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Abstract 

While internal and external unbonded tendons are widely utilized in concrete structures, an analytical solution for the 
increase in unbonded tendon stress at ultimate strength, �fps , is challenging due to the lack of bond between strand 
and concrete. Moreover, most analysis methods do not provide high correlation due to the limited available test data. 
The aim of this paper is to use advanced statistical techniques to develop a solution to the unbonded strand stress 
increase problem, which phenomenological models by themselves have done poorly. In this paper, Principal Com-
ponent Analysis (PCA), and Sparse Principal Component Analysis (SPCA) are employed on different sets of candidate 
variables, amongst the material and sectional properties from a database of Continuous unbonded tendon reinforced 
members in the literature. Predictions of �fps are made via Principal Component Regression models, and the method 
proposed, linear models using SPCA, are shown to improve over current models (best case R2 of 0.27, measured-to-
predicted ratio [λ] of 1.34) with linear equations. These models produced an R2 of 0.54, 0.70 and λ of 1.03, and 0.99 for 
the internal and external datasets respectively.
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1  Introduction
The use of unbonded tendons, either internal or exter-
nal, increases cost-efficiency, provides aesthetic sat-
isfaction for users, and achieves fast and efficient 
construction (Cooke et al. 1981; Naaman 2005; Roberts-
Wollmann et  al. 2005). However, analysis of structures 
using unbonded tendons is exceptionally difficult and has 
been the subject of many international research projects, 
most of which attempt to simplify the problem consider-
ably. Although numerous studies have been conducted to 
estimate the tendon stress increases at nominal strength, 
the analytic solution for the increase in unbonded ten-
don stress ( �fps ) is challenging due to the lack of bond 
between strand and concrete, and most analysis methods 

do not provide high correlation due to the limited avail-
able test data (Maguire et al. 2017).

Current design for unbonded tendon reinforced mem-
bers in the United States uses American Concrete Insti-
tute 318 (ACI 318) (ACI 2008):

or American Association of State Highway and Trans-
portation Officials Load and Resistance Factor Design 
(AASHTO LRFD) (AASHTO 2010) guidelines:

Both of the above methods are relatively easy for imple-
mentation in design. However, there are concerns with 
both. The ACI model is a curve fit to statistical data 
from only a handful of experimental data prior to 1978 
(Mojtahedi and Gamble 1978; Mattock et al. 1971). The 
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AASHTO method is not dependent on an experimental 
curve fit for �fps, but is dependent on an estimation of 
the scaled plastic hinge length (ψ) from Tam and Pan-
nell (1976). The ACI method especially is well liked by 
designers due to its simplicity for design.

There are considerably more prediction meth-
ods available in the literature as well as international 
design codes. Maguire et  al. (2017) performed an in-
depth review of various prediction methods based on 
the common mechanisms and empirical assumptions. 
The collapse mechanism model uses the relationship 
between strain, angle of rotation and applied load. The 
AASHTO LRFD method based on Roberts-Wollmann 
et al. (2005) and MacGregor (1989) is considered a col-
lapse mechanism model. Other collapse mechanism 
models have been developed by the British Standard 
Institution (BSI 2001) and Harajli (2011) among oth-
ers. Another category, called bond-reduction models, 
calculates a bond-reduction coefficient (Ω) to reduce 
the strength of a cross section unbonded reinforce-
ment. Probably the most well-known bond reduction 
model was introduced by Naaman and Alkhairi (1991) 
and at one time was accepted in the 1994 AASHTO 
LRFD code, but later replaced in the 1998 AASHTO 
LRFD and also included statistical fitting to some 
degree. Alternatively, statistical analysis methods 
have been developed using the available experimental 
data of their time. The 1963 ACI code (ACI 1963) and 
European design codes, including German (DIN 1980) 
and Swiss (SIA 1979) codes, are widely accepted for 
design and real world application, and are statistically 
based. The 1963 and current ACI methods purposely 
under-predict strand stress increase in most cases and 
when compared to other methodologies provide closer 
to a lower bound prediction as opposed to an accurate 
prediction.

Maguire et al. (2014, 2017) indicated considerable phe-
nomenological difference between Continuous unbonded 
tendon reinforced members, which are common, and 
simply supported members, which are uncommon in 
design. Interestingly, most methods from the literature 
compared prediction performance to a majority of simply 
supported members. In response, Maguire et  al. (2017) 
compiled the largest known international database of 83 
Continuous members, illustrating the dearth of data on 
this subject. This database only contains tests that have 
vetted and valid test setups and strand stress measure-
ment. Considerable discussion was made to make clear 
the reasons for inclusion or exclusion of many test pro-
grams and even outlines future experimental needs. In 
order to consider multiple variables including internal 
and external tendons, Maguire et al. (2017) also suggested 
an update to the AASHTO LRFD collapse mechanism 

model (ψ = 14 and ψ = 18.5 for internal and external ten-
dons, respectively) based on statistical analysis and found 
nearly all types of prediction methods to have very low 
prediction accuracy with best case fit statistics R2 of 0.27 
and a best measured-to-prediction ratio (λ) of 1.34, nei-
ther of which indicates ideal prediction.

With the overall lack of available data and targeted 
research programs to drive improved phenomenological 
models for unbonded tendon reinforced structures, a sta-
tistical approach may provide the best prediction for �fps 
(McKinney 2017). The advantages of a statistically based 
model are clear. Like the ACI equation, statistical models 
can be easily implemented, do not require excessive design 
time, and do not burden the engineer with several design 
iterations (e.g., bond reduction and collapse mechanism 
models). Furthermore, they can be optimized to fit the 
data and cross validation used to verify their accuracy.

The aim of this paper is to use advanced statistical 
techniques to develop a solution to the unbonded strand 
stress increase problem, which phenomenological mod-
els have done poorly (Maguire et al. 2017). While many 
engineers would prefer a phenomenological model, many 
also have affinity for the purely empirical ACI equa-
tion, which does not require complicated analysis, but 
has noted shortcomings. In this paper the authors pre-
sent a novel approach to predict the increase in tensile 
strength in unbonded tendons using Principal Compo-
nent Analysis (PCA), and Sparse Principal Component 
Analysis (SPCA). PCA is a statistical procedure to select 
significant variables by converting the variable informa-
tion into the orthogonal base set (Jolliffe 2002). PCA has 
gained considerable popularity in structural engineering 
in recent years in combination with machine learning 
and structural health monitoring (Yan et al. 2008; Zhang 
et  al. 2014) vibrations (Kuzniar and Waszczyszyn 2006; 
Hua et al. 2007; Kesavan and Kiremidjian 2012; Zolghadri 
et al. 2016; Zolghadri 2017) and image based crack detec-
tion (Abdel-Qader et  al. 2004) because it is especially 
useful for analyzing large dataset with many variables. 
SPCA uses the Least Absolute Shrinkage and Selection 
Operator (LASSO) to reduce the contribution of rela-
tively insignificant principal coefficients in the proposed 
statistical model, which simplifies the model further (Zou 
et  al. 2006; Chang et  al. 2017). Ultimately, the LASSO 
technique identifies the most important variables from a 
larger set in order to develop the most effective predic-
tion equation with limited human influence.

The experimental and analytical literature is some-
what mixed on what the most important variables are 
for predicting tendon stress increase. Hemakom (1970) 
and Gebre-Michael (1970) tested five Continuous, one-
way, slabs varying concrete strength the level of prestress, 
prestressing reinforcing ratio and pattern loading. They 
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found the percentage of prestressed reinforcement var-
ied inversely with �fps , while concrete strength varied 
directly with �fps , while the level of effective prestress 
had no effect. Chen (1971) performed similar tests on 
two, one-way, slabs and found the distribution of cracks 
and moment capacity of the member were increased by 
including bonded reinforcement.

Trost et  al. (1984) found the main factors influencing 
their experiments were compressive strength of the con-
crete and the level of prestress, and that �fps was propor-
tional to the sum of the deflections at the critical sections, 
while span-to-depth ratio was insignificant. Harajli and 
Kanj (1991) tested 26 simply supported beams with 
internal unbonded tendons. Beams varied span to depth 
ratio, loading, mild and prestressing reinforcement. This 
study found that as the mild reinforcing ratio decreased, 
the �fps increased. Additional observations were that the 
type of loading (single point load or third point loads) 
and the span-to-depth ratio (ranging from 8 to 20) did 
not affect tendon stress increases, contradicting many 
analytical and experimental studies (Mojtahedi and Gam-
ble 1978; Naaman and Alkhairi 1991; Lee et al. 1999).

Harajli et  al. (2002) performed tests on nine, two-
span Continuous, externally pretressed beam members 
and found that the geometry of load within a span, area 
of external prestressing steel and second order effects 
reduce �fps . A reduction in steel stress with increase of 
span-to-depth ratio was also noticed and attributed to its 
influence on plastic hinge length and rotation capacity.

Lou and Xiang (2006), validated a finite element model 
on the Harajli and Kanj (1991) dataset. This numerical 
investigation found that a significant increase in �fps can 
be found with an increase of yield stress of the bonded 
reinforcement. Furthermore, the stress increase was 
shown to decrease significantly with an increase of the 
combined reinforcing index, but this was attributed to 
the change in mild steel reinforcing index, verifying simi-
lar behavior from Du and Tao (1985).

Ozkul et  al. (2008) performed an experimental inves-
tigation of 25 simply supported members with internal 
unbonded tendons. The experimental results showed 
effective prestressing and area of prestressed rein-
forcement, but mild steel and concrete strength were 
not important even though plastic hinge lengths were 
affected by the mild steel provided. There was an inverse 
relationship noted between �fps and the prestressed rein-
forcement indices that was attributed to sharing of tensile 
force between prestressed and nonprestressed reinforce-
ment. Lou et al. (2013) in a numerical investigation, cali-
brated a FEM to two-span members tested by Harajli 
et  al. (2002) indicated that �fps in external tendons of 
Continuous beams is most strongly related to rotational 
capacity and non-prestressed reinforcement.

The above summary of experimental and analytical 
literature conflicts on nearly every investigated variable. 
The reason for this is likely the relatively focused nature 
of their investigations. In order to identify the variables 
that are most important, this paper uses the LASSO 
technique with SPCA to identify the variables of most 
importance from a large dataset.

This paper focuses on improving the accuracy of �fps pre-
dictions for internally and externally reinforced unbonded 
tendons separately. Sets of candidate variables, amongst the 
material and geometric properties from the database com-
piled by Maguire et al. (2017), are considered to analyze the 
significant factors in the database for prediction of �fps , 
and to construct models. It is acknowledged that variables 
like deviator type and location are important to the pre-
diction of design, but since this information is not present 
in the database, for the purposes of this investigation, sec-
ond order effects are neglected. The performance of all of 
the PCA models are compared against a benchmark PCA 
model involving all of the variables. Likewise, the authors 
compare the SPCA models to a SPCA benchmark. Addi-
tionally, these predictions are compared to other predic-
tion methods from the literature on the same database. 
The results show that improvements in predictions can be 
made with a simplified SPCA regression model.

2 � Principal Component Analysis (PCA) and Sparse 
PCA (SPCA)

PCA is a widely used statistical technique for dimension 
reduction. It takes linear combinations of all of the varia-
bles to create a reduced number of uncorrelated variables 
(called principal components, or PC’s) that still express a 
majority of the information from the original data (Lat-
tin et  al. 2003). The number of principal components 
selected, which is usually much smaller than the number 
of original variables, is determined by considering how 
much information is retained at the cost of simplifying 
the data. In addition to dimension reduction, another 
typical scenario where PCA works well is when a level of 
collinearity exists in the data, i.e., some or all of the pre-
dictor variables are correlated. After applying PCA, the 
resulting principal components are uncorrelated, and 
hence the replication of information in the original vari-
ables is removed.

Let X =
[
xij

]
 , i = 1, . . . , n , j = 1, . . . , p , be the n× p 

data matrix of n observations on the p-dimensional 
random vector X =

[
X1,X2, . . . ,Xp

]T . Define the 1× p 
mean vector x̄ as
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That is, the jth element of x̄ is the sample mean of the 
jth variable. The p× p sample covariance matrix S is 
computed as

where 1n is an n× 1 column vector of ones. Let 
�1 ≥ �2 ≥ · · · ≥ �p be the eigenvalues of S in descending 
order, and let u1,u2, . . . ,up be the corresponding eigen-
vectors. The first principal component Y1 is defined as a 
linear combination of Xj ’s such that it has the largest vari-
ance under the constraint that the coefficient vector has 
unit norm. It turns out that the coefficient vector, which 
is called the loading of Y1 , is estimated by u1 , the eigen-
vector of S corresponding to the largest eigenvalue �1 . 
The second principal component Y2 is the linear combi-
nation of Xj ’s with the second largest variance under the 
unit norm constraint uncorrelated with Y1 , and the load-
ing of Y2 is estimated by u2 . In general, the kth principal 
component is computed as

Subsequent analyses are usually performed based on 
these q uncorrelated principal components (as opposed 
to the original p variables), whose observed values are 
given by the principal component score matrix

here, U =
[
u1,u2, . . . ,uq

]
 is the p× q loading matrix. To 

mitigate the effect of scaling, it is a common practice to 
standardize the variances before performing a PCA. In 
such a situation, the sample correlation matrix ρ

is used in replacement of the sample covariance matrix 
S , where D is the diagonal matrix of the diagonal entries 
of S , i.e.

It is equivalent to using the sample covariance matrix 
when the variances of all variables are standardized to be 
1.

One major drawback of PCA is that each principle 
component is a linear combination of all of the predictor 
variables, which often makes the results difficult to inter-
pret. To address this problem, Zou et al. (2006) proposed 
the Sparse Principal Components Analysis (SPCA) as an 
alternative shrink some of the coefficients to 0 by produc-
ing a sparse estimate of the loading matrix via the tech-
nique of penalized regression. Technically, this is done by 
expressing PCA as a regression problem with a quadratic 
penalty, which essentially forms the ridge regression:

(4)S =
1

n− 1
(X − 1nx̄)

T (X − 1nx̄),

(5)Ŷk = uT
k X , k = 1, . . . , q.

(6)Z = UTX .

(7)ρ =
√
D

−1
S
√
D

−1

(8)D = diag{S(1, 1), S(2, 2), . . . , S(p, p)}.

here, A =
[
α1,α2, . . . ,αq

]
 and B =

[
β1,β2, . . . ,βq

]
 

are two p× q coefficient matrices, and �·� denotes the 
Euclidean norm. The normalized vector of βk gives the 
approximation to the loadings of the kth principal com-
ponent, i.e.,

Then, an L1 or Lasso penalty (Tibshirani 1996) is added 
to the optimization criterion to induce sparsity, i.e., 
shrink some of the coefficients to 0. Thus, the sparse PCA 
is formulated as

where �·�1 denotes the L1 norm, i.e., summation of the 
absolute values of the elements. The constants λ and 
�k , k = 1, . . . , q are tuning parameters, of which λk’s are 
associated with the Lasso penalty and control the amount 
of shrinkage, i.e., how many coefficients are shrunk to 
0. Smaller values of λk induce more 0’s in β̂k . Fitting of 
SPCA can be carried out in the software R using the pack-
age elasticnet (see Zou and Hastie 2005). As a remark, 
due to the induced sparsity in SPCA, the resulting load-
ings deviate from being orthogonal, and consequently, 
the corresponding sparse PCs are no longer guaranteed 
to be uncorrelated (Zou et al. 2006). However, engineers 
will likely willingly trade off PCs being uncorrelated for 
improvements in simplicity and predictive accuracy.

3 � Principal Component Analysis Application
The unbonded tendon data are split into internally rein-
forced (internal) and externally reinforced (external) 
subsets each possessing 17 predictor variables and the 
response variable, �fps . The 15 predictors contained in 
the database are included in the analysis as well as two 
additional variables, vACI and vAASHTO , which are the 
variable parts to the ACI and AASHTO prediction equa-
tions (ACI 2008; AASHTO 2010). These are included 
in the analysis in an attempt to build upon any already 
discovered explained variation in the data. The ACI 
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variable part is well known for being inaccurate, whereas 
the AASHTO variable part is highly phenomenologi-
cal and some variation is included in many design codes 
around the world.

The internal data has 182 observations, and the exter-
nal data has 71. The variable names and type, as they are 
typically defined for statistical analyses (Nowak and Col-
lins 2012), are found in Table 1. The only Categorical data 
type is the LT variable, which is 1, 2 or 3 for single point 
loading, third point loading or uniform loading. Both 
data subsets exhibit multicollinearity among predictors 
in their respective sample covariance matrices suggest-
ing repetition of information. Due to the wide variation 
in scale of the different variables, the correlation matrix is 
chosen over the covariance matrix for the PCA.

Because variable selection is not handled by the LASSO 
operator as it is with SPCA, multiple approaches were 

(12)vACI =
f ′c

µρps

(13)vAASHTO =
(
dps − c

L

)(
1+

N

2

)

used in selecting important variables for the PCA. The 
initial approach consisted of merely assuming that all 17 
variables were important. An Eigen-decomposition was 
applied to the correlation matrix using Eq. (7) to calculate 
the PCs. Figure 1 consists of scree-plots showing the pro-
portion of variation and cumulative proportion of vari-
ation explained by each principal component for their 
respective data subset.

An ‘elbow’, or change in slope between PCs (Jolliffe 
2002), in the scree-plot suggest good choices for the 
number of PCs that express the most information while 
keeping the model simple, e.g. the elbow seen at three 
PCs in Fig.  1a. However, five principal components 
are selected for both the internal and external data as a 
means to compare models, and since five PCs capture 
a majority of proportion of variation in the data, while 
keeping the models relatively simple. The cumulative 
proportion of variation for 5 PC’s is 0.80 for the internal 
tendons, and 0.84 for the external tendons.

From the five selected principal components, linear com-
binations of the 17 variables can now be expressed as five 
new uncorrelated variables. Then with tenfold cross valida-
tion, linear models are then fit to the data using the five new 
variables. As criterion of how well the models are fitting the 

Table 1  Variable names and descriptions for the statistical analysis.

Variable name Notation Type

Variable part of the ACI prediction equation vACI Continuous

Variable part of the AASHTO prediction equation vAASHTO Continuous

Loading type LT Categorical

Total span length L Continuous

Beam height h Continuous

Beam width b Continuous

Depth to prestressing reinforcement dps Continuous

Area of prestressing reinforcement Aps Continuous

Ultimate tendon strength fpu Continuous

Concrete strength f ′c Continuous

Area of mild reinforcing steel on tension face As Continuous

Yield strength of mild reinforcing steel fy Continuous

Depth to tension mild reinforcing steel from compression face ds Continuous

Area of mild reinforcing steel on compression face A
′
s

Continuous

Depth to compression mild reinforcing steel from compression face d
′
s

Continuous

Effective stress in the prestressing reinforcement at time of testing fpe Continuous

Modulus of elasticity of the prestressing reinforcement Eps Continuous

Stress increase in unbonded tendons �fps Continuous
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Fig. 1  Individual and cumulative explained proportion of variation for each Principal Component for a all variables and the b Continuous, c 
Categorical, d Self-Selected, and e Correlation Cutoff variable subsets.
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data, the coefficient of determination 
(
R2

)
 , adjusted 

(
R2
a

)
 , 

average ratio of measured vs. predicted responses � , root 
mean squared error (RMSE), and the mean absolute error 
(MAE) are calculated for each model (Kutner et al. 2004). 
R2 is the ratio of the explained variation made by the model 
over the total variation in the data, defined as:

where ŷi is the ith predicted �fps , yi is the ith �fps , and 
y is the sample average of �fps . Adjusted R2 is similar to 
R2 but it is penalized for more complicated models that 
involve more predictors. It is calculated as follows:

where p is the number of predictor variables used in the 
model plus one. � is calculated as the mean of all of the 
ratios of �fps values and their corresponding linear model 
predicted values, �̂fps , i.e.

A visualization related to � is seen in Fig. 2 as plots of the 
�fps values against the linear model’s predicted values, �̂fps . 
While R2 , R2

a , and � values closer to 1 indicate better fitting 
models, RMSE and MAE are best minimized. RMSE gives 
greater emphasis on extreme values, whereas MAE treats 
all data points with equal importance.

The initial models, referred to as PCA-All-Int and 
PCA-All-Ext, have R2 , R2

a , � , RMSE, and MAE values of 
0.43, 0.43, 1.00, 110.56, 87.38, and 0.64, 0.63, 1.01, 166.91, 
128.16 respectfully (as listed in the first row of Table 2).

A second approach was attempted by handling the Con-
tinuous and Categorical variables separately. While all of 
the variables are continuous except LT, the variables Eps 
and d′s behaved as Categorical in the data and are treated 
as such (see Table  1). A separate PCA was computed for 
the 14 Continuous variables and the 3 Categorical variables 
within each data set. In order to keep the same number of 

(14)R2 =
∑n

i=1

(
ŷi − y

)2
∑n

i=1

(
yi − y

)2

(15)R2
a = 1−

∑n
i=1

(
yi − ŷi

)2/
(n− p− 1)

∑n
i=1

(
yi − y

)2/
(n− 1)

(16)� =
1

n
·

n∑

i=1

�fpsi

�̂fpsi

(17)RMSE =

√∑n
i=1

(
yi − ŷi

)2

n

(18)MAE =
∑n

i=1

∣∣yi − ŷi
∣∣

n

overall PC’s in the final models, four PC’s are chosen for the 
Continuous variables, and one is chosen for the Categori-
cal variables as seen in Fig. 1b and c. The results were then 
combined into linear models called PCA-ContCate-Int and 
PCA-ContCate-Ext, and their criteria are R2 = 0.36, 0.66, 
R2
a  = 0.35, 0.65, � = 1.02, 1.02, RMSE = 117.38, 162.08, and 

MAE = 95.88, 124.60 as shown in Table 2. Plots for meas-
ured vs. predicted �fps are also included in Fig. 2b.

Again, the four previously calculated PCA linear mod-
els suffer due to the fact that each principal component 
is a linear combination of all predictor variables, which is 
not ideal for structural design. Variable selection restrict-
ing only important variables into the PCA would allow 
for simpler linear models with possibly better predictive 
power. Two additional subsets of the original variables are 
considered and a model selection technique was employed 
and compared to the initial analysis. The first set of selected 
important variables is decided through professional sug-
gestion. The authors call this set the “Self-Selected” set. 
The second set, called the “Correlation Cutoff” set, was 
selected by a test of minimum linear correlation with �fps . 
Subsequent PCA linear models are then computed for all 
possible combinations of PC’s as predictors, statistical sig-
nificance is assessed on the coefficients via t-tests, and the 
final models chosen are those which achieve the highest R2

a.
The Self-Selected important variables are L , h , Aps , f ′c  , 

As , A
′
s , fpe , and �fps based on the literature and experience. 

After a PCA is applied to these variables the data is reduced 
from only seven predictor variables to five. While this 
is not a gain of much more simplicity to the models, the 
correlation between the predictors is removed. The scree 
plots in Fig. 1d again show that most of the information is 
expressed in the first five PC’s chosen.

While there is a noticeable gain in cumulative proportion 
of variance explained by these 5 PC’s in both data sets (0.89 
for the internal data, and 0.98 for the external data), the 
final models, called PCA-SS-Int and PCA-SS-Ext, do not 
make similar gains in modeling the data, as seen by their 
respective R2 = 0.26, 0.49, R2

a = 0.25, 0.48, � = 1.04, 1.04, 
RMSE = 126.34, 198.51, and MAE = 103.43, 160.44 values. 
A lack of fit to the data is seen in Fig. 2c by the models ten-
dency to over predict for lower values of �fps and to under 
predict for higher values of �fps.

This process is repeated for the Correlation Cutoff set as 
well. However, these variables were selected by first exam-
ining their respective linear correlations with �fps . While 
simply selecting predictors with a significant amount of 
correlation with the response does not consider collinear-
ity among predictors, the subsequent PCA handles this by 
producing uncorrelated PC’s, likewise for SPCA. A Pear-
son’s product-moment correlation test is applied with a 
level of significance set at 0.05. Table 3 contains the cor-
relations and p-values for both internal and external data.
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Fig. 2  Measured �fps vs. predicted �fps (in MPa) from the PCA models using a all variables, and the b combined Continuous and Categorical, c 
Self-Selected, and d Correlation Cutoff variable subsets.
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Interestingly, Table  3 indicates that for internally 
bonded tendons, the length is not important, which 
Mojtahedi and Gamble (1978), among others, indicate is 
important. Concrete strength is not considered impor-
tant, although it shows up in the ACI code, and several, 
and the current ACI code. The variables b , dps and Aps 
are considered important and are also considered in the 
ACI code as the prestressing reinforcing ratio ( ρps ). Inter-
estingly, fy is considered important although it is not 
included in any known prediction model, and conversely, 
As is not considered important contradicting several 
experimental studies.

Additionally, Table  3 indicates that there are con-
siderable differences in the significance of many vari-
ables. Most notably is the 0.77 correlation between 
vACI and �fps , as compared to the 0.42 correlation for 
the internally bonded tendons. There is agreement on 
several variables, for instance, the loading type, depth 

of section ( h and dps ) and Aps are considered important 
while ds , d

′
s and Eps are not considered important in 

both sets. However, the remaining variables are in con-
tention. For instance, length is considered important in 
the external dataset as is concrete strength, fpe and As , 
but not fy . Interestingly, A′

s is considered important in 
the external dataset. Furthermore, h , fpu , As and fy were 
found to have opposite effect (see difference in signs in 
Table 3) on the behaviour, indicating either very differ-
ent phenomenological effects or shortcomings in the 
dataset.

The dataset itself is made of all of the available exper-
imental data, but the dataset is also shaped by the 
experimental needs. Externally reinforced members 
tend to be larger bridge girders with higher reinforc-
ing ratios and, often, A′

s . The make-up of the exter-
nally reinforced dataset reflects this and contains more 
beam-like members (higher dps , h , Aps , A

′
s etc.), many 

Table 2  PCA models’ R2, R2
a , � , RMSE, and MAE values.

Variables Internal data External data

R2 R2a � RMSE MAE R2 R2a � RMSE MAE

All variables 0.43 0.43 1.00 110.56 87.38 0.64 0.63 1.01 166.91 128.16

Cont. and Cate. 0.36 0.35 1.02 117.38 95.88 0.66 0.65 1.02 162.08 124.60

Self-Selected 0.26 0.25 1.04 126.34 103.43 0.49 0.48 1.04 198.51 160.44

Corr. Cutoff 0.52 0.50 0.99 102.36 81.09 0.67 0.66 1.01 160.93 123.49

Table 3  Correlation Cutoff important variables for the internal and external data.

Variable Internal data External data

Correlation with �fps p-value Important Correlation with �fps p-value Important

vACI 0.42 < 0.001 TRUE 0.77 < 0.001 TRUE

vAASHTO 0.48 < 0.001 TRUE 0.57 < 0.001 TRUE

LT 0.51 < 0.001 TRUE 0.25 0.04 TRUE

L − 0.06 0.45 FALSE − 0.27 0.02 TRUE

h 0.28 < 0.001 TRUE − 0.57 < 0.001 TRUE

b − 0.17 0.02 TRUE − 0.03 0.78 FALSE

dps 0.29 < 0.001 TRUE 0.24 0.048 TRUE

Aps − 0.51 < 0.001 TRUE − 0.49 < 0.001 TRUE

fpu 0.33 < 0.001 TRUE − 0.22 0.07 FALSE

f ′c − 0.01 0.89 FALSE 0.52 < 0.001 TRUE

As 0.01 0.87 FALSE − 0.53 < 0.001 TRUE

fy 0.22 0.002 TRUE − 0.23 0.054 FALSE

ds − 0.04 0.60 FALSE − 0.14 0.26 FALSE

A
′
s

− 0.05 0.55 FALSE − 0.35 0.003 TRUE

d
′
s

− 0.08 0.29 FALSE − 0.14 0.25 FALSE

fpe 0.06 0.46 FALSE 0.35 0.003 TRUE

Eps − 0.08 0.27 FALSE 0.09 0.44 FALSE

�fps 1.00 0.00 TRUE 1.00 0.00 TRUE
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of them simulating bridge girders. The internally rein-
forced dataset is made up of many more slab like mem-
bers that do not contain compression steel and are 
smaller, some of which are scaled (Burns et al. 1978; Six 
2015). Regardless, one should be aware that the dataset, 
while the largest available, does contain limited num-
bers and limited variations for many variables. From 
this analysis, it is unclear if the difference in variable 
importance is due to the dataset or phenomenological 
differences. The analysis does seem to dispute the use 
of the same equation for internal and external members 
(like ACI and AASHTO) and indicates that predictions 
that somehow account for the difference may be better 
(like Maguire et al. 2017; Harajli 2011).

If a variable exhibited significant correlation (p-value 
less than 0.05) with �fps it was kept for subsequent analy-
sis. The correlation cutoff variables for the internal data 
are vACI , vAASHTO , LT  , h , b , dps , Aps , fpu , and fy , and the 
correlation cutoff variables for the external data are vACI , 
vAASHTO , LT  , L , h , dps , Aps , fpu , f ′c  , As , fy , A

′
s , and fpe . 

The scree plots in Fig. 1e show a cumulative proportion 
of variation for the internal data is 0.93, and 0.94 for the 
external data.

By using Pearson’s product-moment correlation test to 
remove variables that exhibit low correlations with �fps , 
applying a PCA on the remaining predictors, and then 
using model selection the linear models tend to model 
the data better as seen in their respective R2 = 0.52, 0.67, 
R2
a = 0.50, 0.66, � = 0.99, 1.01, RMSE = 102.36, 160.93, 

and MAE = 81.09, 123.49 values (see Table 2). Due to the 
PCA predictions resulting in very long and cumbersome 
equations, even when simplified (as they load all 15 of the 
explanatory variables), they are not presented here. How-
ever, they can be constructed using the PC loadings pre-
sented above in the PCA section.

4 � Sparse Principal Components Application
SPCA was applied to both internal and external data sets 
on all of the subsets of variables producing eight addi-
tional linear models called SPCA-All-Int, SPCA-All-Ext, 
SPCA-ContCate-Int, SPCA-ContCate-Ext, SPCA-SS-
Int, SPCA-SS-Ext, SPCA-CC-Int, and SPCA-CC-Ext 
(see Table 4). In Table 4, the italic numbers indicate the 

selected models for the respective data datasets. In all of 
these cases, a decision must be made about how much 
sparsity is desirable. Again, sparsity in the Principal 
Components is the reduction of some of the coefficients, 
or loadings, for the linear combinations of the predictor 
variables to zero.

In applying SPCA to all of the variables, Fig. 3 reveals 
optimal choices for the number of sparse coefficients per 
PC by maximization of R2

a . Note that the variation in the 
external subset is being explained significantly better by 
the data than the internal subset as seen by the consist-
ently higher R2

a (Fig. 3a, b, d, e). However, Fig. 3c shows 
little variation in data being explained by the variables 
that were treated as Categorical variables. More spe-
cifically, Fig.  3a suggests 2 and 1 non-zero loadings (for 
each SPC) for the internal and external data respectively. 
The sparse loadings for all of the SPCA models are rep-
resented by heat maps found in Fig.  4. The two initial 
SPCA models achieve R2 values of 0.46, 0.70, maximum 
R2
a values of 0.46, 0.69, � values of 0.99, 0.99, RMSE values 

of 107.93, 152.79, and MAE values of 85.83, and 110.93 
(see Table 4). Lastly, as in the PCA comparisons are made 
between measured and predicted �fps as seen in Fig. 5a.

Due to the PCA predictions resulting in very long and 
cumbersome equations, even when simplified (as they 
load all 17 of the explanatory variables), they are not pre-
sented here. However, their SPCA versions are produced 
and explicitly listed in the following section.

Furthermore, the following results of applying SPCA to 
the Continuous and Categorical, Self-Selected, and Corre-
lation Cutoff subsets are similarly recorded and compared 
to the previous analysis. For each the number of non-zero 
loadings per SPC are calculated (see Fig. 3), model selec-
tion is evaluated, heat maps of the sparse loadings are 
produced (see Fig. 4), and the R2 , R2

a , � , RMSE, and MAE 
values are recorded (see Table 4). These linear models are 
listed explicitly with their respective linear combinations 
for each SPC. While the models are shown here with their 
respective PCs, with some algebraic manipulation alterna-
tive versions of the final suggested models are presented 
in the following section. It should be noted when SPCA is 
applied to the Correlation Cutoff variables that ten vari-
ables were retained for the external data, while only nine 

Table 4  SPCA models’ R2, R2
a , � , RMSE, and MAE values.

Variables Internal data External data

R2 R2a � RMSE MAE R2 R2a � RMSE MAE

All variables 0.46 0.46 0.99 107.93 85.83 0.70 0.69 0.99 152.79 110.93

Cont. and Cate. 0.44 0.43 1.02 109.72 88.58 0.70 0.69 0.99 152.79 110.93

Self-Selected 0.31 0.30 0.95 121.96 101.16 0.54 0.52 1.05 189.29 151.38

Corr. Cutoff 0.54 0.53 1.03 99.53 78.04 0.68 0.68 1.00 156.88 113.58
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Fig. 3  Plot of SPCA R2a against number of non-zero loadings used per PC for a all variables and the b Continuous, c Categorical, d Self-Selected, and 
e Correlation Cutoff variable subsets. The maximum R2a for each model is highlighted with a filled marker.
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were kept for the internal data. Hence, the number of non-
zero loadings for each SPC for the internal data extends to 
only nine in Fig. 3e.

4.1 � Prediction Equation for Internal all Variables SPCA 
(SPCA‑All‑Int)

�̂fps = 295.06− 54.22PC1,2− 69.91PC1,3

PC1,2 = − 0.66vAASHTO − 0.75h

PC1,3 = − 0.98LT − 0.18fpu

4.2 � Prediction Equation for External all Variables SPCA 
(SPCA‑All‑Ext)

�̂fps = 470.19− 95.79PC2,1 − 195.77PC2,2

PC2,1 = 1Aps

PC2,2 = −1vACI

Fig. 4  SPCA loading heat maps for the a SPCA-All-Int, b SPCA-All-Ext, c SPCA-ContCate-Int, d SPCA-ContCate-Ext, e SPCA-SS-Int, f SPCA-SS-Ext, g 
SPCA-CC-Int, and h SPCA-CC-Ext models.
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Fig. 5  Measured �fps vs. predicted �fps (in MPa) from the SPCA models using a all variables, and the b combined Continuous and Categorical, c 
Self-Selected, and d Correlation Cutoff variable subsets.
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4.3 � Prediction Equation for Internal Continuous 
and Categorical SPCA (SPCA‑ContCate‑Int)

4.4 � Prediction Equation for External Continuous 
and Categorical SPCA (SPCA‑ContCate‑Ext)

4.5 � Prediction Equation for Internal Self‑Selected SPCA 
(SPCA‑SS‑Int)

4.6 � Prediction Equation for External Self‑Selected SPCA 
(SPCA‑SS‑Ext)

4.7 � Prediction Equation for Internal Correlation Cutoff 
SPCA (SPCA‑CC‑Int)

4.8 � Prediction Equation for External Correlation Cutoff 
SPCA (SPCA‑CC‑Ext)

�̂fps = 295.06+ 30.45PC3,1 + 41.68PC3,2 + 69.51PC3,3

PC3,1 = 1dps + 0.06As

PC3,2 = 0.97fpu + 0.24fpe

PC3,3 = 0.27vAASHTO − 0.96Aps

�̂fps = 470.19− 95.79PC4,1 − 195.77PC4,2

PC4,1 = 1Aps

PC4,2 = − 1vACI

�̂fps = 295.06− 29.26PC5,1 + 74.59PC5,3 − 20.84PC5,4

PC5,1 = − 0.92h−0.39As

PC5,3 = − 0.05L− 1Aps

PC5,4 = 0.99f ′c + 0.11As

�̂fps = 470.19+ 135.20PC6,1 + 60.81PC6,2 + 89.02PC6,3

PC6,1 = − 0.79h− 0.61Aps

PC6,2 = 0.57L+ 0.82f ′c
PC6,3 = 0.01f ′c + 1fpe

�̂fps = 295.06+ 22.44PC7,1 + 53.13PC7,2

− 68.24PC7,3 + 26.69PC7,5

PC7,1 = 0.78h+ 0.63dps

PC7,2 = 0.68LT + 0.73fpu

PC7,3 = − 0.49vAASHTO + 0.87Aps

PC7,5 = 0.04Aps − 1fy

�̂fps = 470.19+ 92.94PC8,1 − 182.04PC8,2

PC8,1 = − 1h

PC8,2 = −1vACI

5 � Discussion
From Table 2, the R2, R2

a , � , RMSE, and MAE values for 
the initial models involving all 17 variables are 0.43, 0.43, 
1.00, 110.56, 87.38 for the internal data, and 0.64, 0.63, 
1.01, 166.91, and 128.16 for the external data. Com-
paratively, these initial PCA linear models improve sig-
nificantly over previous methods (Maguire et  al. 2017), 
where � = 1.85 and R2 = 0.16 for the AASHTO, being 
the most accurate and precise of the available Ameri-
can codified methods, as well as � = 1.34 and R2

a = 0.27 
for the previously proposed method modification to the 
AASHTO prediction.

Also, notice the linear equations for the initial SPCA 
models are much simpler when compared to their cor-
responding PCA models since each of the five PCs are 
required to have 17 loadings, whereas each SPC only 
produce 1 or 2 (Fig.  3). This gain in simplicity is paired 
with gains in R2, and R2

a , � values close to one, and smaller 
RMSE and MAE values (compare the first row in Table 2 
to the first row in Table 4).

The PCA models handling the Continuous and Cat-
egorical variables separately did not perform better than 
the initial model involving all 17 variables for the internal 
tendons, but did for the external (Table 2). This may be 
due to the unaccounted covariances between the Contin-
uous and Categorical variables along with the significant 
contribution of explained variability by vACI in the exter-
nal data (see the first row of Table 3). A similar behavior 
is seen in the SPCA models (compare first and second 
rows of Table 4). Note that after model selection the final 
SPCA models for both all variables and the Continuous 
and Categorical subsets resulted in identical coefficients. 
This suggests that handling the variables separately does 
not differ from handling the variables collectively when 
applying SPCA with model selection to the external data.

Notice only one loading for each PC in is suggested for 
the external models using all of the variables, the Con-
tinuous subset, and the correlation cutoff subset to maxi-
mize R2

a . This suggests that a linear model is sufficient 
in modeling the variation in the stress increase �fps for 
these cases.

However, while the PCA and SPCA models for the 
Self-Selected variables did improve over the AASHTO 
and proposed modified AASHTO predictions, they per-
formed poorer than the initial PCA and SPCA on all of 
the variables (compare first and third rows in Table  4). 
This suggests that variables that engineers and the lit-
erature commonly associate with �fps , may not be as 
impactful as thought, underscoring the necessity for fur-
ther experimental and phenomenological study.

Additionally, it should be noted that the predicted 
stress increase, �̂fps , is consistently under predicting 
for higher measured values of �fps in the internal data 
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(Figs. 2, 5). Some of this is also exhibited in the external 
data though not as strongly. This suggests that an under-
lying non-linear relationship may be present in the data, 
and suggests further analysis possibly involving more 
advanced models.

Most notably, the R2, R2
a , � , RMSE and MAE values are 

0.54, 0.53, 1.03, 99.53, and 78.04 for the internal corre-
lation cutoff SPCA model, and 0.70, 0.69, 0.99, 152.79, 
and 110.93 for the external model involving all of the 
variables (see italic values in Table 4). Notice that while 
the difference in increased R2 and R2

a for the SPCA-CC-
Int model is 0.08 and 0.07, a noticeable amount, the 
SPCA-CC-Ext model does not improve over the initial 
SPCA for all external variables (compare first and forth 
rows of Table 4). Furthermore, after the model selection 
process only two terms remain in both the SPCA-All-
Ext and SPCA-All-Int models (Fig.  4b, h). Hence, while 
not as reduced as the external model, the most predic-
tive accuracy for the internal data is in the suggested 
SPCA-CC-Int model. Whereas for the external data, the 
SPCA-All-Ext model is recommended, achieving both 
the highest predictive accuracy while producing a sim-
plistic design. Many of the under and over predictions 
made by the ACI and AASHTO models are handled bet-
ter by the SPCA-CC-Int and SPCA-All-Ext models (com-
pare Fig. 5a External to Fig. 6a, b External. Also, compare 
Fig. 5d Internal to Fig. 6a, b Internal).

It should be noted that while the SPCA-All-Ext and 
SPCA-CC-Ext models both have two variables, with vACI 
being in common, the other two variables ( Aps in SPCA-
All-Ext and h in SPCA-CC-Ext) are not the same (Fig. 4). 
The reasoning for the difference is likely the fact that both 
Aps and h are highly correlated (specifically 0.93 correla-
tion), and similar information is being expressed in each 
model through collinearity (Table 5).

5.1 � Simplified Prediction Equation for Internal Data 
on the Correlation Cutoff Subset (SPCA‑CC‑Int)

5.2 � Simplified Prediction Equation for External data on all 
of the Variables (SPCA‑All‑Ext)

Interestingly, vACI was found by the SPCA technique 
to be beneficial to the external prediction equations, 
whereas the highly phenomenological vAASHTO , which 
takes into account hinging location, was found to be 

�̂fps = 295.06+ 17.45h+ 14.11dps + 36.12LT + 38.96fpu

+ 33.57vAASHTO − 58.40Aps − 26.68fy

�̂fps = 470.19− 95.79Aps + 195.77vACI

important to the internal model. This is not surprising 
since Maguire et al. (2017) found a calibrated version of 
the internal equation was most accurate, and the vACI 
equation, while not intended when developed, predicts 
external members better than most other methods. Inter-
estingly, the final SPCA prediction for external tendons 
relies only on the vACI and Aps variables, of which the lat-
ter was often found as important by experimental studies.

Conversely, even after efforts to simplify through model 
selection, the final SPCA prediction for internal tendons 
contains seven variables including LT, which lends some 
phenomenological influence. Furthermore, vAASHTO is 
also present, which lends significant phenomenologi-
cal influence. However, the other variables are several of 
those disputed by the literature.

6 � Summary and Conclusions
The PCA and SPCA linear modeling is applied to study 
the relationship between �fps and a collection of vari-
ables. The method consists of two consecutive steps: 
creation of uncorrelated (sparse) principal components 
and linear regression with the principal components. 
Due to the uncorrelatedness of the PC’s, variable selec-
tion for the linear regression is simple and straightfor-
ward. In fact, the PCA/SPCA is an important alternative 
to perform model selection, compared to the celebrated 
penalized regression, which requires intensive tuning to 
achieve optimal performances. Furthermore, the PC’s 
also provide an insightful understanding of the relation-
ship between the outcome and the original variables.

The data in Maguire et  al. (2017) were separated into 
two data sets determined by internal or external tendons. 
Stochastic linear models based on PCA and SPCA were 
constructed as prediction equations for �fps . Eight result-
ing linear models involved all the available explanatory 
variables, of which four handled the Continuous and Cat-
egorical variables separately. The remaining eight mod-
els used only subsets of important variables, which were 
the Self-Selected, or Correlation Cutoff important vari-
able subsets. Upon comparison, the linear models using 
SPCA on the Correlation Cutoff variables performed 
notably for internal tendons, and SPCA on all the varia-
bles performed significantly for the external tendons (see 
italic values in Table 4).

The following conclusions can be made from the above 
work:

•	 External and internal members show different levels 
of importance for the variables within the dataset. 
For instance, only Aps was considered important to 
both internal and external predictions in the final 
SPCA equations. However, h , dps , LT, fpu , vAASHTO 
and fy were all considered important to internal ten-
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dons, but none were important to external tendons. 
The reason for this is unclear, but is likely due to the 
differences in data contained in the dataset and phe-
nomenological differences between the two struc-
tural systems. Interestingly, the influence of Aps is a 
near consensus from the literature, but the other var-
iables are disputed.

•	 Based on the above conclusion and the surveyed 
experimental and analytical literature, there is a sig-
nificant need for more data in order to obtain better 
understanding, statistically and phenomenologically, 
of unbonded tendon reinforced members. This is 
ideally accomplished through additional testing, as 

Fig. 6  Measured �fps vs. predicted �fps (in MPa) using the a ACI, and b AASHTO model equations (ACI 2008; AASHTO 2010)

Table 5  Cross tabulated R2 and � model values for simply supported and Continuous tendons

Variables Simply supported Continuous

Internal External Internal External

R2
� R2

� R2
� R2

�

AASHTO 0.30 1.71 0.02 2.42 0.18 1.82 0.11 1.95

ACI 0.47 1.90 0.12 2.73 0.04 1.31 0.06 2.50

Maguire et al. (2017) 0.27 1.34 0.06 1.48 0.18 1.34 0.17 1.25
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the available database is relatively small compared to 
other member databases (e.g., Reineck et al. 2013).

•	 The SPCA-CC-Int model produced an R2 = 0.54, 
R2
a = 0.53, � = 1.03, RMSE = 99.53, and MAE = 78.04.

•	 The SPCA-All-Ext model produced an R2 = 0.70, 
R2
a = 0.69, � = 0.99, RMSE = 152.79, and 

MAE = 110.93.
•	 While the PCA and SPCA models performed simi-

larly, according to the R2 and � metrics, SPCA com-
bined with model selection techniques results in con-
siderably shorter equations and produced better fit 
statistics.

•	 The PCA and SPCA analysis predicted significantly 
better than codified methods on the same dataset 
(R2 = 0.16 and 0.08, � = 1.85 and 2.01 for AASHTO 
and ACI respectively) and the optimized semi-
empirical model presented by Maguire et  al. (2017) 
(R2 = 0.27 and � = 1.34).

•	 The predicted stress increase, �fps , is consistently 
under predicted for higher measured values of �fps in 
the internal data (see Figs. 2, 5). Some of this is also 
exhibited in the external data though not as strongly. 
This suggests that an underlying non-linear relation-
ship may be present in the data, and suggests further 
analysis possibly involving more advanced models.

List of symbols
Aps: area of prestressing reinforcement (mm2); As: area of mild reinforcing steel 
on tension face (mm2); A

′
s: area of mild reinforcing steel on compression face 

(mm2); Eps: modulus of elasticity of the prestressing reinforcement (MPa); L
: total span length (m); LT : loading type (1.0 for single point load, 2.0 for third 
point loading, 3.0 for uniform loading); b: beam width (mm); c : depth from 
compression fiber to neutral axis (mm); dps: depth to prestressing reinforce-
ment (mm); ds: depth to tension mild reinforcing steel from compression 
face (mm); d

′
s: depth to compression mild reinforcing steel from compression 

face (mm); f ′c: concrete strength (MPa); fpe: effective stress in the prestressing 
reinforcement (MPa); �fps: stress increase in unbonded tendons (MPa); �̂fps
: predicted stress increase in unbonded tendons (MPa); fpu: ultimate tendon 
strength (MPa); fy: yield strength of mild reinforcing steel (MPa); h: beam height 
(mm); N: number of internal supports crossed by the tendon; vACI: variable part 
of the ACI prediction equation (MPa); vAASHTO: variable part of the AASHTO pre-
diction equation; µ: 100 if L/dps ≤ 35 , and 300 if L/dps > 35; ρps: prestressed 
reinforcing ratio; ψ: scaled plastic hinge length.
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