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Effective Moment of Inertia for Calculating Deflections of
Concrete Members Containing Steel Reinforcement and
Fiber-Reinforced Polymer Reinforcement

by Peter H. Bischoff and Andrew Scanlon

The effective moment of inertia expression proposed by Branson in
1963 and incorporated into the ACI Code is reevaluated. It is
found that Branson's expression is valid for members with steel
reinforcement ratios greater than 1%. This expression, however,
overestimates member stiffness at lower reinforcement ratios and
gives a member deflection less than expected as demonstrated by
comparison with test results. Branson's approach also underestimates
deflection of dlender wallswith a central layer of reinforcement, as
well as deflection of fiber-reinforced polymer (FRP)-reinforced
concrete beams. An alternative expression is presented that is
shown to be valid for all reinforcement ratios for both steel and
FRP reinforcement.

Keywor ds: beam; deflection; reinforcement; slab.

INTRODUCTION

In 1966, AClI Committee 435 published “Deflections of
Reinforced Concrete Flexural Members” (ACI Committee
435 1966). The report includes a comparison of severa
methods for computing immediate deflection including the
effects of cracking on member response. The methods
compared included the ACI Code method in use at the time
(ACI Committee 318 1963) and the effective moment of
inertia approach proposed by Branson (1963).

The ACI 318-63 approach considered two cases:

1. pfy, < 500 psi (3.45 MPa), use the uncracked gross
section moment of inertial ; to computeimmediate deflection at
service load levels, and

2. pfy > 500 psi (3.45 MPa), use the cracked transformed
section moment of inertia |, to compute immediate deflection
at serviceload levels.

For Grade 60 (415 MPa) reinforcement, the transition
occurs at p = 0.833%.

The effective moment of inertial approach introduced by
Branson allows for a gradual transition from uncracked to
cracked transformed section as the ratio of service load
moment M, to cracking moment M, increases. Thistransition
isgiven by the expression below, and aplot of ¢/l versus p
isshown in Fig. 1 for both approaches.

lo = (%1)3Ig+(l—(%f)3)lcrslg &)

The committee compared calculated deflections with
measured deflections for several sets of laboratory tested
beams. The test beams had p values ranging from 1 to 3.2%.
Inthisrange, Branson's |, approaches |, asshowninFig. 1.
Based on the comparison with test results, the committee
concluded that both the ACI 318-63 method and Branson's
| method were adequate for practical purposesin predicting
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Fig. 1—Effective moment of inertia at service loads (M, =
2/3M,).

immediate deflections. ACI 318 subsequently adopted the
Branson | expression for inclusion in the 1971 ACI Code
(AClI Committee 318 1971), and this is currently the
prescribed method in the ACI Code (ACI Committee 318 2005).

The comparison with test results did not include beams
with reinforcement ratiosin the lower range (p < 1%), which
is more typica of slabs and lightly reinforced beams.
Concerns have been raised that Branson's |, equation is
adequate for moderate to high reinforcement ratios but tends
to underpredict immediate deflections at low reinforcement
ratios (Bischoff 2005ab). This problem is reflected by
amendments to the Austraian Standard AS3600 (1994)
limiting I, to a value of 0.6l for flexure members with a
reinforcing ratio less than 0.5%/0 (Gilbert 2001). In addition,
past effortsto apply Branson’ s equation to membersreinforced
with fiber reinforced polymer (FRP) bars have found that a
correction factor is necessary to correct for overprediction of
member stiffhess (ACI Committee 440 2006). In this paper,
aformulation of the effective moment of inertiais presented
that isapplicableto all ranges of reinforcement ratio for steel
reinforcement as well as FRP reinforcement.

RESEARCH SIGNIFICANCE
The results presented in this paper are directly applicable
to design practice related to deflection control of structural
concrete members. This paper deals with computation of
short-term (immediate) deflections only. Proposed changes
to ACI 318 are presented.
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FLEXURAL BEHAVIOR AT SERVICE LOAD LEVELS

The flexural stiffness of a concrete beam varies along its
length due to the presence of cracking that can occur from
the applied loading and possibly tension stress caused by
shrinkage restraint. At crack locations, the concrete carries
essentially zero tension. Between cracks, however, the
concrete participates in resisting tensile stress because of
bond between the reinforcement and concrete. This effect is
often referred to as tension stiffening and is taken into
account with the effective moment of inertial..

Simple spring model s are used to demonstrate the effect of
stiffness variation along a member. Examples are given in
Fig. 2for linear and rotational springsarranged in both series
and paralel. The value P represents the axial load for linear
springs and moment for rotational springs. The term A
represents displacement for linear springs and rotation for
rotational springs, whereas the term k represents stiffnessfor
both linear and rotational springs. Applying equilibrium and
compatibility to the linear elastic systems gives the
following expressions for effective stiffness of the two
spring models considered:

1) Springsin series

|

1.1
= —+ = 2
I(e kl k2 ()
2) Springsin parallel
ke = ki + ko (©)

From examination of the deformed shapes, it is clear that
the springs-in-series model is more appropriate for members
with discrete cracks a ong the member. This suggeststhat the
interpolation formula to model tension stiffening should be
based on a weighted average of flexibility rather than tiffness
(Bischoff 20054). This then leads to a subtle change in
Branson’s original expression, giving

Lo ()Lt

By rearranging terms, Eq. (4a) can be rewritten as

= ler < (4b)

R

a

le

It isfound that avalue of m=2in Eq. (4) correlates well
with Branson’s original formulation where the power m= 3.
This correlation is carried out for a beam cross section with

ACI Structural Journal/January-February 2007

between cracks at cracks

AP
b
A

(a) Springs in series (linear and rotutional) ~z4A

Ky ky ks

o T
(b) Springs in parallel (linear and rotational)

Fig. 2—Smple spring models.

aratio of 1o/l = 2.2 (p ~ 1.5%), and is representative of the
beams used by ACI 435 to verify Branson’s eguation.

COMPARISON OF EFFECTIVE MOMENT
CURVATURE RELATIONSHIPS

Moment-curvature relationships based on the effective
moment of inertia concept are plotted in Fig. 3 to compare
the origina Branson formulation with the approach
proposed by Bischoff (2005a). Reinforcement ratios of 1.5,
1.0, 0.5, and 0.3% are considered. The applied moment M,
is assumed to be 2/3 of the nominal flexural strength M,,
based on Grade 60 reinforcement (f,, = 60 ksi [415 MPa]).
Calculations are carried out for a 30y0 mm (12 in.) wide by
200 mm (8 in.) deep section representative of slabs, and ' is
taken as 27.6 MPa (4000 psi).

The plots shown in Fig. 3 demonstrate that the effective
moment of inertia corresponding to the service load moment
M, is insensitive to the formulation of |, at the higher rein-
forcement ratios above 1%. Differences between the Branson
expression and proposed approach are less than a few percent
inthis case. At the lower reinforcement ratios (0.3 and 0.5%),
thereis asignificant differencein I, with Branson's original
expression displaying a much differ response than the
proposed aternative form. Deflections calculated with
Branson's expression for | can be as much as 50% less than
deflection calculations using the alternative approach.

Branson's Eq. (1) only works well for flexure members
with an 14/l ratio less than approximately 3, and this
corresponds to beams and slabs with asteel reinforcing ratio
greater than 1% (refer to Fig. 4). This expression for I
essentially represents a weighted average of two springsin
parale (Fig. 2(b)), where the equivalent stiffness approaches
the stiffness of the stiffer spring as one spring becomes much
stiffer than the other. That is, kg = kq(1 + ko/kq) = kg when kg
>> Kk,. Hence, a beam response modeled with Branson’s
expression for |, is pulled toward the uncracked |, response
for beams with 1/l greater than 3. This trend is clearly
demonstrated in Fig. 3. The proposed approach using Eq. (4),
on the other hand, represents a weighted average of two
springsin series (Fig. 2(a)), and the beam response with this
model is now pulled toward the cracked |, response as | /I
increases (kg = kof(1 + ky/ky) = ko when k; >> ky). Other
factors such as the assumed value of modulus of rupture also
affect the beam response at lower reinforcement ratios.

COMPARISON WITH EXPERIMENTAL DATA
As noted previously, the comparisons reported by ACI
Committee 435 (1966) were restricted to beams with rein-
forcement ratios greater than 1%. A comparison with slab
testsreported by Gilbert (2006) is presentedin Fig. 5. Simply
supported one way dabs of rectangular section with athickness

69



Curvature ¢ (10° radfin.)

0 200 400
50 . ! . ! _—
j@ L/ M - 400
40 , 3 _
o
£ / M 300 £
Z 30 / g P
X / 7 <
E ] , e - 200 &
£ 20— ’ = g
5 < p=15% (I.N,=21) | £
s B 2 < 9 g
104 pt Branson Ea. (1) L1090 =
L Bischoff Eq. (4)
1/ —-— |, response i
0 — 71— 0
0 4 8 12 16 20
Curvature ¢ (10° rad/mm)
Curvature ¢ (10'6 radfin.)
0 200 400 600
40 :
(b)

7 - 300
%7 S
z 3
3 200 €
g 20 | g
5 p=1.0% (,/,=2.8) £
Z 404 27 e Branson Eq. (1) [ 100 =

Bischoff Eq. (4)
. —-— |, response
0 —— 0
0 5 10 16 20 25

Curvature ¢ (10° rad/mm)

Curvature ¢ (10° rad/in.)

0 200 400
. ] . ! )
204© / M e
\ e 160
— g | 7
€ 15 s £
bl e ~120 ©
SR e £
€ 40 i =
2 10 80 &
5 2 p=05% (I,/,=4.9) £
(=}
= 5] ST e Branson Eq. (1) =
Bischoff Eq. (4) [ 40
1. —-— 1, response
0 —— 0
0 4 8 12 16 20
Curvature ¢ (10° rad/mm)
Curvature ¢ (10° rad/in.)
0 200 400 600
!
— 120
B Lz
Z *
=3 -80 ¢
z =
& . t <
[
5 ~ 0=03% (./I_=7.5) E
2 e ofler 405
4 o0 e Branson Eq. (1) =
1 e Bischoff Eq. (4) |
e —-— 1 response
0 — 77— 0
0 5 10 15 20 25

Curvature ¢ (10° rad/mm)

Fig. 3—Computed moment curvature response for: (a) p =
1.5%; (b) p =1.0%; (c) p =0.5%; and (d) p =0.3%.

of 100 mm (4 in.) and span of 2 m (6 ft 7 in.) were subjected
to third-point loading. The results are quite conclusive in
showing that the origina Branson formulation produces a
| oad-deflection response at serviceload levelsthat istoo stiff
for steel reinforced members at low reinforcement ratios,
whereas the proposed formulation provides a better correlation
with the test results. Both formulations were satisfactory at
higher reinforcement ratios.
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Fig. 4—\Variation of |41, ratio with reinforcing ratio.
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Fig. 5—Sab response for: (a) p = 0.52% and I/l = 6.3;
(b) p=0.33%and Iyl = 8.8; and (c) p= 0.20% and 1/l
= 13.0 (after Gilbert 2006).

Figure 6 compares the two approaches for beams with a
0.31%reinforcing stedl ratio and having across section 250 mm
(10 in.) wide by 300 mm (12 in.) high. The test response is
plotted for two identical beamswith asimply supported span
of 3m (9 ft 10 in.) and loaded at the third points. Branson's
Eqg. (1) provides aresponse that is too stiff, whereas Eq. (4)
dlightly overestimates member deflection.
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Fig. 6—Sedl reinforcement beam response for p = 0.31%
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APPLICATION TO BEAMS WITH
FRP REINFORCEMENT

A number of researchers (ACI Committee 440 2006) have
shown that Branson's original formulation produces a
response that is overly stiff for beams reinforced with FRP
bars for which the modulus of elasticity is considerably
lower than for steel reinforcement. A modified form of
Branson' s equation has been recommended for FRP reinforced

members (ACI Committee 440 2006) as follows

o= (G e (-G sty @

where the correction factor By = 0.2p/py, < 1.0 was empirically
derived using astatistical fit of available data. Theterm py, is
the balanced reinforcing bar ratio.

A comparison between the AClI Committee 440 expression
in Eqg. (5) and the proposed alternative expression with no
correction factors (Eqg. (4)) is shown in Fig. 7 for beams
reinforced with glass FRP (GFRP) bars having an elastic
modulus Ej, of 40 GPa (5800 ksi) and ultimate strength f,, of
690 MPa (100 ksi). f.' is taken as 27.6 MPa (4000 psi), and
results are normalized with respect to the cracking moment
My and corresponding uncracked curvature. These plots
demonstrate that the proposed expression produces close
agreement with the ACI Committee 440 recommended
equation without the need to introduce correction factors for
FRP. Similar agreement is obtained for carbon FRP (CFRP)
reinforced beams. Once again, the reason that Branson's
origina expression under-predicts deflection is because the
Igfl¢r ratio for FRP beams is typically much greater than 3
(refer to Fig. 4).

While the AClI Committee 440 expression for | works
well for concrete reinforced with either GFRP or CFRP bars,
deflection is underestimated with aramid FRP (AFRP)
reinforcement (Bischoff 2007). Comparison with the
measured |oad-deflection response of an AFRP reinforced
concrete beam tested by Rashid et al. (2005) is presented in
Fig. 8, and clearly shows that Bischoff’ s aternative expression
for 1, computes deflection reasonably well for beams with
thistype of reinforcement. The beam evaluated had a simply
supported span of 2.4 m (7ft 10.5in.), wasloaded at the third
points, and had arectangular 150 x 300 mm (6 x 12in.) cross
section with areinforcing ratio of 0.4%.
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DEFLECTION OF SLENDER WALLS
ACI 318-05 (ACI Committee 318 2005) includes an approach
for design of slender walls (Section 14.8) that takes account
of PA effects when computing the maximum service load
deflection Ag at mid-height of thewall. Thisis done by setting

M

M = B (6)
1-5PJ%/48El,
to compute
5MI2
= <1./150 7
s~ Z8E.. (7

where Mg, is the maximum unfactored moment arising from
lateral loads and the effect of eccentric axial loads (not

71



Deflection (in.)
(] 4 8 12
L 1 L 1 I
(a) 5.75 " (145 mm) wall with I, /1, = 15
= 3- - 60
Q o
e, 7 =
227 e 40 2
g 4 o 2
i e 8
= - —— wall response &
‘;“ Ly S e Branson Eq. (1) [ 20
prd Bischoff Eq. (4) |
7 —-— lgr Response
0 ‘ : : ‘ : -0
0 100 200 300
Deflection (mm)
Deflection (in.)
4] 4 8 12
L | I 1
(b) 7.25 " (185 mm) wall with I, /I, = 22.5
& En - 60
Q o
< %
o =
% 40 GS)
& ~ g
— /’ —— wall response gh_’
‘gﬁ 1 7 e Branson Eq. (1) [~ 20
v Bischoff Eq. (4)
e —-— lor Response §
0 T T T i T 0
0 100 200 300

Deflection (mm)

Fig. 9—Response for: (a) 145 mm (5.75in.) thick wall (o, =
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Table 1—Summary of short-term deflections for
cantilevered slab examples

Full serviceload (D +L)
Reinforcement | Cantilever slab | Approach A, mm (in.) L/A
2m(6.5ft) span| Branson 2.2(0.09) 895
St (p = 0.29%) Bischoff 38(0.15) | 520
24m(8ft)span| Branson 8.8 (0.35) 275
(p = 0.42%) Bischoff 12.2(0.48) | 200
2m(65ft)span| Branson” | 1.1(0.043)T | 1810
(p =0.5%) Bischoff 1.1(0.043)" | 1810
GERP 2.4m (8ft) span | Branson’ 4.6 (0.18) 530
(p = 0.5%) Bischoff | 17.1(0.673) | 145
2.4m(8ft)span| Branson' 44(0.173) | 555
(p=1%) Bischoff 10.2(0.40) | 240

“Deflection calculations for GFRP slabs are based on Branson's ori gina Eqg. (1).
Deflection values based on gross (uncracked) moment of inertia

including PA effects), Pq is the unfactored axia load at
midheight including the effects of self-weight, and | . represents
thevertical distance between simple supports. I is calculated
using Branson’ sEq. (1) taking the moment M from Egq. (6), and
iterationisrequired because | and M depend on one another.
Slender walls with a centrd layer of reinforcement typicaly
have a gross reinforcing ratio (relative to the gross concrete
area) less than approximately 0.4%, and thisresultsin avery
high 14/l ratio between 15 to 30 because the effective
depth-to-height (d/h) ratio has dropped down to 0.5 (refer to
Fig. 4). Recall that d/h for beams and slabs typically varies
from 0.8 t0 0.9. When using Branson’ sequation for I, ahigh
lgf/ley ratio leads to a very tiff response and subsequent
underestimation of member deflection as explained earlier.
Figure 9 compares computed deflections with the measured
response of full sizewall tests carried out by ajoint Southern
California Chapter ACI/Structural Engineers Association of
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Southern California Task Committee on Slender Walls
(SCCACI-SEAQOSC 1982). Comparison is made for 7.3 m
(24 ft) high tilt-up wall panels that had a thickness of 145 and
185 mm (5.75 and 7.25in.), and corresponding slenderness
(/) ratio of 50 and 40. The gross reinforcing ratio for the
two wall thicknesses was 0.28 and 0.23%, respectively.
Other wall thicknesses were also tested, and each wall was
subjected to a small eccentric axia load followed by a
uniform lateral pressure applied with an air bag.

Resuitsfor the 145 mm (/1 = 15) and 185 mm (I o/l = 22.5)
thick walls are compared with the computed response using
both Branson’s equation for |, and Bischoff's alternative
approach. Calculations are based on the observed cracking
moment, and use actual dimensions and measured material
properties. The comparison is conclusive in demonstrating
the limitations of using Branson's approach when the I/l
ratio of the member cross section exceeds 3, while the
approach proposed with Eq. (4) is clearly asuitable dternative.
The ACI approach using Branson's expression predicts
service load deflections reasonably well for walls with a
doublelayer of reinforcement and subsequent higher reinforcing
ratios (SEAOSC 2005), as does the proposed approach.

DESIGN EXAMPLES

Design examples are worked out for 2 and 2.4 m (6.5 and
8 ft) long cantilevered dabs reinforced with either steel or
GFRP bars. The concrete is assumed to have a specified
compressive strength f.’ of 27.6 MPa (4000 psi). In addition
to their own self weight, each slab is subjected to an addi-
tional dead load of 0.48 kPa (10 psf), live load of 3.4 kPa
(70 psf), and permanent line load of 4.4 kN/m (300 plif) at
the end of the slab. This gives aratio of unfactored dead-to-
live load moment at the base of the cantilever of approxi-
mately 3. Immediate (short-term) deflection is calculated
under full (dead pluslive) serviceload. Long-term deflection
is not considered. Results of each design are shown in Fig. 10
and deflection values are summarized in Table 1. Specific
details of the slab calculations are provided in the Appendix.

Both of the stedl reinforced cantilever dabs have a 200 mm
(8 in.) thickness based on the minimum thickness requirement
for the shorter 2 m (6.5 ft) slab. This dab just satisfies the
minimum thickness reguirement of hy;,, = L/20 = 200 mm
(7.9in.), whereas the longer 2.4 m (8 ft) slab would need a
thickness of 245 mm (9.6 in.) to satisfy the deflection control
requirement. The steel reinforced slabs are designed for
strength and are lightly reinforced with reinforcing ratios of
0.29 and 0.42% for the shorter and longer spans, respectively.
Not surprisingly, the shorter slab exhibits a much larger
span-to-deflection (L/A) ratio using either the Branson
expression or proposed alternative approach. Note, however,
that Branson's equation under-predicts deflection in this
case by approximately 40% compared with the Bischoff
equation. For thelonger 2.4 m (8 ft) slab, Branson’ sequation
under-predicts deflection by approximately 30% and this
extragtiffnessissufficient to give an L/A ratio of approximately
275. Deflection values computed with the proposed aternative
equation give alower L/A ratio of 200 and a slab that isless
likely to satisfy deflection limits. This demonstrates that
potential problems with deflection can arise when using
Branson's value of I for lightly reinforced members. Other
factors such as the assumed value of the cracking moment
M, can also affect deflection calculations.

The thickness of the GFRP reinforced slabs was initialy
based on the ACI Committee 440 (2006) recommendation

ACI Structural Journal/January-February 2007



W = 3.35 kPa Pp= 4.4 kKN/m

Wp = 5.25 kPa (steel slab)
wp = 6.0 kPa (FRP slab)
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Fig. 10—Cantilever dab design examples. (Note: 1 mm= 0.04in.; 1 m= 3.28 ft, 1L KN-m/m =
224.8in.-1bfin., 1 kPa = 20.89 psf, and 1 kKN/m = 68.5 plf).

for minimum thickness giving hy, = L/5.5 = 360 mm
(14.2in.) for the shorter dab. Thisrecommendation was much
too conservative and gave a slab with a cracking moment M,
that exceeded even the ultimate factored moment M,,. A
more reasonabl e thickness of 235 mm (9.25 in.) is used for
this exampl e, giving a span-to-depth (L/h) ratio of 8.4 for the
shorter slab. Even at this thickness, the shorter slab does not
crack under full service load with M = 30.1 kN-m/m
(6.8 in.-kip/in.) and M, = 27.1 kN-m/m (6.1 in.-kip/in.).
Deflections based on the gross uncracked section easily
satisfy deflection criteriawith L/A equal to 1800.
Serviceability often governs design with the lower stiffness
FRP bars (Bischoff 2005a), and an initial estimate of p = 0.5%
isused for the longer 2.4 m (8 ft) dab with the same thickness
of 235 mm (9.25in.). This gives an over-reinforced beam with
plpp =1.17 and | /1, = 17.3. Branson's equation only gives
approximately 1/2 of the expected deflection compared with
the proposed approach because of the high I /1, ratio. This
results in a high L/A ratio greater than 500 because of the
unrealistically stiff response, whereas the L/A ratio isless
than 150 using the deflection value obtained with
Bischoff's approach. Note that the calculated design
strength of 76.8 kN-m/m (17.3 in.-kip/in.) is more than
adequateto resist the factored ultimate moment of 50.2 kKN-m/m
(12.3 in.-kipfin.). Creep rupture stress limits are also satisfied.
Increasing thereinforcing ratio to approximately 1% (p/py, = 2.3)
haslittle effect on deflection values cal cul ated with Branson’s
equation, but decreases deflection significantly using
Bischoff’ s approach to give an L/A ratio of 240 for this partic-
ular example. It should be noted that in all examples, the dab
is assumed fixed at the support. In most design situations it
would be necessary to add the contribution of support rotation
to obtain the total deflection at the end of the cantilever span.
Whereas it is recognized that time-dependent deflection
caused by creep and shrinkage comprise asignificant part of
the total deflection experienced by a reinforced concrete
flexure member, the intent herein isto highlight the differences
between the two approaches and demonstrate the relative
ease with which deflection can be calculated using the
proposed approach. Hence, only short-term deflections are
considered in the examples provided. Effects of long-term
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behavior can be easily evaluated using the long-term multiplier
from the ACI 318 Code, and for a dead-to-live load ratio of
3:1would give an additional long term deflection that is one-
and-a-half times the short-term val ue (assuming no sustained
liveload and aworst case scenario using a deflection multiplier
of 2.0 for sustained loads of 5 years or more). The total
deflection occurring after attachment of the non-structural
elements would then egual 1.75 times the computed short-
term values for the examples considered in this paper. For
these calculations, it is assumed that both the dead and live
load deflection values are obtained with the same effective
moment of inertia under full dead plus live load. In other
words, the member has been previously loaded up to this
load level during construction.

CONCLUSIONS AND RECOMMENDATIONS

The adoption of Branson's effective moment of inertia
expression in the 1971 and subsequent editions of the ACI
Code (ACI Committee 318 1971, 2005) was a significant
advance in recognizing the gradua transition from an
uncracked section to cracked transformed section response
withincreasing load beyond the cracking load. Thisresponse
replaced the abrupt transition at p = 500/fy in psi (3.45/f, in
MPa) as previously assumed. Branson's expression was
verified for steel reinforcement ratios greater than 1%, but
does not work well for lower steel reinforcement ratios nor
for beamsreinforced with FRP bars. Service load deflections
are also underestimated for slender wallswith acentral layer
of reinforcement. In this paper, it has been demonstrated that
an alternative formulation of the effective moment of inertia
as given by Eq. 4(a) or (b) is applicable to steel reinforced
flexure members at all ranges of reinforcement ratio as well
as FRP beams without the need to apply correction factors.
It is recommended that the effective moment of inertia
expression givenin ACI 318-05 (ACI Committee 318 2005)
be replaced with an equation of the form lo = I /[1 —
N(Mgr /Mg)?] where n = 1 — ¢, /l . This equation is simple
and as easy to use as Branson's origina expression for
control of deflection.
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NOTATION
A, = reinforcing bar area
b = beam or dab width
Cy = neutral axis depth for cracked section
d = effective depth of reinforcement
E, = elastic modulusof reinforcing bar
E. = elastic modulusof concrete
f, = barstress
f¢ = specified compressive strength of concrete
fo = concrete rupture modulus
fu = ultimate (design) strength of FRP bar
fy = yieldstressof reinforcing steel
h = beam height or slab thickness
hmin=minimum beam height or slab thickness for deflection control
I = moment of inertia
lq = cracked transformed moment of inertia
le = effectivemoment of inertia
lg = grossmoment of inertia
k= spring stiffness (kq or ky) used in spring models
ke = normalized neutral axis depth (c/d) of cracked section
ke = equivalent spring stiffness for spring models
L = beam or dab span length
lc = vertical spanfor walls
M = moment (includes PA effects for slender walls)
M, = applied service load moment
M = cracking moment
Mp = dead load moment
M_ = liveload moment
M, = nomina moment capacity
Mg = maximum (unfactored) wall moment
M, = factored moment
m = power coefficient in Eq. (4) set equal to 2
n = modular ratio (Ey/Ey)
P = axial load or moment used in spring model
P = applied beam load or axial wall load
Pp = deadlineload
Py = axia load at mid-height of wall
R, = nominal flexural resistance factor (M /bd?)
t = wall thickness
w = uniformly distributed load (Wp and w; for dead and live loads,
respectively)
oy = rectangular stress block factor for stress
B1 = rectangular stress block factor for depth of compression zone
Bg = correction coefficient used in modified Branson expression (Eq. (5))
A = deflection
A = spring displacement or rotation used in spring model
As = wall deflection
gy = barstrain
gqu = Ultimate compressive strain in concrete (3000 pie)
n = stiffnessreduction coefficient (1 —1¢/1g)
¢ = curvature
¢ = strength reduction factor
¢0g = uncracked curvature at M,
p = reinforcing ratio (Ay/bd)
pp = balanced reinforcing ratio
pg = grossreinforcing ratio (Ay/bh)
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APPENDIX
Design details of steel and FRP
reinforced concrete slabs

This appendix provides a detailed explanation of the
designs carried out for the cantilever slab examples. Design
requirements for steel reinforced concrete are based on ACI
318-05 (ACI Committee 318 2005), and requirementsfor the
FRP reinforced concrete follow the recommendations of
ACI 440.1R-06 (ACI Committee 440 2006). Whereas the
steel reinforced concrete slabs are under-reinforced to ensure
yielding of the steel before the concrete crushes, design of
the FRP slabsisbased on an over-reinforced section using an
equation for bar stress f,, based on flexure strength analysis
(see below). In this case, the concrete crushes before the
bar ruptures. The flexure capacity ¢M, for design is then
calculated using the flexure resi stance equation for nominal
strength M, = Rnbdz. Creep rupture of the glass FRP bars
under sustained loading is also considered by limiting the
bar stress under sustained service loads to 0.2f,. Other
requirements such as shear and bond strength are outside
the scope of this study.

Normalweight concrete with a specified compressive
strength of f.' = 27.6 MPa (4000 psi) is used with either
Grade 60 steel reinforcement having f,, = 415 MPa (60 ksi)
and E,, = 200 GPa (29,000 ksi), or GFRP bars with a design
tensile strength f, = 690 MPa (100 ksi) and elastic bar
modulus E,, of 40 GPa (5800 ksi). Table 2 providesadetailed
summary of calculated values for each design example.

Concrete properties

E.=4730,/f, andf, = 0.62,/f.' in MPa
E. =57,000,/f, and f, = 7.5,/f. in ps
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Stress block

o, = 0.85 and B, = 0.85-0.05( f,'— 27.6)/6.9 > 0.65
(in MPa) at g, = 3000u.e

B, = 0.85—0.05(f.'— 4000)/1000 > 0.65 (in psi)

Strength reduction factor for steel (ACI 318-05)

¢ = 0.65<[3.95 - 2(p/pp,)]/3 < 0.90
Strength reduction factor for GFRP (ACI 440.1R-06)

¢ = 0.55< 0.3+ 0.25(p/py,)] < 0.65
Flexural strength analysis

oMy > M, = 1.2Mp + 1.6M,
e Reinforcing bar ratio
p = Ay/bd

»  Balanced reinforcement ratio

fe' ewBp
po = oyt —o
; ! 1fugcuEb'ch

(note that f, is replaced by f, for steel).
e Barstress

fy = 0.5Epeqy[ 1+ 40Bfe /(pEpec,) — 1] <f, or fy
¢ Nomina flexural resistance factor

M
R, = b_dnz = pfp[1-pfy/(204f.")]

Serviceability analysis

M, (1—k,) _ M,

f,=n =
bd®(k¥/3+np(1-k;)*)  pbd*(1-k;/3)

e Cracked section properties
ler/bd® = ke %13 + np(1 — k)

with

Co = kg d kg = A/(np)2+2np—np andn = E,/E,

Deflection calculations under full (dead + live) service load:
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Table 2—Cantilever slab design details

Steel reinforced dlab GFRP reinforced slab
2m 24m 2m 24m
cantilever | cantilever | cantilever | cantilever
L: m (ft) 1981 (6.5) | 2438(8) | 1981 (6.5) | 2438 (8)
th=/;/51To O | 108(7.8) | 244(96) | 360(14.2) | 443 (175)
h: mm (in.) 203(8) | 203(8) | 235(9.25) | 235(9.25)
d: mm (in.) 178 (7) 178(7) | 210(8.25) | 210(8.25)
Mc: kN-m/m (k-ft/ft)| 22,5 (5.1) | 22.5(5.1) | 30.1(6.8) | 30.1(6.8)
Ma: KN-m/m
(k) 256 (5.8) | 36.3(8.2) | 27.1(6.1) | 385(8.7)
My KN-m/m
(k) 33.3(7.5) |47.5(10.7) | 35.1(7.9) | 50.2 (11.3)
Mg/ Mg 114 161 0.9 128
P 0.29% 0.42% 0.5% 0.5%"
No. 4 at No. 4 at No. 4 at No. 4 at
Ay 245 mm 170 mm 121 mm 121 mm
(96in) | (67in) | (475in) | (4.75in)
p/pp 0.10 0.15 117 117
[0} 0.9 0.9 0.59 0.59

Mp; kKN-m/m (k-fifft) | 37.0(8.3) | 52.8 (11.9) |129.8 (29.2)|129.8 (29.2)
OMpy: KN-m/m (k-ft/ft) | 33.3(7.5) |47.5(10.7) | 76.8 (17.3) | 76.8 (17.3)°
Mo/M,, 0.69 0.69 0.21 0.30

foam, MPa(ks) | 298 (43.2) | 296 (43.0) — 183 (26.5)
Eh@My’ ME 1489 1482 — 4568
LA 4 6.99 x 10° | 6.99 x 108 |10.81 x 108 | 10.81 x 108
lg- mmi/m (in.540 | =50y 12 | (7915) | (7915)
S A4 0.99x 108 | 1.35 x 10° | 0.63 x 108 | 0.63 x 108
e MMM (in7A0 | Z 2555 | 900 | (459) | (459
Iflor 7.1 5.2 17.3 17.3

Service load behavior| Cracked Cracked | Uncracked | Cracked

legranson: MM¥M | 5,08 x 108 | 2.70 x 108 [10.81 x 108 | 5.49 x 108

(in.4/ft) (371.6) (197.5) (791.5) (401.2)
legischoff: MMYM | 2,95 x 108 | 1.96 x 10° | 10.81 x 108| 1.47 x 108
(in4t) (215.9) (143.5) (791.5) (107.8)
Agranson: MM (in.) | 2.2(.087) | 8.8(.348) | 1.1(.043) | 4.6(.181)
(L/A)Branson 895 276 1811 532
Agischof: MM (in.) | 3.8(.150) | 12.2(.479) | 1.1(.043) | 17.1(.673)
(L/A) gischoft 521 201 1811 143

“Minimum thickness requirement for steel reinforced concrete cantilever slab
(ACI 318-05).

TMinimum thickness requirement for FRP reinforced concrete cantilever slab
(ACI 440.1R-06).

*For p = 0.95% or No. 4 at 63.5 mm (2.5in.): ¢M,, = 110 KN-m/m (24.7 k-ft/ft);
MM, = 0.23; fb@Ma = 98 MPa (14.2 ks) with bar strain of 2440 pe; fj, g5 = 72.3 MPa
(10.5ksi); Igf/ler = 9.7; Agranson = 4.4 mm (0.173in.); Agjgehoft = 10.2 mm (0.401 in.);
and L/ABischoff = 240.

8Bar stress for sustained loadi Nng, f sus = 135 MPa (19.6 ksi) < 0.2f;, = 138 MPa (20 k).

¢ Distributed loads
A =WLY8E o = MLY4E |,
*  Concentrated end load

A =PL%3E e = MLZ3E
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