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Abstract 

Independent component analysis is one of the linear transformation methods based the techniques for separating 
blind sources from the output signals of the system. Recently, the method has been analytically applied to the identi‑
fication of mode shapes and modal responses from the output signal of structures. This study aims to experimentally 
validate the blind source separation using ICA method and propose a novel method for identification of the modal 
parameters from the decomposed modal responses. The result of the experimental testing on the three‑story steel 
scale model shows that the mode shapes obtained by ICA method are in good agreement with those by the analyti‑
cal and peak‑picking method in the frequency domain. Based on the robust mathematical model, ICA can calculate 
the natural frequency and damping ratio effectively using the probability distribution function of the instantaneous 
natural frequency determined by Hilbert transform of the decomposed modal responses and the change in the 
output covariance. Finally, the validity of the proposed method paves the way for more effective output‑only modal 
identification for assessment of existing steel‑concrete buildings.
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frequency, derivative of covariance, output‑only modal analysis
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1 Introduction
Modal parameters are vital to understand the struc-
ture’s behavior. By decomposing the global response into 
the equivalent SDOF system’s responses correspond-
ing to each mode, the mode shape, natural frequency 
and damping can be estimated. The modal parameters 
of existing buildings are employed to update and refine 
the numerical model for structural analysis and, subse-
quently, enable localization and assessment of the dam-
age by comparing pre-and post-damage state (Alvandi 
and Cremona 2006). As for calculating the effective mass 
of the damper and the input for control algorithm of the 
active mass damper, the dynamic identification tech-
nique is of great importance. For these reasons, a number 

of modal identification methods have been studied and 
applied to many fields of engineering. The recent advance 
of structural health monitoring also encouraged devel-
opment of Operational Modal Analysis for maintenance 
of existing buildings using ambient vibration (Zhang 
and Brincker 2005; Reynders 2012). OMA, also referred 
to as Output-only Modal Analysis based on mathemati-
cal robustness is extensively being exploited to deter-
mine the dynamic parameters of structures using only 
the ambient vibration as input. The classical frequency-
domain techniques that employ the contribution ratio of 
the specific mode to the overall output at the sensor loca-
tions are widely used (Brincker et al. 2002). However, the 
frequency-domain technique has intrinsic uncertainty in 
the identification of modal parameters since determining 
modal participation ratio relies on engineer’s decision. 
One of most well-known methods, Stochastic subspace 
identification is based on the assumption that the exter-
nal excitation is represented as a white noise and the vari-
able in its procedure such as determining the order of the 
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system relying on engineering judgement also leads to 
uncertainties (Peeters and De Roeck 1999). Other recent 
development in system identification schemes involving 
structural health monitoring may be found in  (Guo and 
Kareem 2015, 2016a, b; Guo et  al. 2016; Hwang et  al. 
2018).

Principal Component Analysis is another approach to 
decompose the response signal into modal responses by 
the linear transformation of the output. PCA employs the 
normal orthogonal basis determined by the covariance 
of structure’s response to extract the mode shapes of the 
structure (Feeny 2002; Han and Feeny 2003). Since PCA 
also uses the gaussian excitation for input, robustness of 
linear transform of the method is degraded with respect 
to non-gaussian excitation and underdetermined case.

Over the last two decades, Independent Component 
Analysis which is one of the most popular Blind Source 
Separation techniques has recently become a focused 
topic of research work due to its high potential in mode 
decomposition of non-gaussian structural response. ICA 
was introduced in Lee (1998), Hyvaerinen and Oja (2000), 
and Hyvaerinen et al. (2001). The method that makes use 
of cumulative density other than covariance allows one to 
obtain independent components comprising the struc-
ture’s response and determine modal parameters at the 
location of the limited number of sensors. It has recently 
become the focus of intensive research work due to its 
high potential in many applications. The extensive appli-
cation of ICA can be found in image processing (Fortuna 
and Capson 2002), biomedical data analysis (Cichocki 
2004), and telecommunication (Madhow 1998). Several 
applications in structural dynamics are presented in the 
literature. Zang et  al. (2004) demonstrated the result 
of simulated damage detection of the truss and frame 
structure using ICA. Poncelet et al. (2007) presented the 
robustness of the proposed BSS methods for the simple 
and moderately damped systems. Zhou and Chelidze 
(2007) proposed BSS-based mode shape extraction and 
illustrated its performance by comparing its result to that 
of the time-domain analysis. Hazra et al. (2010) pointed 
out the limited performance of ICA under the certain 
level of damping presence and proposed a new method 
based on modified cross-correlation. As a statistical 
measure of independence of the components, kurtosis is 
usually employed to separate independent components 
(McNeill and Zimmerman 2010; Wu 2011). However, 
ICA faces difficulties with closely spaced modes and the 
highly damped system cases subject to non-stationary 
ambient excitation. Yang and Nagarajaiah (2013) and 
Nagarajaiah and Yang (2013) proposed the improved 
ICA techniques employing complexity pursuit algorithm, 
short time Fourier transform in time–frequency domain, 
respectively. The further modification of ICA for the 

particular case of the non-proportionally damped struc-
tures is verified in (Nagarajaiah and Yang 2015).

In most OMA techniques, extracting modal properties 
other than the mode shape requires a post-process. To 
address this challenge, revised fixed-point complex ICA 
is presented in (Yang et al. 2013). Another application of 
ICA is found in Structural Health monitoring and dam-
age identification. The long-term monitoring response is 
processed in wavelet-domain before ICA to capture the 
time varying modal parameters (Yang and Nagarajaiah 
2014) and the SHM data is compressed and transferred 
using Fast ICA algorithm (Yang et  al. 2015). The latest 
development and application of ICA based modal iden-
tification methods are summarized in Sadhu et al. (2017).

In this paper, the algorithm of ICA for modal param-
eters extraction and the experimental modal analysis of 
the high-rise building subjected to strong wind load is 
discussed within the ICA framework. Since the analytical 
approach is limited to be applied to the response contain-
ing nonlinearity and low signal-to-noise ratio, the experi-
mental evaluation is crucial to examine the applicability 
of ICA to the real structure’s response.

First, a three-story scale model made of steel elements 
are used as a preliminary validation of the ICA algorithm. 
Assuming the input excitation is unknown, the mode 
decomposition of the response measured at each floor 
by the accelerometers is carried out. At the same time, 
the experimental testing shows that the linear combina-
tion matrix used in mode decomposition is equivalent to 
the mode shape of the structure. Subsequently, the natu-
ral frequency and damping ratio is obtained from the 
decomposed modal responses. The same procedure is 
repeated for the accelerations measured at the top floor 
of the high-rise building to examine the close modes 
separation performance of the ICA technique. Lastly, the 
modal parameters identified by ICA are compared with 
those by a conventional method.

This paper is organized as follows. The principle of 
ICA is explained in Sect. 2. Section 3 presents the modal 
analysis of the scale model and tall building followed by 
introducing and applying the effective modal param-
eter extraction method (Lee et al. 2017; Du et al. 2017). 
In Session 4, finally, the results of the modal analysis on 
the examples are discussed comparing with other classi-
cal dynamic identification methods and the concluding 
remarks are presented.

2  Basic Principles of ICA
2.1  Fundamentals of ICA
ICA is a linear transformation based on non-Gaussian-
ity of the variables characterized by data independence. 
The method is an extended Principal Component Anal-
ysis as a second order linear transformation using the 
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covariance that accounts for the correlation between the 
gaussian signals. ICA is a process to solve so called the 
Cocktail-party problem (Bee and Micheyl 2008; Haykin 
and Chen 2005). For instance, if someone is in a bustling 
party filled with a great deal of voices from many peo-
ple, her or his voice is mixed with the other individual 
voices and recorded by a microphone as shown in Fig. 1. 
Although the how the individual sounds are mixed is 
unknown, one can recognize the individual voice of her 
or his friend. As the human brain works, separating the 
unique sound from the mixture using only the measured 
sound is the key idea of ICA. In this sense, the individual 
sounds and the mixed sound measured by the micro-
phone correspond to independent component and out-
put or response, respectively and ICA is the technique 
to estimate not only the independent components, but 
their mixing process simultaneously. If linearly combined 
input signals are given, ICA can inversely decompose it 
into statistically independent input signal.

The relation between the mixed signal and input is 
expressed in the form

where A represents mixing matrix that is unknown at 
this point and N̂  is noise. Since the noise can be hardly 
separated from the input, it is usually neglected. α(i) is 
basis and component of A = [α(1),α(2), . . . . . . ,α(m)] . 
In short, ICA is a solution for the inverse matrix A−1 
using the observed data that is the measured mixed sig-
nal x. The procedure of ICA is displayed in Fig.  2. As 
shown, the observed output of the mixer is available, 
while the mixing characteristic A and the original input 
s are unknown. The result of the analysis shall satisfy the 
fact that the input coincides with the output y,

(1)x = As + N̂ =

m∑

i=1

s(i)α(i)+ N̂

(2)y = Wx = WAs

The relation between W and A satisfying the prior condi-
tion is given by

It is worth noting that the elements of the output y must 
be statistically independent to each other and the orthog-
onality condition does not hold. Consequently, original 
signal s is approximated by determining W which can 
be calculated by optimization of its associated objective 
function. To facilitate the ICA, the pre-processed mixed 
signal considering the first and second-order statistical 
correlation is employed.

2.2  Pre‑processing of ICA
The signal is subject to zero-mean and whitening process 
prior to ICA. The former is a normalization method con-
sidering the second-order statistics of the observed data 
and helps the learning algorithm. Meanwhile, the latter 
is to reduce the dependency on each data and produces 
more independent data. The zero-mean process of data 
is defined as

Whitening is achieved by making the covariance matrix 
of data vector x identity, namely E(xxT) = I.

One of the widely used whitening methods is the ana-
lytical method using PCA and its whitening matrix V is 
defined as

where D is the diagonal matrix comprised of eigen val-
ues λ and E is the orthogonal matrix comprised of eigen 
vectors.The advantage of PCA whitening is that this can 
be realized by the well-known commercial software and, 
moreover, it performs well in estimating the number of 
independent components that are the original individual 
signals. In this study, those processes are used in ICA 
to extract the displacement of the structure and mode 
shape.

2.3  Algorithm of ICA
ICA is also referred to as Blind Source Separation, Blind 
Equalization, or Blind Beamforming depending on how 
to define the problem. In other words, this method is to 

(3)WA = I , W = A−1

(4)x′ = x − x̄

(5)V = D(− 1
2
)ET

Fig. 1 The schematic drawing of the Cocktail party problem.

Fig. 2 ICA procedure.
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identify the mixed blind sources and unknown its mix-
ing process that spark phenomenon. It is assumed that 
the blind sources also referred to as independent compo-
nents are not correlated to each other. Based on statisti-
cally independent properties, the individual components 
and their traces of the mixture can be determined. In this 
sense, it is vital to define an objective function that ena-
bles one to measure the degree of the independence, e.g., 
Kullback–Leibler, Negentropy or Cumulant (Zang et  al. 
2004). Kurtosis is one of classical high-order approxi-
mations that is used to measure non-Gaussianity as 
expressed in Eq. (6).

X is the vector composed of the non-Gaussian random 
variables representing the time history of the independ-
ent components and E(O) is the expectation operator. 
In this study, ICA method that employs Kurtosis as the 
objective function and its application to mode decom-
position from the structure’s response are discussed. 
The linear relation between the structure’s response and 
modal response is as bellow

Y is the structure’s response, X is the modal response, 
and W is the linear transform matrix (mode shape). The 
key of ICA method is that the unknown variables X and 
Y are determined by the measurement Y. If W is a unitary 
square matrix and the inverse matrix W−1 exists, modal 
response X can be expressed as bellow

The matrix W and X can be determined by an iterative 
method minimizing the objective function in (6) until 
each mode is mutually independent. Equation  (9) pre-
sents the updated matrix W.

Wi+1 is the updated matrix W from the past  Wi and the 
cubed term (3) in (9) stands for the cubed each element 
in the row vector YTWi . Based on the assumption that 
the each of decomposed modes are equivalent to the 
response of the corresponding single degree of freedom 
systems, the natural frequencies and damping ratio are 
calculated. The viability of the ICA algorithm is evaluated 
in the following session with two examples.

3  Experimental Testing
3.1  Three‑story Steel Frame
The three-story steel structure use for the modal test-
ing is shown in Fig. 3. Each floor’s mass is 18.62 kg and 

(6)kurt(X) = E

{
X
4
}
− 3

(
E

{
X
2
})2

(7)Y = WX

(8)X = WTY

(9)Wi+1 = E

[
Y
(
YTWi

).3]
− 3Wi

the height of each column is 400  mm long. The width 
and thickness of the column is 50  mm and 2.3  mm, 
respectively. Table  1 presents the dynamic properties 
of the structure and its analytical modal parameters. It 
is assumed that the mass at each floor is uniform and 
both ends of the columns between the floor are fully 
constrained with two effective lengths: 400  mm for full 
height and 350 mm for those without the right angle joint 
bracket.

The analytical modal analysis of the structure repre-
sents different natural frequencies, but uniform mode 
shapes. The errors between the results with two differ-
ent column lengths for the first three modes are uniform 
equal to approximately 20%. The result is consistent with 
the stiffness increased by about 50% when the short col-
umns are taken into account without change in mass. The 
uniform stiffness of all floors accounts for the identical 
mode shapes for two column lengths.

In the experiment, three accelerometers are installed at 
each floor to measure the mono-direction response and 
additional one as a reference on the ground is to detect 
the deformation of the moment resisting connections. 
The top floor is excited by an unknown input or blind 
source using an impact hammer shown in Table  2. The 
output signals by the impact at each floor and the con-
tribution of each mode separated by spectral analysis are 
exhibited in Figs. 4 and 5, respectively. As seen, the first 
mode at the 3rd floor is dominant followed by the 2nd 
and 3rd mode and those three modes are superposed in 
the time history as shown in Fig. 4a. Similarly, the 1st and 
2nd floor’s accelerograms also appear to be influenced 
by three modal responses, while the second mode is of 
greater contribution to the 1st floor’s response. The result 
of the spectral analysis is summarized in Table 3.

The natural frequency and mode shape are determined 
by picking the peaks of the spectra and the square root of 
the peak amplitude corresponding to each mode, respec-
tively. The outcome of this example shows that the exper-
imental modal parameters are in line with the analytical 
result of the structure with the shorter columns shown in 
Table 1. As for the mode shape, the first two modes shape 
for both analytical and experimental result are in good 
agreement, while the 3rd mode shape shows a little dis-
crepancy. The error in mode shape between two results 
can be quantitatively examined using Mode Assurance 
Criteria value as below

Φ is spectral mode shape and Φ̄ is analytical mode shape. 
The MAC values of the 1st, 2nd and 3rd mode shape are 
1.6% and 3.26% and 12.11%, respectively. The peak pick-
ing method, however, in frequency domain holds signifi-
cant uncertainties in practice. In this study, thus, Hilbert 

(10)MAC = φT φ̄/φT φ̄
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transform (Feldman 2011) together with ICA is exploited 
to determine the modal frequency and subsequently the 
robustness of this method is evaluated comparing with 
the classical methods such and pick peaking.

In this example, the output signal Y is the relative 
acceleration generated by the impact on the top floor 
of the steel structure with respect to the support at the 
bottom. The values of elements in the linear transform 

matrix W in Eq.  (9) are those that are converged within 
the tolerance in the iterative process of updating the lin-
ear transform matrix W. In Table 4, the mode shapes of 
the structure are presented. W that consists of the mode 
shapes is unitary matrix and the column vectors are nor-
malized for elements corresponding to the top floor to 
have unity. The difference in MAC values between ICA 
and analytical method is greater than that between ICA 
and spectral analysis and the discrepancy increases in 
the higher modes. Figure 6 displays the modal responses 
and spectral contents around each mode obtained by 
ICA. The decomposed time history by the three methods 
mentioned in this example are in good agreement with 
each other despite a small discrepancy in the mode shape 
amongst the methods. Meanwhile, the analytical spec-
trum shows slight discrepancy from those of the spectral 
analysis and ICA. However, those three methods iden-
tify three different modes effectively since the log-scale 
amplitude difference in three peaks lies between two and 
three orders in each mode’s power spectrum plot.

Next, the natural frequency of identified modes is cal-
culated. In order to calculate modal parameters, it is very 
useful to understand that the response of decomposed 
mode is equivalent to the SDOF system. In this sense, the 
natural frequency is obtained from the well-distributed 

Fig. 3 Three‑story steel structure.

Table 1 Dynamic parameters of the structure.

Floor mass m = 18.62 kg

Floor stiffness k = 4*12EI/L3
  = 7.7945 kN/m (L = 400 mm)
  = 11.635 kN/m (L = 350 mm)

Mass matrix



m 0 0

0 m 0

0 0 m




Stiffness matrix




2k −k 0

−k 2k −k

0 −k k





Modal parameters Mode 1 Mode 2 Mode 3

Natural frequency

 L = 400 1.4492 Hz 4.0605 Hz 5.8676 Hz

 L = 350 1.7706 Hz 4.9610 Hz 7.1689 Hz

Mode shape normal‑
ized to the top 
floor

0.4450 − 1.2467 1.8026

0.8021 − 0.5547 − 2.2474

1.0000 1.0000 1.0000
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peaks in the spectra in Fig.  6. However, it is not always 
simple to pick the peaks in practice due to the intrinsic 
uncertainties in the spectrum. Thus, Hilbert transform 
that employs the probability distribution of time-varying 
frequencies is used to determine the natural frequency.

In Fig. 7, Hilbert transform of the first modal response 
is used to extract instantaneous frequency and the distri-
bution of the instantaneous frequency, cumulative distri-
bution, and probability density function are plotted. As 
shown, most instantaneous frequencies of the first mode 
are between 0 and 3 Hz (a) and the mean value that cor-
responds to 0.5 in cumulative distribution function is 
equal to 1.7357 Hz (b). This first mode frequency is very 
close to the result of the spectral analysis. The curve in 
Fig.  8c is the probability density function obtained by 
taking the derivative of the cumulative density function. 
The distribution of the variable which is the natural fre-
quency does not appear very smooth. Since this example 
produces very smooth cumulative distribution, using CD 
is sufficient to estimate the natural frequency. However, 
it is worth noting that using PDF may be more efficient 
than using CD in different type of structures. Similarly, 
the modal parameters of the second and third mode can 
be estimated through the above procedure. This study 
discusses only the first mode.

In Table 5, the natural frequency obtained by CD and 
the error in the resultant values between ICA and spec-
tral analysis are presented. The insignificant level of error 
supports the effectiveness of the statistical approach 
of the instantaneous natural frequency by the Hilbert 
transform.

Not only the natural frequency, but also damping ratio 
can be calculated using Hilbert transform. Since the steel 
structure is subjected to the excitation by impact, the 
structure’s response reaches the free steady-state vibra-
tion as the initial transient vibration subsides. Thus, the 
state equation of the linear system in free vibration is 
given by

(11)ẋ = Axx(0) = x0

Table 2 Accelerometer and impact hammer.

Sensitivity 0.23 mV/N

Frequency range 0–5 kHz

Amplitude range 22 kN

Hammer mass 0.32 kg

Head diameter 25 mm

Hammer view

Fig. 4 The response by the impact excitation.
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xo is the unknown initial value, A is the system matrix 
expressed as

ω and ξ are the natural frequency and damping ratio of 
each mode, respectively. If the covariance of the system 
response x is P = E[xxT ] , the relationship between P and 
A can be written as

At this stage, the state variables for the displacement and 
velocity of the system are still unknown, but only the out-
put signal that is measured acceleration is available. The 
output y can be expressed as

The Hilbert transform of the output signal y and the state 
variable x can be also expressed as

The relationship between output signal and the covari-
ance of its Hilbert transform can be written as

If the eigenvalue λ of the system matrix that satisfies the 
relationship CAx = �Cx is present, the covariance includ-
ing the Hilbert transform can be expressed as

(12)A =

[
0 1

−ω2 −2ξω

]

(13)Ṗ = PAT + AP

(14)y = Cx

(15)yH = CxH

(16)CṖHC
T = CAPHC

T + CPHA
TCTFig. 5 Response spectra.

Table 3 Modal parameters by spectral analysis.

Mode 1 Mode 2 Mode 3

Natural frequency 1.7322 Hz 4.9824 Hz 7.2504 Hz

Normalized mode shape 0.4649 − 1.2203 1.4396

0.8278 − 0.4459 − 2.0374

1.0000 1.0000 1.0000

Table 4 The mode shapes by ICA method.

Method Mode 1 Mode 2 Mode 3

ICA
(1st–2nd–3rd floor)

0.4702 − 1.2009 1.4306

0.8216 − 0.4192 − 1.8688

1.0000 1.0000 1.0000

Analytical 0.4450 − 1.2467 1.8026

0.8021 − 0.5547 − 2.2474

1.0000 1.0000 1.0000

MAC ICA Vs. Analytical 1.46% − 4.62% − 16.36%

Peak picking(PP) 0.4649 − 1.2203 1.4396

0.8278 − 0.4459 − 2.0374

1.0000 1.0000 1.0000

MAC ICA Vs. PP − 0.14% − 1.33% − 4.93%
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Re(λ) is the real part of λ and is equal to − ωλ. Conse-
quently, the covariance of the output Py and its square 
root which is standard deviation Sy can be obtained.

where Py0 is the unknown initial value of the covariance 
Py.

Figure  8 shows the instantaneous standard deviation 
(the square root of the covariance) of the third mode 
response and the estimation using Eq.  (18b). The loga-
rithmic decrement of the time history is also illustrated 
in the dotted line to show the conventional damping ratio 
evaluation. In this estimation, the natural frequency in 
Table  5 is used and the unknown initial covariance and 
damping ratio is obtained using the least square method 
represented in the continuous red line. Similarly, the 
damping ratio of three modes are calculated and pre-
sented parallel with those by the classical method in 
Table  6. The estimated damping ratio by Hilbert trans-
form of all modes is measured 0.3% and the error with 
respect to the logarithmic decrement ranges from − 3 
to 4%. This discrepancy range is regarded as insignifi-
cant value. Therefore, above example indicates that the 
damping of the system can be effectively estimated by the 
change in the covariance derived from Hilbert transform 
of output.

3.2  High‑rise Building Subjected to Strong Wind Load
In recent tall buildings, coupled torsional-translational 
behavior is observed. As the structure is subjected to uni-
directional translational wind load, for instance, usually 
two translational responses in parallel and perpendicular 
direction to the load and torsional response are observed. 
To be specific, a few lower modes are blended in tor-
sional-translational modes and those individual modes 
other have different contribution to the global behavior 
of the structure. The natural frequencies of those modes 
comprising the coupled behavior are often so close that 
the modal identification requires more delicate approach 
to separate them clearly (Kareem 1985).

In this example, the ICA technique discussed above 
is applied to decompose the close modes in the coupled 
motion of the existing 39-story building and validation of 
the technique is performed. For dynamic identification, 

(17)Ṗy = �Py + Py�̃ = 2Re(�)Py

(18a)Py = e−2ωξ tPy0

(18b)Sy =
√
Py = e−ωξ tSy0

Fig. 6 The decomposed modal response and spectra.
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Fig. 7 The natural frequency distribution of the first mode.
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the acceleration signals recorded at three different loca-
tions on the top floor while a typhoon took place are 
used.

The steel-reinforced concrete mixed skyscraper is 
located in Seoul, South Korea and has 39 floors (188 m). 
Its construction was complete in 1998 and the building 
has commercial and entertainment use. Figure  9 repre-
sents the building of the experiment. Wind-induce vibra-
tion was measured at the 38th floor (160  m) from 5:00 
a.m. until 3:00 p.m. in August 8th in 2011 using the accel-
erometers indicated position A and B in Fig. 10. The dis-
tance between A and B is 13 m.

In Fig. 11, the three-axis acceleration signals measured 
at location B in the morning is exhibited. The peak accel-
eration is approximately 2 cm/sec2 and it is observed that 
waveforms in X and Y direction are slightly different. 

Next, X- and Y-direction vibrations at two locations 
recorded in the afternoon are displayed in Fig. 12. Instead 
of the vertical Z-direction response, two Y-direction time 
history were recorded to observe the torsional behavior 
of the plane. As shown, the amplitude of the Y-direction 
responses is greater than that in X direction and the 
Y-direction acceleration of A near the edge is greater 
than that of B. The peak acceleration in this period is 
3.94 cm/sec2.

First, the signals of each direction are examined by 
spectral analysis. As pre-processing, zero-mean process, 
noise cancelling and low pass filter with cut-off frequency 
of 5 Hz were introduced to the time series. The processed 
time history of Y-direction accelerations and correspond-
ing spectra are presented in Fig. 13. As mentioned previ-
ously, the peak amplitude at A (y2) almost doubles that 
at B (y1). In the spectrum, the major vibration modes in 
Y direction can be found near 0.2 Hz and 0.3 Hz and the 
spectral amplitude of y2 at 0.3 Hz outnumbers that of y1. 
This difference explicitly implies that the 0.3  Hz mode 
is most likely the fundamental torsional mode. Mean-
while, the spectrum of the x-direction signal illustrated 
in Fig. 14 represents a new mode near 0.22 Hz which is 
as significant as the mode near 0.2 Hz, while the ampli-
tude near 0.3  Hz which is supposed to be the torsional 

Fig. 8 The covariance of the third mode response and its estimation.

Table 5 The identified natural frequencies.

Method Mode 1
[Hz]

Mode 2
[Hz]

Mode 3
[Hz]

ICA
(Cumulative distribution)

1.7357 4.8043 7.1150

Peak‑picking 1.7322 4.9824 7.2504

Error 0.2% − 3.57% − 1.87%

Table 6 Damping estimation using the  derivative 
of the covariance.

Method Mode 1 Mode 2 Mode 3

Covariance 0.25% 0.35% 0.3%

Logarithmic decrement 0.24% 0.36% 0.29%

Error + 4% − 3% 3%

Fig. 9 The 39‑story building.
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mode is very small. At this point three modes near 0.2, 
0.22, and 0.3 Hz are loosely identified by the basic peak 
picking method. However, those frequencies can vary 
with the parameters considered in the spectral analysis as 
discussed in the first example. Subsequently, the probable 
three modes are separated by ICA.

First, the mode shapes are given by the linear transform 
matrix produced by the mode decomposition procedure 
of ICA. The modes other than first three modes are so 
insignificant that those are neglected in this example. The 
decomposed time history corresponding to mode 1, 2, 

and 3 and their spectra are shown in Fig. 15. The clearly 
different waveforms of each separate time series account 
for little correlation between the modes. It should be 
noted that the value of the decomposed responses calcu-
lated by ICA is dimensionless such that the values in the 
y-axis of the time domain in Fig. 15 does not show physi-
cal quantity, but only relative amplitude. Thus, the linear 
transform matrix A is required for the outcome of ICA 
to be converted into the acceleration with unit. The com-
ponents of transform matrix A and corresponding mode 
shapes are presented in Table 7 and Fig. 16, respectively. 

Fig. 10 Plan view of the top floor and measurement layout.

Fig. 11 Accelerograms at B.
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Very little effect of torsion is found in mode 1 and 2. 
Regarding translational behavior, mode 1 represents 
almost equal effect on both X-and Y-direction response, 
while the effect in Y direction is pronounced in the sec-
ond mode shape. As predicted, a remarkable torsional 
mode shape is shown in mode 3.

It is worth mentioning that there might be a trade-off 
between neglecting higher insignificant modes to facili-
tate ICA decomposition and a loss of a part of original 
data. Application of filters can also result in data loss 
when restoring original data. For this reason, it is nec-
essary to assess the level of signal distortion and loss 
caused by mode separation by ICA. It can be achieved 

Fig. 12 Accelerograms at A and B.

Fig. 13 Wind induced accelerations in Y direction.

Fig. 14 Spectrum of X‑direction signal.
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by converting the non-dimensional decomposed modes 
into acceleration quantities according to the relation 
given in Table  7. The correlation between the restored 

Fig. 15 Decomposed modes and spectra.

Table 7 Transform matrix and mode shape.

Mode 1 Mode 2 Mode 3

Transform matrix A X − 0.2036 − 0.1065 0.0649

Y1 at B − 0.2011 0.2060 − 0.1505

Y2 at A − 0.2058 0.2187 − 0.3624

Transform relationship Z = AS
 where Z: measured output
 S: dimensionless response by ICA

Fig. 16 Mode shape of the tall building by ICA.

Fig. 17 Correlation between the original and restored signal 
(correlation coefficient: 0.985).
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acceleration by combining three separate time histories 
from ICA and the original output of y2 is illustrated in 
Fig. 17. As seen, two time series are in good agreement 
and its correlation coefficient is equal to 0.985. Therefore, 
this result strongly supports that ICA is a stable modal 
decompostion technique and is of great potential in 
operational modal analysis for the large-scale structures 
subjected to random vibration.

Finally, the natural frequencies of each mode are esti-
mated using Hilbert transform as previous example. The 
separate natural frequencies shown in Fig.  15 are still 
ambiguous and furthermore the unknown frequencies 
of the wind load mixed with building’s natural frequen-
cies makes identification more difficult. The instantane-
ous natural frequency of mode 1 by Hilbert transform 
with respect to time obtained is represented in Fig.  18. 
It is shown that most time-varying natural frequencies 
are found between 0.1 and 0.3  Hz and this distribution 
implies uncertainty. When the distribution is, however, 
displayed as a function of cumulation as shown in Fig. 19, 
the most frequent variable, which is natural frequency in 

this problem, is specified at CDF 0.5: 0.202 Hz, 0.21 Hz, 
and 0.298 Hz for mode 1, 2, and 3, respectively. Although 
those natural frequencies are so close that they cannot be 
separately by peak picking technique, ICA and Hilbert 
transform can decouple the combined vibration modes 
and identify modal parameters efficiently.

4  Conclusions
In this study, ICA method designed for mode decomposi-
tion is validated via experiments using a scaled structural 
model. The findings of the validation are summarized as 
follows:

1) Based on the robust mathematical model, ICA is an 
effective method to evaluate mode shapes from the 
output-only signal of the structure. The mode shapes 
obtained by ICA method agree with those by the 
analytical and peak picking methods.

2) Two modal identification examples show that the 
ICA technique allows one to decompose structural 
response into individual modes even if the modes are 
very close. The natural frequency and damping ratio 
can be also calculated from each identified mode 
by a statistical approach. Closely spaced modes in a 
coupled torsional translational behaviour induced by 
non-gaussian excitation such as strong wind loads on 
a high-rise building are successfully identified. The 
ICA and Hilbert transform-based scheme can iden-
tify explicitly modal parameters of existing buildings.

3) Another advantage of using ICA is verified by revers-
ing the separate modes obtained by ICA. The restor-
ing of the outcome of ICA results in the original 
output signal without any deterioration in the data 
quality.

4) Complementary study to reduce the statistical 
error in the estimation of natural frequency due to 
unknown dynamic properties the excitation.

Abbreviations
α: basis; λ: eigenvalue; ξ: damping ratio; φ: spectral mode shape; Φ̄: analytical 
mode shape; ω: natural frequency; A: matrix consisting for column vectors α(i); 
C: transform matrix between output y and state variable x; D: diagonal matrix 
comprised of eigen values λ; E: orthogonal matrix comprised of eigen vectors; 
kurt: kurtosis; m: the number of signals; MAC: mode assurance criteria; N̂: noise; 
P: expectation of xxT; Py: covariance of the output; Py0: unknown initial value 
of the covariance Py; Ṗy: derivative of covariance of the output; Re: real part 
of complex number; s: original signal; Sy: standard deviation; t: time step; W: 
linear transform matrix; x: mixed system response signal; xH: Hilbert transform 
of state variable x; X: modal response; x̄: mean value of x; x′: zero mean value 
of x; ẋ: State variable; xo: unknown initial value; y: output signal; Y: structure’s 
response; yH: Hilbert transform of output y.

Fig. 18 Instantaneous natural frequency of mode 1.

Fig. 19 Cumulative distribution function of time‑varying natural 
frequency.
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