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Abstract 

The evaluation and design of concrete bridges in large part depend on the transverse distribution characteristics 
of the live load carried and the service level. The live load distribution for continuous concrete multicell box-girder 
bridges varies according to bridge configuration, so when designing such bridges, it is important to determine the 
maximum negative stress at the piers, the midspan positive (tensile) stress and the deflection of the bridge when 
subjected to live loads. This paper reports an extensive parametric study to determine the maximum stress, deflection, 
and moment distribution factors for two span multicell box-girder bridges based on a finite element analysis of 120 
representative numerical model bridges. Bridge parameters were selected to extend the parameters and ranges of 
current live load distribution factors defined by AASHTO LRFD specifications. The results indicate that the span length, 
number of boxes, and the number of lanes all significantly affect the positive (tensile) and the negative (compression) 
stress distribution factors. A set of equations proposed to describe the behavior of such bridges under AASHTO LRFD 
live loads yielded results that agreed closely with the numerically derived results for the stress and deflection distribu-
tion factors.
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1 Introduction
Concrete multicell box-girder (MCB) bridges are com-
monly used for highway bridges in road networks all over 
the world. Voids are created in girders to reduce their 
weight, creating bridges that combine excellent torsional 
stiffness with elegance (Song et al. 2003). Accurately cal-
culating the design stress and deflection actions for a 
multicell box-girder bridge under service loads can be a 
complex task, however. The design stresses and deflec-
tion demands for an individual box depend on a num-
ber of parameters, including the position of the live 
loads, the web spacing, the span length, and the relative 
deck-to-girder stiffness. To simplify the design process, 

a long-standing methodology has evolved in which a 
multiple girder bridge deck is treated as a one-girder line 
or beam element (Semendary et  al. 2017; Samaan et  al. 
2002b). Early live load distribution factors were obtained 
based on the method proposed by Newmark (1938), 
which over time has been updated as improved bridge 
analysis methods have become available. The concept 
of a live load distribution factor (LDF) was first used in 
the bridge specifications issued by the American Asso-
ciation of State Highway Officials (AASHTO) in 2002 
through empirical S/D expressions (known as S-over 
equations), where S is the girder spacing and D is a con-
stant that depends on the bridge’s superstructure and 
the type of lane loading. S-over equations were used for 
bridge design for over a decade until the 8th edition of 
AASHTO’s LRFD Bridge Design Specifications (2017) was 
published.

An extensive study on bridges constructed using pre-
stressed concrete girders, steel girders and T-beams 
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(Hays et al. 1986) indicated that neglecting the effect of 
span length of bridges on LDF produces unconservative 
values for short span bridges and uneconomical designs 
for medium size bridges. Given the increasing demand 
for highway bridges, several researchers have sought to 
develop new equations for LDFs that take into account 
shear and bending moments (Huo et  al. 2003; Zokaie 
et  al. 1993; Bae and Oliva 2012; Terzioglu et  al. 2017). 
The LDF formulae presented in the latest edition of the 
AASHTO LRFD Bridge Design Specifications (2017) are 
based on extensive numerical and field tests performed 
on bridges with various geometries (Zokaie et al. 1993), 
but their accuracy has not been reevaluated in the light 
of recent research in this area. In addition, these speci-
fications do not provide sufficient details to justify and 
confirm the accuracy of the modification factor for con-
tinuity that has been proposed (Samaan 2004; Barr et al. 
2001; Higgins et al. 2011; Hughs and Idriss 2006). At pre-
sent, the following equation is generally used to derive 
the LDF for each bridge girder (Fanous et al. 2010):

where LDFi = live-load distribution factor of the ith 
girder; Li = moment or deflection of ith girder, ∑Li = sum 
of all girder actions; and n = number of bridge girders 
(bridge webs in box-girder bridges).

AASHTO LRFD (2017) adopted the proposed equation 
by Zokaie et al. (1993) for live load distribution factors of 
multicell box-girder bridges with two or more lane load-
ing as follows:

where Nc and S are the number of boxes and width of 
each box, respectively, and L denotes the span length of 
bridge. Although various equations have been proposed 
(Zokaie 2000; Samaan et al. 2002a; Huo and Zhang 2008) 
cover a wide range of bridge geometries and are neces-
sarily simplified, because of the limited number of cases 
examined, these equations must be modified for use 
under real world traffic conditions (Mohseni and Khalim 
2013; Deng et al. 2017; Deng and Phares 2016). This paper 
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presents the results of parametric studies conducted on 
120 continuous two and three span MCB bridges. The 
parameters that have been varied are the span lengths, 
the number of boxes, and the number of traffic lanes. 
The resulting empirical equations were determined based 
on a statistical analysis and the elastic response of each 
bridge for the standard AASHTO (2014) truck loading 
in order to estimate the live load distribution across a 
bridge. Statistical analyses were performed using best-
fit technique of least squares method adopted from the 
NCHRP rep. 12–26 (Zokaie et al. 1993).

2  Objectives
The main objective of this study was to evaluate the 
LDFs for concrete MCB bridges with two equal spans 
under vehicle loads using finite element analysis (FEA). 
One-hundred twenty numerical models were analyzed 
to: (a) determine the influence of each of the parameters 
affecting the prototype bridge responses; (b) produce a 
database for negative (compression) and positive (ten-
sile) distribution factors corresponding to the AASHTO 
(2014) live loads; and (c) develop a set of empirical equa-
tions for a bridge’s stress and deflection distribution 
factors under AASHTO-LRFD live loads. As previous 
sensitivity studies revealed that changing the slab thick-
ness has an insignificant effect on the live load distribu-
tion factors (Huo et al. 2003; Huo and Zhang 2008), only 
the following parameters were investigated in this study: 
the span length, the number of lanes and the number of 
boxes. The superstructure is idealized using the follow-
ing assumptions: (a) all materials are elastic and homog-
enous; (b) the slab has a constant thickness; (c) the slab 
and girder exhibit full composite action; (d) the effects 
of the curbs and web slope are ignored; and (e) the skew 
angle of the bridges is less than 30°.

3  Geometric and Structural Properties
One hundred twenty MCB bridges were modeled for 
this study. The bridges were simply supported with two 
continuous equal spans of varying length. Table 1 shows 
the cross sectional configurations obtained for a span-to-
length ratio of 24, which has been shown to be the most 
economical arrangement (Hall et  al. 1999). The bridges 
were designed and optimized using CSIbridge soft-
ware based on the AASHTO LRFD (2017) bridge design 

Table 1 Geometry of the bridges used in the parametric study (unit: m).

Set L (m) NB NL Wr WTotal d′ d″ dw Lc

1 (30.5, 45.75, 61, 76.25, 91.50) 2, 3 1, 2 9.10 13.00 0.20 0.15 0.10 0.61

2 2, 3, 4 1, 2, 3 14.0 16.70 0.20 0.15 0.10 1.20

3 3, 4, 5, 6 2, 3, 4 17.1 24.00 0.20 0.15 0.10 1.45
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specifications. Figure  1 provides a visual representation 
of the definitions of the cross sectional symbols Wtotal 
(the total width of the bridge), Wr (the width of the road 
way of the bridge), Lc (the length of the cantilever), d′ (the 
thickness of the top flange), d″ (the thickness of the bot-
tom flange), NB (the number of boxes), B (the width of 
the boxes), D (the depth of the boxes) and L (the length of 
the span) used in Table 1. In order to cover a wide range 
of bridge spans, five different lengths ranging from 30.5 
to 91.5 m were considered. It should be noted that a large 
number of highway bridges constructed in the US during 
the past decades had span lengths between 75 to 90  m. 
Bridges carrying two, three and four lanes of traffic (NL) 
were considered in this study; the total bridge width was 
taken to be 9.1 m for two traffic lanes, 14.0 m for three 
lanes and 17.1  m for four traffic lanes. Practical ranges 
were selected based on Zheng’s (2008) study of the box 
girders in box-girder bridges. For all the bridges used in 
these parametric studies, the modulus of elasticity of the 
concrete (Ec), Poisson’s ratio (υc) and weight per unit vol-
ume were 22.80 GPa, 0.20, and 23.6 KN/m, respectively. 
The modulus of elasticity (Es) and Poisson’s ratio of steel 
(υs) were 200 GPa and 0.3, respectively. The top and bot-
tom slab thicknesses were 20 cm and 15 cm, respectively.

4  Bridge Prototype Modeling
The commercially available finite element program, CSI-
bridge version 20 Computers & Structures, Inc. (2017), 
was used in this study to evaluate the structural behaviors 
of MCB bridges; prototype model properties defined par-
ametrically are the layout reference line, spans, and sup-
port conditions. In this study, the prototype bridges are 
modeled using a four node, three-dimensional shell ele-
ment with six degrees of freedom at each node. The top 
and bottom shell element of the webs are integrated with 
the top and bottom slab at connection points to improve 
the compatibility of the deformations obtained (Mohseni 
et al. 2014). The bridge modeling was verified by compar-
ing the live load distribution factor (LDF) derived from 
field tests with those from the method adopted here. 
Boundary conditions were simulated as being hinge-
bearing at the beginning abutment and roller-bearing for 
all other supports. Figure 2 shows a finite element model 
of a 61  m three-box multicell box-girder bridge. The 
results of two study were used to verify the finite element 
modeling method used in this study.

Fig. 1 Definitions of cross sectional symbols and idealized girders for MCB bridges.
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4.1  Field‑Testing Study on Tsing Yi South Bridge
The results of a field test study conducted by Ashebo et al. 
(2007) were employed to verify the results of finite ele-
ment modeling technique using SAP2000 software. The 
duplicated Tsing Yi South Bridge in the New Territories 
west in Hong Kong was selected for this study. The bridge 
is a three-span continued structure with a skew angle of 
27°, total length of 73 m, and two lanes with a carriage-
way. The modulus of elasticity and weight of concrete are 
26 GPa and 24.5 GPa, respectively. The bridge configura-
tion and boundary conditions are presented in Fig. 3.

The modal test was mainly conducted to obtain the 
dynamic responses of the bridge such as the fundamen-
tal frequencies and the mode shapes. The technique 

adopted in this study was the ambient vibration test. 
The dynamic responses of the bridge subjected to con-
trolled traffic conditions were also evaluated. Table  2 
tabulated the results obtained from three experimental 
modal tests as well as those obtained from randomly 
selected controlled traffic. The analytical results from 
3-D FEA of the selected bridge were also taken from 
Ashebo et  al. (2007). To verify the adopted bridge 
modeling method, the fundamental frequencies of the 
selected bridge obtained from CSIbridge were pre-
sented in Table  2. The bridge was meshed with 396 
four-node shell elements. It was observed that the 
results from CSIbridge were in good agreements with 
field test results so that for most cases the modeling 
method of this study obtained more compatible results 
than those of analytical method by Ashebo et al. (2007).

Figure  4 shows the comparison of the experimental 
and numerical mode shapes and first fundamental fre-
quency. It can be seen that the first mode shape from 
field tests was 6.5% higher than that from CSIbridge. 
The LDF and dynamic load allowance (DLA) from 
experimental study were 1.24 and 0.24, which had good 
agreements with 1.26 and 0.26, respectively, from FEA. 
It, therefore, was proved that the finite element mod-
els adopted in this study could reliably simulate the 
responses of multicell box-girder bridges.

Fig. 2 Finite element model of a typical three-boxes bridge with 
L = 30 m.

Fig. 3 Bridge configuration and boundary conditions.
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4.2  Scaled Two‑box Bridge Under Concentrated Loads
Li (1992) presented the experimental studies on a scaled 
two-span box-girder bridge subjected to self-weight and 
concentrated loads at mid-span, which were used to ver-
ify the modeling methodology adopted in this study. The 
plan view and cross-section of bridge are shown in Fig. 5. 
The solid end diaphragms were installed at abutments 
and piers, and loaded eccentrically over the outer webs. 
Figure 6 shows the comparison between distributions of 
stress and deflection for selected bridges obtained from 

Li’s study, CSIbridge software, and conventional beam 
theory.

5  Loading Conditions
This study adopted the HL-93 truck loading designated 
in the AASHTO LRFD (2017) (Fig. 7). The HL-93 design 
truck consists of a design truck plus design lane load or 
design tandem plus design lane load, whichever induces 
the worst case. For the finite element modeling, as many 
truck as possible were located on a bridge’s superstruc-
tures in the transverse direction based on the number 
of lane loaded. Maximum positive (tensile) stress and 
deflection were evaluated for the addition of each truck, 
side-by-side, and finally the maximum values were 
obtained (Zokaie 2000). Figure 8 shows the HL-93 truck 
loading cases in the transverse direction of bridge to find 
the critical loading configurations.

The combination of 90% of two trucks spaced a mini-
mum distance of 15.20  m apart plus 90% lane load was 
used in this study to obtain the negative (compressive) 
stress at the piers of bridges based on AASHTO LRFD 
(2017) specifications (Fig. 9). The AAHTO LRFD vehicu-
lar live loads are available in the library of the CSIbridge 
software. Based on the AASHTO LRFD specifications, 
multiple presence factors of 1.00, 0.85 and 0.65 for two, 
three, and four lane loading, respectively, were also 
applied in this study.

6  Live Load Distribution Factor (LDF)
The MCB cross section was modelled as an equivalent 
I-beam with the same size and web properties as those 
commonly used in MCB bridges, as shown in Fig. 1b, with 
each equivalent girder consisting of one web and its associ-
ated top and bottom concrete flanges. To calculate the dis-
tribution factors for the maximum positive stresses, Dσpo , 
and negative stresses, Dσne , the two continuous equal span 
model girders were loaded with the total AASHTO LRFD 
live loads to produce the maximum positive moment, M+, 
near the midspan and the maximum negative moment, 

Table 2 Comparison between field test and FEA.

* Means undetermined values in field-testing.

Mode number 1 2 3 4 5 6 7 8

Ashebo et al. (2007)

 SAP2000 4.54 4.81 6.70 7.53 10.40 10.78 14.72 16.34

 Field test

  1st 4.46 * 6.25 7.82 * 10.87 13.67 15.74

  2nd 4.61 * 6.22 7.73 * 10.81 13.30 15.74

  3rd 4.58 * 6.39 7.76 * 11.11 13.31 15.73

Control traffic 4.58 * 6.15 * * * * *

CSIbridge 4.47 4.88 6.45 7.62 10.22 11.07 14.33 16.03

Fig. 4 First mode shapes from the experiment and numerical studies.
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M-, at the interior support. The maximum positive (tensile) 
stress, σp,I , and negative (compression) stress, σn,I , at the 
bottom fiber were calculated using a simple beam bend-
ing formula. The maximum positive (tensile) stress, σp , and 
negative (compression) stress, σn , for the bridges were then 
obtained for the three-dimensional bridges using FEA. The 
resulting distribution factors for positive (tensile) and nega-
tive (compression) stress were calculated as follows:

The distribution factor for maximum deflection was 
calculated in the same manner as that used for maximum 
stress. The maximum deflections, δmax , for the bridges 
were obtained directly from FEA. The simple ideal girder 
was loaded to determine the maximum deflection, δs , at 
the midspan, giving the distribution factor for maximum 
deflection, Dδs , in a continuous sophisticated bridge as:

(2)Dσpo =
σp

σp,I

(3)Dσne =
σn

σn,I

(4)Dδs =
δmax

δs

Fig. 5 Plan view and cross-section of bridge.

Fig. 6 Distribution of stress and deflection from various methods.
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7  Discussion of Results
Parametric studies were performed on straight MCB 
bridges (θ = 0) with two continuous spans. The live load 
stress and deflection distribution factors were obtained 
using FEA for various types of MCB bridges. The 
effects of various structural parameters on stress and 
the deflection distribution factors were investigated to 
identify the parameters affecting the load distribution 

factors under live loads. The following results were 
obtained.

7.1  Effect of the Number of Boxes
The relationship between the number of boxes (NB) and 
the stress distribution factors is shown in Fig.  10. The 
results reveal that both Dσpo and Dσne decreased as NB 
increased. For instance, Dσpo increased from almost 27% 
to 32% when NB went up from three to four. The effect 
of NB was more significant when the span lengths were 
shorter. The effect of NB on the deflection distribution 
factors is shown in Fig. 11a. Here, Dδs decreased as the 
number of box increased, by up to 32% for bridges with 
a span length of 60 m. The same trend is also visible for 
bridges with other span lengths.

7.2  Effect of the Number of Lanes
The results obtained for different numbers of lanes (NL) 
are shown in Figs.  11b and 12. Here, as the number of 
lanes increased the LDFs for tensile and compression 
stress and deflection also increased, even after account-
ing for the modification factor applied due to multiple-
lane loading. The stress distribution factors increased by 
almost 23% when the number of lanes rose from two to 
three.

7.3  Effect of Span Length
As the span length increases, the distribution factors for 
maximum positive (tensile) stresses increase but those 
for negative (compression) stresses decrease as shown in 
Figs.  10 through Fig.  12. For instance, it is shown from 
Fig.  12 that the increment of the span length from 30.5 
to 91.5  m decreased LDFs for tensile and compressive 
stresses by up to 11% and 33%, respectively. Similarly, the 
LDFs for deflection also decreased as the span length of 
bridges increased. As shown in Fig. 11, LDFs for deflec-
tion decreased with increasing the span length from 
45.75 to 91.5 m by 15%.

7.4  Comparison of Analytical Results with Current 
Specifications

The analytical results obtained for both the posi-
tive (tensile) and negative (compression) stresses for a 
bridge with a span length of 60 m were compared with 
those given by the LFRD formulas and AASHTO stand-
ards specifications (Fig. 13). Interestingly, the distribu-
tion factors for tensile stresses obtained from FEA were 
significantly smaller than those calculated using the 
current AASHTO (2002) standard and AASHTO LRFD 
(2017) specifications by 33% and 46%, respectively. Cur-
rent AASHTO standard and specifications, therefore, 
provide highly conservative values for tensile stress 
distributions on bridge superstructures. In the case of 

Fig. 7 HL-93 design truck.

Fig. 8 HL-93 truck loading cases in the transverse direction of bridge.

Fig. 9 Longitudinal truck load positioning for determining negative 
stress.
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compressive stresses, the differences between FEA and 
AASHTO were reduced. The live load distribution fac-
tors calculated using FEA were higher than those from 
the LRFD formulas (Eq. (2)) by 13%, but they were still 
smaller than those obtained from the AASHTO (2002) 
standard. This is likely because these specifications rec-
ommend the corresponding bending moment distribu-
tion factors to compute the maximum stress on bridge 
superstructures. This indicates a need to develop new 
equations with which to calculate live load distribution 
factors for compressive stress, tensile stress and deflec-
tion that are closer to the actual values.

8  Empirical Formulae for the Stresses 
and the Deflection

Samaan et  al. (2002a) obtained the following empirical 
formulas for the maximum positive (Dσp,sb) and negative 
(compression) distributions of stress (Dσn,sb) , and for the 
deflection distribution factor (Dδs,sb) for steel spread open 
box girder bridges:

(5)Dσp,sb =
1.35× N 0.65

L

NB × L0.06
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Since the key parameters determining the stress dis-
tribution factor for the two types of superstructure are 
similar, in this section appropriate correction factors are 
identified to modify Eqs.  (5)–(7) in order to calculate 
Dσpo , Dσne and Dδs for MCB bridges.

8.1  Positive Stress Distribution Factor
To calculate Dσpo for multicell box girder bridges, the 
value for Dσp,sb obtained from Eq.  (5) can be multiplied 

(6)DσN ,sb =
0.65× N 0.7

L × L0.06

N 0.9
B

(7)Dδs,sb =
1.68× N 0.65

L

NB × L0.13

by a correction factor (Fp). Hence, the positive stress dis-
tribution factor becomes:

where

It is assumed that Fp is an exponential function of the 
form, axb, where x is the value of the given parameter and 
the constants, a, b1, b2 and b3, are obtained via regression 
analyses using the FEA data. To determine these constants, 
the ratio of the positive (tensile) stress distribution factor, 
R1, calculated from FEA using Eq. (5) was plotted as a func-
tion of the span length (L); the results are shown in Fig. 14a.

Then, the minimum least square fit of the logarithm of 
the L-R1 data shown in Fig. 14a is carried out to develop 
the following equation:

Equation (10) indicates the ratio of live load distribution 
factor obtained from FEA to that from proposed equation 
by Samaan et al.  (2002a) as a function of span length. The 
term L0.023 in Eq.  (10) represents the term Lb1 in Eq.  (9). 
Hence, b1 is equal to 0.023. The scatter shown in Fig. 14a is 
due to the absence of the other key parameters, NB and NL, 
in the Eq. (9). In order to remove this error, the effects of 
these remaining parameters should be taken into account. 
For this purpose, the ratio of R2 is first determined with the 
following equation:

where R2 indicates the ratio of the positive (tensile) stress 
distribution factor obtained from the finite element 

(8)Dσpo = Fp × Dσp,sb

(9)Fp = a× f (Lb1,Nb2
B ,Nb3

L )

(10)R1 = 0.936L0.023

(11)R2 =
Dσp,FEA

R1× Dσp,sb
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method to that calculated from Eq.  (4) correlated with 
respect to L. Then, the ratio R2 is plotted as a function 
of the number of boxes, as shown in Fig. 14b. The mini-
mum least square fit of the logarithm of the data shown 
in Fig. 14b is then carried out to determine Eq. (12).

The term N−0.13
B  in Eq. (12) is equivalent to the term Nb2

B  
in Eq.  (9), so b2 is equal to − 0.13. The remaining param-
eters can be obtained by following a procedure similar to 
that described above. Then, the parameter b3 is calculated 
as − 0.18 using the data shown in Fig. 14c and applying a 
regression method. Similarly the constant “a” in Eq.  (9) is 
obtained as 0.936× 1.184 × 1.30 = 1.44 by multiplying the 

(12)R2 = 1.184 × N−0.13
B

coefficients in front of the variables L, NB, and NL calculated 
following the procedure described above. Equation (13) rep-
resents the final form of the correction factor, Fp;

Thus, the proposed equation for the positive (tensile) 
stress distributions in MCB bridges developed from 
Eq. (5) becomes:

(13)Fp =
(1.81× L0.023)

N 0.13
B × N 0.18

L

(14)Dσpo =
2.01N 0.51

L

L0.04N 1.2
B

a Effect of R1 on L b Effect of R2 and NB

c Effect of R3 and NL
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Fig. 14 Minimum least square fit to determine effect of various parameters on tensile stress distribution factors.
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8.2  Negative (Compression) Stress Distribution Factor
To find an equation for the negative stress distribution 
factor, Dσne , for MCB bridges, Dσn,sb from Eq. (6) can be 
multiplied by a correction factor, FN. This correction fac-
tor is assumed to have a form similar to that shown in 
Eq.  (9), so using a similar process to that utilized in the 
previous section, FN becomes:

The proposed equation for the negative stress distri-
bution in MCB bridges that is equivalent to Eq. (6) then 
becomes:

8.3  Distribution Factor for Deflection
The distribution factor for maximum deflection, Dδs, was 
determined in the same manner as in the previous sec-
tion for the stress distribution factor. Here, Eqs. (17) and 
(18) were utilized to calculate the distribution factor, DF, 
and deflection factor, Dδs, respectively, for MCB bridges:

9  Verification of the Proposed Equations
The formulae obtained for the stress distribution factors 
given in Eqs.  (14) and (16) and the deflection distribu-
tion factor from Eq.  (18) were then verified by compar-
ing their outputs against the available FEA results. For 
this purpose, the distribution factors obtained using the 
new equations proposed here and those from the FEA 
and from Eqs.  (5)–(7) were plotted as a function of NL, 
NB, and L. The comparison of DFs is shown in Fig.  15. 
They suggest that Samaan’s equations (Samaan et  al. 
2002a) predict highly unconservative values of positive 
(tensile) and negative stress distribution factor for the 
range of values of L, NB and NL utilized in this research. 
However, the new equations proposed here produce 
reasonable estimates for both the positive (tensile) and 
negative stress distribution factors for MCB bridges, as 
demonstrated by the average (AVG) and standard devia-
tion (STD) for the ratio of the proposed equation to the 
FEA results presented in Table  3. The AVG is almost 
unity, which indicates that the proposed equations can be 
used conservatively to predict stress distribution factors, 

(15)FN =
10.68

L0.25 × N 0.29
B × N 0.80

L

(16)Dσne =
5.38× N 0.52

L

L0.19 × N 1.19
B

(17)DF =
4.3

L0.04 × N 0.25
B × N 0.25

L

(18)Dδs =
7.23× N 0.4

L

L0.17 × N 1.25
B

while the low value for STD indicates that the proposed 
equations offer a useful approach for predicting the cor-
responding distribution factors. The values obtained for 
the coefficients of determination (R2) of 0.918, 0.934 and 
0.968 for the positive (tensile) stress, negative stress and 
deflection distribution factors, respectively, confirm the 
acceptably low variability of the data. 

10  Applicability of the Proposed Equations 
for Three and Four‑Equal‑Span Bridges

The empirical Eqs. (14) through (16) for the various dis-
tribution factors were developed taking into account the 
variations in the span length, number of boxes, and num-
ber of lanes. In this section, the applicability of proposed 
equations for MCB bridge with three and four-equal-
spans are assessed, and three box-girder bridges with 
two, three and four equal-span-length of 45 m were mod-
eled. The distribution factors were determined through 
dividing the straining action obtained from the FEA by 
the corresponding straining action determined from the 
idealized girder as described in Sect.  6. The results for 
the tensile and compressive stress and the deflection for 
the selected bridges are compared in Fig. 16. The live load 
distribution factors remain almost constant irrespective 
of the number of spans. The fluctuations of less than 2% 
for both stress and deflection confirm that these factors 
do not depend on the number of spans if the distribution 
factors obtained from the adapted equations are applied.

11  Conclusions
Extensive analytical study was undertaken to establish 
the static characteristics of continued multicell box-
girder bridges under vehicle loading conditions. A com-
prehensive literature review was carried out to set up the 
basis for this research work. The results of the literature 
review indicated a lack of adequate expressions to pre-
dict the distribution factors for these types of bridges. 
The distribution factors included in the AAHTO LRFD 
specifications were derived based on the grillage analogy, 
which does not accurately represent the complex nature 
of three-dimensional bridge structures. Given this lack of 
information, this study developed a new set of equations 
to calculate these distribution factors for MCB bridges, 
which would provide a new design methodology for 
design engineers and code writers seeking to carry out 
parametric studies for these kind of bridges. Based on 
the findings of our analytical investigations, the following 
conclusions can be drawn:

1. The three-dimensional finite element modeling 
developed herein was verified with results of field and 
laboratory tests. It was concluded that the adopted 
modelling method are able to accurately estimate the 
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elastic responses as well as free vibration characteris-
tics such as mode shapes and natural frequencies for 
the bridges.

2. The live load distribution factor for bending moment 
of AASHTO (2002) standard and AASHTO LRFD 
(2017) specifications were reviewed for applicability 
to MCB bridges. It was revealed that they obtain con-
servative values for tensile stresses and unconserva-
tive values for compressive stresses. Furthermore, 
these codes are unable to estimate the live load dis-
tribution factors for maximum deflection. The newly 
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c Deflection distribution factor
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Fig. 15 Comparison of the DFs.

Table 3 Average, standard deviation and  variance 
of the ratios for the DF equations.

Distribution factor (DF) AVG STD Variance

Positive (tensile) stress distribution factor, 
Eq. (14)

1.0530 0.0640 0.00410

Negative stress distribution factor, Eq. (16) 1.0220 0.0610 0.00380

Deflection distribution factor, Eq. (18) 1.0030 0.0710 0.00500



Page 13 of 14Choi et al. Int J Concr Struct Mater           (2019) 13:22 

proposed live load distribution factor equations were 
developed for tensile and compressive stresses and 
deflection, which provided conservative results with 
respect to finite element analysis.

3. Based on the results of parametric study, it was con-
cluded that the span length, number of lanes and 
number of boxes are the most crucial parameters 
that could affect the load distribution factors of such 
bridges. The proposed parameters, therefore, were 
developed as a function of these key parameters.

4. Empirical equations were derived for live load dis-
tribution factors of maximum tensile stresses at the 
bottom fiber of box-girders along the span, compres-
sive stresses at the bottom fiber of box-girders at the 
pier, and deflection along the span of two-equal span 
MCB bridges. The proposed equations can be applied 
in the design of equal-span continuous bridges with 
number of spans up to four. They can be also applica-
ble under AASHTO LRFD truck loading.

Abbreviations
a, b1, b2, b3: Constants for regression analyses; AVG: Average; B: Width of the 
boxes; D: Depth of the boxes; d′: Thickness of the top flange; d′′: Thickness of 
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: Ratio of the positive (tensile) stress distribution factor; S: Width of each box; 
STD: Standard deviation; Wr: Width of the road way of the bridge; Wtotal: Total 
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a simple beam bending formula; σp: Maximum positive (tensile) stress for the 
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