of the interface is calculated from the normal stress in the 
FRP plate using the following relationship (Wu and Jiang 
2013; Dai et al. 2005; Lu et al. 2005a; Nakaba et al. 2001)

(20)τ(x) = tf
σf (x + dx/2)− σf (x − dx/2)

dx

Fig. 8  Normal stress distributions in FRP plate of the experiment in Yao et al. (2005), the FEM simulation in Tao and Chen (2015), the analytical 
solution in Yuan et al. (2004) and present simulation.

Fig. 9  Comparison of normal strain distributions in FRP plate between present simulation and the experiment in Yao et al. (2005).
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where σf and tf are the normal stress and the thickness of 
the FRP plate, respectively; x is the distance from the free 
end; dx is the incremental distance used for calculation of 
the shear stress.

It can be seen from Fig.  10 that the trends of bond 
slip curves at different distances from the free end are 
consistent, while the numerical difference of the maxi-
mum shear stresses is large. The non-uniform bond-
slip relationship is in accordance with the test findings 
(Dai et al. 2005; Chajes et al. 1996; Yun et al. 2008), the 

FEM result (Lin and Wu 2016) and the analytical study 
(Zhou et al. 2010). The non-uniformity is related to the 
variation of the depth of failure plane. When the failure 
depth increases, the maximum shear stress increases 
(Lin and Wu 2016). To further verify the accuracy of the 
bond-slip relationship, the mean curve of all curves in 
Fig.  9 is calculated and compared with existing bond-
slip models. It can be observed from Fig.  11 that the 
mean curve predicted by DH-PD simulation matches 
well with existing bond-slip models(Wu and Jiang 2013; 

Fig. 10  Bond-slip curves for specimen II-5 at different distances from the free end.

Fig. 11  Normalized bond-slip curves of existing models and present DH-PD simulation.
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Dai et al. 2005; Nakaba et al. 2001; Savoia et al. 2003; Lu 
et al. 2005b).

5 � Discussion
As mentioned above, the main failure mode of FRP-to-
concrete bonded joints in the shear tests is concrete fail-
ure. Therefore, the mechanical performances of concrete 
play a dominant role in the bond behavior. Additionally, 
the bond behavior can be also affected by the geometric 
and material properties of FRP and the adhesive. In this 
section, the effects of concrete strength, the thickness of 
the FRP plate and the adhesive layer on the bond behav-
ior were studied with the proposed DH-PD model.

5.1 � Effect of Concrete Strength
In order to investigate the effect of concrete strength 
on the bond behavior, four groups of DH-PD models 
for specimen II-5 with concrete strengths ranging from 
C20 to C50 were adopted. From C20 to C50, the ten-
sile strength is 1.1 MPa, 1.43 MPa, 1.71 MPa, 1.89 MPa, 
and the elastic modulus is 25.5  GPa, 30  GPa, 32.5  GPa, 
34.5 GPa, respectively.

Figure  12 illustrates the load–displacement curves 
with different concrete strengths. It is evident that the 
ultimate load and the debonding ductility increase with 
the increasing concrete strength. It has been gener-
ally accepted that the debonding failure occurs in con-
crete and thus the bond behavior is usually controlled 
by the behavior of concrete. Higher concrete strength 
contributes to stronger resistance to debonding, and 

consequently the ultimate load and the debonding duc-
tility are higher. Furthermore, the maximum shear stress 
at a particular point of the interface denotes the bond 
strength at that point. The average maximum shear 
stress of all material points in the interface versus con-
crete strength is shown in Fig. 13. It can be observed that 
the average maximum shear stress almost increases lin-
early with concrete strength, which demonstrates that 
the bond strength increases with the increasing concrete 
strength.

5.2 � Effect of the Thickness of FRP Plate and Adhesive Layer
To study the effect of the FRP thickness on the bond 
behavior, three groups of DH-PD models with different 
FRP thicknesses (0.165  mm, 0.33  mm and 0.495  mm) 
were adopted.

Figure 14 shows the load–displacement curves with dif-
ferent FRP thicknesses. It can be clearly seen that the ulti-
mate load increases with the increasing FRP thickness, 
while the debonding ductility significantly decreases. 
These phenomena match well with the test results (Zhang 
and Smith 2013) and the numerical simulations (Sun 
et al. 2017a, b), which further demonstrates the accuracy 
and efficiency of the proposed DH-PD model. Addition-
ally, the decrease of the debonding ductility indicates that 
the efficiency of the FRP plate is reduced when a thicker 
FRP plate is used.

Figure  15 illustrates the predicted load–displace-
ment curves with different adhesive thickness, in which 

Fig. 12  Load-displacement curves with different concrete strengths.
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the adhesive thicknesses are 0.5  mm, 1  mm and 2  mm, 
respectively. As shown in Fig.  15, the ultimate load 
slightly increase with the adhesive thickness. In addition, 
the average maximum shear stresses for the three adhe-
sive thicknesses have small difference and are 6.82 MPa, 
6.9 MPa and 6.96 MPa, respectively; that is, the adhesive 
thickness has no significant effect on the bond strength. 
Therefore, the effect of the adhesive layer can be regarded 
as mainly playing a role in transferring surely shear 
stresses from concrete to the FRP plate.

6 � Conclusions
A DH-PD model implemented in the framework of FEM 
with multi-scale discretization and a volume correc-
tion scheme have been developed for the simulation of 
debonding process in FRP-to-concrete bonded joints in 
this paper. A benchmark numerical example was imple-
mented to validate the proposed model in the analysis of 
the debonding process. The predicted results including 
concrete failure pattern, load-slip curve, FRP stress dis-
tribution, FRP strain distribution were consistent with 

Fig. 13  Average maximum shear stress versus concrete strength.

Fig. 14  Load-displacement curves with different FRP thicknesses.
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the experimental findings, the FEM simulations and the 
analytical solutions. Furthermore, the effects of concrete 
strength, the FRP thickness and the adhesive thickness 
on the bond behavior were investigated. The main con-
clusions could be drawn as follows.

1.	 The DH-PD model of FRP-to-concrete bonded joints 
combines the efficiency of FEM with the general-
ity of DH-PD, and thus can effectively simulate the 
debonding process. The model lays a certain founda-
tion for further research of the bond behavior.

2.	 The non-uniform discretization generated from the 
quadtree approach can significantly reduce the com-
putational cost. The volume correction scheme based 
on the background grid can enhance the accuracy 
when the non-uniform grid is used. Moreover, the 
utilization of the background grid need to balance 
the accuracy and efficiency.

3.	 The concrete failure pattern and the local bond 
strength along the interface is non-uniform. The 
non-uniformity is consistent with the experimental 
observations, which probably caused by the friction 
in the debonded zone and the stochastic nature of 
the cracking process.

4.	 The bond strength and the debonding ductility are 
distinctly affected by concrete strength and the FRP 
thickness, while the adhesive thickness has no signifi-
cant effect on the bond behavior. The bond strength 
and the debonding ductility increase with the 
increasing concrete strength. For a thicker FRP plate, 

the bond strength will increase and the debonding 
ductility will decrease.
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