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A mechanical explanation of the phenomenon of punching shear in
slabs without transverse reinforcement is presented on the basis of
the opening of a critical shear crack. It leads to the formulation of
a new failure criterion for punching shear based on the rotation of
a slab. This criterion correctly describes punching shear failures
observed in experimental testing, even in slabs with low reinforcement
ratios. Its application requires the knowledge of the load-rotation
relationship of the slab, for which a simple mechanical model is
proposed. The resulting approach is shown to give better results
than current design codes, with a very low coefficient of variation
(COV). Parametric studies demonstrate that it correctly predicts
several aspects of punching shear previously observed in testing as
size effect (decreasing nominal shear strength with increasing size
of the member). Accounting for the proposed failure criterion and
load-rotation relationship of the slab, the punching shear strength
of a flat slab is shown to depend on the span of the slab, rather
than on its thickness as often proposed.

Keywords: critical shear crack; interior slab-column connection; punching
shear; two-way shear.

INTRODUCTION
Reinforced concrete slabs on columns were initially

developed in the U.S. and Europe at the beginning of the
20th century.1,2 Their designs typically included large
mushroom-shaped column capitals to facilitate the local
introduction of forces from the slab to the column. In the
1950s, flat slabs without capitals started to become prevalent.
Because of their simplicity, both for construction and for use
(simple formwork and reinforcement, flat soffit allowing an
easy placement of equipment, and installation underneath
the slab), they have become very common for medium
height residential and office buildings as well as for parking
garages. The design of flat slabs is mostly governed by
serviceability conditions on the one side (with relatively
large deflections in service) and by the ultimate limit state of
punching shear (also called two-way shear) on the other side.
These two criteria typically lead to the selection of the
appropriate slab thickness.

Punching shear has been the object of an intense experimental
effort since the 1950s. In most cases, the phenomenon is
investigated by considering an isolated slab element. This
element typically represents the surface of the slab
surrounding a column and is delimited by the line of
contraflexure for radial moments, which are zero at a
distance rs ≈ 0.22L (according to a linear-elastic estimate),
where L is the axis-to-axis spacing of the columns. In recent
years, several state-of-the-art reports and synthesis papers
have been published on this topic.3-5

Most design codes base their verifications on a critical
section, with the punching shear strength of slabs without
shear reinforcement defined as a function of the concrete
compressive strength and often of the reinforcement ratio.

Some codes also account for size effect, membrane effect, or
the ratio of column size to the depth of the slab. Equation (1)
shows the ACI 318-056 expression for square or circular
columns of moderate dimensions relative to the thickness of
the slab

(1)

where d is the average flexural depth of the slab, b0 is the
perimeter of the critical section located d/2 from the face of the
column, and fc′ is the specified concrete compressive strength.

The current version of Eurocode 27 also includes a formu-
lation for estimating the punching shear strength of slabs

(2)

where b0 is the control perimeter located 2d from the face of
the column, ρl accounts for the bending reinforcement ratio
(with a maximum value of 0.02) and ξ is a factor accounting
for size effect defined by the following expression

(3)

In the early 1960s, Kinnunen and Nylander8 tested a series
of slabs in punching, varying amongst other parameters the
amount of flexural reinforcement in the slab (refer to Fig. 1).
The following observations can be made from the load-rotation
relationships of the tests:
• For low reinforcement ratios (test with ρ = 0.5%), the

observed behavior is ductile, with yielding of the entire
flexural reinforcement, as illustrated by the horizontal
asymptote of the load-rotation curve. In this case, the
strength of the slab is limited by its flexural capacity
and punching occurs only after large plastic deformations.
The punching failure at the end of the plastic plateau
remains brittle and leads to a sudden drop in strength;
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• For intermediate reinforcement ratios (tests with ρ =
1.0%/0.5% and 1.0%), some yielding of the reinforcement
is present in the immediate vicinity of the column, but
punching occurs before yielding of the entire slab
reinforcement. In this case, the strength of the slab is
lower than its flexural capacity;

• For large reinforcement ratios (test with ρ = 2.1%/1.0%),
punching occurs before any yielding of the reinforcement
takes place, in a very brittle manner. In this case, the
strength of the slab is significantly lower than its
flexural capacity;

• Increasing the reinforcement ratio increases the punching
capacity, but strongly decreases the deformation capacity
of the slab; and

• The ACI design equation is also plotted in the figure. It
predicts a constant strength independent from the
reinforcement ratio. As observed by Alexander and
Hawkins,9 Eq. (1) is basically a design equation; as such, it
does not account for the effect of the flexural reinforcement. 

On the basis of their test results, Kinnunen and Nylander8

developed a rational theory for the estimation of the
punching shear strength in the early 1960s based on the
assumption that the punching strength is reached for a given
critical rotation ψ. This rotation was calculated by
simplifying the kinematics of the slab and assuming a
bilinear moment-curvature relationship. Thus far, this proposal
remains one of the best models for the phenomenon of
punching. Recently, some improvements were proposed by
Hallgren10 and Broms11 to account for size effects and high-
strength concrete. While very elegant and leading to good
results, this model was never directly included in codes of prac-
tice because its application is too complex. It served as a basis,
however, for the Swedish and Swiss design codes of the 1960s.

RESEARCH SIGNIFICANCE
Rational models and design formulas for punching shear,

or two-way shear, are based on the results of experimental
tests performed mostly on thin slabs (d = 0.1 to 0.2 m [4 to
8 in.]). Design codes, however, are generally also applicable
to thick slabs and footings (0.4 m [16 in.] and more). The few
available tests performed on thick slabs exhibit a notable size
effect. As a consequence, there is a need for a rational model
correctly describing punching shear and accounting for size
effect (defined as decreasing nominal shear strength with
increasing size of the member). 

In this paper, a new failure criterion for punching shear based
on the critical shear crack theory is presented. This criterion
describes the relationship between the punching shear strength
of a slab and its rotation at failure, it is consistent with the works
of Kinnunen and Nylander8 and it accounts for size effect. The
resulting equations are presented in a code-friendly formulation.

FAILURE CRITERION BASED ON CRITICAL 
SHEAR CRACK THEORY

Critical shear crack theory
As shown in Fig. 1, the punching shear strength decreases

with increasing rotation of the slab. This has been explained

by Muttoni and Schwartz12 as follows: the shear strength is
reduced by the presence of a critical shear crack that propagates
through the slab into the inclined compression strut carrying
the shear force to the column (Fig. 2(b)). Some evidences
supporting the role of the shear critical crack in the punching
shear strength are detailed in the following:

1. It has been shown experimentally8,13 that the radial
compressive strain in the soffit of the slab near the column,
after reaching a maximum for a certain load level, begins to
decrease (Fig. 2(d)). Shortly before punching, tensile strains
may be observed. This phenomenon can be explained by the
development of an elbow-shaped strut with a horizontal
tensile member along the soffit due to the development of the
critical shear crack12 (Fig. 2(c)). A similar phenomenon has
been observed in beams without shear reinforcement12; and

2. Experimental results by Bollinger14 also confirm the
role of the critical shear crack in the punching strength of
slabs. The tested slab shown in Fig. 3(b) was reinforced by
concentric rings placed at the boundary of the slab element
only. With this particular reinforcement layout, only radial
cracks developed and the formation of circular cracks in the
critical region was avoided. Thus, the punching shear
strength of this test was significantly larger than that of a
similar slab with an additional ring in the critical region
(Fig. 3(c)). For this test, the presence of an additional ring in
the vicinity of the critical region initiated the development of
a crack in that region, with a subsequent reduction of the
punching shear strength of approximately 43%.

Punching shear strength as function of
slab rotation

The opening of the critical shear crack reduces the strength
of the inclined concrete compression strut carrying shear and
eventually leads to the punching shear failure. According to
Muttoni and Schwartz,12 the width of the critical crack can
be assumed to be proportional to the product ψd (Fig. 4),
leading to a semi-empirical failure criterion formulated in 1991 as
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Fig. 1—Plots of load-rotation curves for tests by Kinnunen
and Nylander8 (geometric and mechanical parameters of
tests defined in Fig. 8).
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(4)

The amount of shear that can be transferred across the critical
shear crack depends on the roughness of the crack, which in
its turn is a function of the maximum aggregate size.
According to Walraven15 and Vecchio and Collins,16 the
roughness of the critical crack and its capacity to carry the
shear forces can be accounted for by dividing the nominal
crack width ψd by the quantity (dg0 + dg), where dg is the
maximum aggregate size, and dg0 is a reference size equal to
16 mm (0.63 in.). It should be noted that the value of dg has
to be set to zero for lightweight aggregate concrete to
account for cracks developing through aggregates. On that
basis, in 2003 Muttoni17 proposed an improved formulation
for the failure criterion

(5)

Figure 5 compares the results obtained with Eq. (5) to the
results of 99 punching tests from the literature, for which
Table 1 provides additional information. In this figure, the
slab rotation was either obtained from direct measurements
or calculated by the author from the measured deflection,
assuming a conical deformation of the slab outside the
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Fig. 3—Tests by Bollinger14 with ring reinforcements, effect
of additional reinforcement in vicinity of critical shear
crack on load-carrying capacity: (a) test results; and (b)
and (c) reinforcement layout of Specimens 11 and 12.

Fig. 4—Correlation between opening of critical shear
crack, thickness of slab, and rotation ψ.

Fig. 2—Test PG-3 by Guandalini and Muttoni13 (geometric and mechanical parameters of
test defined in Fig. 9): (a) cracking pattern of slab after failure; (b) theoretical strut
developing across the critical shear crack; (c) elbow-shaped strut; and (d) plots of
measured radial strains in soffit of slab as function of applied load.
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column region. In cases where different reinforcement ratios
were placed along orthogonal directions, the maximum rotation
of the slab was considered. The rotation ψ is multiplied by
the factor d/(dg0 + dg) to cancel the effects of slab thickness
and aggregate size. Tests in which punching shear failure
occurred after reaching the flexural strength Vflex are also
considered (shown as empty squares in the figure). 

The expression provided in ACI 318-056 is also plotted in
Fig. 5. It can be noted that for small values of ψd/(dg0 + dg),
the code gives rather conservative results. This is also the area of
the plot in which the majority of the tests are located. For large
values of ψd/(dg0 + dg), however, the ACI equation predicts
significantly larger punching shear strengths than effectively
observed in tests. This fact can be traced back to two causes:

1. When the ACI formula was originally proposed in the
early 1960s,9,19 only tests with relatively small effective
depths were available and the influence of size effect was
thus not apparent; and

2. Tests in which punching failure occurred after reaching
the flexural strength but with limited rotation capacity are
considered in the comparison (empty squares).

LOAD-ROTATION RELATIONSHIP
Comparing Fig. 1 and 5, it is clear that the punching failure

occurs at the intersection of the load-rotation curve of the
slab with the failure criterion. To enable a calculation of the
punching shear strength according to Eq. (5), the relationship
between the rotation ψ and the applied load V needs to be
known. In the most general case, the load-rotation relationship
can be obtained by a nonlinear numerical simulation of the
flexural behavior of the slab, using, for example, a nonlinear
finite element code. In axisymmetric cases, a numerical
integration of the moment-curvature relationship can be
performed directly.26 This allows to account for bending
moment redistributions in flat slabs and to account for the
increase on punching shear strength due to in-plane confinement
given by the flat slab in the portions of the slab near columns.26

The axisymmetric case of an isolated slab element can also
be treated analytically after some simplifications. As already
described, the tangential cracks and the radial curvature are

concentrated in the vicinity of the column. Outside the critical
shear crack, located at a radius r0 (assumed to be at a distance
d from the face of the column), the radial moment, and thus
the radial curvature, decreases rapidly as shown in Fig. 6(d)
and (e). Consequently, it can be assumed that the corresponding
slab portion deforms following a conical shape with a
constant slab rotation ψ (Fig. 6(a)).

In the region inside the radius r0, the radial moment is
considered constant because the equilibrium of forces is
performed along cross sections defined by the shape of the
inclined cracks (Fig. 6(b) and (c)), where the force in the
reinforcement remains constant (due to the fact that the shear
force is introduced in the column by an inclined strut developing
from outside the shear critical crack (Fig. 2(b) and (c)).

The full development of the expressions for the load-rotation
relationship of the slab is given in Appendix 1.* Considering a
quadrilinear moment-curvature relationship for the reinforced
concrete section (Fig. 7), the following expression results

(6)

where mr is the radial moment per unit length acting in the slab
portion at r = r0 and the operator 〈x〉 is x for x ≥ 0 and 0 for x < 0.

A simpler moment-curvature relationship can be adopted
by neglecting the tensile strength of concrete fct and the
effect of tension stiffening, leading to a bilinear relationship
similar to that of Kinnunen and Nylander,8 shown as a dotted
line in Fig. 7. The analytical expression describing the load-
rotation relationship is thus
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Fig. 5—Failure criterion: punching shear strength as function
of width of critical shear crack compared with 99 experimental
results and ACI 318-056 design equation, refer to details of
test series in Table 1.

Table 1—Test series considered in present study 
and comparison with proposed failure criterion

Reference (year) d, mm (in.) No.

Failure criterion 
Vtest/Vth

Average COV

Tests with same bending reinforcement ratio along orthogonal directions

Elstner and Hognestad18 (1956) 115 (4.52) 22 0.98 0.14

Kinnunen and Nylander8 (1960) 122 (4.80) 12 1.05 0.11

Moe19 (1961) 114 (4.48) 9 1.13 0.16

Schäfers20 (1984)
113 to 170 

(4.45 to 6.69) 4 1.03 0.20

Tolf21 (1988)
98 to 200 

(3.86 to 7.87) 8 1.06 0.15

Hassanzadeh22 (1996) 200 (7.87) 3 0.99 0.17

Hallgren10 (1996) 199 (7.83) 7 0.98 0.25

Ramdane23 (1996) 98 (3.86) 12 1.10 0.16

Guandalini and Muttoni13 (2004)
96 to 464 

(3.78 to 18.2) 10 1.11 0.22

Σ 87 1.05 0.16

Tests with different bending reinforcement ratio along orthogonal directions

Nylander and Sundquist24 (1972)
95 to 202 

(3.74 to 7.95) 11 1.04 0.09

Kinnunen et al.25 (1980) 673 (26.5) 1 0.85 —

Σ 12 1.03 0.10

Note: COV = coefficient of variation.

*The Appendixes are available at www.concrete.org in PDF format as an addendum
to the published paper. It is also available in hard copy from ACI headquarters for a
fee equal to the cost of reproduction plus handling at the time of the request.
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(7a)

(7b)

The flexural strength of the slab specimen is reached when
the radius of the yielded zone (ry) equals the radius of the slab
rs. In this case (ry = rs = r1 = rcr, and –mr = mR), Eq. (6) yields

(7c)
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Figure 8 shows a comparison of the proposed solutions
with the previously described tests by Kinnunen and
Nylander8 (Fig. 1). The solid curves represent the solution

Fig. 6—Assumed behavior for axisymmetric slab: (a)
geometrical parameters and rotation of slab; (b) forces in
concrete and in reinforcement acting on slab sector; (c)
internal forces acting on slab sector; (d) distribution of
radial curvature; (e) distribution of radial moment; (f)
distribution of tangential curvature; and (g) distribution of
tangential moments for quadrilinear moment-curvature
relationship (shaded area) and for bilinear moment-curvature
relationship (dashed line).

Fig. 7—Moment-curvature relationships: bilinear and
quadrilinear laws.

Fig. 8—Tests by Kinnunen and Nylander8: (a) comparison
of load-rotation curves for tests and for proposed analytical
expressions (Eq. (6) and (7)); (b) dimensions of specimens;
and (c) mechanical parameters.



ACI Structural Journal/July-August 2008 445

with a quadrilinear moment-curvature relationship of Eq. (6),
whereas the dotted curves show the simplified solution with
a bilinear moment-curvature relationship of Eq. (7). For the
thin slabs of Fig. 8, both solutions predict the punching load for
all reinforcement ratios very well. It may be noted, however,
that the distance between the two solutions is larger for
smaller reinforcement ratios at lower load levels. In these
cases, Eq. (6) (which uses a quadrilinear moment-curvature
relationship) predicts the full load-rotation relationship with
good accuracy. Equation (7), with a simplified bilinear
moment-curvature relationship, gives adequate but less
accurate results, especially for low load levels, in which the
tensile strength of concrete and tension stiffening effects are
more pronounced. Both approaches correctly describe the
actual rotation capacity of the slab at failure. The punching
shear strength can be obtained directly by substituting Eq. (6)
or (7) into Eq. (5) and solving the resulting equation.

Influence of thickness of slab
Figure 9 shows the load-rotation curves for two tests by

Guandalini and Muttoni.13 These two tests are very similar,
with the same reinforcement ratio (ρ = 0.33%) and the same
maximum aggregate size (dg = 16 mm [0.63 in.]). What
distinguishes them is the dimensions of the slabs: Slab PG10
is 3.0 x 3.0 x 0.25 m (118 x 118 x 9.8 in.), whereas Slab PG3
is twice as large 6.0 x 6.0 x 0.5 m (236 x 236 x 19.7 in.). To
facilitate the comparison of these two tests, the abscissa,
contrary to the previous figures, shows the actual slab rotation,
not the value corrected for aggregate size and size effect. In
this representation, the load-rotation relationship of both
slabs is nearly identical, as they are geometrically identical,
but scaled 2:1. The failure criteria, however, are different
due to their different thicknesses. This is why two dotted
lines are shown, giving the failure criterion of Eq. (5) for
each slab thickness, the upper applying to the thinner and the
lower to the thicker slab. In the latter case, with a low
reinforcement ratio, the difference between the two load-
rotation relationships, with and without tension stiffening,
becomes apparent, whereas the more accurate expression of
Eq. (6) quite closely predicts the entirety of the loading
curve, the simpler solution of Eq. (7) clearly underestimates the
stiffness of the slab in its initial loading stages, thus leading
to an underestimation of the punching shear strength.
Whereas both equations give conservative estimates of the actual
failure load, only Eq. (6) correctly describes all stages of the
actual behavior of the thick slab with a small reinforcement
ratio. Because both slabs are geometrically similar and
because of size effect, the thicker slab has a lower rotation
capacity and fails in a rather brittle manner, in spite of its low
reinforcement ratio, whereas the thinner slab exhibits a more
ductile behavior.

Figure 10 further illustrates this phenomenon by showing
the load-rotation curves according to Eq. (6) for various
reinforcement ratios, along with the failure criteria for
various slab thicknesses. The constant value predicted by the
ACI 318-056 design equation is also shown for comparison.

Fig. 9—Load-rotation curves and failure criterion, comparison
for Tests PG-3 and PG-10 by Guandalini and Muttoni13: (a)
analytical and experimental load-rotation curves and failure
criterion according to Eq. (5); (b) geometry of specimens; and
(c) geometric and mechanical parameters for each specimen.

Fig. 10—Load-rotation curves and failure criteria for various
reinforcement ratios and slab thicknesses (h = rc =1.2d, rs =
rq = 7d, fc = 30 MPa [4200 psi], fy = 500 MPa [71 ksi], and
dg = 25 mm [1 in.]).
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For thinner slabs and larger reinforcement ratios, the mode
of failure is brittle, generally at values larger than predicted
by the ACI equation. For lower reinforcement ratios, but in
particular for thicker slabs, the equations proposed herein
predict much lower values. This is especially important for
thick slabs and foundation mats that may commonly exceed
a thickness of 0.4 m (16 in.). In such cases, even for relatively
low reinforcement ratios, the failure mode is brittle and
occurs at load levels clearly below those predicted by ACI,
not reaching the theoretical flexural failure load.

Moe’s19 design equation, which remains the basis for the
current ACI design equation (Eq. (1)), does not include a
term to account for the effect of the longitudinal reinforcement.
It was, however, derived from an analytical expression that
does, as explained by Alexander and Hawkins.9 It expresses
the punching shear strength as a function of the ratio VR/Vflex
(punching shear strength VR to the load corresponding to the
bending capacity Vflex of the slab). Using Eq. (7c), the test
series by Moe19 and Elstner and Hognestad18 can be
represented as in Fig. 11. From the data available at that
time, Moe’s19 conclusion of a linear relationship between
the punching shear strength and the ratio VR/Vflex of the slab
is confirmed. Shown alongside in the figure as continuous
lines are the ultimate loads obtained using the proposed
model. It can be observed that the level of shear at which
failure occurs diminishes with increasing thickness of the
slab, but the slope remains approximately the same as that
observed by Moe19 on thin slabs. The size effect is very
marked, especially for thick slabs. For slabs thicker than 0.4 m
(16 in.), the ACI 318-056 design equation overestimates the
punching shear strength and does not ensure a ductile behavior. 

Also shown in Fig. 11 is the effect of the bending reinforce-
ment: increasing this reinforcement increases the punching
shear capacity but simultaneously decreases the ratio of the
punching load to the flexural load, which translates into smaller

rotations at failure. In such cases, the only way to ensure a
ductile behavior of the slab is to include shear reinforcement.

SIMPLIFIED DESIGN METHOD
For practical purposes, the load-rotation relationship can

be further simplified by assuming a parabola with a 3/2
exponent for the rotation ψ as a function of the ratio V/Vflex
and by assuming that the flexural strength Vflex (refer to
Eq. (7c)) is reached for a radius of the yielded zone ry equal
to 0.75 times the radius of the isolated slab element rs. These
assumptions, together with Eq. (16), (18), and (22) from
Appendix 1, lead to the following relationship

(8)

Figure 12 shows, again for the four tests by Kinnunen and
Nylander,8 the experimental load-rotation relationship along
with those given by Eq. (6) and by the simplified design
method of Eq. (8). Both expressions correctly predict the
punching load, the simplified design equation giving slightly
more conservative values.

In Table 2, the various expressions proposed in this paper,
the complete solution of Eq. (6), and the simplified solution
of Eq. (8) are compared on the basis of nine test series by
various researchers, for a total of 87 tests. The number of
tests in Table 2 is smaller than that of Table 1 because tests
with different reinforcement ratios in orthogonal directions
are not considered (tests by Nylander and Sundquist24 and
Kinnunen et al.25). For tests with square columns, the radius
of the column was assumed to be rc = 2bc/π, where bc is the
side of the square column, leading to the same control perimeter.
It should be noted that a control perimeter with rounded
edges is adopted when checking the punching shear strength
according to ACI 318-056 (this is the default control perimeter
according to this code, where it is also permitted a four
straight-sided control perimeter, refer to Section 11.12.1.3 of
ACI 318-056). Similarly, square slabs are transformed into
circular elements with the same flexural strength. Also

ψ 1.5
rs

d
----

fy

Es

----- V
Vflex

----------⎝ ⎠
⎛ ⎞ 3 2⁄

=

Fig. 11—Punching shear strength as function of V/ Vflex
ratio for various slab thicknesses and reinforcement ratios
(rc = 1.4d, rs = 9.2d, rq = 7.8d, fc = 24 MPa [3400 psi], and
fy = 350 MPa [50 ksi]); comparison with tests by Elstner
and Hognestad18 and Moe19 (d =114 mm [4.5 in.], bc =
254 mm [10 in.], bs = 1830 mm [72 in.], rq = 890 mm [35 in.],
fc = 13 to 51 MPa [1820 to 7180 psi], fy = 303 to 482 MPa
[43.1 to 68.6 ksi], and ρ = 0.5 to 7%).

Fig. 12—Plots of load-rotation curves for tests by Kinnunen
and Nylander8 (refer to Fig. 8 for geometrical and mechanical
parameters) and comparison to analytical laws of Eq. (6)
and (8).
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shown in Table 2 and plotted in Fig. 13 are the results from
ACI 318-056 and Eurocode 2.7 The results predicted by the
proposed formulations are excellent, with an average ratio of
effective to predicted load close to unity, and a very small
coefficient of variation (COV) of 0.08, respectively, 0.09.
Also remarkable is the minimum value of the ratio Vtest/Vth
given in Table 2. A ratio smaller than 1.0 means that the
actual strength can be lower than predicted. It is 0.86 for both
proposed formulations.

Tests in which failure occurred after reaching the flexural
strength of the slab are also included in the results; in this
case, setting the bending strength to its theoretical value
(Eq. (7c)). This is why, in Fig. 13, a series of results are
agglutinated along the inclined dotted line that delimits the
bending failure mode.

The results given by the simplified Eq. (7) with a bilinear
load-rotation relationship, not shown in the table, are very
similar to those given by the complete solution of Eq. (6).
This is not surprising because the considered test series
include, above all, specimens with small or moderate slab
thicknesses. By comparisons, the results of ACI 318-056 are
generally much more conservative, which is to be expected
from a design code, but with a much larger COV (0.22 with
rounded critical section or 0.20 with a square-sized critical
section), with the potential to actually lead to unsafe designs
(the minimum value of the ratio Vtest/Vth for the considered
tests is 0.82). Furthermore, the ratio Vtest/Vth strongly
decreases for ACI 318-056 with increasing value of the
effective depth of the slab (refer to tests by Hassanzadeh22

and Hallgren10 in Table 2 with d = 200 mm [7.87 in.] or Test
PG-3 by Guandalini and Muttoni13 with d = 456 mm [17.9 in.]
in Fig. 9).

The results of Eurocode 27 are better, with a smaller
average of the ratio, and also a smaller COV (average ratio
of Vtest/Vth equal to 1.14 and a COV of 0.12 with a minimum
value of 0.86). It can be noted that Eurocode 27 limits the
value of the factor affecting size effect for slabs with effective
depths smaller than 200 mm (7.87 in.) to 2.0 (refer to Eq. (3)),
which allows accounting for thickness tolerance for thin
slabs. If this limit is not considered, the code equation shows
better agreement to test results, with an average of 1.02 and

a COV of 0.09, however, the minimum value of the ratio
Vtest/Vth decreases to 0.79.

Size effect
Size effect on punching shear strength was introduced

initially in this paper by multiplying the slab rotation ψ by its
thickness d in the formulation of Eq. (5). It is interesting to
note that a slenderness effect (dependency on the ratio rs/d)
is present in the load-rotation relationship given by Eq. (8).
Because the rotation according to this equation is inversely
proportional to the slab thickness, if Eq. (8) is introduced
into Eq. (5), the slab thickness d cancels on the right-hand
side of the equation. Consequently, it follows that the factor
for the reduction of the strength for size effect is not a function

Table 2—Comparison of results of test series with predicted strength of proposed approaches and of 
current design codes*; average, COV, and minimum value of ratio Vtest /Vth

Reference (year) d, mm (in.) No.

Eq. (5) + Eq. (6) Eq. (5) + Eq. (8) ACI 318-056 EC 27

Average COV Minimum Average COV Minimum Average COV Minimum Average COV Minimum

Elstner and Hognestad18 (1956) 115 (4.52) 22 1.01 0.07 0.88 1.01 0.07 0.86 1.50 0.20 1.05 1.16 0.09 0.95

Kinnunen and Nylander8 (1960) 122 (4.80) 12 1.02 0.09 0.86 1.08 0.08 0.96 1.45 0.18 1.03 1.14 0.13 0.90

Moe19 (1961) 114 (4.48) 9 1.06 0.09 0.94 1.07 0.09 0.98 1.51 0.10 1.25 1.22 0.07 1.13

Schäfers20 (1984)
113 to 170 

(4.45 to 6.69) 4 1.02 0.08 0.93 1.06 0.10 0.94 1.41 0.14 1.16 1.25 0.05 1.19

Tolf21 (1988)
98 to 200 

(3.86 to 7.87) 8 0.98 0.10 0.87 1.06 0.10 0.92 1.33 0.21 0.98 1.11 0.14 0.94

Hassanzadeh22 (1996) 200 (7.87) 3 0.97 0.09 0.87 1.04 0.08 0.95 1.10 0.06 1.03 1.03 0.14 0.86

Hallgren10 (1996) 199 (7.83) 7 0.94 0.04 0.90 1.06 0.07 0.96 1.05 0.09 0.90 0.96 0.05 0.90

Ramdane24 (1996) 98 (3.86) 12 1.07 0.08 0.94 1.16 0.08 1.03 1.43 0.23 0.91 1.22 0.12 1.00

Guandalini and Muttoni13 (2004)
96 to 464 

(3.78 to 18.2) 10 1.07 0.08 0.95 1.14 0.08 1.02 1.16 0.24 0.82 1.04 0.09 0.90

Σ 87 1.02 0.08 0.86 1.07 0.09 0.86 1.37 0.22 0.82 1.14 0.12 0.86
*Tests with different bending reinforcement ratios along orthogonal directions not included.
Note: COV = coefficient of variation.

Fig. 13—Comparison of various formulations of ACI 318-05,6

Eurocode 2,7 and combination of Eq. (5) and (6) and of Eq. (5)
and (8) with test results shown in Fig. 5 and Table 2.
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of the slab thickness, but rather of the span, represented in
Eq. (8) by the radius rs of the isolated slab element.

CODE-LIKE FORMULATION
In 2003, Muttoni17 proposed a similar relationship for the

failure criterion for punching shear of flat slab systems
assuming that rs = 0.22L, where L is the span of the slab, and
that the flexural capacity of the slab is Vflex ≅ 8mRd (where
mRd is the flexural capacity of the slab in the column region
reduced by the strength reduction factor). The resulting load-
rotation relationship is thus

(9)

where Vd is the factored shear force. Here again, the rotation is
slenderness-dependent and thus it is inversely proportional
to the thickness of the slab, with the consequence that the
size effect factor of Eq. (5) is again a function of the span L
of the slab and not of its thickness. Equation (9) is formulated
for intermediate columns; for edge columns, the constant 8
is to be replaced by 4 and for corner columns by 2.

Equation (5), in a slightly rearranged form and to reach a
target fractile of 5%, including a model factor to cover some
irregularities in the spans and in disposition of the loading,
has been introduced in the Swiss Code for structural concrete
SIA 26227 as

(10)

where γc is the partial safety factor of concrete (γc = 1.5) or

where φ is the strength reduction factor for punching (φ = 0.75).

Design approach
It is possible to combine Eq. (9) describing the load-

deflection behavior of the slab element with the failure
criterion of Eq. (10) into a single design formula. The exact

ψ 0.33L
d
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fy

Es
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8mRd

------------⎝ ⎠
⎛ ⎞ 3 2⁄

=
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------- 1

1 20 ψd
dg0 dg+
-------------------+

----------------------------------- (SI units: N, mm)=

VRd
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8

1 20 ψd
dg0 dg+
--------------------+

------------------------------------ (U.S. customary units: psi, in.)=

punching strength (Point A in Fig. 14) is then obtained by
setting VRd equal to Vd and iteratively solving the resulting
equation. Requiring an iterative calculation even for the
simplest cases, this formulation would not be very useful in
practice. Instead, a simple design check can be performed
calculating the slab rotation ψd corresponding to the factored
shear force Vd using Eq. (9). From that value, the corresponding
punching shear strength of the slab (Point B of Fig. 14) is
found by applying Eq. (10). If the strength obtained from
Eq. (10) is larger than the design load Vd, the design is safe
and conservative. If, on the contrary, it is insufficient, the
flexural reinforcement, the column size, or the slab thickness
has to be increased.

Parametric study and comparison to test results
Figure 15 demonstrates the ability of the proposed

formulation to investigate various aspects of the phenomenon
of punching shear. As already known, an increase in the
bending reinforcement leads to an increase in the punching
shear capacity (Fig. 15(a)). This effect is not considered in
the ACI 318-056 formulation, but is included in Eurocode 27

and the proposed formulation (where an increase in the
bending reinforcement reduces the slab rotation ψ). 

The effect of the size of the column relative to the thickness
of the slab is illustrated in Fig. 15(b). This effect is considered
by ACI, but only for large values of the ratio b0/d. The
proposed formulation, again, correctly describes this effect
for the available test results, as does the formulation of
Eurocode 2,7 which handles it by working with a control
perimeter located at 2d from the column face instead of d/2
for ACI and the present paper.

Figure 15(c) shows the effect of the effective slab thickness
on the punching strength. The few available tests point
toward a strong decrease for very thick slabs, which is
correctly described by the proposed model and Eurocode 27

but ignored by ACI.
Concerning the effect of concrete strength on punching

shear, Eurocode 27 and the proposed formulation give
consistently good results, as shown in Fig. 15(d).

The effect of the type of steel used and of its yield stress fy
has been the object of only limited investigations, mostly by
Moe.19 This effect is not very pronounced, but a slight
increase with increasing yield stress is predicted by the
proposed formulation.

The span-depth ratio of the slab, represented by the ratio
rs/d for isolated slab elements also has an effect on the
punching shear strength, according to the proposed formulation.
This effect is considered neither by ACI 318-056 nor by
Eurocode 2.7 Further research should be devoted to investigate
this aspect, as the punching strength of very slender slabs
appears to be lower than expected, and no tests with significant
thickness are currently available.

SUMMARY AND CONCLUSIONS
Design rules for punching shear present in design codes

are generally based on experimental results performed on
isolated slab elements representing the part of the slab close
to the column. Most tests have been performed on relatively
thin slabs, typically 0.1 to 0.2 m (4 to 8 in.). The test results
are nonetheless commonly extrapolated to design flat slabs
with a thickness typically 2 to 3 times larger, and even for
foundation mats with thicknesses 10 to 20 times larger.

The present paper proposes a mechanical model based on
the critical shear crack theory, explaining punching behaviorFig. 14—Design procedure to check punching strength of slab.
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of flat slabs without shear reinforcement and correctly
accounting for size effect. A failure criterion is derived on its
basis, which suitably describes the role of the many
geometric and mechanical parameters involved in punching
shear. The main conclusions of this paper are:

1. According to the proposed failure criterion, the punching
strength is a function of the opening of a critical shear crack
in the slab. Its influence is assumed to be proportional to the
product of the slab rotation times the slab thickness and
corrected by a factor to account for the maximum diameter
of the aggregate;

2. This failure criterion simultaneously determines the
punching load and the rotation capacity of the slab, and thus
of its ductility;

3. The punching load can be determined by applying the
failure criterion and a load-rotation relationship obtained
from a nonlinear analysis of the slab in bending. For axisym-
metric cases, an analytical formulation derived on the basis
of a nonlinear moment-curvature diagram is given;

4. A simplified bilinear (elasto-plastic) moment-curvature
relationship can also be applied to accurately estimate the
punching load. The use of a more sophisticated moment-
curvature relationship is only required for thick slabs with
low reinforcement ratios, in which it is necessary to precisely

account for the effects of the tensile strength of concrete and
of tension stiffening;

5. A simplified analytical formulation of the load-rotation
relationship, as it is used in the current Swiss design code
for concrete structures, also gives a good estimate of the
punching load;

6. The article proposes a method to calculate the punching
strength as a function of the effective depth of the slab, the size
of the column, the flexural reinforcement ratio, the yield
strength of the reinforcing steel, the concrete strength, the
maximum aggregate size, and the span-depth ratio of the slab.
This method gives very good results when compared with a
series of 87 test results, with a COV of the ratio Vtest/Vth of 8%;

7. Size effect on the punching shear strength is accounted
in the failure criterion of the critical shear crack theory. This
effect, in combination with the slenderness effect on the
load-rotation relationship proposed in this paper, can be
formulated as a function of the span of the slab;

8. ACI 318-056 does not only exhibit a very large COV when
compared with test results (22%), but it does not include
important effects, which leads to unsafe designs in particular
for thick and/or slender slabs with low reinforcement ratios;

Fig. 15—Comparison of punching shear strength according to ACI 318-05,6 Eurocode 2,7 and the refined (Eq. (5) and (6)) and
simplified (Eq. (5) and (8)) methods proposed in this paper with various test results showing influence of: (a) reinforcement ratio
(tests by Elstner and Hognestad18); (b) punching shear perimeter (tests by Hassanzadeh22 and Tolf21); (c) effective depth of
slab (tests by Guandalini and Muttoni13); (d) concrete strength (tests by Ramdane23); (e) yield strength of steel (tests by
Moe19); and (f) slenderness of slab.
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9. Eurocode 27 has a better COV when compared with test
results (12%), but it also can predict unconservative values
for slender slabs;

10. Even if tests on thin slabs have exhibited some level of
ductility for low reinforcement ratios, the behavior is quite
brittle for thicker slabs; and

11. For thick slabs, the only solution to reach a satisfactory
level of ductility is to place punching shear reinforcement.
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APPENDIX 1 1 

In this appendix, a load-rotation relationship for an isolated slab element is derived based on the 2 

assumption that the deflected shape of the isolated slab element is conical outside the critical shear 3 

crack. The curvature in tangential direction (Fig. 6f) is thus: 4 

 
rt

ψχ −=   for r > r0  (11) 5 

Inside the critical shear crack, it may be assumed that the curvatures in both directions are constant 6 

and equal (Figs 6d,f), so that the deflected shape is spherical :  7 

0r
tr

ψχχ −==   for r < r0  (12) 8 

With these curvatures, the internal forces described in Figs 6b,c can be calculated according to the 9 

quadrilinear moment-curvature relationship shown in Fig. 7. This relationship is characterized by 10 

the stiffnesses EI0 before and EI1 after cracking,  the cracking moment mcr , the moment capacity mR 11 

and the tension stiffening effect χTS. Neglecting the effect of reinforcement before cracking, these 12 

terms can be obtained as: 13 
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Assuming a linear-elastic behaviour of steel and concrete after cracking, it follows: 17 
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where c is the depth of the compression zone: 19 
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 19 

and β is an efficiency factor that accounts for the orthogonal layout of the reinforcement and the 1 

reduction in the ratio between the torsion and bending stiffness of the slab after cracking. It should 2 

be noted that this factor affects the stiffness of the member but not the flexural strength of the 3 

member. While the developments above were made for a layout with a polar symmetry 4 

(reinforcement placed in radial and tangential directions), reinforcement is usually placed 5 

orthogonally in the slab. For these cases, a good agreement to test data is obtained assuming 6 

β  = 0.6. 7 

Assuming a perfectly plastic behaviour of the reinforcement after yielding, a rectangular stress 8 

block for concrete in the compression zone and neglecting compression reinforcement, the moment 9 

capacity mR of the section is then: 10 
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The decrease in curvature caused by tension stiffening can be approximated by the constant 12 

contribution χTS :  13 
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which corresponds approximately to 0.5 · mcr / EI1.  15 

The curvatures χ1 at the beginning of the stabilized cracked regime and χy at yielding are thus: 16 
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The four segments of the assumed moment-curvature relationship correspond to the four regions of 20 

the slab shown in Figs 6f,g. The radii delimiting these zones may be determined by substituting 21 

Eqs (15), (20) and (21) into Eq. (11), as follows: 22 

Zone within which the reinforcement is yielding, plastic radius ry : 23 
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Zone in which cracking is stabilized, radius r1:  2 
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and zone up to which the concrete is cracked, cracking radius rcr : 4 
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The equilibrium equation of the slab portion shown in Fig. 6c is: 6 
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where mr is the radial moment at r = r0 calculated according to Fig. 7 with the curvature given by 8 

Eq. (12). It follows that: 9 
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where the operator x   is x   for 0≥x   and 0 for  0<x  11 

 12 

APPENDIX 2 13 

The following symbols are used in the paper: 14 

Ec = modulus of elasticity of concrete (assumed 3
1

000'10 cc fE ⋅=  [MPa],  15 

  3
1

000'276 cc fE ⋅=  [psi]) 16 

Es = modulus of elasticity of reinforcement 17 

EI0  = flexural stiffness before cracking 18 

EI1  = tangential flexural stiffness after cracking 19 

L = main span of a slab system 20 



 21 

V = shear force 1 

Vd = factored shear force 2 

Vflex = shear force associated with flexural capacity of the slab 3 

VR = nominal punching shear strength 4 

VRd = design punching shear strength 5 

Vtest = experimental punching shear strength 6 

Vth = theoretical punching shear strength 7 

b0 = perimeter of the critical section for punching shear 8 

bc = side length of a square column 9 

bs = side length of a square isolated slab element 10 

c = distance from extreme compression fibre to neutral axis 11 

d = distance from extreme compression fibre to the centroid of the longitudinal  12 

tensile reinforcement 13 

db = diameter of a reinforcement bar 14 

dg = maximum diameter of the aggregate 15 

dg0 = reference aggregate size (16 mm (0.63 in)) 16 

fc  = average compressive strength of concrete (cylinder) 17 

f 'c  = specified compressive strength of concrete (cylinder) 18 

fct  = tensile strength of concrete (assumed 3
2

3.0 cct ff ⋅=  [MPa], 3
2

6.1 cct ff ⋅=  [psi]) 19 

fy = yield strength of reinforcement 20 

h = slab thickness 21 

mcr  = cracking moment per unit width 22 

mr  = radial moment per unit width 23 

mt  = tangential moment per unit width 24 

mR  = nominal moment capacity per unit width 25 

mRd  = design moment capacity per unit width 26 



 22 

r = radius 1 

r0 = radius of the critical shear crack 2 

r1 = radius of the zone in which cracking is stabilized 3 

rc = radius of a circular column 4 

rcr = radius of cracked zone 5 

rq = radius of the load introduction at the perimeter 6 

rs = radius of  circular isolated slab element 7 

ry = radius of yielded zone  8 

∆ϕ = angle of a slab sector 9 

β = efficiency factor of the bending reinforcement for stiffness calculation 10 

γ c = partial safety factor for concrete (according to European practice, γ c = 1.5) 11 

ρ = reinforcement ratio 12 

φ = strength reduction factor (according to North-American practice, φ = 0.75 for shear) 13 

χ1 = curvature in stabilized cracking 14 

χcr = curvature at cracking 15 

χr = curvature in radial direction 16 

χt = curvature in tangential direction 17 

χy = yielding curvature 18 

χTS = decrease in curvature due to tension stiffening 19 

ψ = rotation of slab outside the column region 20 

ψd = rotation of slab outside the column region due to factored shear force Vd 21 

ξ = size effect coefficient in Eurocode 27 22 
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DISCUSSION

The authors are complimented for the exhaustive compilation
and meticulous evaluation of a large database of 596 reinforced
concrete beams with a/d ratios less than 2 to identify the
unconservatism in the strut-and-tie model (STM) provisions
of ACI 318-05 and the AASHTO LRFD. Recently, Yang
and Ashour (2008) analyzed a large shear database, part of
which is also used by the authors, and observed similar
unconservatism in the STM provisions of the ACI 318-05
and the Eurocode 2 (2004) as well, with these provisions
being even more unsafe, particularly for continuous deep
beams. The discussers would like to draw the authors’ attention
to two points: 

1. With reference to the findings of Part I, it may be noted
that the cylinder compressive strengths of concrete used in
the 596 beams of the database fall in a wide range—28 to
83 MPa (4000 to 12,000 psi)—whereas the applicability of
the STM provisions of ACI 318-05, Appendix A, is limited
to concrete with compressive strengths up to 41 MPa (6000 psi).
The literature suggests that the strut efficiency factor
decreases with an increase in the concrete compressive
strength and, therefore, it should be expected that the higher-
strength concrete beams will be unsafe when evaluated using
the ACI 318-05 provisions; and

2. With reference to Fig. 1 of Part II, the authors have
suggested a correlation of the following form between the
strut efficiency factor ν and the two important influencing
parameters: the shear span-to-effective depth ratio (a/d) and
the concrete compressive strength fc′.

(A)

The strut efficiency factor is known to decrease with an
increase in the concrete compressive strength fc′. Because
the strut efficiency is related to the splitting tensile strength
of concrete, a parameter linearly linked to √fc′, the authors
are fully justified in correlating ν with √fc′. However, the
discussers are not clear why the authors have chosen a
power function to correlate ν with the a/d, which is simply
cotθ, with θ being the angle of inclination of the strut with
the horizontal. 

The composite correlation pattern followed by the authors
in Eq. (A) can be expressed as two independent power functions
indicated in the following

(B)

(C)

where k1 and k2 are two independent exponents that can be
evaluated by suitably grouping the database considering one
parameter at a time while keeping the other parameter
constant. Finally, combining Eq. (B) and (C), the composite
model relating the strut efficiency factor ν to the a/d and fc′
will become

(D)

where k0 is a constant coefficient that can also be evaluated
from the database. 

The discussers feel that unless the values of both k1 and k2
(evaluated using the database as discussed) are close enough
to unity, two independent exponents may be preferred.
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AUTHORS’ CLOSURE
The authors would like to thank the discussers for their

interest, and hope these comments resolve the outstanding
issues related to the papers.

The discussers present two comments related to the two-
part paper. The first comment relates to the limitation of
6000 psi (41 MPa) in Appendix A of ACI 318. This limitation
applies only to Section A.3.3.1 and no other provisions
within Appendix A. Additionally, when examining the
effects of concrete compressive strength within the database
of experimental results, the authors did not find a significant
difference between test results of various strengths of
concrete. This result may be due to the relatively limited data
stemming from tests with high-strength concrete.

The second point raised by the discussers relates to the
choice of the exponent in the proposed equations. The two
parameters (a/d and √fc′) were evaluated independently
though the course of developing the proposed equations. In
both cases, the values of the exponents were very close to
1.0. Figure 1 was intended to illustrate that result with the
value of the exponent on the product of the two parameters
equal to 0.97. 
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Disc. 105-S37/From the July-August 2008 ACI Structural Journal, p. 395

Design of Deep Beams Using Strut-and-Tie Models—Part I: Evaluating U.S. Provisions. Paper by Michael D.
Brown and Oguzhan Bayrak

Discussion by Andor Windisch
ACI Member, PhD, Karlsfeld, Germany

The historical remembrance is sometimes incorrect: the
truss mechanism where the stirrups act in pure tension was
proposed by Hennebique in his patent. Reporting on this
patent, Ritter1 was in doubt about this. He proposed to place
the stirrups along the tensile trajectories 45 degrees inclined
to the supports.

CURRENT U.S. CODE PROVISIONS
The authors are to be complimented for their concise

summary of the current code provisions for the use of strut-
and-tie modeling. In Fig. 1 and Table 1, the strut efficiency
factors are given:
• In the case of a strut with a uniform cross section over

its length, β = 1.0.
• This is the case when (using the legend of Fig. 1) b = L

but also when L = b, that is, when the strut with b = h is
loaded on its full width.

The following comments arise:
• According to the theory of plasticity, the failure load

does not decrease if the cross section is increased with
load-bearing material.

• Being so, why is the effective compression strength fce
less if L < b, that is, the total loading is much less? 

• In the Eurocode 2 (2004), the minimum reinforcement
according to Eq. (2) (with α = 90 degrees) is obligatory
in all reinforced concrete structures, even in the case
of struts with an assumed uniform cross section over
their length.

The sudden failure of the specimen during the split
cylinder test is mentioned as the formidable example of the
jeopardizing effect of induced tension. Nevertheless, one
should calculate the compressive stress along the line load
on the cylinder and compare it to the effective compressive
strength according to Table 1. Huge differences exist!

The crack shown in Fig. 3 of the paper has nothing to do
with the dispersion of the compressive force in the bottle-
shaped strut, that is, tensile stresses induced by the associated
equilibrium, and does not reduce the load-bearing capacity
of this strut.

Looking at the struts in Fig. 5, why is the strut in the
compression zone not forming a bulge, at least downwards?
Conclusion: the bottle-shaped strut is a useless component of
a questionable model in fashion.

Why is the strut-and-tie model, which is so easy to be
applied, questionable? It is dangerous, as it may give the
impression that having a closed system of dashed and
continuous lines (struts and ties) and maybe some concrete
efficiency factors, will make the structural member safe. For
example, deep beams with shear span-depth ratios of
approximately 1 or less, with flexural reinforcement
determined according to the strut-and-tie models shown in
Fig. 4 and the truss models shown in Fig. 5 would fail in flexure.

With reference to the modified compression field theory
(MCFT)-based usable compressive stress in the strut, it was

shown (Windisch 2000) that the failure of most reinforced
concrete panels (all of which were loaded by deformation
control) was caused by the yielding of the weaker char of
reinforcement in the panel. Therefore, Eq. (3) and (4) can not
be related to allowable concrete stresses. The authors’ reser-
vation concerning the calculation of the average concrete
strain during the design process is more than justified.

DATABASE OF EXPERIMENTAL RESULTS
Irrespective of the sense of database evaluations, the data

should be split with reference to the type of reinforcement:
earlier tests beams (for example, contained mild steel
round bars) having an average yield stress of 46,000 psi
(317 N/mm2).35 These results shall be treated separately. In
many of the specimens, the shear failure occurred after the
flexural reinforcement yielded, that is, the flexural capacity
was exhausted; hence, these specimens should also be excluded.

STRAIN ENERGY IN STRUT-AND-TIE MODELS
The discusser wondered about the possibility of the highly

subjective choice of models. The recommendation11 that the
model with the least strain energy is likely to be the most
appropriate is not verified. The authors are to be complimented
that they pointed it out as well. If this recommendation is
true, then the application of refined strut-and-tie models—as
suggested in SP-20817—could not be possible.

The two-panel model in Fig. 5(b) was chosen for panels
with vertical shear reinforcement. The corresponding vertical
tie turned the strut. Nevertheless, neither the trajectories nor the
crack pattern of the panel are influenced by the vertical shear
reinforcement. It would have been more realistic to make use
of the one-panel model, increasing the efficiency factor of
the strut in relationship to the rate of reinforcement.

Concerning the combined model, the following questions
arise: How does the efficiency of the inclined strut of the
one-panel truss interfere with the tension in the vertical tie of
the two-panel truss? Does it increase it or reduce it? 

SUMMARY AND CONCLUSIONS
As mentioned previously, the control of the load-bearing

capacity of the single direct strut between the load point and
the reaction may result in specimens that fail in flexure. It
would be interesting to find out which type of failures
occurred at those beams that showed efficiency factors less
than the nominal values. Do the strut efficiency factors
remain valid in the case of deep beams with uniformly
distributed loading on their top or when the concentrated
load acts on the bottom edge of the beam?
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DEVELOPMENT OF EFFICIENCY
 FACTOR EQUATIONS

Analysis of database
It can be treated as a deficiency of the new expression for

the efficiency factor that the square root of the compressive
strength was taken as a parameter. This could give the
impression that the concrete tensile strength has some
fundamental influence on the shear strength of strut efficiency,
which physically can not be the case. It might be that an
improved definition of the effective shear span (taking into
account the effective lengths of the plates at support and
loading) could have been found to decrease the scatter.

Reinforcement in bottle-shaped strut
According to the authors, the reason for the reinforcement

in bottle-shaped struts is to carry the transverse splitting
force after the formation of the splitting crack along the axis
of the strut. As already discussed with regard to Part I, the
bottle-shaped strut is a questionable formation. Moreover, until
now, any reinforcement beyond the minimum reinforcement
according to ACI 318-05 should be included into the truss as
a tie, which rearranges the truss configuration. Suddenly, a
calculated amount of reinforcement is hidden behind a
dashed line (strut). How can a dashed line be perceived as an
ordinary strut or one with reinforcement, which must be
dimensioned? Why does a strut that models the compression
zone not split? In general, a strut does not fail through splitting
but rather along a sliding surface. This develops mostly at the
end of a flexural-shear or shear crack. The flexural-shear or
shear crack borders the strut, but does not split it.

Node geometry
The authors are completely correct: whether the node is

hydrostatic or not is a rather irrelevant question. When the
web has the same width as the bottom flange at the support,
then only two tasks must be solved by the engineer: proper
size of the bearing plate (with some local zone reinforcement)
and the proper anchorage of the longitudinal reinforcement.
Hence any further theorization of the node problem might be
impressive, but remains useless.

COMPARISON OF STRUT-AND-TIE MODEL 
PROVISIONS AND SUMMARY

The histograms (Fig. 10 through 12) of the ultimate
strength to nominal strength ratio with the high rate of over-
dimensioned specimens permits a single conclusion only:
even if the strut-and-tie model would be a proper model, the
strength of the inclined struts is certainly not the governing
factor for safe structures. The authors are strongly encouraged
to continue their activity to detect all inconsistencies of the
strut-and-tie models.

AUTHORS’ CLOSURE
The discusser presents many questions related to the use of

bottle-shaped struts. In general, the authors are in agreement
with the discusser’s comments. The splitting crack that
forms in a bottle-shaped strut is a serviceability concern in

most cases rather than a strength concern. After the splitting
crack forms, the tensile stresses in concrete along the crack
vanish and the state of stress more closely resembles uniaxial
compression. As Cross (1952) noted, however, strength is
not the only concern. The presence of transverse reinforcement
in a bottle-shaped strut will help to reduce crack widths at
service loads, which improves durability provided that
service level loads do not result in yielding of these bars.
Given that these horizontal bars are likely present in most
cases, it is prudent to consider them in the truss model. The
authors agree with the discusser’s comments regarding strut
without transverse reinforcement: they should be avoided as
stated in Part I.

The authors disagree with the discusser’s suggestion that
specimens in which the longitudinal reinforcement reached
yield before shear failure occurred should be excluded from
the database. Rather, these are the primary specimens that
should be examined. Current ACI 318 Code provisions are
based on some level of ductility within a properly designed
structure. The use of different strength reduction factors for
the various failure modes is evidence of this fact. Furthermore,
the assumption of a fully plastic structure undergoing plastic
deformations, consistent with strut-and-tie modeling, suggests
that the reinforcement has yielded before failure occurs. A
ductile failure mode, such as yielding of the reinforcement,
is preferable to a brittle one, such as crushing of a strut. 

The authors’ examination of strain energy in the strut-and-
tie models was not refined to the degree necessary to answer
the discusser’s questions. This evaluation of strain energy, as
stated in the paper, was a simplistic attempt to examine the
concept of minimum strain energy in various models. To that
end, limited though it may have been, the authors believe the
attempt was successful for the stated objective. 

The authors’ classified specimens based on the various
failure types by using definitions developed by Kani et al.28

(in Part I). No strong correlation between Kani et al.’s failure
types and efficiency factor was found. The specimens
studied in this database, however, were confined to two of
Kani et al.’s four failure types. Perhaps this classification
may have been too crude to yield meaningful results. 

In regard to the discusser’s question about deep beams
with uniform loads applied on the top of a beam or a
concentrated load applied near the bottom of a beam, the
authors can provide some insight. Based on previously
published research by the authors (Brown and Bayrak 2006;
Brown et al. 2006), it would be expected that the failure
loads of specimens subjected to distributed loads on their top
surface would be higher than the failure loads predicted
using the equations presented in these papers. As for specimens
subjected to concentrated loads near their bottom surface,
the authors would expect the failure loads predicted with the
proposed equations could overestimate the shear strength.
This overestimation would be due to the tensile stresses
induced in the web of such a member. This particular question,
however, has not been studied by the authors, and our
supposition that specimens loaded near their bottom surface
should be taken for what it is: speculation based on review of
limited experimental research related to such structures. 

Disc. 105-S38/From the July-August 2008 ACI Structural Journal, p. 405
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Punching Shear Strength of Reinforced Concrete Slabs without Transverse Reinforcement. Paper by
Aurelio Muttoni

Discussion by Andor Windisch
ACI member, PhD, Karlsfeld, Germany

The author is to be complimented for his new failure criterion
for punching shear based on the critical shear crack theory.
The failure procedure is explained12 as follows: “the shear
strength is reduced by the presence of a critical shear crack
that propagates through the slab into the inclined compression
strut carrying the shear force to the column.” 

Regarding Fig. 2, this explanation shall be complemented
as follows: at the critical shear crack shown in Fig. 2(a), the
continuous thick line consists of (at least) two different
sections—the upper part is a typical flexural-shear crack and
the lower part is a sliding surface across the compression
zone of the slab around the column, that is, this part cannot
be considered an “ordinary” crack. The theoretical strut
depicted in Fig. 2(b) cannot exist as described. It does not
develop around the critical shear crack, nor develops the critical
crack across the strut. The source of the inclined compressive
force in this strut, as shown in Fig. 2(b), is not clear either.
How does it develop on the top of the slab? The discusser
would like to assume that the author had similar doubts. The
elbowed-shaped strut in Fig. 2(c) confirms this feeling. The
sliding surface part of the critical shear crack crosses the
node where both struts join. The truss model with the elbow-
shaped strut shown in Fig. 2(c) is completely irrelevant (as is
the entire strut-and-tie model). How would a shifting of the
loading, for example toward the column, influence the truss?
And concerning the load-bearing capacity of the triple lines,
the ties that should had been of concrete: who cares? The
strut-and-tie model shows its limits very clearly. 

The discusser means that the source of the punching shear
strength of slabs without transverse reinforcement is the
shear load-bearing capacity of the compression zone.28 The
inclined or curved compression strut has no function at all.

The contributions of shear friction and dowel action can be
neglected, too. (The size effect originates from the limited
extent of the process zone in fracture mechanics and must be
taken into account.) 

The shear strength formulas in the different codes, that is,
Eq. (1), (2), and (4), referring to the slab depth d and the
arbitrary control perimeter, smear the different contributions.
The smeared, mechanically inconsistent material characteristic
is than approximated with fc′

1/2 or fc′
1/3, which have no real

physical meaning; they are relatively close to the calculated
figures only.

The author’s interesting new failure criterion based on the
rotation of the slab must be opposed due to the two load-rotation
curves shown in Fig. 3(a). The detrimental effect of the
supplementary reinforcing ring db12 (one No. 4) cannot be
predicted by the rotation. Menétrey29 found similar
jeopardizing influence of reinforcing rings in his tests.

The author is correct: the punching strength is a function
of the opening of a critical shear crack in the slab. Nevertheless,
the position of this crack can not be predicted through the
slab rotation, hence ψ can not be considered as an independent
variable of the phenomenon.

The paper gives very valuable impacts for looking for a
mechanically sound model on punching shear strength.
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The author has to be appreciated for developing a
comprehensive analytical model for predicting the
punching shear strength of reinforced concrete slabs
without transverse reinforcement. It is also interesting to
note that the author has developed failure criteria based on

a given critical rotation of the slab, and that a similar
proposal has been included in the Swedish standards.

However, the equation for calculating mRd (the flexural
capacity of the slab in the column region reduced by the
strength reduction factor) used in Eq. (9) is not given. Only
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when mRd is evaluated can the load-rotation relationship and
the punching shear strength be calculated. Hence, the author
is requested to give the equation for the same.

In this connection, the discusser wishes to note another
comprehensive analytical model developed by Theodora-
kopoulos and Swamy30 to predict the ultimate punching
shear strength of slab-column connections. This model is
also based on the physical behavior of the connections and is
applicable to both lightweight and normalweight concrete. It
also incorporates several variables that affect the punching
shear strength of flat slabs including the concrete strength,
tension steel ratio, compression reinforcement, and loaded
area. It was compared with 60 reported tests in literature and
found to agree with them with reasonable accuracy. The
discusser requests that the author compare the results of his
analytical model with their results, and show the significant
advantage of using his model. The discusser is unable to do
so due to the unavailability of the equation for mRd in Eq. (9).

Theodorakopoulos and Swamy31 recently extended the
aforementioned theory for predicting the punching shear
strength of FRP-reinforced concrete flat slabs. They found
that the model gives excellent correlation with test results of
slabs reinforced with FRP reinforcing bars.
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AUTHOR’S CLOSURE 
The author would like to thank the discussers for their

interest in the paper and for their encouraging words about
the ideas of the critical shear crack theory.

Closure to discussion by Windisch
The sketch of Fig. 2 is a physical explanation of how the

development of the critical shear crack influences the
behavior of the slab, allowing to understand, for instance, the
decompression of the soffit of a slab measured during
testing. As the discusser may note, no quantitative, only
phenomenological, explanations are obtained from this figure.

The same happens with respect to Fig. 3. It explains the
influence of tangential cracking and of its location on
punching shear strength. The model itself, however, deals
with ordinary (orthogonal) reinforcement layout for which
the failure criterion of Fig. 5 is proposed.

Closure to discussion by Subramanian
The value of mRd (design moment capacity per unit width)

can, for instance, be calculated according to ACI 318-08,
Sections 10.2 and 10.3. The assumptions on the shape discussed
in Section 10.2.6 have limited influence on the value of the
design moment capacity for typical reinforcement ratios.

Disc. 105-S43/From the July-August 2008 ACI Structural Journal, p. 451

Design and Analysis of Heavily Loaded Reinforced Concrete Link Beams for Burj Dubai. Paper by Ho Jung Lee,
Daniel A. Kuchma, William Baker, and Lawrence C. Novak

Discussion by Andor Windisch
ACI Member, PhD, Karlsfeld, Germany

STRUT-AND-TIE MODEL USED IN LINK BEAM
The authors are to be complimented for their interesting

paper. What is the “speciality” of the strut-and-tie model
shown in Fig. 5, where the reader might perceive that this is
a D-region? According to MacGregor16 “In D-regions...a
major portion of the load is transferred directly to the
supports by in-plane compressive forces in the concrete and
tensile forces in reinforcement and a different design
approach is needed.” How was the horizontal position of the
C-C-C nodes found that resulted in the θ = 39.1-degree strut
inclination? Nor is it not clear when a bottle-shaped or a
narrow bottle-shaped strut or a uniform field of diagonal
compression throughout a deep beam shall be assumed. A
“direct” design looks different.

NONLINEAR FINITE ELEMENT ANALYSIS
The load and boundary conditions shown in Fig. 8 do not

properly model the real conditions: along the (horizontal)
boundary cross sections of the walls, significant bending
moments (besides normal and shear forces) act that can
considerably influence the load-bearing capacity of the link
beam. Reference should be given to the predicted crack
patterns shown in Fig. 10—under the opening moments

affecting the wall sections, much more pronounced cracked
regions would have been found. 

For the validation of the concrete material models of the
three programs, a test14 under monotonic loading was used.
Following are some questions and comments: 
• The link beams in the tower are subjected to wind loads

from different directions. This alternating load results
in pronounced cracking in the relevant tension region
that becomes the compression zone in the next loading
phase. Did the concrete material model consider this
effect? That is a further reason why more realistic
boundary conditions should have been chosen.

• The situation under seismic loads is much more dramatic.
Did the authors consider this issue in the design?

• The three predicted load-deformation responses (Fig. 7)
are close to each other; nevertheless, they overestimate
the failure load quite substantially. (As the load-defor-
mation response of the test specimen is not shown, it is
not clear whether the predicted response was close enough
to the measured one.) Did the nonlinear finite element
models at least predict the type of failure properly?
For a designer, the most important aspect is the load-
bearing capacity. What criterion can be formulated for
the finite element analysis to indicate failure?
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DISCUSSION OF PREDICTED 
LINK BEAM BEHAVIOR

The predicted crack patterns displayed in Fig. 10 show a
pronounced opening corner effect with inclined cracks
around the corners. This opening-corner effect should have
been considered in the strut-and-tie model. (Until now, after
more than 30 years of development, no valid strut-and-tie
model has been developed for opening corners at all. Even
MacGregor16 does not give any assistance.)

The predicted cracking shown in Fig. 18 reveals that
horizontal web reinforcement would be as efficient as the
vertical stirrups, especially in the neighborhood of the pier
walls. The strut-and-tie model focuses only on vertical ties as
shear reinforcement, whereas horizontal web reinforcement
is never referred to. 

CONCLUSIONS
1. The reported effect of the pier walls could be less

advantageous if the real loading effects would have been
considered in the model. The reversed loading could have
even more detrimental influences;

2. A more detailed analysis (if the model is correct)
deserves a more economical solution compared to a much
quicker (and cheaper) calculation model, that is, the model in
ACI 318-99; 

3. Brown and Bayrak17 emphasized that “the use of the
current provisions for STM in both ACI 318-05 and
AASHTO LRFD does not produce adequate levels of
safety.” Who is right?

4. The authors are right. It is well known (nevertheless,
systematically neglected by the users of strut-and-tie
modeling) that in D-regions, more longitudinal flexural
reinforcement is needed as advised by strut-and-tie
modeling where the internal lever arm is regularly taken as
0.9d, even if the region is prestressed, which increases the
depth of the compression zone; and

5. The discusser strongly doubts whether the code provisions
cited would be valid for link beams under alternating loading
such as in the Burj Dubai.
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Discussion by Kent A. Harries
FACI, William Kepler Whiteford Faculty Fellow and Assistant Professor, Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA

The discussed paper presents varied analyses of very large
link or coupling beams coupling the walls of the Burj Dubai
tower. The link beams are clearly shear critical, having their
design moment capacity determined as M = VL/2, where V is
the design shear and L is the span of beam. Based on the
nature of coupled wall structures, the large shear forces
induced in the beams result from lateral loads applied to the
structure. The beams permit the individual wall piers to act
as a unit; thus, lateral forces are resisted by a combination of
cantilever wall pier action and an axial couple generated
between walls resulting from the frame action imparted by
the beams.

The analyses and discussion presented by the authors
appear to suggest the use of the strut-and-tie method to overcome
what is suggested to be the restrictive shear stress limits on these
members imposed by ACI 318. The reviewer is concerned
that this conclusion, while correctly deduced from the
authors’ work, is nonetheless erroneous and potentially
dangerous with respect to the behavior of coupled high-rise
structures. The primary reason for these misleading
conclusions is that the authors have considered only the
case of a monotonically loaded beam. The following brief
discussion refutes the findings of the discussed paper as they
relate to high-rise coupled wall structures.

Conventionally reinforced concrete coupling beams are
recognized to be susceptible to sliding shear failure at the
beam-wall interface.18,19 Sliding shear is described as follows.20

“Under reversing loads, intersecting cracks propagate
across the entire depth of the beams at their ends. As subsequent
inelastic load reversals are applied, concrete at the ends [is]
destroyed by cracking, abrasion and spalling. With the
concrete destroyed, shear transfer by ‘truss action’ is not
possible and the transverse hoops become ineffective. Interface
shear transfer is lost. Eventually, dowel action of longitudinal
reinforcement [provides] the primary shear resistance…
Deterioration of the concrete at the ends of the beams [is]
intensified by elongation of the beams, caused by residual
tensile strains in the longitudinal reinforcement. These
strains developed with successive load reversals into the
inelastic range.”

Sliding shear at the face of the wall begins to affect the
response of conventional beams having shear stresses in the
range of 4√fc′ to 6√fc′ psi (0.3√fc′ to 0.5√fc′ MPa). The failure
of the Mount McKinley Building during the 1964 Anchorage
Earthquake21 is an often-cited example illustrating the
shortcomings of conventionally reinforced coupling beams.

By providing intermediate midheight longitudinal bars,
the hysteretic response is improved (through additional
dowel action) and strength deterioration due to shear is
delayed, although not mitigated.22-24 Beams with intermediate
bars do not perform well when the shear stress is greater than
6√fc′ psi (0.5√fc′ MPa). Providing cranked diagonal reinforce-
ment near the beam ends has been shown to improve the
hysteretic behavior by preventing sliding shear and by
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spreading the hinging regions away from the wall face.25,26

This detail, however, poses construction difficulties and
results in extra cost. Additionally, designers may avoid this
detail because it is not explicitly covered in ACI 318. Similarly,
the use of high-strength concrete27,28 or fiber-reinforced
concrete29 has shown some improvement in delaying the
occurrence of sliding shear. 

Diagonally reinforced coupling beams exhibit better
performance19,30 and theoretically overcome limits imposed
by concrete shear capacity. As demonstrated by Harries et al.,31

however, the design of diagonally reinforced beams becomes
largely impractical for all but the shortest beams at gross
section shear stresses exceeding approximately 6√fc′ psi
(0.5√fc′ MPa).

There are three methods by which sliding shear may be
avoided:

1. Reduce the shear stress in the beam. This may result
in impractically large coupling beam cross sections31;

2. Provide diagonal reinforcement. Diagonal reinforcement
is perhaps the only successful solution for reducing the
potential for sliding shear and enhancing the hysteretic
characteristics of coupling beams having span-depth ratios
as large as 3.33.32 Steel placement in diagonally reinforced
beams having span-depth ratios greater than 1.5, however, is
generally impractical31; and

3. Provide a steel or hybrid coupling beam33,34 as reportedly
was done for the more heavily loaded Beams LB3 and LB4
in the Burj Dubai.

Conventionally reinforced concrete coupling beams
having relatively high magnitudes of shear stress should be
expected in practice. A review of the experimentally
observed behavior of such beams reveals that strains in the
longitudinal reinforcement barely achieve yield prior to the
onset of sliding shear.18,20,24,35 In cases where conventional
reinforcement was used in beams having span-depth ratios
less than 1.5, the beams were unable to achieve the loads for
which they were designed prior to the onset of sliding shear.18,24

While the strut-and-tie approach would appear to permit
greater capacities to be achieved, the behavior of the
structural system must be accounted for and results from
previous work, particularly experimental results, cannot be
overlooked. In this case, the discusser maintains that the
conclusions of the discussed paper are incorrect in context.
Furthermore, the discusser has some concern for the LB2
beams that have been reportedly used in the Burj Dubai.
Finally, there is a minor typographical error in Table 1: the
design moment for LB2 = 1964 kN.
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AUTHORS’ CLOSURE 
The authors appreciate the discussions provided by

Windisch and Harries. The authors will first address the
concern raised by Harries, and shared by Windisch, that the
design approach used in the Burj Dubai and the analytical
validation was not suitable for beams subjected to significant
load reversals. The authors will then address the additional
comments of Windisch. 

In the paper, the authors stated that “Due to the tapering of
the tower, the primary demand on the link beams is from
gravity load redistribution, flow from the taller core to the
perimeter of the structure.” The largest shear demands are in
the beams at the location of these setbacks where there is not
the concern for the type of load reversal or opposite direction
shear cracking raised in the discussions. Harries’ comments
are premised by his assumption that “Based on the nature of
coupled wall structures, the large shear forces induced in the
beams result from lateral loads applied to the structure.”
Thus, the concerns raised by Harries are not applicable to the
link beams that were the subject of this paper. The authors
agree with the technical arguments presented and summarized
by Harries that would apply to link beams whose demands
are governed by lateral loadings. One of the authors is presently
engaged in testing a large multi-story reinforced concrete
coupled wall structure that was designed to resist cyclic
lateral loading from seismic actions. In this test structure,
diagonal reinforcement has been used for the reasons given
in Harries’ discussion.

This response is also considered to address the concerns of
Windisch regarding the influence of significant reverse
loading on the design and performance of link beams.
Because two ACI members both raised this concern, the
authors should have better anticipated that many readers
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would naturally assume that the dominant shear demands
were from lateral loads. Thus, the authors should have been
more emphatic about the source of the demands for the link
beams in Burj Dubai.

The other comments of Windisch were on the following
topics: the shape of the strut-and-tie model, the appropriateness
of the selected finite element model, comparisons with test
data, the criteria used to assess the predicted capacity,
cracking patterns, and the role of horizontal reinforcement. 

As presented in Fig. 5, the shape of the strut-and-tie model
was selected so that the full shear force would need to be
lifted up over the length of the link beam, as opposed to
having a portion of the shear flow along a diagonal strut that
runs from one wall pier to the other pier. The strut-and-tie
design philosophy permits the designer to use any admissible
shape for the truss model; the designer selected what was
considered to be a conservative design that also provided
substantial vertical reinforcement to resist bursting forces in
the middle region of the link beam. In response to the
specific question of the horizontal position of the CCC node,
it was selected to provide sufficient width to support the
vertical force Vu given in Fig. 5.

In the nonlinear finite element model presented in Fig. 8,
only a segment of the surrounding pier walls was modeled.
In the Burj Dubai, the wall piers were sufficiently large so
that the bending of these walls was insignificant and thereby
not a factor that was considered to affect the behavior of the
link beams. The test result presented in Fig. 7 was from a
beam subjected to cyclic loading and not the type of monotonic
situation in the Burj Dubai. Thus, the use of this test data to
validate the computational model was a conservative approach. 

The matter of what criteria to use for determining the
capacity predicted by a nonlinear finite element analysis is a
critically important issue for the use of computational tools
for design validation. Unfortunately, there is not a clear set
of criteria that can be applied to these analytical predictions
for assessing capacity due to the dependency of these
predictions on differences in the capabilities and limitations
of existing material and behavioral models, and how they
have been employed in computational tools and in the
development of finite element models in any specific inves-
tigation. Consequently, assessing a reliable capacity from a

computational tool requires the conduct of sensitivity analyses
to investigate the influence of modeling decisions on the
predicted capacity and behavior so that conservative yet
realistic assumptions can be employed in the final, selected
model to be used in the study. It also involves using failure
criteria that are specific to the models being used. For
example, in the predictions by VecTor2 that account for the
influence of compression softening, for each element the
ratio of principal compressive stress to a compressive
strength (dependent on the principal transverse tensile
straining) was examined so that the determined reliable
capacity was well below the point in which crushing would
be expected.

As pointed out by Windisch, the extensiveness of corner
cracking is a significant factor to consider in the selection of
the shape of the strut-and-tie model to use in design. The
model presented in this paper was chosen to take this pattern
of cracking into consideration. It is certainly possible to
imagine a different model in which the designer relied on the
transfer of shear over the full depth of the interface between
the link beam and wall pier. Given the range of application
of the strut-and-tie design methodology, designers should
be encouraged to consider the location and extent of
cracking as is being suggested by Windisch. Nonlinear
finite element analysis tools can be effective means of
predicting this cracking.

Windisch also comments on the role of horizontal
reinforcement. The authors agree that the effect of this
horizontal reinforcement is not captured by the selected
strut-and-tie model, but its role is illustrated in the predictions of
nonlinear finite element tools. The role of horizontal
reinforcement has been captured in studies and strut-and-tie
models for the flow of forces in deep beams. 

The authors have not commented on the work by Brown
and Bayrak as providing a public critique of their work in
response to this discussion; it was considered outside the
limits of this response. It is useful to note that while the
general applicability of the strut-and-tie method is a great
strength, any assessment of the conservatism of this
approach greatly depends on the specific geometry and
loading of the structure and the selected shape of the strut-
and-tie model.


