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Splitting Bond Failure of Columns under Seismic Action

by Toshikatsu Ichinose

The mechanism of splitting bond failure in reinforced concrete columns
subjected to reversed cyclic antisymmetric bending is analytically investi-
gated. Reversed loading is found to accelerate bond failure in columns
after flexural yielding because residual inelastic strains of longitudinal
bars induced during opposite loading are forced in concrete. To prevent
such failure, bond strength must be large enough to compress the residual
strains. The necessary development Iength of bars running through a mem-
ber with plastic hinges at its ends is presented.

Keywords: beams (supports); bonding; columns (supports); cyclic loads;
ductility; energy.

The Japanese design guidelines for reinforced concrete
buildings (Architectural Institute of Japan 1990) have a
unique provision that neither ACI nor the CEB Code
includes. Thisprovision isintended to prevent splitting bond
failure of continuous bars running through a member.

This failure has attracted the attention of Japanese
researchers since the late 1970s, when they completed an
experimental project on short columns of 260 specimens
subjected to reversed cyclic antisymmetric bending. An
example of the specimens is shown in Fig. 1 (Higashi and
Ohkubo 1975), where the upper stub was pushed and pulled,
keeping the upper stub parallel to the lower one. The project
was motivated by the 1968 Tokachi-Oki earthquake and was
intended to investigate shear failure before or after flexural
yielding, but, in fact, about one-third of the specimensfailed
in splitting bond along longitudinal bars, even though the
bars were well-anchored in stubs. Bond failure of the spec-
imen in Fig. 1 is shown in Fig. 2. This failure mechanism
reduces ductility and energy-dissipating capacity. The
reduction is comparable to that of shear failure. During the
1983 Nihonkai-Chubu earthquake, many columns of
Namioka Hospital failed in bond splitting, similar to Fig. 2
(Architectural Institute of Japan 1984).

The objectives of this paper are;

1. To investigate the mechanism of splitting bond failure
in RC columns subjected to cyclic bending shear.

2. To propose a design criterion to prevent such failure.

The details of the analytical method used in this paper are
shown in Appendix 1." The method is essentially an extension

*The appendixes are available in xerographic or similar form from ACI headquarters,
where they will be kept permanently on file, at acharge equa to the cost of reproduction
plus handling at the time of request.
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Fig. 1—Specimen LE-8B: (a) loading; and (b) section (1 mm
= 0.039in.).

of “plane sections’ analysis, using uniaxial constitutive
models of concrete, steel, and bond-dip. Equilibrium of
moments and axial force are considered only at the two ends
of a member. Equilibrium between longitudina stresses of
main bars and bond stresses is considered along the bars.

RESEARCH SIGNIFICANCE
In 1971, ACI introduced the development length concept

for anchorage, abandoning the requirement for flexural
bond; the change simplified and rationalized anchorage
design. This provision is now applied to terminating bars
only. However, anchorage of continuous bars between critical
sections of a member is also important for ductility and
energy-dissipating capacity under reversed cyclic antisym-
metric bending induced by seismic actions.

Splitting bond failure seldom occurs in cantilever-type
specimens or specimens under monotonic antisymmetric
bending, and, if any does occur, it seldom impairs ductility, as
long as the two ends of the longitudinal bars are well-
anchored. Thus, the splitting bond failure tends to be ignored.

The importance of bond failure is increasing because the
strength of reinforcing bars and concrete isincreasing, but it
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Fig. 4—Bond dip model: (a) loading, unloading, and
reloading; (b) stableloop (1 MPa= 1.45ks, 1 mm= 0.039in.).

is not proportional to bond strength. Structural designersin
seismic areas should pay attention to this failure, which may
occur in severe earthquakes. This paper explains its mecha-
nism and presents away to prevent it.

MECHANISM OF BOND FAILURE
UNDER CYCLIC LOADING
Higashi and Ohkubo (1975) prepared two identical speci-

mens, whose dimensions are shown in Fig. 1. One of the
specimens was loaded monatonically, i.e., the upper stub
was only pushed. The other was loaded cyclicaly, i.e, the
upper stub was pushed and pulled at various amplitudes of 3.
Both of these specimenswill be analyzed. Thefailure pattern
shown in Fig. 2 wasthe cyclically-loaded specimen. Tensile
reinforcement ratio of the specimens is 0.95 percent.
Reinforcing steel is modeled as shown in Fig. 3(a),
according to Fujii et al. (1973). Yield strength 6, is 455 MPa
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(66 ksi). Strain at the onset of strain hardening g, i50.0174.
Concrete is modeled as shown in Fig. 3(b), according to
Okada et . (1977). Compressive strength F.. is 24 MPa (3.5
ksi). Strain at that strength eg is 0.0019. Bond is modeled as
shown in Fig. 4, according to Morita et a. (1975). Numbers
1 through 7 show the process of unloading and reloading.
The unloading stiffness (1 to 2) is equa to the initial stiff-
ness. Reloading point 6 is located at the middle of points 2
and5,i.e.sy=(sg +s\)/2 if Is\[>sy. If Isy[<s8,su=0.
When dlip is repeated cyclically between s, and sy, the
model makes a stable loop, as shown in Fig. 4(b). The enve-
lope curve of the model is calculated according to the empir-
ical equations of Fujii et al. (1982), considering spacing of
main bars and amount of shear reinforcement. Bond strength
near critical sections is reduced, considering flexural shear
cracks; the detail of the reduction is shown in Appendix 2.
Pullout and push-in of longitudinal reinforcement from stubs
areignored.

Analytical shear-force deflection relationships of the spec-
imens are plotted in Fig. 5(a), where the solid and broken
lines show the results of cyclic and monotonic loading,
respectively. Note that the envelope curve of cyclic loading
is lower than that of monotonic loading. The circles and
crosses show the loading steps when the slip at the center of
the span reached s, and s; and the dlips at the second
(maximum) and third (final) breaking points of the bond slip
envelope, respectively. In the cyclic anaysis, the circle
appears during the cycle of 6 = 20 mm (0.8 in.), whereasin
themonotonic analysis, it appearsat 6 =36 mm (1.4 in.). The
experimental results are partly plotted in Fig. 5(b) by dotted
lines that agree with the analyses, including the shape of the
hysteresis curve of the second cycle.

Fig. 5(c) shows the relationship between the deflection of
the member and the stress of the longitudinal bar at the crit-
ical section first subjected to tension. Fig. 5(d) shows the
relation subjected to compression first, where the compres-
sive stressis taken to be positive. The upper half of Fig. 5(c)
is similar to that of Fig. 5(a); the lower half of Fig. 5(d) is
similar to that of Fig. 5(a). In other words, the shear-force is
proportional to the tensile stress of the longitudinal bars at
critical sections. However, the compressive stress of the bars
is quite different from the shear-force deflection relation-
ship. The compressive stress under cyclic loading is larger
than that under monotonic loading, dueto theresidual tensile
strain of the longitudinal reinforcement induced during the
previous loading [see the stress-strain model for steel,
Fig. 3(a)], where the steel carries compressiveyield strength
while the strain is still in tension. Such a tendency was first
noted in the plane section analyses by Aoyama (1964). This
large compressive stress in reversed loading requires larger
bond stress between critical sectionsthan in monotonic loading.

In Fig. 5(c) and 5(d), the compressive stress decreases
from around 6 = 10 mm (0.4 in.) because the bond strength
is limited: as the tensile stress increases on one side, the
compressive stress must decrease on the other side.

1The appendixes are available in xerographic or similar form from ACI headquar-
ters, where they will be kept permanently onfile, at acharge equal to the cost of repro-
duction plus handling at the time of request.
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Fig. 5—Analytical results of LE-8B: (a) shear-force deflection relationship; (b) comparison
with experiment; (c) steel stress at critical section (positive in tension); (d) steel stress
at critical section (positive in compression); (€) distribution of strain at 6 = 30 mm,
second cycle; and (f) distribution of slipat 6= 30 mm (L kN = 0.22 kip, 1 MPa = 1.45ksi,

1 mm= 0.039in.).

The distribution of the strainsis shown in Fig. 5(€), where
the solid and chained lines indicate the strains of steel and
concrete along the main bars. The distribution of slipsat 6 =
+30mm (1.2 in.) isshown in Fig. 5(f), where the broken and
solid lines represent slips during monotonic and cyclic load-
ings, respectively. The dlip during the cyclic loading is much
larger than in the monotonic loading, due to residua strains
marked by the dotted circlesin Fig. 5(€), where stresses are
in compression but strains are in tension. These strains are
pushed into the intermediate portion of the member,
resulting in alarge dip. Thisis why a member subjected to
cyclic loading and failing in bond splitting has less ductility
than one subjected to monotonic loading.

DEFINITION OF NORMALIZED BOND STRENGTH
In this paper, the effective bond strength 1 is defined as

-ttt
e T (1)
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where t; and 1, are bond stresses at the first and second
breaking points of the t-s bond slip model. Fig. 6 shows a
possible criterion for preventing bond failure in members
subjected to reversed inel astic antisymmetric bending: effec-
tive bond strength t, must be large enough to sustain tensile
and compressive yield strengths +o,, at the end of effective
anchorage length Z, defined later. In other words,

Y1l 2 2A0y, 2

where y, A, and o are the perimeter, cross-sectional area,
and yield strength of the longitudinal bar, respectively. The
effective anchorage length Z is defined as

Z=t—-max(ay, d) —ay 3

where ¢ is the total length of the member; ap and a are the
plastic zone lengths induced during positive and negative
loadings, calculated later; and d is the effective depth of the
section. ay is subtracted from ¢ because the stress must be
larger than oy in the plastic zones to compress the residual
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Fig. 6—Assumed criteria to prevent bond failure.
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Fig. 7—Strain in plastic zone.

strains produced during negative loading. max(ap, d) is
subtracted from ¢ because bond strength islimited in tension
sides of the member ends due to flexural shear cracks (see
Fig. 6A in Appendix).

Noting Aly = dy/4 (dy: bar diameter), Eq. (2) isrewritten as

>1.0 4)

o will be called normalized bond strength. In terms of devel-
opment length ¢,4, Eq. (4) can be rewritten as

Q
o
[op
N IN

©)

In calculating plastic zone lengths a and ay, we will
consider the case that deflection anglesin positive and nega-
tive loadings are the same. Then, we may assume

a=a,=ay ©)

In addition, the following will be assumed:

1. Pullout of longitudina bars from neighboring beam-
columnjaintsis zero.

2. As shown in Fig. 7, strain in the plastic zone is
uniformly eq,, the strain at the onset of strain hardening.

3. Thedepth of neutral axisx,in Fig. 7 remainsequd to that
at flexural yielding and is given by plane section analyses.

4. Yield curvature k is given by plane section analyses.
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Fig. 8—Bond dip (z-s) model for &= 1.0 (1 MPa= 1.45ks,
1mm=0.039in.)

5. Yield deflection angle R, is given as follows, assuming
linear distribution of curvature

K|

R = L ™

6. Elongation in the plastic zone, a.eqy, is equal to that
induced by plastic rotation, (R—R)(d — ;). Thus, we have

4= (R-R)(d-x,) ®

€sH

EFFECTS OF BOND STRENGTH AND DUCTILITY
According to Fujii and Morita (1982), lateral reinforce-

ment increases the capacity to maintain bond stress after slip.
Thiseffect isknown asbond ductility. This section examines
whether o. > 1 can be a unique criterion for preventing bond
failure or if bond ductility has any effect on the behavior of
columns. We will use Specimen LE-8B in Fig. 1 again, and
assume cyclic loading at deflection angle of R = 1/50 radian.
Then, the criterion of o > 1 requires bond strength of t,> 4.9
MPa (0.7 ksi). The solid line in Fig. 8 shows a t-s model
satisfying o = 1, where s; = d/100 (d,: diameter of longitu-
dinal bar), s, = dy/20, and s; = d,/5. The broken and chained
linesin Fig. 8 arevariations of the solid line: s, s,, and s; are
halved and doubled, respectively. According to Fujii and
Morita (1982), the assumed s, of the broken and chained
lines correspondsto p,, = 0.03 and 1.54 percent, representing
the smallest and largest possible bond ductilities, respec-
tively. The other parameter is the bond strength. In addition
tooa =1inFig. 8, we will analyze the cases of o. = 0.8, 0.6,
0.4, 0.2 and O, reducing T3 proportionally.

Examples of force-deflection relationships are shown in
Fig. 9. In the case of no bond (a = 0), the strength is only
about 40 percent of the yield strength, and the energy dissi-
pation in the second and third cyclesis zero. In the case of a.
= 0.6 and s, = d,/40, the cyclic loops shrink, and strength

ACI Structural Journal/September-October 1995
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Fig. 9—Examples of force-deflection relationship: (a) a = 0;
(b) oo = 0.6 and s, = dy/40; (c) oo = 0.6 and s, = d,,/10 (L kN
= 0.22kip, 1 mm= 0.039in.).

degradation in the second and third cycles is large. In the
case of o = 0.6 and s, = d,/10, the cyclic loops shrink, but
strength degradation is small.

The plastic zone length due to positiveloading isshownin
Fig. 10. Where oo = 0 and 0.2, yielding does not occur. Eq.
(6) gives a = 144 mm (5.7 in.), which approximates the
results of o = 1. Compared with the total length of the
member [1000 mm (39 in.)], thisis not negligible.

The dissipated energy during the first and third cyclesis
shownin Fig. 11. The effect of bond ductility is smaller than
bond strength. Dissipated energy during the first cycle
increases in the range of o = 0 and 0.6, whereas during the
third cycle, it increasesto . = 0.6 and 1.

Load resistances at the first positive and third negative
peak deflections are shown in Fig. 12. On the negative side
of a = 0.6 and 0.8, the effect of bond ductility islarge. At a
=1, load resistance exceeds yield strength Q,, irrespective of
bond ductility.

Slip at the center of span is shown in Fig. 13. Slip in the
negativeloading of o = 0.6 and s, = d/40islarger than those
in the other cases because yielding occursin positive loading
only, resulting in large push-in. At o = 1, slipislessthan 0.4
mm (0.02 in.), irrespective of bond ductility. Slip causes
pinching of the hysteresis loop. Since (d — X, is about 170
mm (6.7 in.), slip of approximately 0.4 mm causes pinching
of 0.4/170 = 1/400 radian, which is sufficiently small.

Analyses of columns with different axia force and rein-
forcement showed similar results, including the case of zero
axial force (i.e.,, analyses of beams). We may, therefore,
conclude that a. > 1 is the necessary and sufficient criterion
for preventing bond failure after reversed cyclic loading. It
guarantees small dip, resulting in large energy dissipation
and load resistance.

As shown in Eq. (5), the criterion o > 1 means that the
development length of the main bars ¢4 must be smaller than

ACI Structural Journal/September-October 1995
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Z/2. If amember with adepth of neutral axisof x,=0.2dis
expected to evade bond failure under inelastic deflection
angle (R—R)) = 1/100 radian, and the strain at the onset of
strain hardening of the main bar is 0.02, then the plastic zone
length a will be about 0.4d [see Eq. (8)]. Thus, Z/2 will be
about (¢/2 —0.7d). The coefficient 0.7 should be larger if the
member is required to have alarge ductility or the bar has a
small yield plateau, since Eq. (8) has R in the numerator and
€g, 1N the denominator.

539



05
/,\
/ \
’E\ 20 =1 — ‘\
%1551—%”0 ANAW
A
C \ \
s A
A P \\ \
b= <1 9
. A\
144, /a0 N

0 02 04 06 08 1.0
Normalized Bond Strength Ot

Fig. 13—Sip at center of span, negative peak of third cycle
(I mm=0.039in.).

500
70 180 180 70

(o]
o~
#4 (D13)
gl g @74
| A
o
- \
(b) 3-#10 (3-D32)
500

1
70 90 90 90 90 70

S
& #4 (D13)
3| g L @100
3| =
K
s X
() 7-#7 (7-D22)

Fig. 14—Design example: (a) column in a frame; (b) original
section; (c) revised section (1 mm= 0.039in.).

DESIGN EXAMPLE
The specimen in Fig. 1 is used as a design example.

Considering that the specimen was about one-half the model
of areal column, we simply doublethe dimensions, as shown
in Fig. 14(a) and (b). Thisis a column in an exterior frame
shortened by spandrel beams. According to the previous
discussion, the development length must be shorter than (¢/2
—0.7d) = 2000/2 — 0.7 x 430 = 785 mm (31 in.). According
to ACI metric provisions

¢y = 0.02Ac,/ [F. =002-794-455/ J24  (9)
=1475mm (58in.)

540

This is too long. Let us modify the section, as shown in
Fig. 14(b), which has flexural and shear strengths similar to
thosein Fig. 14(a). This section gives

¢g = 0.02Ac,/ JF.=0.02-387- 455/ ,/24 (10)

=719 mm (28in.)

whichislarger than 785 mm (31 in.) and is acceptable. Japa-
nese design guidelines (1990) give asimilar result.

CONCLUSIONS

1. Reversed cyclic loading accelerates bond failure in
columns because residual inelastic strains induced during
opposite loading are forced into concrete. Thisis the reason
a member subjected to cyclic loading and failing in bond
splitting has less ductility than one subjected to monotonic
loading. To prevent such failure, bond strength must be large
enough to compress residual strains.

2. Main bars running through a ductile column or beam
with hinge regions at its two ends should satisfy a provision
that its devel opment length must be smaller than about (¢/2 —
0.7d), where ¢ and d are the total length and the effective
depth of the member, respectively. Coefficient 0.7 should be
larger if the member is required to have alarge ductility or
the bars have small yield plateau.
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NOTATION
A = cross-sectional areaof longitudinal bar
ap = plasticzonelengthsinduced during positive and negative loadings
ay = plasticzonelengthsinduced during positive and negative loadings
d = effective depth of section
d, = diameter of longitudinal bar
Fc = compressive strength
tqg = development length
[4 = total length of member
Ry = deflectionangle of member at yielding of longitudinal bars
sy = dipatfirst breaking point of bond slip model
sp = dlipatsecond bresking point of bond slip model
s3 = dipatthird breaking point of bond slip model
Sy = maximum positive and negative slip
sy’ = dlipatreloading point from sp and sy
sp = maximum positive and negative slip
s’ = dipatreloading point from sp and sy
Xn =  depthof neutral axis
z = effective anchorage length defined by Eqg. (3)
o = normalized bond strength defined by Eq. (4)
S = deflection of member
eg = strainof concrete at compressive strength
ey =  Strainat onset of strain hardening
ky = curvature of section at yielding of longitudinal bars
oy = yield strength of reinforcing bar
y = perimeter of longitudinal bar
1 = effective bond strength (average of T, and t5)
1ty = bond stressat first breaking point of bond slip model
Tp = bond stress at second breaking point of bond slip model
Tp = bondstressat sp
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Appendix 1 : ANALYTICAL METHOD
Definitions
Inner forces and deformations of a member are defined in Fig. Al. The inner force
vector f is composed of the bending moments and the axial forces at the member ends as
follows.
f={Mg Ng Mp Np |t (AD)
The defonnafion vector d is defined by the following equations integrating the curvature x and

the axial strain €y of the member, whose rigorous definition will appear later.

d=1{64, ea, 6p, ep | (A2)
¢ X
8, --j’o(l—?x-dx (A3)
ex=-0 —%)e,, dx (Ad)
0, = jo'% x-dx (A5)
‘x
e =[5 €0ndx (A6)

where 6,4 and Op are the rotation angles of the member shown in Fig. Al; e4 and ep are the

horizontal displacements of the member ends measured from the point where the horizontal

displacement is average (see the vertical roller shown in Fig. Al).

Assumptions
The following eight assumptions are made for the analysis:
(1) Equilibrium between longitudinal stresses of main bars and bond stresses is considered

along main bars as shown in Fig. A2, where A, Gs, Y, T are sectional area, longitudinal stress,

perimeter, bond stress of main bar, respectively.

Ad%: -y o

dx (A7)

(2) Compatibility among slip, steel strain and concrete strain is considered along main bars as
in the following equation, where s, €g, £c are slip, steel strain and concrete strain, respectively.

b (A8)
(3) Equilibrium of moments and axial forces induced by stresses of steel and concrete is

considered only at the ends of the member. For numerical integration, a member end section is



subdivided as shown in Fig. A3 (c). Stress and strain in each subdivided region are assumed

uniform.

(4) Discontinuous cracks due to pull-out of rebars occur only at both ends of the member as

shown in Fig. A3 (b). The crack may occur over the total section as shown in Fig. A4.

- (5) The concrete strain at the tip of the crack (CA and CpB in Fig. A3 (b)) is cET. the strain

when the concrete loses tensile stress (see Fig. 3).

(6) Concrete strain varies linearly along the member axis as shown in Fig. A3 (a).

(7) After cracking, the steel strain is related to the concrete strain at the end of the elastic

region considering the effect of tension stiffening: the relationship is given by that of the

equivalent model bar in concrete of length d shown in Fig. AS, where , is the strain of steel

at the ends and €, is the average strain of concrete including crack openings defined below:
- j:ecdx +2n5

c= —d—

where ¢ is concrete strain, n is the number of cracks which increases as €, increases, and §

(A9)

is slip at the ends of the concrete. The relationship between £, and E, is analytically given
assuming linear elasticity of steel, concrete and bond (65 = Es€g, 6¢ = Ecec and T =Ks);
considering the tensile strength of the concrete; noting the equilibrium

AEe +AEE =AEE, (A10)
where Ag, Eg, and €5 (or A, Ec, and €¢) are sectional area, Young's modulus, and strain of
the steel (or the concrete); and solving Eqs. A7 and A8, which yields a second-order linear
differential equation. If bond is stiff (large K), tensile cracks occur profusely and the average
concrete strain including the cracks approximates steel strain. If bond is loose (small K),

tensile cracks do not occur and the average concrete strain remains small.
(8) The curvature x and the axial strain €¢ of the member axis is represented by the concrete
strains at the top and bottom bars € and €}, as shown by the following equation, where €,

and €p, include crack widths c| through c4 at member ends shown in Fig. Al (a).

x=<&cE (All)
2g
where 2g is the distance between top and bottom reinforcement.
N E = te'l+c£b (A 1 2)
]
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Concrete strains and crack widths
‘We denote the concrete strains at the top and bottom bars at the end of a member by the
following vector.
€= {-c€],~c€2, €3 , ct4 }! (A13)
Similarly, we denote the crack widths and the steel forces at the same points by the following
vectofs.
c={-cy, —c2,¢c3 cq Mt (A14)
6 = {-A10], —At02 , Abo3 , Aboy }! (A15)
where At and Ap are the sectional area of top and bottom reinforcement.
Numerically solving Eqs. A7 and A8 under the boundary conditions at the critical

sections, the following equation is obtained for the top rebar.

i (A16)
A €3 = [Rl ]A(-Alal)
_Cl R2 Al,O'3
G

A similar equation is obtained for the bottom rebar. Rearranging these equations, the following

matrice§ N and N2 are obtained between €, ¢ and ©.
a(E)=|" lao (A17)
c) N,

Deformation vector, inner force vector and stiffness matrix

Substituting x of Eqs. A11 into Eq. A3 and utilizing the Assumption 6, 64 is obtained

as follows.
_[—£c|+£r2 +££c3_£r4 +-C,+C-_, (A|8)

0, =—
A3 2g 6 2g 2g

The other components of the deformation vector d can be similarly expressed using € and c.

Thusgthe following matrices, H; and H>, are obtained.
5 e
: d=[H, H,]-(c) (A19)

N
i
¥
]
-

Substituting Eq. A17 into Eq. A19, we have |
Ad = C Ao (A20)
where C=H;N; + H2N> (A21)



The inner force vector f is decomposed into the contributions by steel and concrete, f5

and f¢ as follows.

f=fs+fc (A22)
) Since fs is a linear combination of o, a matrix G is obtained connecting fs and & as follows.
fs=Go (A23)

On the other hand, f¢ is given by integrating the stress distribution of Fig. A3 (e) linked with
the strain distribution of Fig. A3 (d). Thus we have matrices Q; and Q> connecting &, ¢ and f

as follows. The components of Q; and @, are given integrating instantaneous stiffness of

%z

¢
concrete over the member end sections.

£
o =[0, Qz]’A(cJ (A24)
Substituting Eq. A17 into Eq. A24, we have
5 Af; = E Ao (A25)
%
where E=Q;R; + Q2 R> (A26)

Substituting Eqs. A23 and A25 into Eq. A22 and using Eq. A20, the stiffness matrix is given
as follows.

Af= (E+G)C-lad (A27)

The analysis in the paper was done providing incremental deformation angles ABp =

ABp and unbalanced axial forces at member ends AN = ANp, which is produced during the

previous loading step due to non-linearity of constitutive models.
We can extend the method applicable to subassemblages with beam-column joints or to
frames noting the continuity of stresses and displacements of longitudinal bars at member ends

(Ichinose 1986).

Appendix 2: BOND STRESS NEAR CRITICAL SECTIONS
Bond strength is normally governed by the splitting of the cover as tested by Fujii and
Morita (1982). Near critical sections, however, we should consider limitation of bond stress
due to inclined cracks as shown in Fig. A6 (b). The free body of PQR of this figure is

simplified and shown in Fig. A6 (c). The distance between P and Q is assumed as j = (7/8)d



where d is the effective depth. The equilibrium of moments around the point P gives the
following equation.

%d- (Tg-TR) = J; xp,ob dx (A28)

where TQ and TR are tensile forces carried by the longitudinal reinforcement at points Q and
R; x is the distance between Q and R; pw is the shear reinforcement ratio; ¢ is the tensile stress

of the shear reinforcement; and b is the width of the section. Since we consider Eq. A7

(equilibrium between longitudinal stresses of main bars and bond stresses) and o <Oy (=yield

strength), we have

1. f yrdx< | xpyo.bdx (A29)
3% ), , XPwOy
Differentiating the two sides of this equation, we have:
X pwOyb
T< =
IRy ™ (A30)

Thus, this is considered the upper limit of the bond strength governed by inclined cracks. This
is illustrated in Fig. A6 (a) as Tmax. In the region where tmpax is smaller than the splitting
bond strength, the bond-slip relationship is reduced as shown by the solid line in Fig. A6 (d),

where the broken line indicates a model without the reduction.
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