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A design equation for punching shear strength vc is developed 
based on a refined statistical analysis of the ACI 445 database 
with 440 tests supplemented by finite element (FE) analysis using 
microplane model M7. Database filtering leads to data subsets in 
which the averages of secondary variables, such as steel ratio and 
shape parameters, in subsequent intervals of size d (or slab depth) 
are almost constant. The resulting trend of the interval means of 
vc reveals that the slope of log vc versus log d through the prac-
tical size range is milder, but not much milder, than –1/2, and 
that the trend fits the energetic size effect factor endorsed by ACI 
Committee 446. The design equation with size effect is verified and 
calibrated by least-square multivariate regression of the database, 
with weights compensating for the crowding or scarcity of data in 
parts of the range. The size effect factor is also verified by FE fitting 
of available broader-range data series.

Keywords: design codes; failure; finite element analysis; optimum data 
fitting; punching shear; quasibrittle fracture; reinforced concrete; size 
effect; statistical analysis.

INTRODUCTION
Although concrete is not plastic, the shear strength of 

beams and slabs has traditionally been analyzed according 
to plastic limit analysis. In this analysis, the nominal strength 
vc of geometrically similar structures, defined as the load 
capacity (or maximum load) divided by the area of a charac-
teristic (homologous) cross section, is independent of struc-
ture size D. This is the case of no size effect. However, if the 
structural failure is due to fracture or localization of cracking 
damage, which is typical of concrete, vc decreases with D, 
which is called the size effect. There are two type of size 
effects: 1) statistical, due to material strength randomness, 
which occurs when a macrocrack initiates dynamically from 
one of many possible places of random strength, as described 
by the weakest link model and Weibull theory; and 2) ener-
getic (that is, deterministic), which occurs when a large crack 
grows in a stable manner prior to reaching the maximum load 
(in which case the material randomness affects only the coef-
ficient of variation of vc, and the size effect is due to energy 
release rate increasing with structure size). The shear failures 
of reinforced concrete are generally of Type 2, which is the 
type occurring in structures with a deep notch or a deep stress-
free crack formed stably before reaching the maximum load 
(while Type I size effect is that which occurs in structures that 
fail right at crack initiation from a smooth surface).1

The plastic limit analysis, which underlies the concrete 
design codes, gives realistic results for relatively small 
structures used in most laboratory testing. The reason is 
that the size l0 of the fracture process zone is in concrete 
very large—approximately 0.5 m (1.64 ft) (compared to a 
few micrometers [1 µm (3.9 × 10–5 in.)] for metals or fine 

grained ceramics). This implies that, at maximum load, 
the distributed cracking cannot localize into one dominant 
crack prior to maximum load and, thus, the size effect must 
be negligible for small structures. The size effect becomes 
strong only when the structure is sufficiently larger than l0. 
Consequently, extending the current code provisions to large 
sizes is relatively easy—it suffices to multiply the vc value 
according to the current code, based on limit analysis, with 
the proper size effect factor, which is approximately 1 for 
small structure sizes. Herein, it is proposed how to do it for 
punching shear.

The literature on punching shear has become extensive 
and includes many significant contributions.1-20 Their discus-
sions would be superfluous because an excellent review 
is found in the report by ACI Subcommittee 445-C.21 The 
ACI 445-C database for punch failures is used herein; refer 
to Fig. 1, which shows the nominal punching shear strength

	 v
V
b dc
c

o

= 	 (1)

normalized by mean concrete strength fc as a function of slab 
depth d, in comparison with the curves of log vc/fc

1/2 (for 
Eurocode log vc/fc

1/3) versus log d according to design codes; 
d is the distance from the compression face to the centroid of 
flexural reinforcement and is slightly smaller than slab thick-
ness h (for two-way slabs, this centroid is considered to be 
the average depth of the centers of flexural reinforcements 
for both sides, d = (dx + dy)/2); Vc is load capacity due to 
concrete; and bo is control perimeter, calculated at distance 
d/2 from the column face. Note that the strength in Eq. (1) is 
not the design strength, because the material safety factors 
are not included.

The database for the punch failures, repeated in all four 
diagrams in Fig. 1, contains the results of 440 tests reported 
in 60 experimental studies conducted in laboratories world-
wide. The slabs had square, rectangular, circular, or octag-
onal simply supported boundaries. The depths d in the data-
base range from 30 to 668 mm (1.18 to 26.29 in.); the mean 
concrete strength fc from 8 to 118 MPa (1160 to 17,114 psi), 
and the longitudinal reinforcement ratio ρ from 0.1% to 
7.3%. The data points in Fig. 1 show very high scatter, but 
the scatter is due not only to inevitable randomness but also, 
and largely, to inevitable sampling bias.
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The objectives of this study are: 1) filter the inevitable 
sampling bias from the existing experimental database21 to 
reveal the basic size effect trend; 2) propose an improved 
equation for vc that includes the size effect, avoiding insuffi-
cient (or uneconomic) safety (or capacity reduction) factors; 
and 3) calibrate and validate the size effect by weighted 
multivariate regression.

It is important to realize that, aside from the load factors 
and understrength factor specified by the design code, addi-
tional safety margins are implied in the code by setting the 
design formula not at the mean of the test data but at its lower 
margin, and by designing for a reduced material strength that 
is typically approximately 30% lower than the mean strength 
of concrete.22 Consequently, the overall safety factor, defined 
as the mean of test data divided by the design load, is for 
shear failures of smaller concrete structures about 3.5 to 8. 
This excessive safety factor is what has made it possible to 
ignore the size effect in design codes.22 Not with total success, 
though—aside from lapses in quality control and detailing, 
the size effect was doubtless a major contributing factor in 
most shear failures of large concrete structures.

RESEARCH SIGNIFICANCE
The significance of introducing the size effect is that the 

failure risk for large structures would get diminished. Addi-
tionally, the load capacity predicted by the code equation for 
smaller structures could be set higher, which would improve 
design economy and allow slenderer, aesthetically pleasing, 
and more efficient designs.

PUNCHING SHEAR IN CURRENT DESIGN CODES
For the punching load capacity Vc due to concrete, the 

current standard ACI 318 specifies the formulas23

	 V b d fc o c= λ  for no shear reinforcement 	 (2)

	 V b d f A f d
su o c sw yw
w

= +λ  with shear reinforcement	 (3)

where fc is in psi; d is in inches; Asw is cross-sectional area of 
one shear reinforcement layer around the column; fyw is yield 
strength of shear reinforcement; λ = 4 for U.S. customary 
units (or 1/3 for SI units) for no shear reinforcement, 3 (or 
1/4, respectively) if reinforced by studs, and 2 (or 1/6) if 
by stirrups; and sw is distance between shear reinforcement 
layers, measured in radial direction.

Eurocode 2 (2004)24 specifies

	 Vc = λξ(100ρfc)1/3boEd for no shear reinforcement	 (4)

	 V f b d A d
su c oE sw sw
w

= ( ) +0 75 100 1 51 3. ./λξ ρ σ   

	 with shear reinforcement	 (5) 
 

ξ = + ≤1 2 0200 mm
d

. ; σsw = 1.15(250 + 0.25d) ≤ fyw	 (6)

Fig. 1—Normalized strength comparisons among provisions 
of: (a) ACI (×12 for psi); (b) Eurocode (×5.25 for psi);  
(c) Model Code; and (d) proposed. (Note: 1 mm = 0.0394 in.)
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where ρ is flexural reinforcement ratio, calculated for 
two-way slabs as the geometric average of reinforcement 
ratios for each direction—that is, ρ ρ ρ= x y  and λ = 5 (or 
0.18 for SI units), considered to have the dimension of 
(MPa)2/3 if fc is in MPa.

The Model Code 2010 of fib25 specifies the formula

	 V k f b dc c o= ψ  for no shear reinforcement	 (7)

	 V k f b d Au c o sm sw= + ∑ψ σ�  with shear reinforcement	(8)
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where kψ has the dimension of MPa1/2 if fc is in MPa; dg is 
maximum aggregate size, in mm; kdg (≥ 0.75) = 32/(dg + 
16 mm); and ψ is the slab rotation defined in CSCT26 for 
different cases. For the first level of approximation (LoA), 
ψ = 1.5(rs/d)(fyd/Es)(ms/mR)1.5, wherein rs is the distance to 
zero radial moment, recommended as 22% of slab span; ms 
is the design moment in support strip, which can be taken 
as (Vd/8); Vd is design shear force; and mR is the nominal 
moment capacity per unit width in support strip. There are 
four levels of approximations for the slab rotation ψ; the 
simplest one (LoA I), used herein, is ms = mR. The accuracy 
of the MC 2010 provision depends, of course, on the accu-
racy of the rotation calculations.

These three code formulas are compared in Fig. 1(a) to 1(c) 
(for the no shear reinforcement case) with the raw (unfiltered) 
ACI 445-C database, where the measured vc, divided by fc

1/2 
for ACI and Model Code, and by fc

1/3 for Eurocode, are plotted 
versus d in logarithmic scales. For ACI 318, the formulas give 
a horizontal line; that is, there is no size effect. For Eurocode 
2004, the size effect term ξ in Eq. (6) approaches a horizontal 
asymptotic slope for d → ∞. For Model Code 2010, there is 
size effect given by factor kψ in Eq. (7), which has, for d → 
∞, an asymptote proportional to d–1—that is, an asymptote of 
slope –1 in a log-log plot. Figure 1(d) shows the size effect 
proposed herein, discussed later.

In plotting these size effect curves, all the parameters 
other than d had to be fixed. They were fixed at values equal 
to the average values in the database. Because of the huge 
scatter, it is impossible to decide, from comparison to the 
data cloud alone, which size effect equation is better. The 
huge scatter is caused not only by the random differences 
among different concretes, labs, countries, and objectives of 
the experimenters, but also, and largely, by the fact that the 
means of secondary variables (such as ρ, b/d...) in subse-
quent size intervals are not uniform, varying greatly with d. 
Hence, the plots in Fig. 1 are not size effect plots. So, how 
does one obtain meaningful size effect plots?

DATABASE AND ITS FILTERING TO REMOVE BIAS 
IN SECONDARY VARIABLES

Figure 2, Column 1 (c.1), Row I (r.I), shows the entire data-
base of 440 measured values of the nominal punching shear 
strength vc of reinforced concrete slabs with no shear reinforce-
ment; vc is plotted as a function of the effective slab depth d.

To obtain a large database, concrete researchers must 
collect, from many sources, data that have not been obtained 
according to a systematic sampling scheme. This inevitably 
makes the database statistically biased. One source of bias 
is that the test data for small sizes are much more numerous 
than for large sizes. This makes the database heterosce-
dastic. It can be mitigated by introducing weights inversely 
proportional to data density. Using log d (rather than d) as 
the coordinate also helps.

Another source of bias, a major one, is a simultaneous 
variation of the means of dimensionless characteristics, such 
as ρ and b/d, throughout subsequent size intervals as the 
slab size increases. This kind of bias is inevitable when the 
testing cannot be centrally coordinated according to a proper 
statistical sampling scheme. It plagues all concrete databases 
collected from many labs worldwide.

Both sources of bias can, in theory, be overcome by 
nonlinear weighted multivariate regression, which will 
be presented later. However, for the regression to be fully 
effective, the mathematical form of the dependence of the 
secondary variables such as ρ or b/d must be reasonably well 
known or deduced in advance. Unfortunately, this is not true 
for some variables, and especially for the effect of different 
concrete compositions. It is, therefore, useful to first clarify 
the basic size effect trend purely statistically by filtering the 
database, as described next.

To reduce the number of variables, the authors exploited the 
usual assumption that the shear strength is roughly propor-
tional to fc

1/2. So we study the variation of vc/fc
1/2. The size 

range is subdivided into several intervals of constant width in 
log d (five in Fig. 2). The averages of secondary influencing 
variables such as steel ratio ρ and ratios b/d and c/b, calculated 
separately for each size interval, should ideally be nearly the 
same for all the size intervals. However, as seen in the Rows 
III, IV, and V of c.1 in Fig. 2, the averages of ρ, b/d, and c/b 
vary significantly through the subsequent size intervals. The 
interval average of ρ decreases with increasing size even by an 
order of magnitude and the interval average of b/d decreases 
more than three times. Thus, the database plot as function 
of d does not show size effect. Rather, it shows a mixture of 
the effects of d, ρ, b/d, and c/b. Also note in Fig. 2, c.1, r.II, 
that the interval averages of normalized shear strength for the 
entire database (shown by solid diamond points) are highly 
scattered and do not show a clear trend.

In previous works on beam shear,27,28 a filtering program 
was developed and refined to delete, one-by-one, in an unbi-
ased way (without human intervention), the upper and lower 
outlier points from each size interval, to produce a data 
subset with nearly uniform values of the interval means of 
the secondary parameters—that is, a subset minimizing the 
variance of the means of the secondary variables (such as ρ, 
b/d, ...) in the individual size intervals.
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To be specific, denote by Ykj (j= 1, 2, ...Nk) all the individual 
data points in size interval number k (k = 1, 2, ...Nint) (herein, 
Ykj are the vc values). The computer program produces data 
subsets by deleting database points Ykj one by one. Each point 
to be deleted is chosen (by the computer) such that its deletion 
would meet one the following two objectives: 1) the greatest 
possible reduction of the sum of squared deviations of the size 
interval means of the secondary variables from certain chosen 
values; or 2) the greatest possible reduction of the variance of 
the size interval means of the secondary variables.

Only Objective 1 is pursued herein. The minimization 
is applied simultaneously to all important secondary vari-
ables—that is, to the overall combined variance for Objec-
tive 1 (or to the combined sum of squared deviations for 
Objective 2). The deletions terminate when the coefficient 
of variation of the interval means attains a specified small 
enough value, such as 5%.

Filtering with Objective 1 generally leads to deletion of 
fewer data than Objective 2. However, the fact that many 
outliers have to be deleted may be seen as statistically objec-
tionable. This objection can be avoided by running several 
different filtering runs with Objective 1. In one filtering run, 
a relatively high value of parameter ρ may be chosen as the 
desired average of ρ for all the intervals. In that case, none 
of the outliers on the high side gets deleted but many do on 
the low side. In another filtering run, a relatively low value 
of parameter ρ may be chosen as the desired average of 

secondary variables for all the intervals. In that case, none 
of the outliers on the low side of the distribution of ρ values 
gets deleted but many do on the high side. In this way, almost 
every point of the database may be included in at least one of 
the filtered data subsets produced. In other words, none, or 
almost none, of data point gets completely ignored.

The resulting interval averages for ρ, b/d, and c/b, obtained 
using Objective 1, are shown by the solid diamond points in 
Rows III, IV, V of c.2-6 of Fig. 2. As seen from the solid 
diamond points in Rows II of all these columns, a clearer 
size effect trend has now emerged (the smooth curves show 
the optimum least-square fits of the solid diamond points 
by the size effect law discussed later). For comparison, the 
complete database of 440 points is shown in Fig. 2 c.1, r.I. 
This database is repeated in c.2-6 of Fig. 2, r.I, in which the 
points that remain after filtering in each case are shown by 
black circles and the deleted ones by gray circles.

As seen, the filtering (with Objective 1) leads to a clear size 
effect trend (and so would the filtering with Objective 2).

There are some drawbacks, too. The main drawback is that 
when the mean of interval averages of a secondary variable 
is selected to lie too close to the upper or lower margin of the 
scatter-band, the filtered database may lose too many points 
from the original database, making the filtered data subset 
much too small. This drawback could be diminished only 
by a larger database. Another drawback is that most of the 
slab sizes d in the filtered database may be below the typical 

Fig. 2—Column 1: Entire database; Columns 2 to 6: filtered database and mean values of flexural reinforcement ratio ρ, aspect 
ratio b/d, shape factor c/b and their variations inside size intervals; vc versus d plots are in log scale (×12 for psi in Rows I 
and II).
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sizes in practical use. Both these drawbacks are mitigated by 
weighted multivariate regression analysis, discussed next.

PROPOSED SHEAR-STRENGTH EQUATION
Based on the previous experience reviewed in Reference 

21 and on the energetic size effect law that was shown to 
be generally applicable to quasibrittle failures and was 
endorsed by ACI Committee 446,29 the following equation 
is proposed

	 Vu = Vc + Vs,    Vc = bodvc	 (10)

	 v v v f d
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where vo is value of vc for vanishing size d; θ is size effect 
factor30-32 unanimously endorsed for shear failures by ACI 
Committee 44629; do is transitional size (empirical, 60 mm 
[2.36 in.] according to database regression); Vu is punching 
shear load; Vs is punching load capacity due to shear rein-
forcement; λ is empirical constant = 2.0 MPa1/2 in SI (or 
24.1 psi1/2 in U.S. customary units). The exponent values 0.3, 
0.2 and 0.4 of ρ, d/b, and c/b were obtained by least-square 
optimization of the fit of entire database, as described later.

CRITICAL SIZE EFFECT COMPARISON WITH 
MODEL CODE 2010 AND EUROCODE 2004

The size dependence of shear strength according to Euro-
code 2004 and Model Code 2010 (Fig. 1(b) and 1(c) is 
invalidated by the trend of the interval means in Fig. 2 r.II, 
c.1-6, at all. In Fig. 2, there is no hint of a slope steeper 
than –1/2, and certainly no slope approaching –1, as implied 
by Model Code 2010. Furthermore, the asymptotic slopes 
of 0 and –1 implied by the Eurocode and Model Code 
size effect (Fig. 1(b) and 1(c)), as well as by the previous 
Swiss design code, violate the energy balance (or fracture 
mechanics) because the energy released from the structure 
by a crack increment does not match the energy dissipated 
by that increment at fracture front.31,32 The steepest possible 
slope is –1/2, corresponding to energy dissipation by a point-
wise crack tip (which is an acceptable approximation only 
for very large sizes). If the dissipation occurs in a wider and 
longer fracture process zone, the slope is milder than –1/2, 
and if the dissipation is distributed widely, the slope is 0 (no 
size effect).

Note also that if vc is increased in proportion to 1/d (as in 
Model Code), the shear force Vc = bodvc is independent of 
d. Thus, Vc approaches, for large d, a finite bound (that is, a 
horizontal asymptote). This feature defies common sense—it 
means that, for example, the doubling of thickness of a slab 

whose thickness is already near the asymptotic bound would 
cause no further increase of the punching force capacity Vc.

To understand why the impossible asymptotic slope 
of –1 is exhibited by MC2010 (with LoA1), note that, to 
ensure geometric similarity in size effect analysis, all the 
spatial dimensions must be scaled in proportion while all 
the dimensionless parameters are kept constant. However, in 
LoA 2 or 3 of Model Code 2010, the dimensionless ratio of 
acting moment ms to moment capacity mR, is varied with size 
(ms ≈ function of Vu). This leads to an apparent asymptotic 
size effect slope that combines the effect of the size d with 
the effect of variable (dimensionless) rotation ψ (or strain). 
This is not size effect. It is a deceptive curve of apparent size 
effect distorted by simultaneous variation of a dimensionless 
variable, the strain.

In general, the strain cannot be used to characterize frac-
ture-induced failures, for which the balance of released and 
dissipated energy (or the first law) is the basic principle. By 
imagining a convenient variation of some secondary dimen-
sionless parameters, one could get any desired (and misleading) 
dependence of structure strength on d. Besides, unlike the size 
effect curve, the validity of such imagined curves of structure 
strength versus size, as in LoA 2 or 3, cannot be verified by 
any elementary principles such as energy conservation.

VERIFICATION AND CALIBRATION BY WEIGHTED 
MULTIVARIATE REGRESSION FOR SLABS 

WITHOUT SHEAR REINFORCEMENT
Most of the data sets in the literature contain only a single 

slab depth or a negligible range of depths. Deleting from 
the database the test series in which the slab depth was a 
variable with non-negligible range eliminates 95% of all test 
data, and even most of the remaining data are not geometri-
cally scaled, as required for separating the size effect from 
other effects. Similar to shear failure of beams,28,33,34 this is 
why a filtered analysis of the database is needed to reveal 
trends, and why a theoretical support in quasibrittle fracture 
mechanics is indispensable.

The maximum load in punching shear is reached only after 
stable growth of a large crack, and the location of the crack tip 
at maximum load is determined by mechanics. The volume 
of concrete zone in which mechanics permits the crack tip 
to be located is much too small compared to the volume of 
structure. It consists of only a few representative volume 
elements (RVEs) of concrete and, thus, many locations with 
random strength cannot get sampled by the potential crack 
front. Therefore, the size effect on the mean strength cannot 
be statistical. Rather, it must be energetic—that is, determin-
istic—and must follow the size effect law of quasibrittle frac-
ture mechanics30-32 as expressed by the size effect factor θ in 
Eq. (12). The analytical form of this factor is herein supported 
by the fits of mean trends of the filtered subsets of database; 
refer to the solid curves in Fig. 2, r.II, c.2-6.

The filtered database subsets cannot be used for statis-
tics of errors because many data had to be deleted. To this 
end, the entire database must be used, which requires least-
square fitting by a shear strength formula using multivariate 
regression. In this regression, the data in each of the five size 
intervals are assigned weights inversely proportional to the 



880 ACI Structural Journal/July-August 2017

number of data in each interval. Such weighting suppresses 
the bias due to crowding of many data at small sizes d and 
scarcity of data at large sizes d (for details and further justifi-
cation, refer to similar weighted optimization for beam shear 
in References 27, 33, and 34).

The results of the weighted regression of the entire data-
base are shown in Fig. 3(a), in which the database points 
represent the values of normalized shear strength vc divided 
by vo, where vc are the measured punching strength values 
and vo are the values from the optimized fit by Eq. (11) with 
excluding the parameter λ. This is another way to elimi-
nate the effect of variation of secondary variables with d, 
but, of course, it meets success only if a realistic form of 
the formula, with a low coefficient of variation of errors, is 

found. Figure 3(b) (in which the solid diamond points show 
the interval averages) shows that the ACI 446 size effect 
factor θ (solid curve) matches the data trend well.29 The 
transition to asymptotic slope, –1/2, was for shear failures 
verified also by Ruiz et al.,4 and was supported by a different 
type of analysis.

MICROPLANE FINITE ELEMENT ANALYSIS OF 
TEST SERIES WITH DIFFERENT SLAB SIZES

There exist a few punching test series where the size was 
varied significantly (Fig. 4(a) to 4(e)). The data from each of 
these test series have been optimally fitted by a finite element 
(FE) program with a realistic damage constitutive law. In 
this program, the constitutive law was the microplane model 

Fig. 4—Size effect analysis of experiments of: (a) Bažant and Cao1; (b) Regan7; (c) Guandalini et al.9  and created specimen with 
1.45% reinforcement ratio for size effect analysis; (d) Li40; and (e) created FE specimens from calibrated data of Li, and sample 
of corresponding fracture patterns from FEA on left bottoms. (Note: 1 MPa =145 psi; 1 mm = 0.0394 in.; λ is excluded from vo.)

Fig. 3—(a) Illustration of size effect fit on entire database, normalized by secondary variables (excluding λ in Eq. (11)) found 
by multivariate regression; and (b) size effect fit for normalized mean strengths of subdivided data into size intervals. (Note: 
1 mm = 0.0394 in.)



881ACI Structural Journal/July-August 2017

M735 (which is the latest and most realistic in a series of 
microplane models for concrete developed at Northwestern 
University). The constitutive material properties are charac-
terized by a relation between the stress and strain compo-
nents (or forces and displacements) on the microlevel36 (or, 
more precisely, the mesolevel). The stress-strain relations are 
defined not in terms of the macrolevel continuum tensors, 
but in terms of the stress and strain vectors on planes of all 
possible orientations within the material, which are called 
the microplanes. 

Based on the microplane constitutive law, the stress vector 
is, on each microplane, calculated from the strain vector 
obtained as the microplane projection of the macrolevel 
continuum strain tensor (this is called the kinematic 
constraint). The stress tensor is calculated from the stress 
vectors on all the microplanes by means of the principle 
of virtual work. The latest version of microplane models, 
M7, which uses an explicit numerical algorithm, was 
shown capable of realistically predicting the quasibrittle 
material damage behaviors over a broad range of loading 
scenarios.35,37 Model M7 is robust, always convergent, and 
has successfully been used in dynamic problems with greater 
than 3 × 107 unknowns. 

All the simulations herein are conducted with commer-
cial software ABAQUS, in which model M7 is introduced in 
VUMAT as a user’s material subroutine. To avoid spurious 
mesh sensitivity, the crack band model is used as the local-
ization limiter.38 To avoid some loss in accuracy due to 
scaling of the postpeak,39 a constant element size hc (equal 
approximately to double the maximum aggregate size) is 
used in all the present computations. Linear hexahedral or 
tetrahedral elements are chosen. The adjustable parameters 
of M7 sufficed to match the main material properties.

After calibration by fitting of the available punching test 
data of each test series, model M7 was used to calculate the 
values of vc/vo for various sizes. Compared to the highly 
scattered individual test data shown by circles in Fig. 4, the 
calibrated FE results, shown by the x-points in the figures, 
have the advantage of no scatter. One such series1 reported 
tests of geometrically scaled circular slabs of three different 
sizes in the ratio 1:2:4; refer to Fig. 4(a) (because of the use of 
reduced maximum aggregate size of 4.7 mm [0.18 in.], these 
tests were not included in the ACI 445-C database). The depth 
d of the smallest slab was 20 mm (0.79 in.). The calibrated 
model is then used to calculate the x-point for each test size 
and an extra point for double the size of the largest slab tested. 
The x-points agree well with the solid curve of the ACI 446 
size effect factor,29 Eq. (12).

Similar tests of rectangular slabs with circular columns, 
of size ratio 1:2:3, were carried out by Regan7; refer to 
Fig. 4(b). The aspect ratio b/d is constant for all slabs, 
although the flexural reinforcement ratio varies slightly. The 
maximum aggregate size was 20 mm (0.79 in.) for the spec-
imens modeled herein (tests with reduced aggregate sizes in 
the smaller and medium specimens were also conducted but 
are not used here).

Recently, punching shear tests with thicknesses in the ratio 
1:2:4 were conducted by Guandalini et al.,9 with d  = 0.5 m 
(19.7 in.) for the largest slab. The slabs were geometrically 

scaled except that the reinforcement ratios varied slightly, 
which was taken into account in FE analysis. Even though 
modest nonuniformity of the reinforcement ratios slightly 
taints the size effect regression, the fit for a uniform rein-
forcement ratio of 1.45% gives the mean trend (Fig. 4(c)).

Figure 4(d) shows the size effect of the experiments by 
Li,40 who tested six square slabs with a slight variation in 
flexural reinforcement ratio, punched by square columns with 
different aspect ratios. Normalizing the measured maximum 
loads and the corresponding loads from FE simulations indi-
cates a strong size effect trend for larger sizes. The test result 
for the smallest size is overestimated, as shown in Fig. 4(d). 
After the FE code with microplane model is calibrated by 
fitting Li’s experiments, the code is used to simulate the size 
effect. The simulations show excellent agreement with the 
ACI 446 size effect,29 Eq. (12) (solid curve in Fig. 4(e)).

Overall, Fig. 4(a) to 4(e) demonstrate a significant tran-
sitional size effect on the punching shear strength, agreeing 
with the size effect law and with FE simulations based on 
microplane model M7.

MICROPLANE FINITE ELEMENT ANALYSIS OF 
TEST SERIES WITH SHEAR REINFORCEMENT
Although the shear reinforcement of slabs does not 

enhance ductility, it changes the cracking pattern and signifi-
cantly elevates the load and deformation capacity because 
it intersects, and thus suppresses, the conical fracture 
produced by the punching load from the column. There is 
a variety of transverse reinforcement types, such as stirrups, 
studs and assorted profiles, and a variety of reinforcement 
layouts around the column. This increases uncertainties in 
predicting the punching load capacity.

As in shear of beams, the contribution of concrete and 
the contribution of steel reinforcement, calculated under the 
assumption of yielding, are considered additive12 (Eq. (3)). 
However, it is not guaranteed and is, in fact, doubtful for thick 
slabs that the steel would actually be yielding at maximum 
load rather than later in postpeak softening. Moreover, the 
failure of shear reinforcement can take different forms, such 
as the punch failure outside the shear reinforced area, delam-
ination, and concrete crushing. Investigation of these diverse 
forms and their effects on the size effect curve is out of the 
scope of this study.

Unfortunately, there are no tests clearly demonstrating the 
size effect for slabs with shear reinforcement. Lips et al.10 
and Birkle41 tested slabs with and without shear reinforce-
ment, but the size range was too narrow compared to inev-
itable scatter. In Birkle’s tests of octagonal slabs on square 
columns, slabs in the size ratio 1:1.53:2.09 were tested, 
but this range was not sufficiently broad. To reveal the 
size effect, the shear reinforcement ratio, which is defined 
as ρs = Asw/(bsw), should be constant, but in these and other 
tests, it varied with d, as did the aspect ratio and even the 
concrete strength.

Figures 5(a) to 5(c) shows fitting of Birkle’s tests for 
calibration of the microplane FE program (close fitting of 
the initial elastic slopes spoiled a close match of the rising 
curves). The size effect is then predicted with the calibrated 
program. As shown in Fig. 5(d), the effect of studs is to 
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shift the size effect curve upward. Note also that the studs, 
with the ACI-type layout (Fig. 5(c)), greatly increase the 
punching capacity.

Another demonstration of size effect can be based on Lips 
et al.’s10 tests of square slabs with square columns (Fig. 6(a) 
to 6(d)). The size ratio is 1:1.28:1.6, which is again insuffi-
cient to reveal size effect directly. Calibration by data fitting 

Fig. 5—(a) Experimental and corresponding FEA results of calibration from tests of Birkle41; (b) strength-versus-size plots in log-log 
scale; (c) sample of cracking pattern obtained from numerical simulations; and (d) size effect regression curves obtained from cali-
brated FE models (with and without studs). (Note: 1 MPa = 145 psi; 1 kN = 224.8 lbf; 1 mm = 0.0394 in.)

Fig. 6—(a) Experimental and corresponding FEA results of calibration from tests of Lips et al.10; (b) strength-versus-size plots 
in log-log scale; (c) sample of cracking pattern obtained from numerical simulations; (d) size effect regression curves obtained 
from calibrated FE models (with and without studs). (Note: 1 MPa = 145 psi; 1 kN = 224.8 lbf; 1 mm = 0.0394 in.)
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with the microplane FE program, in which the initial elastic 
slopes were matched closely, appears in Fig. 6(a) and 6(b). 
Prediction of the size effect, along with the cracking pattern 
at maximum load, is then shown in Fig. 6(c) and 6(d). The 
conclusions about size effect are the same as for Birkle’s 
tests. The simulations further demonstrate that the circular 

layout of studs provides a lesser enhancement of punching 
strength than does the rectangular (ACI-type) layout.

VERIFICATION OF OTHER TRENDS BY 
MICROPLANE FINITE ELEMENTS ANALYSIS

Further statistics and trends of punching shear strength of 
slabs with shear reinforcement can be inferred from the data 
in the literature,14-20,42 although hardly anything more about 
the size effect can be concluded from these studies. The fact 
that vc is approximately proportional to fc

0.5, ρ0.3, (d/b)0.2, and 

Fig. 7—(a) Illustration of concrete strength effect on 
punching shear capacity from tests of References 5 to 8; (b) 
experimental and numerical illustration of concrete strength 
dependency from tests of Elstner and Hognestad3; and (c) 
results of multivariate regression for fc, with using entire 
database fit. (Note: 1 MPa =145 psi; 1 kN = 224.8 lbf.)

Fig. 8—Load-deflection curves of punching shear specimens 
with varying reinforcement ratios and corresponding FEA 
results from the tests of: (a) Elstner and Hognestad3 and 
(b) Guandalini and Muttoni,9 respectively; and (c) results 
of  multivariate regression for reinforcement ratio. (Note: 
1 kN = 224.8 lbf; 1 MPa = 145 psi; 1 mm = 0.0394 in.)
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(c/b)0.4 is verified by Fig. 7(c), 8(c), 9(b), and 9(c), in which 
the curves were calculated from the parameters obtained by 
weighted multivariate regression. The vc values are in these 
figures normalized by the v1 values that account for the 
effect of other nonconstant variables (refer to the captions). 
This correction is applied to each data point, because the 
parameters in v1 are different for each. Figures 7, 8, and 9 
also show calibrations and validations of the microplane 
FE model by load-deflection curves reported in References 

3 and 5 through 10 and by comparisons with selected data 
from these experimenters on the effects of fc

0.5, ρ0.3, (d/b)0.2, 
and (c/b)0.4.

CONCLUSIONS
Based on this study, the following conclusions can be made:
1. Although properly scaled tests of punching shear strength 

are lacking, the existing ACI 445-C database reveals a clear 
size effect trend after creating filtered data subsets in which 
the averages of secondary variables in subsequent size inter-
vals (that is, of the steel ratio and slab thickness-to-column 
width ratios) are almost constant through all the intervals.

2. The data trend revealed by such filtering shows a signif-
icant size effect on the nominal punching shear strength vc of 
concrete. This trend demonstrates that: a) there is no indica-
tion of a sudden slope change on the size effect curve (unlike 
Eurocode 2004); b) the average slope of the data trend of log 
vc versus log d is milder, though not much milder, than –1/2; 
c) there is no hint of a slope approaching –1, not even steeper 
than –1/2; and d) the data are compatible with the energetic 
(non-statistical) size effect law.

3. The least-square multivariate regression of the complete 
ACI 445-C database, with weights countering uneven data 
distribution, indicates that the proposed formula with the 
ACI 446 size effect factor θ gives a relatively good fit.

4. Although the effects of geometry (b/d, c/b) and of 
the longitudinal and shear reinforcement ratios had to be 
included in the optimization, simultaneous data filtering with 
respect to these parameters is beyond the scope of this work. 
Nevertheless, the size effect factor θ obtained and validated 
herein can be applied to any good formula for these effects, 
including a formula based on plastic limit analysis, provided 
it fits well the small-scale test data (for which θ ≈ 1).

NOTE ON STRUCTURAL SAFETY
Although proper capacity reduction (or ‘understrength’) 

factors must be applied to the design equations, the design 
codes provide additional safety by scaling down the design 
equations to the lower margin of the data cloud. In this 
approach, the value of vc given by Eq. (11) must be scaled 
down by the factor of 2.1. However, such an approach 
creates a problem for probabilistic structural analysis. If the 
mean prediction is not known to the analyst, such analysis 
becomes meaningless.

For the most up-to-date analysis of structural safety, 
as well as statistical and energetic size effects, refer to  
Reference 43.
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curves for (b) ratio d/b; and (c) shape effect c/b with using 
entire database. (Note: 1 kN = 224.8 lbf; 1 mm = 0.0394 in.)
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NOTATION
Asm	 =	 cross-sectional area of all shear reinforcements within area 

bounded by 0.35d
Asw	 =	 cross-sectional area of one shear reinforcement layer around 

column
b	 =	 perimeter of loaded area (column)
bo	 =	 control perimeter, calculated at distance d/2 from column face
boE	 =	 control perimeter, calculated at distance 2d from column face
c	 =	 side length (or short edge) of square (or rectangular) column or 

diameter of circular column
D	 =	 characteristic size of structure
d	 =	 effective thickness of slab, calculated as d = (dx + dy)/2
d0 	 =	 material constant characterizing transitional range
dg	 =	 maximum aggregate size, mm
do	 =	 transitional size which equals to materials’ characteristic lengths 

times structure shape parameters
dx, dy	=	 distances from compression face to flexural reinforcement on 

x- and y-directions, respectively
Es	 =	 Young’s modulus of longitudinal reinforcement steel
fb	 =	 bond strength, which is equal to 2fct, where fct refers to tensile 

strength of concrete
fc	 =	 concrete compressive strength
fyd	 =	 yield strength of flexural reinforcement
fyw	 =	 yield strength of shear reinforcement
h	 =	 slab thickness
kdg	 =	 factor accounting for influence of aggregate size
l0	 =	 length of fracture process zone
mR	 =	 nominal moment capacity per unit width in support strip
ms	 =	 design moment in support strip and can be taken as Vd/8
rs	 =	 distance to zero radial moment and can be taken as 0.22 times 

the slab span
sw	 =	 distance between shear reinforcement layers
V	 =	 shear load
Vc	 =	 punching load capacity due to concrete
Vd	 =	 design shear force
Vs	 =	 punching load capacity due to shear reinforcement
Vu	 =	 punching shear load
vc	 =	 punching shear strength of slabs without shear reinforcement
vo	 =	 value of vc for vanishing size d
v1	 =	 normalization expression stated in figures accordingly
φw	 =	 diameter of shear reinforcement
λ	 =	 empirical constant for convenience
θ	 =	 size effect term in proposed equation
ρ	 =	 flexural reinforcement ratio, calculated as (ρxρy)0.5

ρs	 =	 shear reinforcement ratio
ρx, ρy	 =	 longitudinal reinforcement ratios on x- and y-directions, 

respectively
σsw	 =	 effective stress in shear reinforcement
ξ	 =	 size effect term in EC2 provision
ψ	 =	 rotation of slab
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