
Kim  Int J Concr Struct Mater           (2018) 12:77  
https://doi.org/10.1186/s40069-018-0323-y

RESEARCH

Optimum Locations of Outriggers 
in a Concrete Tall Building to Reduce Differential 
Axial Shortening
Han‑Soo Kim* 

Abstract 

Differential axial shortening (DAS) in a tall building can produce adverse effects on its structural and nonstructural 
elements. Therefore, DAS should be considered in the design phase and appropriate measures should be taken to 
reduce its unfavorable effects. In this study, the utilization of outriggers, which has been originally designed to reduce 
lateral displacements, is proposed to reduce DAS. The optimum locations of outriggers that minimize the maximum 
DAS are determined by an optimization method. The integrality requirement posed by the outrigger locations, which 
should be given as integer numbers, is resolved by piecewise quadratic interpolation with discrete analysis results. The 
proposed optimization method stably yielded optimum solutions for a total of 24 design cases. The optimum design 
results show that although the maximum DAS decreases as the number of outriggers increases, the maximum DAS 
does not decrease significantly when the number of outriggers is greater than 2.
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1 Introduction
Differential axial shortening (DAS), which is often also 
called differential column shortening, is the difference 
between the vertical displacements developed in the 
column and wall at the same floor in a building. DAS 
in a low-rise building is so small that it does not cause 
any adverse effect. However, it has been one of the most 
important issues that need special attention in the design 
and construction of a tall building because of the accu-
mulated amount of vertical displacement. Furthermore, 
owing to the long-term behavior of concrete such as 
creep and shrinkage, DAS becomes more significant in 
concrete tall buildings than in steel tall buildings. DAS 
can cause adverse effects not only on the structural 
members but also on nonstructural elements, such as 
the curtain wall, partitions, and mechanical pipelines. 
Therefore, DAS in a tall building should be predicted and 

appropriate measures should be taken to reduce its unfa-
vorable effects.

The most widely known method to predict column 
shortening in a tall building is the method proposed by 
Fintel et al. (1987) and published by the Portland Cement 
Association (PCA). It calculates column shortening using 
a series of vertical truss elements, which are subjected to 
sequential vertical loads according to the construction 
sequence. The PCA method takes into consideration the 
stress distribution between concrete and reinforcement 
bars by using the transformed section and the reinforce-
ment coefficient. However, the so-called frame effect, 
which is the force distribution between interconnected 
structural members, is not considered.

Recently developed methods for column shortening 
have dealt with this drawback. Kwak and Kim (2006) 
studied the effect of the construction sequence on the 
long-term behavior of a reinforced concrete frame struc-
ture using layered beam elements. Moragaspitiya et  al. 
(2010) proposed a numerical procedure to predict the 
DAS in a high-rise concrete building and reported that 
a rigid outrigger system has a mitigating impact on the 
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DAS between the perimeter columns and cores. Kim 
(2013) proposed a time-dependent analysis method for 
reinforced concrete frames, which iterates a linear elas-
tic analysis and considers the equivalent nodal load of 
creep and shrinkage, transformed section, and effective 
elastic modulus. Kurc and Lulec (2013) studied the differ-
ent analysis approaches for estimating axial loads on ver-
tical elements of tall buildings. Zou et al. (2014) carried 
out a construction sequence analysis using the long-term 
properties of a reinforced concrete shear wall. Recently, 
Samarakkody et al. (2017) studied DAS and its effects in 
tall buildings with composite concrete-filled tube col-
umns. In particular, they noted the possibility of using 
an outrigger and belt system to mitigate the DAS in a tall 
building, in addition to their role in lateral load resist-
ance. Afefy and El-Tony (2016) proposed a simplified 
design procedure for eccentrically loaded columns and 
Georgoussis (2017) presented a preliminary structural 
design of wall-frame building systems.

The most commonly used method to compensate for 
the adverse effects of DAS consists in raising the col-
umns that are expected to exhibit significant shorten-
ing (Park et  al. 2013). However, compensation during 
construction by, for instance, raising columns is not a 
solution that can eliminate the unfavorable effects of 
DAS. Compensation could level the floors at the target 
time, but it cannot prevent the development of the DAS 
itself. Kim (2015) proposed placing additional rein-
forcement as a measure to reduce DAS in the design 
phase, and a mathematical optimization method was 
developed to determine the optimum distribution of 
the additional reinforcement along the stories.

In this study, outriggers, which are horizontal struc-
tures connecting a building core to distant columns 
to increase the lateral stiffness of a tall building, are 
proposed to reduce DAS. Conventionally, the perma-
nent connection of outriggers to perimeter columns is 
delayed until the completion of the structure to avoid 
the development of shear forces that could be caused by 
DAS because the outriggers have been conventionally 
designed to reduce the lateral displacement caused by 
wind or earthquake loads. Special construction meth-
ods, such as delayed joints and adjustment joints with 
shim plates or oil jacks, have been proposed or used to 
minimize the impact of DAS during construction (Choi 
and Joseph 2012; Park et al. 2010). Although the main 
purpose of the outriggers is to limit the lateral drift of 
a tall building within an acceptable level (Wu and Li 
2003; Hoenderkamp 2008; Lee and Tovar 2014), it is 
proposed that outriggers can also function as a meas-
ure to reduce DAS between core walls and perimeter 
columns. If the outriggers are designed to reduce DAS 
and lateral displacement, the additional stresses caused 

by DAS should be evaluated and considered during the 
design phase of a tall building.

The optimum locations of the outriggers to reduce DAS 
can be determined by an optimization method. Because 
the floors where the outriggers are installed are given as 
integer numbers, conventional gradient-based optimi-
zation methods cannot be directly used. In this study, a 
piecewise quadratic interpolation method was used to 
resolve the integrality requirement posed by the opti-
mum locations of the outriggers.

2  Analysis of Axial Shortening
2.1  Construction Sequence Analysis
The axial shortening analysis of a concrete tall building 
essentially requires a construction sequence analysis and 
a creep analysis of the concrete structure. The construc-
tion sequence analysis is a series of static analyses, where 
new construction activities are applied to an already 
deformed and stressed structure (Kurc and Lulec 2013). 
Before defining the geometry of the newly added struc-
ture for the construction sequence analysis, it is neces-
sary to determine what type of shortening is considered. 
Total shortening in a tall building can be divided into pre-
installation and post-installation shortening (Fintel et al. 
1987). Pre-installation shortening and post-installation 
shortening are sometimes called up-to-slab shortening 
and subsequent shortening, respectively. In cast-in-place 
concrete building structures, pre-installation shorten-
ing, which is the amount of shortening developed before 
slab installation, is meaningless since it is automatically 
compensated by leveling the forms. On the other hand, 
in steel building structures where columns are prepared 
to exact lengths, the total shortening, which is the sum of 
the pre-installation and the post-installation shortenings, 
is of significance because the slabs are built at a prede-
termined position. In this study, the analysis models are 
reinforced concrete tall buildings and the post-installa-
tion shortenings are calculated. In an analysis model, the 
displacement of each node is assumed to be zero until the 
node is generated. The incremental displacements are 
calculated for each construction step. The incremental 
vertical displacements at the columns and walls are accu-
mulated to yield the post-installation shortening at the 
target time.

2.2  Long‑term Analysis of Concrete Structures
The total strain at time t under a constant stress σ(t0) 
applied at time t0 is the sum of the elastic strain and non-
mechanical strain such as creep strain, shrinkage strain, 
and temperature strain. The temperature strain is not 
considered in this study because it does not accumulate 
along time. Creep is usually presented as a creep coeffi-
cient φ(t, t0) , which is the ratio of the creep strain to the 
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elastic strain. The sum of the creep strain and the elas-
tic strain is sometimes given by the creep function (often 
called the compliance function) J (t, t0) , which represents 
the strain at time t produced by a unit constant stress 
that has been acting since time t0 (Bazant and Wittmann 
1982). Thus, the total strain of unrestrained plain con-
crete under constant stress is given by Eq. (1).

where Ec(t0) is the elastic modulus of concrete at time t0, 
and εsh(t, t0) is the shrinkage strain developed from t0 to 
t.

If the concrete is restrained by other structural mem-
bers or reinforcing bars, the stress in the concrete 
changes over time. The total strain developed in the 
restrained concrete can be obtained by integrating the 
strain over time as given in Eq. (2).

Several analysis methods have been developed to solve 
Eq.  (2). The rate of creep method, effective modulus 
method, age-adjusted modulus method, and step-by-step 
method (SSM) are well-known analysis methods to solve 
Eq.  (2) (Bazant and Wittmann 1982; Neville et  al. 1983; 
Ghali and Favre 1994). This study uses the SSM because 
it can give the most accurate analysis of the time-depend-
ent behavior of concrete structures such as axial shorten-
ings in a tall building.

In the SSM, the analysis time is divided into several 
intervals. The stress is assumed to be constant in each 
interval and the strain variation in the i-th interval can 
be given by

where ti−1/2 denotes the middle of the interval (ti−1, ti) in 
the log (t − t0) scale.

(1)

ε(t) = σ(t0)

Ec(t0)
[1+ φ(t, t0)]+ εsh(t, t0)

= J (t, t0)σ (t0)+ εsh(t, t0)

(2)
ε(t) = σ(t0)

Ec(t0)
[1+ φ(t, t0)]+

∫ t

t0

1+ φ(t, t0)

Ec(τ )

∂σ (τ )

∂τ
dτ+εsh(t, t0)

= J (t, t0)σ (t0)+
∫ t

t0

J (t, t0)
∂σ (τ )

∂τ
dτ+εsh(t, t0)

(3)

(�ε)i =
(�σ)i

Ec(ti−1/2)

[

1+ φ(ti, ti−1/2)
]

+
i−1
∑

j=1

(

(�σ)j

Ec(tj−1/2)

[

φ(ti, tj−1/2)− φ(ti−1, tj−1/2)
]

)

+ (�εsh)i

= J (ti, ti−1/2) · (�σ)i +
i−1
∑

j=1

([

J (ti, tj−1/2)− J (ti−1, tj−1/2)
]

· (�σ)j
)

+ (�εsh)i

Long-term analyses of columns and horizontal beams 
are carried out using a specially developed beam element, 
which can take into account the restraining effect of the 
reinforcing bars and creep effects in the axial deforma-
tion and curvatures at the nodes (Kim 2013). Although 
the axial shortening of walls can be approximated by the 
beam elements, in this study, the plane stress element 
with incompatible modes (Taylor et al. 1976) is modified 
to obtain higher accuracy in the long-term behavior of 
the reinforced concrete walls as follows.

The strain vector in the plane stress elements can be 
given from Eq. (3) as the following equation.

(4)
{�ε}i =

[

J (ti, ti−1/2)
]

{�σ }i +
i−1
∑

j=1

([

J (ti, tj−1/2)
]

−
[

J (ti−1, tj−1/2)
])

{�σ }j + {�εsh}i

where {�ε}i , {�σ }i , and {�εsh}i are the strain increment 
vector, stress increment vector, and shrinkage strain 
increment vector for the plane stress elements, respec-
tively. These vectors have three components as follows.

(5){�ε}i =







(�εx)i
(�εy)i
(�γxy)i







(6){�σ }i =







(�σx)i
(�σy)i
(�τxy)i







(7){�εsh}i =
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



(�εsh)i
(�εsh)i

0
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


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It was assumed that shrinkage causes normal strains only 
(i.e., no shear strain). If the isotropy of materials is kept 
unchanged and Poisson’s ratio is uniform in whole time 
steps, then the creep function matrix [J (ti, tj)] can be 
obtained by the inverse matrix of the stress–strain con-
stitutive matrix of the plane stress elements (Bazant and 
Wittmann 1982).

where v is the Poisson’s ratio of concrete.
The increment of the total strain (�ε)i on the left-hand 

side of Eqs. (3) and (4) denotes the strain change of con-
crete rather than that of reinforced concrete. The incre-
mental strain is therefore converted to an equivalent 
nodal load that can be used in the finite element analy-
sis to obtain the strain change of the reinforced concrete 
members, which are internally and externally restrained 
by the reinforcing bars and other connected members 
such as outriggers. The internal restraint due to the 
reinforcing bars is represented by the area and second 
moment of the transformed section that is used for cal-
culating the stiffness matrix of the beam element (Kim 
2013). For the wall element, the internal restraint of verti-
cal reinforcing bars was considered by adding truss ele-
ments, and the effect of horizontal reinforcing bars was 
neglected because the horizontal reinforcing bars have 
no significant effect on vertical displacement. The stiff-
ness matrix of the plane stress elements can be obtained 
by 2 by 2 Gauss quadrature; however, the stress and the 
strain vectors are calculated at the center of the elements 
for efficiency.

The shortening of each column or wall at the end of the 
i-th interval {u}i , which is the sum of the change in the 
vertical displacement until the i-th interval, is given by

where {�u}j is the increment in the vertical displacement 
at the j-th interval.

3  Effect of Outriggers on Differential Axial 
Shortening

3.1  Analysis Models
The effects of an outrigger on the DAS of tall buildings 
were investigated before determining its optimum loca-
tion. Three 80-story reinforced concrete building struc-
tures with the outrigger as shown in Fig. 1 were analyzed. 
The three analysis models have different sectional profiles 

(8)[J (ti, tj)] = J (ti, tj)





1 −v 0
−v 1 0
0 0 2(1+ v)





(9){u}i =
i

∑

j=1

{�u}j

for the column and shear walls, as listed in Table 1. The 
constant-section model has the same column and wall 
sections for all stories. In the constant-stress model, the 
column and wall sections were determined according to 
the applied gravity loads such that the members devel-
oped approximately equal axial stresses from the grav-
ity loads. The general model has four different section 
groups for the vertical members. Although the constant-
section and constant-stress models were not likely appli-
cable for an actual tall building, they represented extreme 
cases of the simplest and the most refined sectional 
profiles for tall building structures. The four-story high 
outrigger truss, which is made of steel, has two inclined 
members and two horizontal members as shown in 
Fig. 1. The initial sectional area of the horizontal member 
is 0.1256 m2, which was determined in a previous study 
(Kim 2017). The sectional area of the inclined member 
in the outrigger was proportioned to 

√
2 times that of 

the horizontal member because the inclined member is 
expected to develop an axial force 

√
2 times that of the 

horizontal member. The outrigger floor, which indicates 
the floor where the outrigger is installed, is assigned to 
the floor where the inclined member is connected to the 
wall, as shown in Fig. 1. The beams between the perim-
eter columns and interior core were assumed to be shear 
connected, as they are in most tall building structures. 
The elastic modulus of the outrigger was 210 GPa and 
that of the other members was 23  GPa. The Poisson’s 
ratio of concrete for the plane stress elements was 0.18.

The two-dimensional plane frame indicated with red 
dashed line in Fig.  1a were analyzed. Two plane-stress 
elements were used to model the wall on every floor, and 
the beam elements were used to model the perimeter col-
umns. The shear connected beams, outriggers, and verti-
cal reinforcing bars embedded in the walls were modeled 
with the truss elements. The CEB model (CEB 1993) was 
used to estimate the long-term behavior of plain con-
crete. The relative humidity was 60%, and the cement 
type was normal. Each floor had a 5-day construction 
cycle. The dead loads listed in Table  1 were applied on 
the third day after placing each column and wall. The live 
loads, which are uniformly distributed loads of 20 kN/m 
applied on the beams spanning 14  m, were applied at 
the same time 700 days after the beginning of construc-
tion. The dead loads, including the uniformly distributed 
load of 60  kN/m, were applied at the columns and the 
walls. The differential shortenings to be compared are 
the post-installation differential shortenings, measured 
10,000  days after the beginning of construction when 
the long-term behavior of concrete structures is consid-
ered to be converged. These shortenings include inelas-
tic deformation due to creep and shrinkage, and elastic 
deformation.
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3.2  Reduction of Differential Shortening
The post-installation shortenings of the general model 
with and without an outrigger are shown in Fig.  2. It is 
assumed that the outrigger is placed at the 40-th floor 
and is connected at 195 days, the same time as the con-
struction of the wall at the 40-th floor. It is noted that the 
DAS with an outrigger is significantly smaller than with-
out it, especially at the 40-th floor, where the inclined 
member of the outrigger is connected to the wall.

The three analysis models show greater shortenings in 
columns than in walls. The maximum DAS of the mod-
els without an outrigger are 109.9, 105.7, and 100.1 mm 
for the general, constant-section, and constant-stress 

models, respectively. When the outrigger is placed at 
the middle of the story, the shortenings of the column 
decreased and those of the core wall increased. Con-
sequently, the maximum DAS decreased to 83.9, 57.6, 
and 74.7  mm, respectively. The solid red line in Fig.  2, 
which represents the DAS with an outrigger placed at the 
40-th floor, indicates that the maximum DAS develops at 
around the 65-th floor and the DAS below the 40-th floor 
are significantly smaller than the maximum DAS. It can 
be expected that the maximum DAS would be reduced 
if the outrigger is placed at a higher floor than the 40-th, 
for instance, the 55-th floor. Therefore, it is clear that the 
40-th floor is not the optimum location, although the 

Fig. 1 Analysis models and outrigger configuration.
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optimum location cannot be determined from Fig.  2. 
The optimum locations of the outrigger are studied in 
Sect. 4.2.

In this study, to compare the effectiveness of the outrig-
gers, a reduction ratio Rd is defined as follows:

The smaller the reduction ratio, the greater the reduc-
tion obtained in the maximum DAS. The reduction 
ratio of the three analysis models with an outrigger at 
the 40-th story are calculated as 0.764, 0.545, and 0.746, 
respectively.

3.3  Effects of Sectional Area
The stiffness of the outrigger can be changed through the 
cross-sectional area of the outrigger truss. The sectional 
area of the horizontal members is increased in 50 steps, 
from zero to 0.1216 m2. The sectional area of the inclined 
members is also proportionally increased. The location 
of the outrigger, at the 40-th floor, is the same as in the 
previous analysis. Figure  3 shows the relation between 
the reduction ratio and the sectional area of the outrig-
ger. It is noted that the effect of the sectional area on the 
reduction ratio is not the same among the three analysis 
models. It is worth noting that the relation is non-linear 
such that the efficiency of the outrigger with smaller 

(10)Rd = maximum DAS with outrigger

maximum DAS without outrigger

Table 1 Properties of elements and loads used in 80-story analysis models.

a  h denotes the notational size, which is defined in the CEB model.

Analysis model Member Floor level Concrete 
strength

Section size
width × depth

Steel ratio ha Dead load Live load

(MPa) (m) (%) (m) (kN) (kN)

General model Column 1F‑20F 68 1.5 × 1.5 4.0 0.75 1320 140

21F‑40F 68 1.5 × 1.2 3.0 0.69 1320 140

41F‑60F 58 1.5 × 1.0 2.0 0.6 1320 140

61F‑80F 48 1.0 × 1.0 2.0 0.5 1220 140

Shear wall 1F‑30F 48 1.0 × 15.0 1.0 1.0 2780 280

31F‑50F 48 0.8 × 15.0 1.0 0.8 2680 280

51F‑70F 48 0.7 × 15.0 1.0 0.7 2680 280

71F‑80F 48 0.6 × 15.0 1.0 0.6 2580 280

Constant‑section model Column 1F‑80F 68 1.5 × 1.2 3.0 0.69 Same as general model

Shear wall 1F‑80F 48 0.8 × 15.0 1.0 0.8

Constant‑Stress model Column 1F 68 1.755 × 1.755 2.0 0.877 Same as general model

2F‑79F 68 varying 2.0 Varying

80F 68 0.196 × 0.196 2.0 0.098

Shear wall 1F 48 1.205 × 15.0 1.0 1.115

2F‑79F 48 varying 1.0 Varying

80F 48 0.015 × 15.0 1.0 0.015

Fig. 2 Shortening of the general model without and with an 
outrigger placed at the 40‑th floor.



Page 7 of 12Kim  Int J Concr Struct Mater           (2018) 12:77 

sectional area is better than that with larger area. It can 
be expected that a dual or even triple outrigger system 
would be better than a single outrigger system in terms 
of efficiency.

3.4  Effects of Location
As mentioned in Sect. 3.2 and shown in Fig. 2, the mid-
dle of the height is not the optimum location of an out-
rigger to minimize the maximum DAS. The location of 
the outrigger was changed from the 4-th floor to the 
80-th floor in 1 story steps. The construction time of 
the outrigger changed accordingly to the time when 
the wall at the outrigger floor was constructed. Figure 4 
shows the relation between the location of the outrig-
ger and the reduction ratio. It shows a definite optimum 
location of a single outrigger to minimize the maxi-
mum DAS exists. The optimum location is at the 60-, 
45-, and 58-th floors for the general, constant-section, 
and constant-stress models, respectively. The optimum 
location is close to 2/3 of the height for the general and 
the constant-stress models and close to the middle of 
the height for the constant-section model.

4  Optimum Location of Outriggers
4.1  Formulation of Optimum Problem
As demonstrated above, the DAS of a tall building can 
be controlled by changing the location and stiffness of 
the outrigger. The optimum locations of the outriggers 
can be determined using a mathematical optimization 
method. The optimization problem can be formulated 
in the following standard form:

where y is a vector of the integer variables and its ele-
ment yi represents the location of the i-th outrigger. n 
is the number of the outriggers. The integer design vari-
able yi should not be greater than the highest floor and 
not less than the lowest feasible floor, which are the 80-th 
and 4-th floor, respectively, in the analysis models. g(y) is 
the objective function representing the maximum value 
of DAS, as given in Eq. (12). The vertical displacements of 
the wall and column are calculated through a long-term 
analysis of the reinforced concrete structure.

where N  is the number of stories in the building. δi is 
the DAS at the i-th floor.uwalli  and ucoli  are the vertical 
displacements of the wall and column at the i-th floor, 
respectively.

The problem given in Eq. (11) is an unconstrained non-
linear programming with integer variables (I-NLP, hereaf-
ter) and it cannot be directly solved by the gradient–based 
optimization methods, owing to the integrality require-
ment. In this study, a piecewise quadratic interpolation was 
applied to obtain the differentiable function ḡ(ỹ) . The inte-
ger nonlinear programming given in Eq.  (11) can be sub-
stituted with the following nonlinear programming with 
the interpolated polynomial function with real variables 
(P-NLP, hereafter).

where ỹ is the relaxed variable vector of y and ỹi is the 
relaxed variable of yi . yi can be obtained by rounding ỹi to 
the nearest integer. g(y) is substituted with the interpo-
lated function ḡ(ỹ) , as given in Eq. (15):

(11)
Minimize g(y)
subject to y ∈ Zn (I-NLP)

yīmin ≤ yīmax i = 1, . . . , n

(12)
g(y) = max(δ1, . . . , δN )

= max((uwall1 − ucol1 ), . . . , (uwallN − ucolN ))

(13)
Minimize ḡ(ỹ)
subject to ỹ ∈ Rn (P-NLP)

yīmin ≤ ỹi ≤ yīmax i = 1, . . . , n

(14)yi =
∥

∥ỹi
∥

∥ = round( ỹi)

Fig. 3 Relation between sectional area of the outrigger and 
reduction ratio.

Fig. 4 Relation between location of the outrigger and reduction 
ratio.
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where ỹi is the same vector as y except the i-th compo-
nent, which is replaced with the relaxed variable ỹi . ḡ(ỹi) 
is the interpolated function by the Lagrange quadratic 
polynomial with successive three integers about the i-th 
variable. ŷi is the unit vector of the i-th direction, such as 
{0, 1, 0, 0}T when i = 2 and n = 4.

Figure 5 shows the concept of the piecewise quadratic 
interpolation function with two integer variables, y1 
and y2 . As shown in Fig. 5 and Eqs. (15) and (16), 2n+ 1 
times finite element analyses (FEA) are needed to eval-
uate ḡ(ỹ) for every design state. However, the integer 
requirement in g(y) can be utilized to reduce the cen-
tral processing unit (CPU) time by storing and reusing 
the function values in the optimization. It is worth not-
ing that the interpolation function ḡ(ỹ) is not a com-
plete quadratic polynomial and the Hessian matrix of the 
function is a diagonal matrix; this is because the inter-
polation function used 2n+ 1 sampling points rather 
than (n+ 1)(n+ 2)/2 , which is the required number of 
sampling points for the complete quadratic interpolation 
function. Because of the uncoupling between the design 
variables, the search method which requires a Hessian 
matrix should be avoided in the P-NLP. The steepest 
descent method with a quadratic line search (Parkinson 

(15)
ḡ(ỹ) = 1

n

n
∑

i=1

ḡ(ỹi)

(16)

ḡ(ỹi) =
1

2
g(y − ŷi)(ỹi − yi)(ỹi − yi − 1)

− g(y)(ỹi − yi + 1)(ỹi − yi − 1)

+ 1

2
g(y + ŷi)(ỹi − yi + 1)(ỹi − yi)

et  al. 2013), which requires only a gradient vector, was 
used in this study.

The gradient of ḡ(ỹ) can be obtained as given in 
Eqs. (17) and (18).

The piecewise quadratic interpolation function given in 
Eq.  (16) is differentiable but discontinuous at yi + 0.5 
owing to the rounding off of ỹi to the nearest integer yi or 
yi + 1 . Figure 6 shows the discontinuity of the piecewise 
quadratic interpolation function with one integer vari-
able y1 . This discontinuity can be overcome in the P-NLP 
if the search algorithm has a condition for breaking the 
search iteration when ḡ(ỹ) oscillates between the discon-
tinuous points.

When the line search terminates, the integer solution 
that was rounded from the P-NLP may not be the correct 
optimum solution because of the discontinuity, as shown 
in Fig. 6. In this study, the branch-and-test module (BT, 
hereafter) was added to find the correct optimum solu-
tion. The BT branches the two adjacent integer locations 
from the real number variables of the last P-NLP, and 
then tests the objective function to find the correct opti-
mum locations. For the BT, the evaluation of the objec-
tive function needs to be performed 2n times. However, 
the added burden for the BT is almost negligible because 

(17)
∂ ḡ(ỹ)

∂ ỹi
= 1

n

∂ ḡ(ỹi)

∂ ỹi

(18)

∂ ḡ(ỹi)

∂ ỹi
= 1

2
g(y − ŷi)(2ỹi − 2yi − 1)

− g(y)(2ỹi − 2yi)

+ 1

2
g(y + ŷi)(2ỹi − 2yi + 1)

Fig. 5 Piecewise quadratic interpolation with two integer variables.
Fig. 6 Discontinuity in the piecewise quadratic interpolation with 
one variable.
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most of the 2n branches have been tested and stored dur-
ing the P-NLP.

4.2  Optimum Design Examples
The optimum locations of the outriggers to minimize 
the maximum value of the DAS in the three analysis 
models described in Sect. 3.1 were obtained by the pro-
posed optimization method. The design variables for 
the optimum problem were the outrigger floors; there-
fore, the sectional areas of the outriggers were prede-
termined according to two schemes: divided-area and 
constant-area. The divided-area scheme divides the 
outrigger sectional area by the number of outriggers. 
For example, the sectional area of the horizontal mem-
bers with one outrigger is 0.1256  m2 and that with two 
outriggers is 0.0628 m2, and so on. The total area of the 
outriggers does not change as the number of outriggers 
varies. In the constant-area scheme, the sectional area of 
the horizontal members does not change, regardless of 
the number of outriggers. Consequently, the total area of 
the outriggers proportionally increases as the number of 
outriggers increases. As mentioned above, the sectional 
area of the inclined members in the outrigger was pro-
portioned to 

√
2 times that of the horizontal members.

The initial locations of the outriggers were the middle 
points, such as yi = � 80× i/(n+ 1) � . Table  2 presents 
the objective function values, which are the maximum 
DAS, and the design variables, which are the optimum 
locations of the outriggers, for the three analysis models 

when the divided-area scheme was applied. The locations 
are given in integer numbers and the maximum DAS 
is given as a real number with five decimal places. The 
number in bracket refers to the reduction ratio Rd given 
in Eq.  (10), which is the ratio of the maximum DAS of 
the analysis model with outriggers to that of the model 
without outriggers. Table  3 presents the optimum loca-
tions of the outriggers and the maximum DAS for the 
three analysis models when the constant-area scheme is 
applied. It is noted that the optimum locations with two 
outriggers for both schemes are similar. However, the 
optimum locations with three and four outriggers for the 
constant-area scheme are slightly expanded outward than 
those for the divided-area scheme.

Figure 7 shows the DAS along the story of the general 
models with zero, one, two, and three outriggers. The 
colored arrows indicate the optimum locations with one, 
two, and three outriggers, respectively. Figure  7 indi-
cates that the optimum locations of the outriggers are 
the locations that can push the peak DAS toward the left 
side. Moreover, it can be observed that as the number 
of outriggers increases, the maximum DAS decreases. 
However, the efficiency of the outriggers is significantly 
reduced when the number of outriggers is greater than 2.

Figure  8 shows the maximum DAS according to the 
number of outriggers for the divided-area scheme and 
the constant-area scheme. It is noted that the maximum 
DAS is not significantly reduced when the number of the 
outriggers is greater than 2, even with the constant-area 

Table 2 Optimum locations and maximum DAS with the divided-area scheme.

a  Optimum location of outrigger.
b  Maximum DAS.
c  Ratio of maximum DAS to maximum DAS of the none-outrigger case.

Number of outriggers General model Constant‑section model Constant‑stress model

0 None None None

0.10993 [1.000] 0.10567 [1.000] 0.10010 [1.000]

1 60a 45 58

0.05466b [0.497]c 0.05024 [0.475] 0.05573 [0.557]

2 68 52 66

50 37 50

0.04466 [0.406] 0.04468 [0.423] 0.04875 [0.487]

3 70 54 69

57 44 57

47 35 46

0.04278 [0.389] 0.04262 [0.403] 0.04539 [0.453]

4 72 56 71

63 48 62

52 40 52

45 33 44

0.04204 [0.383] 0.04163 [0.394] 0.04415 [0.441]
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Table 3 Optimum locations and maximum DAS with the constant-area scheme.

a  Optimum location of outrigger.
b  Maximum DAS.
c  Ratio of maximum DAS to maximum DAS of the none-outrigger case.

Number of outriggers General model Constant‑ section model Constant‑stress model

0 None None None

0.10993 [1.000] 0.10567 [1.000] 0.10010 [1.000]

1 60a 45 58

0.05466b [0.497]c 0.05024 [0.475] 0.05573 [0.557]

2 68 53 68

47 36 49

0.03862 [0.351] 0.03687 [0.349] 0.04354 [0.435]

3 70 57 72

52 43 60

32 31 44

0.03253 [0.296] 0.03076 [0.291] 0.03794 [0.379]

4 72 59 74

63 47 67

51 37 56

35 28 42

0.02798 [0.255] 0.02741 [0.259] 0.03487 [0.348]

Fig. 7 Optimum locations and DAS for the general model.
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scheme, which linearly increases the total sectional area 
of the outriggers.

The most time-consuming part of the proposed 
method is the finite element analysis (FEA) for column 
shortening; the number of analysis executions requested 
and performed during the optimization of the analysis 
models was thus investigated, as presented in Table  4. 

The number of analyses requested corresponds to the 
analyses looked up during the search for optimum solu-
tions, while the number of analyses performed corre-
sponds to the analyses actually executed. The number 
of analyses performed is much less than the number of 
analyses requested because the design variables are inte-
ger numbers and the maximum DAS and the design vari-
ables were stored and reused. Meanwhile, the locations of 
the outriggers before and after the BT are the same for all 
24 cases; therefore, it can be concluded that the BT is not 
necessary.

5  Conclusions
The differential axial shortenings (DAS) in a tall build-
ing should be considered in the design phase, and proper 
measures should be taken to reduce their unfavora-
ble effects. In this study, outriggers, which have been 
designed to reduce the lateral displacements caused by 
wind and earthquake loads, were used to reduce DAS. 
The optimum locations of the outriggers to minimize 
the maximum DAS were determined by an optimiza-
tion method. Since the floors where the outriggers were 
installed were given as integer numbers, a piecewise 
quadratic interpolation method was newly developed and 
applied to overcome the integrality requirement of the 
integer nonlinear programming. With the interpolated 
function, it was possible to carried out an unconstrained 
nonlinear optimization using the discrete analysis results 
from the finite element analysis of the axial shortening. 
A branch-and-test (BT) was added to complement the 
discontinuity of the piecewise quadratic interpolation. 
However, the solutions were not changed after the BT 
was used; therefore, it can be concluded that the BT is 
not required, and the piecewise quadratic interpolation 
method can be used for the integer nonlinear program-
ming. The proposed optimization method stably yielded 
optimum solutions for a total of 24 cases that were exam-
ined with three analysis models, four outriggers, and two 
schemes for the sectional area of the outriggers. The opti-
mum design results show that the optimum locations of 
the outriggers were the locations that can reduce the peak 
DAS. It was also noted that increasing the number of 
outriggers reduced the maximum DAS in the tall build-
ing. However, the maximum DAS was not significantly 
reduced when the number of the outriggers was greater 
than 2, even with the constant-area scheme, which lin-
early increased the total sectional area of the outriggers.

The proposed method can be effectively used in other 
structural engineering applications that involve finite 
element analysis. A further direction of this study is to 
improve the algorithm to accommodate multiple objec-
tives, such as minimizing the lateral and the vertical 
displacements.

Fig. 8 Maximum differential axial shortenings according to number 
of outriggers.

Table 4 Number of  FEA requested and  performed for  the   
divided-area scheme.

Model Type Number of outriggers

1 2 3 4

General Requested 122 616 1898 12,304

Performed 31 110 272 840

ConSec Requested 122 406 1133 1156

Performed 15 57 164 290

ConStr Requested 80 1246 3977 6112

Performed 19 138 358 682
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Abbreviations
DAS: differential axial shortening; PCA: Portland Cement Association; SSM: 
step‑by‑step method; CEB: Comite Euro‑International Du Beton; I‑NLP: 
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