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In typical lightly-reinforced slab-column connections, extensive
flexural yielding is likely to occur before the computed punching
shear capacity is reached. The basic ACI 318 two-way shear
strength provision has not changed since 1963 and was developed
based on a statistical analysis of test results on scaled specimens
that were believed to have failed in shear. Several researchers
showed that the use of the basic ACI two-way shear strength provision
yields results that were unconservative compared with the two-way
shear strength of slabs in experimental tests. This paper shows that
the applicability of the ACI 318 provisions for typical lightly-
reinforced slabs is questionable.

Keywords: building code; flat plate; slab-column connection; two-way
shear strength.

INTRODUCTION
Punching shear failures due to insufficient two-way shear

strength of slab-column connections may result in a progressive
collapse of a building.1 Failures of flat-plate structures initiated
by punching shear failure, including that of the Sampoong
Department Store2 that occurred in 1995, indicate that two-
way shear strength of slab-column connections and the
mechanics of punching shear failure have not been well
understood. Park and Gamble3 indicated that the actual
behavior of the failure region of a cracked slab is extremely
complex and design provisions used are empirical simplifi-
cations of the real behavior. Bari4 reports that there are
significant variations among different empirical treatments.

ACI 318-085 defines the basic nominal two-way shear
strength Vc of an interior slab-column connection with a
square column and normalweight concrete as

Vc = 4 ×  × bo × d (U.S. units) (1)

Vc = 0.33 ×  × bo × d (SI units)

where d is the average depth of slab reinforcement, bo is the
critical shear perimeter located at a distance d/2 away from
the edge of the column or from the outermost shear rein-
forcement, and fc′  is the concrete compressive strength. The
ACI 318 provision for basic two-way shear strength of a slab
(Eq. (1)) has not changed since 1963. In addition, the ACI
provision is simpler than provisions in several other building
codes, as discussed later in this paper. The simple provision
was derived from relatively complex expressions.

RESEARCH SIGNIFICANCE
ACI 318 provisions for evaluating the strength of slab-

column connections are evaluated in light of test data. To
achieve this goal, the historical development of basic ACI
two-way shear strength provisions was studied as the first
step. Second, the strengths of slab-column connections were

fc′

fc′

estimated using the ACI 318 provisions and those estimates
were compared with results of tests conducted on slab-
column connections. These tests included two 2/3-scale slab-
column connection specimens tested at the Ferguson Structural
Engineering Laboratory of the University of Texas during
the course of this study. In this study: 1) a summary of the
historical development of ACI 318 provisions for two-way
shear strength is provided; 2) current code provisions are
evaluated; and 3) the results of tests conducted on slab-
column connections are summarized. It is recommended that
the two-way shear strength of lightly-reinforced connections
is reduced. A value of (Vc = 2 bod) represents a lower
bound on the data.

SLAB-COLUMN CONNECTIONS
Characteristics of typical flat-plate structures

Flat-plate structural systems consist of slabs that are
supported directly on columns without any beams, drop
panels, or column capitals. Durrani et al.6 indicated that in
the central and eastern regions of the U.S., there are many
older flat-slab buildings designed and detailed to resist
gravity loads only. The floor slabs in these buildings can be
categorized as lightly reinforced. In this paper, the lightly-
reinforced slabs refer to the slabs with a less than 1% flexural
reinforcement ratio in the column strip (ρcolumn strip < 1%).
Sherif and Dilger7 reported that most slabs in flat plate
structures have a flexural reinforcement ratio of less than
1%. Structural drawings of several flat-plate structures located
in the Western U.S. were examined in this study. Those
drawings show that the use of 0.5% flexural reinforcement ratio
in the column strips and no shear reinforcement was typical.1

Failure mode of slab-column connections
A reinforced concrete slab-column connection can reach

its capacity and fail in two modes: punching shear prior to or
after the widespread flexural yielding of longitudinal
reinforcement.8-10 Independent of whether the connections
fail in punching shear prior to or after the complete formation
of a yield-line mechanism, failure always occurs when the
loaded area punches through the slab. The failure surface has
the form of a truncated cone or pyramid with a minimum
cross section at least as large as the patched loaded area.11

Even though some researchers explicitly classified the
failure mode of slabs as punching shear failure and flexural
failure,12-14 many researchers did not explicitly differentiate
between punching shear and flexural failure. Gesund and
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Kaushik13 conducted a systematic investigation into the
relationship between the calculated flexural strength Pflex and
the measured failure load Ptest of the slabs under concentric
loading. They found that the arithmetic mean of Pflex/Ptest for
106 tests reported as punching shear failures was 1.02, with
a standard deviation of 0.25. Regan and Braestrup15 indicated
that a substantial proportion of the test results reported in the
literature as punching shear failures exhibited ultimate loads
that did not differ significantly from the flexural capacities.

Regardless of whether punching failure occurs before or
after the slab yields in flexure, failures in slab-column
connections look the same: the column together with a portion
of the slab pushes through the slab (footing) or the slab pushes
down around a column. Therefore, the failures were labeled
punching failure. For connections of normal proportions and
with usual amounts of flexural reinforcement, a yield-line
mechanism will precede punching shear failure.16

HISTORIC DEVELOPMENT OF 
ACI 318 PROVISIONS

Joint Committee of 192417

In 1924, the ACI code committee17 recommended that the
calculated shear stress v and the allowable shear stress are
given in Eq. (2) and (3), respectively

v = (2)

v = 0.02fc′ (1 + n) ≤ 0.03fc′ (3)

where V is the shear force, b is the critical shear perimeter
located at a distance of (t – 1.5 in. [38.1 mm]) from the
periphery of the loaded area, jd is the distance between the
centroid of compression and tension force, t is the slab
thickness, fc′  is the concrete compressive strength (psi), and
n is the ratio of the flexural reinforcement area crossing
directly through the loaded area (column or column capital)
to the total flexural reinforcement area in the slab. The report
by the Joint Committee of 192417 was also adopted by ACI
as standard specifications and only minor changes have been
made with respect to shear and diagonal tension in slabs and
footings since then.

ACI 318-41,18 ACI 318-47,19 and ACI 318-5120

The three editions of the ACI 318 Code from 1941 to 1951
have the same provisions for two-way shear strength and

V
bjd
--------

acknowledge that the shear strength is sensitive to the
amount of flexural reinforcement. The shear stress v as a
measure of diagonal tension is computed using Eq. (2), and
the allowable v for two-way slabs is:
• 0.03fc′  if at least 50% of the total negative flexural rein-

forcement in the column strip passes through the periphery.
• 0.025fc′  if 25% or less of the total negative flexural rein-

forcement in the column strip passes through the periphery.
The allowable v for footings is 0.03fc′  ≤ 75 psi (0.52 MPa).

As recommended by the Joint Committee of 1924, the critical
shear perimeter is located at a distance of (t – 1.5 in. [38.1 mm])
from the periphery of the loaded area.

ACI 318-5621

ACI 318-5621 introduced the maximum limit of 100 and
85 psi (0.69 and 0.59 MPa) for the allowable v (that is,
0.03fc′  ≤ 100 psi [0.69 MPa] and 0.025fc′  ≤ 85 psi [0.59 MPa]).
The critical shear perimeter is located at a distance d away
from the loaded area. The allowable v for footings is still
0.03fc′  ≤ 75 psi (0.52 MPa).

ACI 318-6322

The provisions of ACI 318-6322 were developed on the
basis of the recommendations by Joint ACI-ASCE Committee
426, Shear and Diagonal Tension. Significant changes to
shear provisions introduced in ACI 318-63 were22:

1. ACI 318-6322 was the first edition of ACI 318 that
contained an ultimate strength design criteria for shear. ACI
318-6322 prescribed the use of both load factors and capacity
reduction factors φ;

2. Diagonal tension for concrete was stated as a function
of . Joint ACI-ASCE Committee 326 recommended that
v was a function of  and the ratio of the column size
to the effective slab depth c/d. The committee pointed out,
however, that the variable of c/d could also be taken into
account by using a critical perimeter d/2 away from the loaded
area. For simplicity, especially for irregular column shapes and
slabs with openings near the column, ACI 318-6322 adopted
the following approach: v was independent of c/d and equal
to 4 ;

3. The critical shear perimeter was located at d/2 away
from the loaded area. Commentary of ACI 318-6322 indicated
that while the true pyramidal failure surface was at 45 degrees
to the neutral axis, the stresses on this surface were complex
(containing both shear and bending forces). For simplicity, a
vertical section on which the tangential component was
caused only by shear was selected. Such a section was
located at a distance of d/2 from the loaded area;

4. The factor j was eliminated; and
5. Long and narrow slabs or footings, acting as a one-way

beam and a two-way member, respectively, were differentiated.
ACI 318-6322 stated that the nominal ultimate shear

strength vu in slabs and footings is

(4)

where Vu is the total factored shear force and bo is the critical
shear perimeter located at d/2 away from the loaded area.
Without shear reinforcement

(5)

where φ is the capacity reduction factor (0.85 for shear).
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vu 4φ fc′≤
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ACI 318 since 19715,23-29

The ACI 318 provisions for basic two-way shear strength
of slab (Eq. (4) and (5)) have not changed since 1963, except
in 2002,29 when the φ-factor was reduced to 0.75.

PREVIOUS RESEARCH ON TWO-WAY SHEAR 
RESISTANCE OF SLABS

Richart30,31

Richart30,31 reported tests of 24 wall footings and 132
column footings supported on a bed of steel springs simulating
soil pressure. Most of the specimens tested by Richart30,31

were 7 ft (2.1 m) square footings. Richart30,31 found that the
reinforcing steel in the footings with 0.2% and 0.4% flexural
reinforcement ratio yielded before punching failure
occurred. These footings developed extensive cracking and
finally failed in diagonal tension at relatively low shear
stresses v (2  to 3.2  psi [0.17  to 0.27  MPa]),
evaluated at the critical section d away from the column
face). He referred to punching shear failure as a secondary
failure (after the yielding of flexural reinforcement), and
explained that the secondary failure occurred because
yielding of the steel produced large cracks, which then
reduced the concrete section resisting shear. He also found
that footings with ρ = 0.56% and 0.75% clearly failed in
diagonal tension, at shear stress (v) levels that varied between
2.9  and 3.5  psi (0.24  and 0.29  MPa)
(evaluated at the critical section d away from the column face).

Hognestad32

Hognestad32 concluded that the majority of the footings
failed after local yielding of the flexural reinforcement, but
before reaching the ultimate flexural load from a yield-line
analysis. He recognized that the flexural and shear strength
were interrelated and introduced the parameter φo =
Vshear /Vflex, where Vshear is the ultimate shear capacity of the
slab, and Vflex is the ultimate flexural capacity. Based on
Richart’s footing test results,30,31 Hognestad32 proposed the
following empirical equation

(6)

(however, 0.38 ≤ d/c ≤ 1.14; 2000 psi [13.79 MPa] ≤ fc′  ≤
5000 psi [34.47 MPa]) where j = 7/8, b is the circumference
of the loaded area, d is the effective depth of slab, fc′  is the
concrete cylinder strength (psi), and φo is

(7)

A = 0.035 + (8)

B = (9)

(10)
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(11)

where a is the width of the slab or footing, c is the column
dimension, and fy is the yield strength of steel reinforcing bars.

Elstner and Hognestad33

Elstner and Hognestad33 found that the final failure of
slabs with flexural reinforcement ratios that varied from
1.15% to 3.7% was by the column punching through the slab.
When shear stresses v were evaluated at a distance d/2 away
from the column, v varied from 4  to 7.4  psi
(0.33  to 0.62  MPa). In most cases, such punching
occurred after initial yielding of the reinforcement in the
vicinity of the column. A flexural failure, however, was
observed for the slabs with 0.5% and 1% flexural reinforcement
(when v was evaluated at a distance d/2 away from the
column, v varied from 2.1  to 3.5  psi [0.18  to
0.29  MPa]).

After reanalyzing Richart’s test results,30,31 Elstner and
Hognestad33 indicated that v computed at the column face
was a better measure of shear strength than that computed at
a distance d away from the column faces. They also revised
the earlier Hognestad empirical formula (Eq. (6)) as follows

(12)

where j = 7/8. They also found that a concentration of 50%
of the flexural reinforcement directly over a column did not
increase the shear strength and compression reinforcement
had no effect on the ultimate shear strength.

Whitney34

Whitney34 reviewed Richart’s30,31 and Elstner and
Hognestad’s33 test results and suggested that the conventional
shear formula (v = V/bjd = k( fc′ )) was not acceptable because
the shear strength was not a function of concrete strength
alone, but depended largely on the amount of flexural rein-
forcement and its efficiency. He indicated that the conven-
tional shear formula was too conservative for cases with a
large ρ value and relatively unsafe with a light ρ value. He
also found that using the critical section at a distance d/2
away (instead of d away) from the column face gave the most
consistent results for all slab depths.

Whitney34 proposed the following expression

(13)

where b = 4(c + d) (critical shear perimeter is at a distance d/2
away from the loaded area), ls is the shear span, and mu is the
ultimate moment capacity per unit width of slab near the
column defined as follows.

For under-reinforced slabs

(14)

For over-reinforced slabs
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(15)

The customary term j was omitted from Eq. (13) because the
value of v was calculated empirically and the average value for
the full depth was considered to be as good as any other.

Whitney34 explained that there were two different types of
failure: gradual and sudden. The gradual type of failure
occurred after flexural reinforcement yielded and caused
excessive cracking that eventually reduced the shear strength
until the column punched through the slab. The sudden type
of failure occurred before any of the flexural reinforcement
yielded. This sudden failure could be caused by over-
reinforcement in flexure (resulting in destruction of the
compression zone around the column) or bond/anchorage
failure (because of insufficient embedment length or very
close spacing of the reinforcing bars). In explaining a
mechanism of failure, Whitney34 indicated that the horizontal
component of the shear force on the pyramid of rupture must
be resisted by the flexural reinforcement passing through the
pyramid. Whitney34 stated that this horizontal component
was limited by the yield strength of flexural reinforcement.
As the reinforcement yielded, three failure mechanisms
could happen: 1) flexural cracks could extend up from the
steel into the pyramid until they finally precipitated a shear
failure; 2) if the slab was over-reinforced, the compression
zone around the column crushed and resulted in sudden
punching; or 3) if the steel was not properly anchored, it
slipped and permitted sudden punching.

Joint ACI-ASCE Committee 32611 commented that
because the test results of specimens with relatively high
flexural strengths were omitted in the study leading to Eq. (13),
this equation could only apply in cases of nearly balanced
design (that is, when φo is close to unity). It can be seen from
Eq. (13) that v can be increased by increasing ρ inside the
pyramid of rupture. Shifting the flexural reinforcement from
the outside of the pyramid to the inside also increases ρ
inside the pyramid of rupture and, hence, increases v.

Moe35

Moe35 suggested that the shear strength was proportional
to  instead of fc′  to reflect the fact that shear failures are
controlled primarily by tensile splitting. Based on the test
results of the slabs with varying degrees of concentration of
the flexural reinforcement inside the pyramid of rupture,
Moe35 found that Vflex is a better indicator of the shear
strength than mu, which was used by Whitney34 (Eq. (13)).
Moe,35 however, indicated that the magnitude of Vflex had in
itself no direct physical relation to the mechanism of failure.
Rather, it reflected several other important influences, such
as distribution of cracking, amount of the elongation of the
tensile reinforcement, magnitude of the compressive stresses
in the critical section, and the depth of neutral axis at failure.

Moe believed that the interaction between shear and flexural
strength could be approximated by a straight line as follows

(16)

He assumed that Vo = Abd , where b is the critical
shear perimeter at a distance of d/2 away from the loaded
area. Moe35 also believed that the shear strength is sensitive
to c/d and assumed a linear variation.

mu
d2fc′

3
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Based on a statistical analysis of 37 slab and 106 footing
test results (shown in Fig. 1) of Richart,30,31 Elstner and
Hognestad,33 and his own tests, Moe35 proposed Eq. (17).
All slab and footing specimens were 7 x 7 ft (2.1 x 2.1 m) or
smaller, and had flexural reinforcement ratios that varied
between 0.39% and 3.7%

(17)

where Vflex is the shear force at the calculated ultimate flexural
capacity of the slab using the yield line theory. Using a
definition of φo = V/Vflex, Eq. (17) can be reorganized as follows

(18)

Only the specimens that were believed to have failed in
shear were included in Moe’s35 statistical analysis (φo < 1.0)
and are shown in Fig. 1. One-hundred and six of
Richart’s30,31 footing test results are included in Fig. 1. It
should be noted that 22 tests (with 0.2% ≤ ρ ≤ 0.4%) out of
156 footing tests conducted by Richart,30,31 which were
believed to have failed in flexure, were excluded from Moe’s
35statistical analysis. Of the 38 slab tests conducted by
Elstner and Hognestad,33 only 34 results were included in
Moe’s35 statistical analysis. Four slabs (with 0.5% ≤ ρ ≤ 1%
and 2.1  psi ≤ v ≤ 3.5  psi [0.18  MPa ≤ v ≤
0.29  MPa] where v was evaluated at a distance d/2 away
from the column face) were believed to have failed in flexure
and were excluded from Moe’s35 statistical analysis.
Perhaps the most important contribution of Moe’s35 study
stems from his effort to explicitly include the effect of flexural
reinforcement through the term Vflex.

Based on the ultimate strengths of slabs and footings
obtained from relatively short-duration tests and considering
the average strength, rather than the minimum, Moe35 also
developed design equations. Because slabs failing in flexure
resisted loads considerably greater than the flexural capacity,
as computed using the yield line theory, Moe35 assumed V =
1.1Vflex as the point of balanced design (that is, the value at
which the flexural and shear strengths are equal).

To ensure that the flexural failure always governs over the
shear failure, Moe35 proposed that v must be limited to the
following values

v V
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15 fc′ 1 0.075c
d
---–⎝ ⎠

⎛ ⎞

1 5.25
bd fc′
Vflex

----------------+

------------------------------------------------= =

v V
bd
------ 15 1 0.075c

d
---–⎝ ⎠

⎛ ⎞ 5.25φo– fc′= =

fc′ fc′ fc′
fc′

Fig. 1—Test results used in Moe’s35 statistical analysis.
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 for c/d ≤ 3 (19)

 for c/d > 3 (20)

Equations (19) and (20) were developed on the basis of
tests on slabs and footings with c/d between 0.9 and 3.1.

Joint ACI-ASCE Committee 32611

Joint ACI-ASCE Committee 32611 reviewed Moe’s35

equation (Eq. (18)) and believed that φo could be eliminated
from Eq. (18) by substituting φo = 1.0 because, in a practical
design, Vshear should exceed Vflex (that is, φo ≥ 1.0). It should
be noted from Eq. (18) that the shear strength v decreases as
φo increases. Because Eq. (18) was derived based on the test
data with φo ≤ 1.0, substituting φo = 1.0 was conservative.
This simplification resulted in the following equation

(21)

The committee, however, believed that Eq. (21) could not
be applied for all cases encountered in practical design
because of the following reasons:

1. When the load was applied to a slab over a very small
area (that is, b and c/d were very small), v would approach
9.75  but V would approach zero; and

2. When c/d was large (that is, columns with drop panels),
v would approach zero.

Based on a conservative fit to 198 available test results
with φo ≤ 1.0, Joint ACI-ASCE Committee 32611 then
proposed the following equation

(22)

where b is the periphery of the loaded area. It should be noted
that, because Eq. (22) was derived based on a conservative
fit of the test data with φo ≤ 1.0, the applicability of Eq. (22)
to the cases where φo > 1.0 is questionable. Because Eq. (18)
shows that v decreases as φo increases, it is expected that
Eq. (22) is unconservative when it is applied to the cases
where φo > 1.0, which is typical in lightly-reinforced slabs.

To avoid an open interpretation on the value of c for irregular
columns or columns with openings, and to propose a design
recommendation that was consistent with the ACI 318-5621

concept, the committee simplified Eq. (22) into the
following equation

(23)

where bo is the critical section located at a distance d/2 from
the loaded area.

In the discussion of the paper by Joint ACI-ASCE
Committee 326,11 Diaz de Cossio36 considered that the
lower limit of 4  psi (0.33  MPa) at d/2 from the
loaded area was reasonable and on the safe side for most
common cases. Diaz de Cossio’s36 test results of 22 one-way
slabs (reinforced in tension only) with ρ values varying
between 1.85% and 2.81% had an average v (measured at d/2
away from the loaded area) of 3.65  psi (0.3  MPa)
with a coefficient of variation of 7.4%. He stated, however,

v 9.23 1.12c
d
---–⎝ ⎠

⎛ ⎞ fc′=

v 2.5 10c
d
---+⎝ ⎠
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v V
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---–⎝ ⎠

⎛ ⎞ fc′= =
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v V
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------ 4 d

c
--- 1+⎝ ⎠

⎛ ⎞ fc′= =

v V
bod
-------- 4 fc′= =

fc′ fc′

fc′ fc′

that it was likely that two-way slabs with significantly larger
width-to-depth ratio than that of his specimens would have
higher strengths than those measured in his tests. Hence, it
can be seen that 4  psi (0.3  MPa) was not considered
to be a lower limit of the shear stress, but more like an
average stress.

Joint ACI-ASCE Committee 32611 also indicated that
concentration of reinforcement over the column had advantages
in flexure (that is, increasing the slab stiffness and reducing
the stresses in the flexural reinforcement in the vicinity of the
column) and therefore should be encouraged. The committee
did not, however, tie a requirement for flexural reinforcement
to the design requirements for shear.

Guralnick and LaFraugh37

Guralnick and LaFraugh37 tested a 3/4-scale flat-plate test
specimen having overall dimensions of 45 x 45 ft (13.7 x
13.7 m) consisting of nine 15 x 15 ft (4.6 x 4.6 m) panels
arranged three-by-three. The amounts of top flexural rein-
forcement in all interior connections were 0.73% in the
column strip and 1.5% within the (c + 2h) region.

Failure occurred when one of the interior columns
punched through the slab at a load of 85% of the two-way
shear capacity computed using ACI 318-6322 (that is, 0.85 ×
4 bod). The measured failure load of the test structure
was 1.05 times the predicted yield-line failure load.
Immediately before failure, the average steel strain at the
four faces of the column was approximately 0.01, which was
seven times greater than the yield strain.

Magura and Corley38

Magura and Corley38 reported the results of the test
conducted on the waffle slab roof of the Rathskeller Building
constructed for the 1964-1965 New York World’s Fair. The
roof of the structure was a 2 ft (0.61 m) thick waffle slab
supported on columns, approximately 30 ft (9.1 m) on
centers. The building was designed to meet the provisions of
ACI 318-5621 and the roof was designed for a live load of
300 lb/ft2 (14.4 kPa) and an average computed dead load of
220 lb/ft2 (10.5 kPa).

In one of the tests, Connection C4 (one of the interior
connections that had a 26 x 26 in. [660 x 660 mm] column and
flexural reinforcement ratios within the column strip of 0.5%
in the North-South direction and 1.9% in the East-West
direction) was loaded concentrically up to failure. Connection
C4 failed in shear before reaching its flexural capacity. The
structure behaved elastically until failure occurred. The
connection failed at a load that was 16% greater than that
estimated using ACI 318-63.22 The measured failure load,
however, was 20% lower than that estimated using Moe’s35

equation (Eq. (17)).

Criswell14,39

Criswell14,39 tested several connections with low flexural
reinforcement ratios and some of his test results are
summarized in Table 1. Criswell14,39 found that a punching
failure could occur at loads considerably below the ACI
Code values. The total factored shear force Vu of the connections
with ρ = 0.75% were approximately the same as Vflex,
whereas values of Vu with ρ = 1.5% were lower than Vflex.

Criswell14,39 indicated that because ACI 318-6322 and
Moe’s35 equations were derived using only test results with
φo < 1.0 and failing primarily in shear, the applicability of
those equations to the connections with ρ = 0.75%, which

fc′ fc′

fc′
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failed in flexure, was questionable. Criswell14,39 stated,
“…the strengths of the connections with smaller ρ values
were primarily controlled by the flexural capacity even though
a punching failure did develop before the connections
displayed large ductility. Such failures could be considered
as flexural-shear or secondary shear failure...”

Joint ACI-ASCE Committee 42640

Joint ACI-ASCE Committee 42640 indicated that v at
failure for lightly-reinforced slabs with a square column
could be less than 4  psi (0.33  MPa) if the slabs
developed large deflections prior to the punching failure.

Hawkins and Mitchell41

Hawkins and Mitchell41 reported that if a slab was properly
designed according to ACI 318-7724 concepts, the flexural
strength could be slightly less than the shear strength and,
therefore, the ACI 318-7724 provisions attempted to define
the punching shear strength for the onset of large rotations.
The design based on ACI 318-7724 was conservatively
presumed to correspond to φo = 1.0. Hawkins and Mitchell41

indicated that if a connection is forced to develop rotations
larger than those at which the flexural capacity is first
reached, a punching failure occurs unless the shear stress is
limited to 2  psi (0.167  MPa) or shear reinforcement
is provided.

Moehle et al.42

Moehle et al.42 recommended that the shear strength of a
connection be reduced to 3/4 of the value given by ACI 318
(for both basic formulas and with large critical shear area) if
extensive yielding is anticipated.

Joint ACI-ASCE Committee 35243

Joint ACI-ASCE Committee 35243 reported that connections
subjected to widespread flexural yielding exhibited shear
strengths lower than those failing in shear prior to flexural
yielding because in-plane restraint significantly decreases
when the flexural reinforcement yields. The committee
recommended a reduction factor Cv of 0.75 in cases where
flexural yielding is anticipated.

Yamada et al.44

Yamada et al.44 reported that their control specimen (6.6 x
6.6 x 7.9 in. [168 x 168 x 200 mm]) failed in punching shear
at the ultimate load that was only 92% of that estimated by
the ACI 318 Code. The properties of the control specimen
were as follows: 1) no shear reinforcement; 2) 1.23% slab
top reinforcement (No. 4 bars, fy = 116 ksi [799.8 MPa]); and
3) 0.62% slab bottom reinforcement (No. 4 bars, fy = 116 ksi
[799.8 MPa]).

BUILDING CODE PROVISIONS FOR 
TWO-WAY SHEAR STRENGTH OF INTERIOR 

SLAB-COLUMN CONNECTIONS
The basic two-way shear provisions of several major

building codes for interior slab-column connections without
shear reinforcement under concentric load (that is, without
moment transfer) are summarized in this section. Only
square columns and normal-density concrete are considered. 

Without shear reinforcement, the nominal two-way shear
strength of reinforced concrete members, Vn, is equal to the
concrete contribution Vc. All code recommendations on
punching use nominal shear stresses calculated by dividing

fc′ fc′

fc′ fc′

the shear force by an area equal to the product of the length
of a critical perimeter and the effective depth of the slab. The
codes differ in regard to the distance between the column
face and the perimeter, and in the expressions used to
define the limiting value of the stress, the effect of flexural
reinforcement, and the size effect. Reviews of codes are
given in Hallgren,45 Bari,4 fib,46 Albrecht,47 Salna et al.,48

and several papers in ACI SP-232.49

Different building code provisions for Vc are summarized
in Table 2. A special provision to account for a reduction in
nominal shear strength due to increasing ratios of critical
shear perimeter to effective depth is not included. To make
the comparison easier, a consistent set of symbols is used for
all provisions. 

In general, Vc can be expressed as follows

Vc = vc × ξ × κρ × bo × d (24)

where vc is the nominal shear strength, ξ is the size effect
factor, κρ is the longitudinal flexural reinforcement factor, bo
is the critical shear perimeter, and d is the effective depth.

The European codes use a characteristic strength fck
instead of a specified concrete strength fc′ . Gardner50 reported
that fc′  can be related to fck as follows

fck = fc′  – 1.60 MPa (25)

Building code provisions: comparison
As shown in Table 2, not all code provisions account for ρ

as a factor affecting two-way shear strength. To compare the
sensitivity of two-way shear strength with the change in ρ
according to different code provisions, a prototype slab-column
connection without shear reinforcement and with a 24 in.
(610 mm) square column, 9 in. (230 mm) slab thickness, 7 in.
(180 mm) effective depth, and 4000 psi (28 MPa) specified
concrete cylinder strength was analyzed. Figure 2 shows the
estimated two-way shear strength of an interior connection
in the prototype structure as a function of ρ.

The shear strength varies from approximately 480 kN
(107.9 kips) using German Code DIN 1045-151 to over
1100 kN (247.3 kips) using Canadian Standards CSA
A23.3-0452 for slabs with a 0.5% flexural reinforcement
ratio. Some of these differences may be reduced if load or
understrength factors are included. The variations, however,
indicate the diverging approaches used for the code equations.

Table 1—Criswell’s test results

Specimen Measured c/d ρ, % Vu/VACI Vu /Vflex

S2075-1 2.1 0.79 0.85 1.02

S2075-2 2.1 0.78 0.83 0.95

S4075-1 4.0 0.75 0.62 1.01

S4075-2 4.1 0.77 0.56 0.99

S4150-1 4.1 1.50 0.92 0.89

S4150-2 4.1 1.50 0.92 0.87

Note: Vu is observed failure load, VACI is calculated failure load using ACI Code, and
Vflex is calculated load using yield line theory.
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EFFECT OF FLEXURAL REINFORCEMENT ON 
PUNCHING SHEAR STRENGTH

Flexural reinforcement ratio
There have been conflicting opinions on whether the flexural

reinforcement ratio ρ has an effect on the two-way shear
strength of slab-column connections, Vc. Marzouk and
Hussein,53 Gardner and Shao,54 and Sherif and Dilger7

concluded from their test results that Vc is a function of ρ.
Vanderbilt55 showed that doubling ρ from 1 to 2% resulted
in only a modest increase in Vc. Elstner and Hognestad33 and
Moe,35 however, indicated that increasing ρ near the column
did not increase Vc. The concentration of reinforcement
resulted in ρ = 7 and 6.3%33 and ρ = 1.5, 2.3, and 3.5%.35

Whitney34 and Alexander and Simmonds56 pointed out that
these earlier investigations did not show the benefits of
increasing ρ by concentrating the flexural steel because the
specimens failed due to bond failure of closely spaced bars.

Regan57 indicated that ρ may affect punching resistance in
several ways: 

1. An increase of ρ should increase the depth of the
compression zone and thus the area of uncracked concrete
available to support shear forces. It should also reduce the
crack width, thus improving the transfer of forces by
aggregate interlock, and increase dowel action;

2. An increase of ρ should enhance the restraint available
in the plane of the slab, and therefore increase the two-way
shear strength. Hawkins and Mitchell,41 however, indicated
that the available restraint (due to membrane action) around
the connection can diminish if flexural reinforcement yields.
Therefore, the nominal ultimate shear strength of connections
transferring shear decreases as the extent of yielding in the
slab flexural reinforcement increases.

Yitzhaki12 indicated that the relative amount of ρ with
respect to the balanced reinforcement ratio ρbal (ρbal was
defined as the ρ to make the punching shear strength equal to
the flexural strength) can affect mode of failure. When ρ <
ρbal, slabs would fail in flexure and increasing ρ is very
effective to increase punching resistance. When ρ > ρbal,
slabs would fail in punching. In this case, punching resistance
was insensitive to ρ and increasing ρ to increase punching
resistance would be uneconomical. Gardner58 also indicated
that while increasing ρ increases the punching resistance, the
behavior of the connection becomes more brittle.

Concentration of reinforcement toward
column or loaded area

Joint ACI-ASCE Committee 42640 indicated that a
concentration of reinforcement toward the column or loaded
area does not improve the shear strength. The committee,
however, encouraged the concentration of reinforcement in

Table 2—Code provisions for basic two-way shear strength

Building codes

General equation: Vc = vc × ξ × κρ × bo × d

vc ξ κρ bo

Shear strength Size effect

Reinforcement ratio Critical shear perimeterSI units U.S. units SI units U.S. units

ACI 318-08 0.33 4 — — —

bo = 4(c + d)

CSA A23.3-04 0.38 4.6
For d > 300 mm:
1300/(1000 + d)

For d > 11.8 in.:
51.2/(39.4 + d) —

AS 3600-1994 0.34 4.1 — — —

IS:456 0.25 3 — — —

Eurocode 2-2003 and 
CEB-FIP MC 90 0.18( fck)

1/3 5( fck)
1/3

 ≤ 2.0  ≤ 2.0
(100ρ)1/3

ρ ≤ 0.02

bo = 4(c + πd)

DIN 1045-1 0.14( fck)
1/3 3.9(fck)

1/3

bo = 4c + 3πd

BS 8110-97

For fck,cube > 25 MPa:

fck,cube ≤ 40 MPa

For fck,cube > 3600 psi:

fck,cube ≤ 5800 psi

 ≤ 1.0  ≤ 1.0
(100ρ)1/3

ρ ≤ 0.03
bo = 4(c + 3d)

Note: fc′  is specified concrete cylinder compressive strength, fck is characteristic concrete cylinder compressive strength, fcube ≈ 1.25fc′ , d is average depth of slab reinforcement, and
c is column dimension.

fc′ fc′

fc′ fc′

fc′ fc′

fck cube,
fck cube,

1 200
d

---------+⎝ ⎠
⎛ ⎞ 1 7.9
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-------+⎝ ⎠

⎛ ⎞
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---------------⎝ ⎠

⎛ ⎞
1/3

115
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3600
---------------⎝ ⎠
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1/3 400

d
---------⎝ ⎠
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Fig. 2—Two-way shear strength according to different code
provisions.
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the column region because it enhances the flexural behavior
of the slab under service loads.

Regan57 reported that for practical arrangements of bars,
Moe’s35 tests and the Concrete Industry Research and
Information Association (CIRIA) results showed decreases
of strength by roughly 6% with increasing concentration,
compared with those for slabs with uniform steel. Regan and
Braestrup15 concluded that concentrating the reinforcement
is not beneficial. In extreme cases, the results showed that it
can even be harmful because excessive concentration leaves
large radial sectors almost unreinforced.

Rankin and Long9 indicated that the local increase of
moment capacity due to concentration of reinforcement is
offset by the reduction of slab ductility. McHarg et al.59

concluded that the concentration of the top mat of flexural
reinforcement results in a higher punching shear resistance,
higher post-cracking stiffness, a more uniform distribution
of strains in the top bars, and smaller cracks at all levels of
loading compared with companion specimens with a
uniform distribution of top reinforcement.

EXPERIMENTAL PROGRAM
To evaluate the two-way shear strength of a slab-column

connection, two 2/3-scale interior slab-column connections
(Specimens G0.5 and G1.0, shown in Fig. 3) were tested. The
test specimens were 14 ft (4.3 m) square and had 6 in. (150 mm)
thick slabs supported on 16 in. (400 mm) square columns.

Test specimens represent an interior flat-plate slab-column
connection of a prototype structure that was designed using
ACI 318-71.23 The prototype structure for Specimen G0.5
was assumed to have office occupancy, a live load of 50 lb/ft2

(2.4 kPa), partition and additional dead load of 20 lb/ft2

(0.96 kPa), 21 ft (6.4 m) span length, 24 in. (610 mm) square
column, and 9 in. (230 mm) slab thickness. The slab had 0.5%
top reinforcement in the column strip and 0.25% reinforcement
elsewhere, which were common in flat plate structures built
in 1970s. Specimen G1.0 had 1% top reinforcement between
lines that are 1.5 × (slab thickness) outside opposite faces of
the column (a width of (c + 3h)), which is typical in modern
flat-plate structures. All slabs had the same bottom rein-
forcement and no shear reinforcement was used. Grade 60
deformed reinforcement satisfying ASTM A706-06
requirements and 4000 psi (28 MPa) concrete were used in

the experimental program. The actual concrete compressive
strengths for both specimens are shown in Table 3. The
details of slab reinforcement are shown in Fig. 3. Longitudinal
reinforcement was placed in perpendicular directions and
satisfied the minimum length requirements of Section 13.5.6
of ACI 318-71.23 The top and bottom reinforcement in the
lateral loading direction had a clear cover of 0.5 in. (13 mm).
The average depth of slab reinforcement, d, was 5 in. (130 mm).

Figure 4 shows the setup used to test the specimens under
monotonically increasing concentric vertical loads applied
upward through the column. The positions of the vertical
struts were selected using results of nonlinear finite element
analyses conducted on the prototype structure to produce
conditions similar to those under uniform loading on the slab.

Figure 5 shows the gravity load versus vertical displacement
curves around the column for punching shear tests. The
gravity load capacity and the shear stress at failure calculated
at the critical shear perimeter vc are summarized in Table 3.
At failure, vc of Specimens G0.5 and G1.0 reached 2.47
and 3.37  psi (0.206  and 0.281  MPa), respectively.
The measured strengths were only 63 and 85% of the strength
estimated using ACI 318-085 expression (Eq. (1)). This
observation is consistent with the test results of a 45 ft (13.7 m)
square flat-plate structure.37 The results of the tests conducted
in this experimental study also indicate that two-way shear
capacity of the connections were sensitive to the amount of
flexural reinforcement within (c + 3h) region.

fc′
fc′ fc′ fc′

Fig. 3—Details of slab reinforcement.

Table 3—Test specimens and results

Specimen

ρtop within 

(c + 3h)*
fc′ , psi 
(MPa)

V,† 
kip (kN)

ACI bo,‡ 
in. (mm)

v = V/(bod), 
psi (MPa)

G0.5 0.5 4550 (31.4) 69.9 (310.9) 84 (2134)
2.47

(0.206 )

G1.0 1.0 4070 (28.1) 90.2 (401.2) 84 (2134)
3.37

(0.281 )
*c = 16 in. (406.4 mm) (column dimension); h = 6 in. (152.4 mm) (slab thickness).
†V is punching load.
‡bo = 84 in. (2133.6 mm) was calculated for the critical perimeter d/2 away from column
face (d = 5 in. [127 mm]).
Note: ρtop is percent slab top steel and v is failure shear stress.

fc′
fc′

fc′
fc′
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Measured versus estimated two-way shear strengths
The estimated two-way shear strengths using different

codes for control Specimens G0.5 and G1.0 are compared
with the measured strengths in Fig. 6. As can be seen in Fig. 6,
only DIN 1045-151 gave conservative estimates of the two-
way shear strength. All building codes that did not consider
flexural reinforcement influence on the two-way shear
strength5,25,60,61 estimated that Specimen G1.0 had a lower
two-way shear strength than Specimen G0.5 because
Specimen G1.0 had somewhat lower concrete strength
(Table 3). As expected, the other building codes that
considered the influence of flexural reinforcement51,62-64

estimated that Specimen G1.0 had a higher two-way shear
strength than Specimen G0.5 because Specimen G1.0 had a
higher percentage of flexural reinforcement.

Effect of flexural reinforcement ratio
In Fig. 7, the strains in reinforcing bars running in both the

North-South and East-West directions at the maximum load
Vmax of both Specimens G0.5 and G1.0 are compared. At
V = Vmax, reinforcing bars within (c + 3h) region in both
Specimens G0.5 and G1.0 yielded. The fact that flexural
yielding preceded punching shear failure of Specimens G0.5
and G1.0 was consistent with the observations of failure
made during testing.1 Figure 7 also shows that the reinforcing
bars outside the (c + 3h) region did not reach strains as high
as those within the (c + 3h) region.

The strains in reinforcing bars of Specimen G1.0 at V =
70 kips (the maximum load of Specimen G0.5) are also
shown in Fig. 7. At that load, the strains in Specimen G1.0

Fig. 4—Test setup.

Fig. 5—Load-versus-deformation curves.

Fig. 6—Estimated strength from building codes versus
measured strength.

Fig. 7—Reinforcing bar strains.
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were generally half those in Specimen G0.5. This indicates
that for a given load level, the reinforcing bar strain
decreased as the percentage of flexural reinforcement
increased. Smaller strains mean smaller crack widths and a
more important contribution from aggregate interlock to the
shear strength. Therefore, in lightly-reinforced slab-column
connections (that is, with 1% flexural reinforcement or less),
increasing the amount of flexural reinforcement within (c +
3h) region will result in a reduction of reinforcement strains
and improvements in the shear strength.

CONCLUSIONS
Based on an extensive literature review, the following

observations can be made:
1. The simple expression that gives the basic two-way

shear strength in the current ACI provision (Vc = 4 bod)
has not changed since 1963 and was developed from a
relatively complex empirical equation proposed by Moe.35 It
should be noted that Moe’s35 empirical equation was based
on a statistical analysis of 106 footing test results reported by
Richart,30,31 34 slab test results from Elstner and Hognestad,33

and by Moe35 that were considered to have failed in shear
(φo ≤ 1.0, where φo = V/Vflex). Test results that were considered
to have failed in flexure were excluded from Moe’s35 statistical
analysis. Because Moe’s35 equation was derived based on
test data with φo ≤ 1.0, it does not apply to the cases where
φo > 1.0;

2. It is clear that results from tests with φo ≤ 1.0 were used
to arrive at the basic two-way shear strength expression (Vc =
4 bod). The ACI 318 provisions were conservatively
presumed to correspond to φo = 1.0. Because the shear strength
decreases as φo increases, the applicability of the ACI provisions
for typical lightly-reinforced slabs (ρcolumn strip < 1%) is
questionable because such slabs have φo values larger than
1.0; and 

3. There are significant variations among code provisions.
Even for the codes that account for the influence of flexural
reinforcement on the two-way shear strength, the influence
of flexural reinforcement is accounted for in different ways.
Code provisions are almost exclusively empirical and were
derived by examining experimental results, which were very
sensitive to test setups and specimen details. Because test
setup, specimens, and reinforcement details varied among
research projects, there are considerable divergences among
the code provisions.

Based on the results of experimental research conducted at
the University of Texas at Austin, the following observations
can be made:

1. The capacity of Specimen G0.5 that represents a slab-
column connection typical of flat-plate structures built in the
1970s was significantly overestimated (between 17 and
86%) by ACI 318-08,5 CSA A.23.3-04,52 AS 3600-1994,60

IS-456,61 EC2-2003,62 MC-90,63 and BS 8110-97.64

Because the two-way shear capacity was sensitive to ρ, the
differences were larger for code provisions that did not
explicitly consider ρ as a parameter affecting the two-way
shear strength.5,52,60,61 Unlike other building codes, DIN
1045-151 provided a 20% conservative estimate of the
capacity for the connection tested; and

2. The capacity of Specimen G1.0 (which represents a
slab-column connection in typical flat-plate structures built
to meet current standards) was also overestimated (between
9 and 36%) by all but DIN 1045-1.51

fc′

fc′

RECOMMENDATIONS
The ACI 318 provision for two-way shear strength (Vc =

4 bod) has not changed since 1963. The overwhelming
evidence gathered from the literature14,37,39-44 and obtained
in the experimental program1 illustrates that the use of ACI
318 provisions for lightly-reinforced slab-column connections
is questionable. The current ACI provision for two-way
shear strength does not reflect the shear strength after
significant yielding of flexural reinforcement, which is the
case in typical lightly-reinforced slab-column connections.
Based on the experimental evidence reviewed, the two-way
shear strength of lightly reinforced connections should be
reduced. A value of (Vc = 2 bod) represents a lower bound
on the data.
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DISCUSSION

Referring to the problems at the application of the
sectional approach, the authors propose strut-and-tie models
to predict the behavior of four-pile caps. A reasonable doubt
is that the sectional approach “exaggerates the importance of
the effective depth for calculation shear strength.” It is true
that in D-regions, the inner lever arm is less than in B-regions.
Nearly all specimens of the numerous test programs, even if
their failures were proclaimed as by shear, were preceded by
the yielding of longitudinal reinforcement, that is, were caused
by poor bending capacity. Nevertheless, during the entire
paper, the authors make use of d, the “effective depth” of pile
caps, which is really not effective in a D-region. Accordingly,
the shear span-depth ratios, the mechanical reinforcement
ratios, and the normalized shear stresses, as defined and used
in Fig. 1 to 3, yield misleading interdependencies.

STRUT-AND-TIE MODEL TO PREDICT
 BEHAVIOR OF FOUR-PILE CAPS

The strut-and-tie model (STM) shown in Fig. 4 raises the
following questions/concerns:
• As mentioned previously, the real effective depth

differs from the geometrical defined depth d. (In their
concluding remarks, the authors refer correctly to the
unknown position of the nodal zone underneath the
column, but give no guidance.)

• For what reasons were no bottle-shaped compression
struts chosen?

• The ties of the proposed STM do not fulfil the requirement
of the minimum internal work: ties along the diagonals
A-D and B-C would yield less energy. Moreover,
especially if the pile cap has a cuboid geometry, the
first cracks develop in the center of the cap, just under
the column, hence the reinforcing bars positioned along
the diagonals would most efficiently control the
behavior of the cap.

• The same diagonal reinforcement layout must be
proposed when the pile-cap is turned upside down: the
four piles load the column at the corners of a bracket-
like plate. This interpretation makes the punching
failure found by Blevót and Frémy14 understandable.

Due to the aforementioned problem with the “effective
depth,” both fundamental equations (Eq. (2) and (4)) are
questionable. The parameter φy in Eq. (5) may refer to,
among others, the ratio of real effective depth to depth d.

Being in a D-region, the expression for the axial load to produce
the first cracks given by Eq. (11) is questionable, too.

CONCLUDING REMARKS
For the design of pile caps, both the sectional design

method and the strut-and-tie-method could be applied and
both have the same Achilles’ heel (as correctly remarked by
the authors): to find the real effective depth. This immediately

solves the problem with the “complex and nonlinear strain
distribution throughout the pile cap.” Pile caps, similar to
short brackets or deep beams, never fail in shear. The STM
describes it with the direct compression struts’ flow. The
sectional design on the other side does not need to take care
of the shear problem. As the authors properly state, the
so-called shear failures occurred after yielding of the
longitudinal reinforcement. This means weak flexural
reinforcement. At STM, the inclination of the inclined
compression strut defines the amount of the necessary
flexural reinforcement. This is hidden behind the
recommendation given by the authors: “to prevent this sort
of failure, a compressive stress under 1.0fc and a relation
shear span-depth ratio under 1.0 normally can lead to ductile
failures.” The conclusion of Nori and Tharval28 must be
agreed upon: any reduction of the amount of longitudinal
reinforcement results in a brittle failure of the pile cap.

The authors are correct in the following:
• It is difficult to generalize the fact that strut-and-tie is

more economical.
• The tensile contribution of the concrete is underestimated

by the application of either the sectional design
methods or the strut-and-tie design provisions for very
stocky pile caps.

• Improved models are needed that can account for
compatibility and tensile contributions of concrete
materials.

Comparative tests are needed with diagonally reinforced
pile caps.

AUTHORS’ CLOSURE
The authors would like to thank the discusser for his

interest in the paper, for his positive comments, and for
providing the authors the opportunity to clarify some issues
of the paper.

Initially, the authors agree with the discusser that using the
effective depth for calculating shear strength of pile caps can
lead to unrealistic results, mainly when using a sectional
approach. This fact was inclusively confirmed by experimental
results obtained by one of the author’s references. 

On the other hand, the discusser has mentioned that the
authors have used the same effective depth to develop a
strut-and-tie model for four-pile caps and it raises some
doubts regarding the validity of the model. Also, the
discusser points out that the inner level arm in a D-region
will be less than the one realized in a B-region.

In the authors’ opinion, it is not possible to generalize the
fact that the effective depth in a D-region will be less than in
a B-region, as these regions have totally different behaviors.
In the case of pile caps, for example, one may find the same
internal level arm between horizontal compressive struts
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(top of the pile cap) and tension steel ties (bottom of the pile
cap), using the sectional approach (B-region) or a strut-and-
tie model (D-region).

Some design codes permit the use of the sectional
approach for design pile-caps. In fact, there is no major
problem when designing the reinforcement using this
method as it normally leads to differences of approximately
20% regarding a strut-and-tie model. The sectional
approach, however, is not adequate for previewing the shear
behavior of stocky pile caps (span-depth ratio of less than 2,
in general) once it is deeply related to the effective depth. If
the effective depth is increased, the expected shear loads will
be higher; it is not true for a D-region designed using the
sectional approach.

For a D-region, when the depth of the pile cap is increased,
the diagonal struts will tend to pass from a situation of prismatic
struts to bottled-shaped struts, which is a form of strength
penalty, as compressive bottled-shaped struts are subjected
to splitting. In fact, the authors have used the effective depth
in their proposal; however, the increase in this value is
subject to a penalty through Eq. (7) through (9).

Regarding the position of the nodal zone underneath the
column, the authors believe it is really a value of high uncertainty.
This position, however, may be estimated based on the
recommendation of Paulay and Priestley.31 In their opinion,
the effective depth of the horizontal strut underneath the
column may be taken as h/4, where h is the total height of the
pile cap.

The authors are working on new and more complete
models13 (refer to Fig. 5) where the position of the nodal
zone underneath the column, the diagonal bottled-shape
struts, compatibility equations, and compression softening
effects are considered. The discusser may find further
clarification in the referred paper.

Regarding the position of the ties, the authors agree with
the discusser that the proposed layout in the strut-and-tie
model will require more reinforcement than a situation of
diagonal positioning of the reinforcement. However, one
should remember that the proposed model attempts to
predict the behavior of some data collected from experi-
mental research. In the majority of these tests, and even in
practical and real situations, the proposed layout is preferred.
Also, a minimum grid of reinforcement is usually distributed
in the bottom of pile caps to prevent premature cracks that
may develop in the center of the cap.

The authors agree with the discusser that diagonally
reinforced pile caps should be tested. The number of tests

available to effectively describe the behavior of pile caps is
very small. Besides that, the available results do not
represent the reality of what the pile caps are usually
subjected to in construction. The majority of the collected
data refers to four-pile caps supporting square columns
subjected to axial force. In fact, in most situations, pile caps
tend to support rectangular columns subject to axial load and
biaxial flexure. New models taking into account this reality
need to be developed to adequately address the economy and
safety aspects of pile caps.

Finally, the authors recommend the use of the strut-and-tie
model for pile caps with span-depth ratios of less than 2. The
sectional approach may yield better results for pile caps with
large span-depth ratios, that is, span-depth ratios greater than 2.
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Fig. 5—Strut-and-tie model for four-pile caps proposed by
Park et al.13
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The authors have given an excellent description of the
historical development of the punching shear provisions of
ACI 318. However, the section on previous research on two-
way shear resistance of slabs refers to only 16 of the references
listed. Additional references worth review include Kinnunen
and Nylander,65 Shehata and Regan,66 Shehata,67

Gardner,68 Alexander,69 Silfwerbrand and Hasssanzadeh,70

and Sundquist.71 The addition of the authors’ tests results to

the literature is welcomed; however, the punching shear
capacities for the two slabs reported, G0.5 and G1.0, are
lower than the discusser would expect.

Comparison of code provisions with experimental results
is not straightforward because the code provisions were
designed to be conservative, use specified or characteristic
concrete strength and not the mean strength reported for the
experimental studies, and sometimes include hidden factors



ACI Structural Journal/January-February 2010 121

in the equation coefficients. Code prediction equations
should be capable of direct verification against experimental
results. The larger shear perimeters of BS8110-97,64 DIN
1045-151 and Eurocode 262 are advantageous for concentric
punching shear but create difficulties in interpretation for
edge and corner slab-column connections.

Prior to 1984, the punching shear provisions of CSA A23.3
were similar to those of ACI 318. CSA A23.3-84M71

replaced the ACI behavior factor ϕ with material partial
safety factors ϕc = 0.6 and ϕs = 0.85, and changed the load
factors to 1.25D + 1.5L. To maintain the same level of safety
as the previous code, the coefficients in the punching shear
expressions were increased by 21% (CSA A23.3.84M,
Clause B3(b)). CSA A23.3-0452 increased the concrete
material factor ϕc to 0.65 and reduced the equation
coefficients by 5%. Changing the equation coefficients is
poor practice, as setting ϕc = ϕs = 1 in the strength capacity
equation should give the 95% lower bound of a population of
test/predicted results.

BS8110-97,64 CEB MC90,63 DIN 1045-1,51 and
Eurocode 262 use material factors φ > 1 in the denominator,
whereas ACI and CSA use φ < 1 in the numerator. DIN 1045-1
does not state explicitly that the material understrength factor γc =
1.5 is included in the equation coefficients, but Hegger et al.73

wrote the equation coefficient as 0.21/γc. The punching shear
capacities, calculated using mean concrete strength, the
revised coefficient, and φ = γc = γm = 1, are given in Table 4.
Using specified, or characteristic, concrete strength would
reduce the calculated capacities.

The conclusion that DIN 1045-0151 is conservative is
incorrect—none of the code expressions are conservative.
However, as stated previously, the punching shear capacities
for the two slabs reported, G0.5 and G1.0, are lower than the
discusser would expect.

The conclusions based on experimental research at the
University of Texas at Austin are too broad considering that
only two slabs were tested. However, Fig. 3 of Reference 68
shows that the ACI 318 punching shear equations are not
conservative for reinforcing ratios less than 0.7%.
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Table 4—Calculated punching shear capacities
for Widianto slabs (calculated using mean 
concrete strength)

Code

Expt.,
kips 
(kN)

ACI
318-05,*

kips (kN)

BS
8110-97,64 
kips (kN)

EC2,62 
kips 
(kN)

DIN
1045-1,51 
kips (kN)

Gardner,67† 
kips (kN)

 Slab 
G0.5

69.9
(310.9)

112.6
(501)

86.1
(383)

93.5
(416) 95.5 (425) 75.3

(335)

Slab 
G1.0

90.2
(401.2)

106.5
(474)

104.6
(454)

113.5
(505)

116.0 
(516)

91.2
(406)

*Square perimeter used.
†Steel yield strength taken as 70 ksi (480 MPa).

AUTHORS’ CLOSURE
The authors would like to thank the discusser for his

interest and comments. As implied by the title of the paper,
the focus was on ACI 318 provisions. This focus was stated
in the Research significance section, detailed in the main
body of the paper and reiterated in the Conclusions section.
The objective of the paper was neither to examine nor to
report on all design codes, all analytical formulas, and/or all
test results ever published.

The low shear strength values recorded in the authors’
tests should not be too surprising, considering the fact that
there are many test results reported in the
literature14,30,31,33,37,39 that are approximately the same as
those for Specimens G0.5 and G1.0. Even though the focus
of the paper was on ACI 318 provisions, the authors
presented different code provisions only to illustrate “the
diverging approaches used for the code equations” and the
fact that mechanics of punching shear failure have not been
well understood. By these illustrations, the authors wanted
to convey the message that reexamination of the ACI 318
provision for two-way shear strength (which has not
changed since 1963) is warranted.

The discusser indicated that “DIN 1045-1 does not state
explicitly that the material understrength factor γc = 1.5 is
included in the equation coefficients, but Hegger et al.73

wrote the equation coefficient as 0.21/γc.” The authors have
presented the equations that were taken directly from DIN
1045-151 in Table 2. Similar to DIN 1045-1,51 the authors
also used the equations as they appear in the BS 8110-9764

and Eurocode 2.62 The comparative evaluation of various
code provisions and experimental results is not straightfor-
ward and was highlighted in the section titled “Building
code provisions: comparison”:

The shear strength varies from about 480 kN using
German Code DIN 1045-142 to over 1100 kN
using Canadian Standards CSA A23.3-0443 for
slabs with a 0.5% flexural reinforcement ratio.
Some of these differences may be reduced if load
or understrength factors are included. However,
the variations indicate the diverging approaches
used for the code equations.

The statement made regarding DIN 1045-151 seems to
have been misinterpreted. The reported conclusions are only
related to the two specimens tested at the University of
Texas at Austin. It is explicitly stated in the Conclusions
section of the original paper that: “Unlike other building
codes, DIN 1045-151 provided a 20% conservative estimate
of the capacity for the connection tested” for Specimen G0.5
and “The capacity of Specimen G1.0 (which represents a
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slab-column connection in typical flat-plate structures built
to meet current standards) was also overestimated (between
9 and 36%) by all but DIN 1045-1.51 It should also be noted
that the Conclusions contained the following statement:
“Based on the results of experimental research conducted at
the University of Texas at Austin, the following observations
can be made.” Certainly, strength estimates may change if
load or understrength factors are included.

Finally, it is stated in the “Recommendations” section of
the original paper that, “The overwhelming evidence
gathered from the literature14,37,39-44 and obtained in the
experimental program1 illustrates that the use of ACI 318
provisions for lightly-reinforced slab-column connections is
questionable.” The conclusions presented were based on
experimental research at the University of Texas at Austin
and test results reported in the literature.
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In the introduction, the authors correctly point out that
using high-performance steel in comparison with
conventional steel could potentially relieve congestion in
future structures. Nevertheless, it is odd that, for the nine
reinforced beams, the same cross-sectional areas for
longitudinal and shear reinforcement were applied without
depending on the strength of the steel. This means that even
the flexural beams’ test results cannot be accurately
compared to each other, as the tensile forces and the concrete
compression zones are completely different. Choosing the same
cross-sectional area for the longitudinal MMFX bars, the authors
want to keep the effect of dowel action constant. This is
a questionable decision for two reasons:

1. The purpose of using high-strength steel is to reduce bar
diameters.

2. The dowel action is not considered at all, neither in the
codes nor in the analytical modeling.

Similar problems arise with regard to the transverse
reinforcement: the same spacing of the identical diameter
reinforcing bar having very different yield strengths results
in substantially different test beams. Hence, any behavior
characteristics of, for example, Beams C-C-6, C-M-6, and
M-M-6 test cannot be compared with each other.

Another curiosity is the application of the high-strength
steel in the compression zone: the strain compatibility
between concrete and high-strength steel and, hence, the
applicability of MMFX as compressive reinforcement, is
more than questionable.

TEST RESULTS
It is a pity that for each type of behavior, the test results of

only one set are shown. Thus, no detailed perception of the
varied characteristics is possible for the reader.

Due to the disputable substitution of ordinary steel through
high-strength steel, as mentioned previously, the sets of test
beams and the percents of increase, as shown in Table 1, are
not meaningful. Nevertheless, the values in the column
“Percent total increase,” reveal no tendency and could yield
the conclusion that the substitution as proposed by the
authors is not sensible.

Another possibility for formation of groups and evaluation
can be made based on the ratios of yield strengths and the
spacings of transverse steel. Taking into account the two
yield strengths of 97 and 120 ksi (669 and 827 MPa) assessed
for the MMFX steel and comparing it to the yield strength of

the Grade 60 steel (62 ksi [427 MPa]), two strength ratios
can be determined

   

Considering the spacings of the transverse steel, the
ratios 6/4 ~ 1.5 (hence X-C-4 ≈ X-M-6) and 6 / 3 = 2
(hence X-C-3 ≈ X-M-6) can be found. Accordingly, the
following sets of beams for comparison can be compiled:

• Ratio of shear reinforcement ~ 2 – Set A: C-C-3, C-M-6,
and M6; and

• Ratio of shear reinforcement ~ 1.5 – Set B: C-C-4,
C-M-6, and M-M-6.

Moreover, keeping the longitudinal reinforcement
constant for Grade 60 and MMFX, the influence of the
increasing transverse reinforcement can be perceived:

• Flexural reinforcement constant, increasing – Set C:
C-C-6, C-C-4, and C-C-3; and

• Flexural reinforcement constant, transverse reinforcement
increasing – Set D: M-M-6, M-M-4, and M-M-3.

Table 4 displays the test results according to the new sets.

The following conclusions can be made:

• The method of normalization of the measured shear
strength, that is, with respect to the square root of the
concrete compressive strength, is questionable; the
values in Column 5 do not show the anticipated
increasing character for the different sets.

• Set A: the substitution of the shear reinforcement
considering 2 as the ratio of the yield strengths results
in similar load-bearing capacities.

• Set B: a substitution considering 1.5 as the ratio of the
yield strengths underestimates the contribution of
MMFX steel.

• Sets C and D: doubling the rate of shear reinforcement
let the ultimate shear load increase by 7 to 11% only.

• For each of these conclusions, it should be kept in mind
that the load-bearing capacities of all of the test beams
were governed by the concrete compressive strength.
Furthermore, besides the higher yield strength, MMFX
has much better bond characteristics than ordinary steel.

97

62
------ 690

427
--------- 1.61= = 120

62
--------- 827

427
--------- 2≈=
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Shear load-deflection behavior
Figure 6 reveals the impact of longitudinal reinforcement

on the ultimate shear load. This effect should be incorporated
into the new code provisions.

Shear load-transverse strain behavior
The conclusions related to Fig. 7 are either not new or

misleading:
• Certainly both the initiation of the first shear crack as

well as of the first flexural crack do not depend on the
strength of the reinforcement. In the formula for stiffness,
only the cross sectional area and the Young’s
modulus occur.

• The initiation of the first shear crack using the vertical
PI gauge can be perceived only if the crack runs
through the gauge length.

• Figure 7 gives the impression that the stirrups made of
both the Grade 60 ordinary steel as well as, for
example, Grade 120 MMFX steel, would yield, which
cannot be the case, especially for the MMFX steel.

The discusser poses a question regarding Fig. 9: Is there
any difference in the failure patterns of Beams C-C-4 and C-C-3?
In the discusser’s opinion, there is not. In all cases, the
concrete compression zone fails in compression shear. The
upper part of the so-called “diagonal crack at failure,” shown
in Fig. 9(a) is a sliding surface along the compression zone.

Crack width behavior
The use of average crack width as a criterion is

misleading. All codes control an upper fractile value of crack
width. Moreover, Shehata’s6 equation does not consider the
different bond characteristics of the two types of reinforce-
ment. A direct replacement of conventional steel with
ASTM A1035 steel, as done in this test series, makes no
sense and, hence, any conclusion here is misleading, too.

The authors should explain why the M-M beams had
smaller shear crack widths than the C-M beams.

Mode of failure
The authors wrote: “for both C-M and M-M beams, failure

occurred once the compression strain in the diagonal direction
reached its ultimate value and led to crushing of the concrete
at the nodal zone.” The discusser agrees and poses the question:
Which level of the compression strain was detected as the
ultimate value? Was it the same for all beams?

Effect of steel type
The authors did not find any HP steel-specific characteristics.

ANALYTICAL MODELING
 The discusser strongly disagrees that the measured-

predicted shear-load ratios found using the program
Response 2000 are more accurate than the design code
predictions. In five of the nine cases, Response 2000 yielded
very unsafe predictions. Considering the six test beams
consisting of HP steel, five results were unsafe.

In general, the practice of revealing analytical models
yielding average values of approximately 1.00, but with
considerable standard deviation that results in lower
fractile values strongly below 1.00, as “more accurate”
cannot continue.

CONCLUSIONS
1. Direct replacement of conventional Grade 60 stirrups

with ASTM A1035 steel stirrups makes no sense.
2. The authors should explain why the ASTM A1035

longitudinal reinforcement increased shear strength.
3 & 4: Taking into account 48 ksi (331 MPa) service stress

level and a yield strength of 80 ksi (552 MPa), the rate of
exploitation of the real yield strength of HP steel of 120 ksi
(827 MPa) reveals that the application of HP steel is not
economical.

5. Whether pairing high-strength concrete with ASTM
A1035 steel could provide a better use for HP steel is
questionable. Increasing the concrete grade decreases the
ultimate strain; that is, the strength of HP steel cannot be
exploited in compression.

6. The detailed analysis using MCFT, included in
Response 2000, provided partly extremely unsafe predictions of
the overall shear strength of concrete members reinforced with
HP steel in five of six cases.

AUTHORS’ CLOSURE
The authors extend their thanks to the discusser for his

insightful and constructive discussion, and to provide the
authors an opportunity to further clarify the findings of the
experimental study. A response to each item of the discussion is
presented as follows:

1. The main objective of the study was to determine how
direct replacement (bar for bar) of high-performance steel
with conventional Grade 60 steel would affect the shear
strength of the concrete beam. This choice was made to
demonstrate the implications of such a design practice, which
has been used by some designers due to the lack of appropriate
design provisions developed by standards organizations. The
direct replacement applied to both longitudinal steel and to
the transverse steel.

2. The selection to include only one typical test result in
the paper was due to space limitations of the journal paper.
The reader may review full test results in the master’s thesis
by Sumpter.5

3. The small increase in the shear capacity measured for
test group “Set 1” is due to the nature of failure, which is
controlled by arch action. For Sets 2 and 3, failure was
controlled by concrete crushing at the maximum compression
zone. The strength for these sets did not increase by the same
ratio of steel area, but was observed to show higher relative
increases than Set 1. This was due in part to a high a/d ratio,
which allowed the steel to be better used as opposed to the
formation of arch action.

4. The authors acknowledge and appreciate the discusser’s
alternative method of analysis for a reader’s consideration.

5. The authors’ believe that shear strength is more directly
related to the square root of the concrete compressive
strength rather than solely to the concrete compressive
strength. This influenced the decision to normalize the data
based on the square root. The reader should refer to the total
percent increase given in Table 1 to evaluate the strength
increase in comparison to the baseline C-C beam for the
same stirrup spacing.

6. The authors agree with the discusser that the longitu-
dinal reinforcement should be considered in code provisions.

7. The intention behind Fig. 7 is to highlight the conservative
prediction of ACI 318-05 for high-performance steel. The
reported initiation of the first crack was determined both by
visual inspection and by the reading of PI gauges, which
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were designed to catch the first crack. The measured data
shown in Fig. 7 reflect redistribution of forces rather than
yielding of MMFX steel.

8. The authors agree that failure occurred once the compression
strain in the diagonal direction reached its ultimate value.

9. The smaller measured crack widths for beams reinforced
with HP steel is the result of better bond characteristics of ASTM
A1035 steel due to their rib configuration. References 7 and
8 provide detailed information regarding this behavior.

10. Unfortunately, the compressive strain was not recorded
during testing because it was located close to the applied load.

11. The authors agree that statistical data beyond averages
should be considered. Therefore, standard deviation as well
as the coefficient of variation was used in Tables 2 and 3 to
compare how closely Response 2000 predicted the strength
of the beams versus other design codes. The results indicate
that design codes over-predict the strength of the beams,
while Response 2000 yields results closer to the actual
strength because it considers the additional resistance
provided by the HP longitudinal steel reinforcement and
relies on the MCFT for analysis.

12. Test results indicated that the direct replacement of conven-
tional Grade 60 stirrups with ASTM A1035 stirrups increased the
shear load capacity of flexural members, as shown in Table 1.

13. At failure, ASTM A1035 may remain in the elastic
region and its resistance increases by increasing the applied
load. The increase of the tension forces lead to an increase of
the forces in the compression zone, the dowel action, and,
thus, the overall shear strength.

14. ASTM A1035 steel reduced crack widths to an acceptable
level at a higher service level stress due to the type of
rib configuration used for their reinforcing bars, while
the conventional reinforcement exceeded the 0.016 in.
(0.406 mm) limit. This behavior provides overall
enhancement of serviceability.

15. Research conducted by NCHRP Project 12-64 has
indicated that the ultimate compressive strain of high-strength
concrete up to 18 ksi (124 MPa) is equal to or greater than 0.003.
Therefore, the use of high-strength concrete with high-
performance steel is expected to provide better use of the
materials. Achieving stress levels above 80 ksi (550 MPa) in HP
compression steel, however, may be limited because concrete
would need to be highly confined to maintain strain compatibility.

Disc. 106-S19/From the March-April 2009 ACI Structural Journal, p. 178

Investigation of Dispersion of Compression in Bottle-Shaped Struts. Paper by Dipak Kumar Sahoo, Bhupinder
Singh, and Pradeep Bhargava

Discussion by Andor Windisch
ACI member, PhD, Karlsfeld, Germany

The authors investigated the maximum transverse tension
developing in bottle-shaped struts. They developed the equations
of isostatic lines of compression (ILC) for a panel with an aspect
ratio equal to 2 and applied them to investigate panels with aspect
ratios equal to 1. In the discusser’s opinion, the study should have
included panels with other aspect ratios.

The authors considered the place with the maximum slope
as the position of the resultant transverse tension, this is
supposed to be at x = a; however, in Fig. 5, to avoid a sharp
edge in the ILC, a horizontal tangent was considered.
Consequently, Eq. (9) to (10b) and (16) are questionable. In
comparison with other theoretical expressions, the authors
refer to the formulas in different codes dealing with the
bursting forces in post-tensioned anchorage zones, which
might be similar to their formulas, but do not characterize the
situation of panels with aspect ratios equal to 1, as shown in
Fig. 5 and tested (refer to Fig. 7).

Even if, during the tests, transverse compression stresses
under the loading and supporting plates were found, the authors
adhered to the transverse strain distribution (that is, transverse
tensile stresses also under the plates) shown in Fig. 7(b) and
derived Eq. (17) and (18), which are, therefore, questionable.

As can be observed in Fig. 9, the failure loads showed a
substantial scatter related to the same concentration ratio,
which contradicts the authors’ assumption that the mean
value of the concentration ratio can be considered at calculation of
the m value. Nevertheless, the authors should have chosen
the larger 1/m values corresponding to the different
concentration ratios b/a to obtain safer values.

The test results provide interesting information for the
users of the strut-and-tie models (and maybe also for the
code makers). In Table 2, the test results are listed and
regrouped according to different aspects. First of all, in

Column 7, the compressive stresses under the shorter bearing
plates are shown (certainly, where the authors refer to 0 length, no
stress could be calculated; nevertheless, the development of the
failure loads P in Column 6 yield proper view of the influence of
the considered parameter). In Column 8, the compressive stresses
at failure under the shorter loading/supporting plate related to the
concrete strength fc′  are shown.

The following trends and conclusions can be found:
• Keeping the length of one the plates constant and

increasing the length of the other plate, the following
conclusions are contradictory:

° Lines 1 to 4: In the case of constant 0 mm length, the
other plate lengths increased from 0 to 400 mm (15.75 in.):
B-2: 0.70 to B-4: 0.15—the failure load did not change
and the relative failure stresses decreased (dramatically).

° Lines 5 to 7: In the case of constant 100 mm (4 in.)
lengths, the other plate length increased from 100 to
400: B-5: 0.98 to B-7: 1.30—the failure loads increased
and the relative failure stresses also increased.

° Lines 8 to 10: One plate had a constant 400 mm (15.75 mm)
length, the other increased from 100 to 400: B-7: 1.30 to
B-9: 0.51—the failure loads increased, the relative
failure stresses decreased (quite substantially).

• Having the same plate lengths at both sides, the relative
failure stress decreased when the plate lengths increased.

° Lines 11 to 15: B-11: 1.79 to B-9: 0.51; B-1 with 0 mm
length yielded an even higher value than 1.79, that is,
the failure loads increased and the relative compressive
stresses decreased.

• The mean value of the plate length was constant.
° Lines 16 and 17: The mean value of length was 50 mm

(2 in.)—the failure loads were quite different, that is, the
mean value did not properly represent the real situation.



ACI Structural Journal/January-February 2010 125

° Lines 18 and 19: The mean value of length was 100 mm
(4 in.)—the failure load of the specimen with the “mean”
plate length was larger than for specimens with the
different plates.

° Lines 20 and 21: The mean value of length was 200 mm
(7.87 in.)—the failure load of the specimen with the
“mean” plate length was larger than for specimen with the
different plates.

CONCLUSIONS
The proposed theoretical model is questionable, hence, the

derived parameter 1/m cannot be accepted. According to the
tests reported in the paper, the effective compressive strength
of concrete in the strut (as per Section A.3.1 of ACI 318-05,
Appendix A) is, in some cases, conservative, but is, in many
cases, on the unsafe side.

AUTHORS’ CLOSURE
The authors appreciate the discusser’s interest in the paper

and his critical review of the analytical and experimental
results presented therein. The authors’ response to the
pertinent issues raised in the discussion is as follows.

The analysis presented in the paper is not restricted to square
panels alone as is perceived by the discusser. The development of
the equations of the isostatic lines of compression (ILCs) and the
derivation of the proposed dispersion model are applicable to
bottle-shaped struts of all aspect ratios (Fig. 3 and 5). The reason
for choosing a square panel for the experimental validation has
been explained in the original paper.

The total transverse tension T ′ in a bottle-shaped strut is
essentially independent of the aspect ratio. In Fig. 5, at the
point of intersection, the two ILCs emanating from the
loaded and the supported ends will have two different tangents
and will have two different components of transverse

tension. In Eq. (9), it is the transverse tension component in
the incremental strip that is integrated and not the area
bounded by the incremental strip (Fig. 3 and 5). In Eq. (10a)
and (10b), the transverse tensions contributed by the two
ends have been algebraically added. The question of the
sharp edge in Fig. 5 would not have arisen if the panel length
in Fig. 5 along the x-axis had been taken as, for example,
twice the panel width. In Fig. 5, a square panel has been
considered to resemble the geometry of the experimental
panels. As explained in the paper, a square panel presents a
special geometry where the two end regions overlap each
other completely, causing the line of action of the resultant
transverse tensions of the two end blocks to coincide.

It is difficult to accurately measure or rigorously model the
transverse stress profile in a bottle-shaped strut. The authors have
assumed a simplified triangular stress distribution22 along the axis
of the strut and the transverse compression at the ends has been
ignored to compensate for the additional area of the stress diagram
under the convex nonlinear stress profile (Fig. 7).

Scatter in the test results was not altogether unexpected
and it is more prominent because the number of specimens is
relatively small. It can be readily shown that a higher value
of 1/m alone does not indicate a larger magnitude of transverse
tension. The transverse tension can be calculated from the
following expression obtained by combining the ACI 318-0519

expression for the nominal strength of a bottle-shaped strut and
the dispersion model proposed in the paper in Eq. 10(b).
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32
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Table 2—Evaluation of experimental results

Specimen ID fc′ , MPa

Plate length, mm
Concentration

ratio b/a P, kN

Compressive stress under 
smaller loading plate,

N/mm²

Ratio of compressive
 stress under smaller 
loading plate to fc′Loaded face Supported face

1 2 3 4 5 6 7 8

1 B-1 36.5 0 0 0 191.8 — —

2 B-2 32.8 0 100 0.80 228.7 22.87 0.70

3 B-3 35.3 0 200 0.17 221.5 11.08 0.31

4 B-4 36.5 0 400 0.33 223.2 5.58 0.15

5 B-5 33.2 100 100 0.17 325.2 32.52 0.98

6 B-6 31.5 100 200 0.25 402.1 40.21 1.28

7 B-7 36.9 100 400 0.42 481.0 48.10 1.30

8 B-7 36.9 100 400 0.42 481 48.10 1.30

9 B-8 33.7 200 400 0.50 600 30.00 0.89

10 B-9 37.0 400 400 0.67 747.7 18.69 0.51

11 B-1 36.5 0 0 0 191.8 — —

12 B-11 32.8 50 50 0.08 293.2 58.64 1.79

13 B-5 33.2 100 100 0.17 325.2 32.52 0.98

14 B-10 33.2 200 200 0.33 429.3 21.47 0.65

15 B-9 37.0 400 400 0.67 747.7 18.69 0.51

16 B-2 32.8 0 100 0.08 228.7 — —

17 B-11 32.8 50 50 0.08 293.2 58.64 1.79

18 B-3 35.3 0 200 0.17 221.5 — —

19 B-5 33.2 100 100 0.17 325.2 32.52 0.98

20 B-4 36.5 0 400 0.33 223.2 — —

21 B-10 33.2 200 200 0.33 429.3 21.47 0.65

Note: 1 mm = 0.0394 in.; 1 kN = 0.2248 kip; 1 N/mm2 = 145 psi.
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The authors are to be complimented for their interesting
attempt to apply the MCFT, which was conceived for short-
term monotonic loading only, to estimate the ultimate defor-
mation of columns that failed after cyclic loading.

DERIVATION OF ANALYTICAL MODEL
Apart from the errors in Eq. (7) and (8) (σ should be replaced

with ρ), it should be mentioned that a Mohr’s circle may never
yield either equilibrium or compatibility relationships: it simply
gives the possibility to transform the stress (or deformation)
components from one coordinate system to another.

To calculate the angle θ, the strains εx , εy , and ε2 are
necessary; however, the discusser cannot detect where the
three values are derived. The principal compression stress
pattern with the angle is given in Fig. 4(a). Does Eq. (12)
follow this pattern? Please clarify.

The concrete compression softening factor (Eq. (16)) was
derived for monotonic loading. Is it valid for heavily alternating
loading paths, too? The shear stress transferred by aggregate
interlock across a crack surface (Eq. (17)) was found for the
monotonic loading path, too. Does it remain valid for
alternating loading? Isn’t there any softening?

The validity of the formula for average crack spacing was
never proven. What average crack spacing can be found for
Specimen No. 12 shown in Fig. 8?

In Eq. (19), the average steel stress in the transverse
reinforcement is the yield strength. According to the MCFT,
this means that the stress and strain in transverse steel in the
crack are far beyond the yielding values. Do w and τi remain
valid in case of yielding transverse reinforcement?

FLEXURE MECHANISM
It is not clear how Eq. (20), (21a), and (21b) containing the

Young’s modulus of concrete are compatible with the actual
and equivalent concrete stresses shown in Fig. 7 (elastic
behavior according to the equations and inelastic behavior
according to the figure).

PROCEDURES FOR ESTIMATION
OF ULTIMATE DEFORMATION

To simplify, the procedure of estimation interpolation for
df shall be deleted; after so many assumptions, the difference
between h and d is negligible.

NUMERICAL EXAMPLES
It is a pity that the authors did not give more details of their

calculations in the form of tables. In comparing the analytical and
test results shown in Fig. 11, it can be concluded that most of
the specimens were still loaded partly far beyond the ultimate
drift ratio predicted by the analytical model, that is, no

Disc. 106-S20/From the March-April 2009 ACI Structural Journal, p. 187

Deformation Capacity of Reinforced Concrete Columns. Paper by Hossein Mostafaei, Frank J. Vecchio, and
Toshimi Kabeyasawa

Discussion by Andor Windisch
ACI member, PhD, Karlsfeld, Germany

where βs is the strut efficiency factor and t is the panel thickness
(out-of-plane dimension).

A perusal of Eq. (19) clearly reveals that choosing a larger
1/m value (by choosing bs instead of bav), as suggested by the
discusser, will not always increase the magnitude of the
transverse tension T ′ and therefore not necessarily be safe.

With reference to Table 2, the authors would like to
respond as follows:

1. It is not clear as to how the compressive stresses under
the smaller loading plates were calculated in Column 7 for
Specimens B-1, B-2, B-3, and B-4, in which the smaller
bearing areas are zero. Keeping the plate length on one side
of a panel constant, as the plate length was increased on the
other side, the cracking load P was observed to increase. The
increase in cracking load can be related to the higher average
bearing areas. Because the relative failure stresses based on
the smaller bearing areas were not showing any trend in the
experimental results, the authors’ choice of using the
average values of bearing areas is justified.

2. Having the same plate lengths on both sides, the relative
failure stresses were observed to decrease when the plate
length was increased. This is an expected trend because
increasing the bearing length while keeping the panel width
constant restricts the lateral dispersion of the compressive
stress trajectories, which in turn leads to a reduction in the
strut efficiency.23

3. With reference to Lines 17 through 21 of Table 2, the authors
agree that the cracking loads of the pairs of Specimens B-2 and
B-11, B-3 and B-5, and B-4 and B-10 do not match well. The

zero bearing length in Specimens B-1 through B-4 was simu-
lated by placing a 16 mm (0.63 in.) diameter round bar, and
the small bearing area resulted in premature bearing failure.
The results of the four specimens having zero plate lengths,
B-1 through B-4, therefore produced maximum scatter in
Fig. 9. Nevertheless, all the results except one were on the
safe side of the predicted trend (Fig. 9).

With reference to the discusser’s conclusions, the authors
would like to mention that the theoretical model in the paper
was derived from first principles and validated with a limited
number of experimental tests. The relative failure stresses
reported by the discusser in Column 8 of Table 2 at best
indicate a value of 0.85βs, which for plain concrete bottle-
shaped struts as per the ACI Code19 is 0.51. Except for Lines
1 through 4 in Table 2, where the discusser’s calculations
seem to be incorrect, the relative failure stress in none of the
cases falls below 0.51 (Column 8, Table 2). Therefore, the
discusser’s analysis of the test results in the paper does not
seem to support the discusser’s conclusion that the effective
compressive strength as per Section A.3.1 of ACI 318-05,
Appendix A,19 is unsafe.

REFERENCES
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failure of the specimens occurred. With MCFT, the load-
deformation response of reinforced concrete members could
be predicted. It would be interesting to learn which analytical
drift ratio versus lateral load paths were determined for the
different specimens reported in Fig. 11.

AUTHORS’ CLOSURE
The authors are thankful to the discusser for raising

important comments and questions regarding the axial-
shear-flexure interaction methodology presented in the
paper. These remarks have been reviewed and the
following explanations are provided for clarification of the
methodology, accordingly.

DERIVATION OF ANALYTICAL MODEL
The stress and strain relations, expressed in a Mohr’s

circle in the MCFT and the ASFI methods, correspond to the
average stress and strain condition of the shear element.
They are employed for compatibility and equilibrium
conditions by assuming unit dimensions for the element, as
shown in Fig. 5 and 6 of the paper. In other words, equilibrium
and compatibility conditions are derived for the entire
element; however, they are converted and expressed in the
stress and strain fields.

The correct form of Eq. (7) and (8), respectively, are

σx = fcx + ρx fsx (32)

σy = fcy + ρy fsy (33)

The crack angle θ is determined in the stress field by
solving Eq. (9) and (10), which is incorporated in Eq. (14) and (15)

(34)

Figure 4(a) was drawn for the assumption related to Eq. (6). It
illustrates the pattern of the principal compression stress, and
therefore strain, along the entire column. It shows that the
principal compression stress and strain at the points along
the curve are very close to the value of the compression stress
and strain obtained from a section analysis. Therefore, Eq. (6)
could represent the maximum compression strain or assume to
provide the principal compression strain of the element
between the two flexure sections. Equation (34) provides an
average value for the entire pattern shown in this figure when
only two flexure sections have been selected: one at the end
and one at the inflection point.

The approach presented in this paper can be used only to
estimate the point of the ultimate capacity, which is the
ultimate deformation and load of the column; however, the
equations have been derived from a monotonic loading
approach. Therefore, although the method presents suitable
agreement for the column specimens in Fig. 11, the attempt
was not to assess and include the effect of cycling loading.
Therefore, for specimens with heavily cyclic loading, the
corresponding effects need to be included in the analysis.

In the ASFI method, the crack spacing in the longitudinal
direction of the column, Sx, is the same as the hoop spacing.
Crack spacing in the transverse direction, Sy , is the
maximum distance between the longitudinal bars. These are
the average smeared crack spacings and not the maximum

values. For specimen No. 12, Sx = 150 mm (6 in.) and Sy =
60 mm (2.4 in.), which yields to Scr = 72 mm (2.8 in.), derived
from the analysis at the maximum load stage. Based on
the specimen dimension perpendicular to the crack, this means
that approximately four cracks could appear on the columns, as is
the case for the column specimen in Fig. 8.

Equation (19) provides a maximum limit for shear stress. As
mentioned previously, the method proposed in this paper only
estimates the load and deformation of the column at the
ultimate stage. For specimens containing transverse rein-
forcement, the lateral load drops as soon as the transverse bars
yield and the analysis ends (defining the ultimate load stage).

FLEXURE MECHANISM
Both the flexural and shear models, as well as the MCFT,

use a secant stiffness approach for the analysis. The values for
the Young’s modulus of concrete in Eq. (20), (21a), and (21b)
are the inelastic values. They are determined by dividing the
value of the concrete compressive stress by the concrete
compressive strain at the corresponding loading stage.

PROCEDURES FOR ESTIMATION
OF ULTIMATE DEFORMATION

The value of df affects the magnitude of the lateral load. In
the case of columns with dominant flexural response, due to
the effect of support confinement, a plastic hinge will form a
small distance away from the support. This will result in
increasing the overall lateral load capacity of the column.
This resulted in up to approximately a 20% lateral load
reduction for flexure column specimens studied in this
paper. Therefore, the authors believe that this adjustment
needs to be employed in the analysis.

NUMERICAL EXAMPLES
The analytical results in Fig. 11 are the ultimate points of

deformations and loads for the column specimens. As
mentioned previously, the ultimate deformation capacity
approach presented in this paper can be implemented only
for evaluation of the load and deformation of the columns at
the ultimate stage. Although one may try to estimate pre- or
post-peak response of the column by implementing a small
modification in the current method, it has not been verified
for full load deformation response analysis. This method is a
simplification of the original ASFI method, which is a
method capable of doing full load deformation analysis.3 As
mentioned in the paper, for columns with very low shear
stress (those are columns with very high shear capacity and
very low flexure load), the compression softening factor β is
limited to 0.15. This means the method overestimates the
ultimate deformation for these columns. Further studies and
modifications are needed for the method in this regard.

It is important to note that comprehensive analysis software
has been developed at the University of Toronto, based on the
MCFT, which is capable of predicting the entire load deforma-
tion response, including under cycling loading regimes.16
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Evaluation of Bundled Bar Lap Splices. Paper by Tarek R. Bashandy

Discussion by Andor Windisch
ACI member, PhD, Karlsfeld, Germany

The author should be complimented for his interesting test
series. In explaining the background, however, one important
influencing factor in splicing members in flexure was not
mentioned: the horizontal splitting of the concrete cover at the
end of the spliced reinforcing bar due to the reinforcing bar’s
bending stiffness. At the very end of a spliced reinforcing bar,
the curvature must “jump” from zero to the finite curvature in
the member. At the jump, a theoretically infinite transversal
force must develop that lets the cover horizontally crack.
This crack mobilizes the transverse (confining) reinforcement
positioned mainly at the ends of the splice length. The greatest
influence of the concrete cover is its resistance in tension. The
influence of the side concrete cover and the clear spacing can
easily be understood.

It is obvious as well that the flexural rigidity of one 32 mm
diameter (No. 10) reinforcing bar is four times higher than
that of four 16 mm diameter (No. 5) reinforcing bars. This
explains the increasing failure loads with an increasing
numbers of bars in the bundle without stirrups.

Comparing Fig. 2 and 4, some doubt may arise concerning
the effective bond areas: along the splice, the contact of the
bundles substantially reduces the surface embedded in
concrete. The efficient perimeter ratios are 1:1.06:1.0:1.25,
that is, the three-bar bundle has the same bond area as the
single bar. Nevertheless, this deviation can not be realized in
the experimental program, as the failures were not bond
governed as revealed comparing the average measured steel
stresses of the specimens in Groups 1 and 4.

 Figure 6(a) reveals that (at least) Beams B7 to B9 were
still uncracked in flexure as the failure due to splitting crack
(refer to Fig. 5) occurred. The average measured steel
stresses at Pmax, shown in Table 1, are still far away from the
yield strength of the reinforcing bars.

The distribution of stresses among bars in the bundle
reflects the position of the bars related to the neutral axis
only, (refer to Fig. 8(a) and (c)). Certainly, the position of the
strain gauges with regard to the flexural axis of the reinforcing
bars influences the measured strains.

The authors’ test results confirmed the requirement of ACI
318-05 concerning the application of stirrups or ties along
the splice length. The author is correct: additional tests with
steel yielding are required to confirm the validity of the
conclusions of this study. Until then, the bar cutoffs within
the bundle should be staggered.

AUTHOR’S CLOSURE
The purpose of the paper was to evaluate the behavior of

bundled bar lap splices compared with splices of single bars.
The horizontal splitting at the end of the splice described in

the discussion occurs in both bundled and single bar splices,
but was parallel to the transverse reinforcement (and did not
cross it) and therefore did not develop any force in this rein-
forcement. The horizontal crack at the end of the splice did
not affect the splice strength for all types of splices.

There was no correlation between the flexural rigidity of
the spliced bars and the splice strength. Although two- and
three-bar bundles have lower rigidity compared to single
bars, the failure load was generally not higher than equivalent-
diameter single-bar bundles. Increasing the number of bars
from an equivalent-diameter single bar to two- or three-bar
bundle did not increase the failure load. However, four-bar
bundles had the lowest rigidity but their failure load was
higher than equivalent-diameter single bars. All failures were
governed by bond, as indicated by the cracking pattern;
sudden failure mode; and examining the specimens after
easily removing the concrete cover. It is not possible to draw
direct conclusions by directly comparing Groups 1 and 4
because there are variations in two parameters (splice length
and concrete cover). The author agrees with the discusser that
the variations of effective parameter did not directly affect the
failure load. This was presented in the second conclusion.

All specimens were cracked at a relatively low load (20 to
25% of the failure load). This can be concluded by examining
the rate of change of bar stresses in Fig. 8, which indicates
that flexural cracks occurred at approximately 20 kN (4.5 kips)
load. It is not possible to draw conclusions regarding cracking
load from Fig. 6 due to the small scale and the relatively low load
and deflection at cracking. Figure 5 shows the specimen after
failure and removing load; therefore, thin flexural cracks
could not be captured in comparison with the wide splitting
crack, especially cracks that were not marked.

The distribution of stresses among bars in the bundle had
no consistent correlation with the position of the bars related
to the neutral axis. For example, in Fig. 8(b), bars placed at
the same distance from the neutral axis did not have the same
stress. Moreover, the bar closer to the neutral axis had higher
stress than one of the bars at a further position from the
neutral axis. As presented in this study and the referenced
previous study, there were no consistent trends in the
distribution of stress within a bundle between bars at the
same depth within the section.

Additional tests with steels yielding are required to understand
the distribution of stresses among bars in a bundle. However,
conclusions regarding bond strength of bundles cannot be drawn
from specimens in which steel yields before bond failure.
Nevertheless, additional tests with steel stress close to yield are
required to confirm the validity of the conclusions of this study.


