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Abstract 

Aging and structural deterioration under severe environments are major causes of damage in reinforced concrete 
(RC) structures, such as buildings and bridges. Degradations such as concrete cracks, corrosion of steel, and deforma‑
tion of structural members can significantly degrade the structural performance and safety. Therefore, effective and 
easy‑to‑use methods are desired for repairing and strengthening such concrete structures. Various methods for the 
strengthening and rehabilitation of RC structures have been developed over the past several decades. Recently, FRP 
composite materials have emerged as a cost‑effective alternative to conventional materials for repairing, strength‑
ening, and retrofitting deteriorating/deficient concrete structures, by externally bonding FRP laminates to concrete 
structural members. The main purpose of this study is to investigate the effectiveness of the FRP retrofit for circular 
type concrete columns under the framework of the  adaptive neuro‑fuzzy inference system (ANFIS). Retrofit ratio, 
strength of existing concrete, thickness, number of layer, stiffness, ultimate strength of fiber, and size of specimens 
are used as input parameters to predict strength, strain, and stiffness of the post‑yielding modulus. These proposed 
ANFIS models show reliable increased accuracy in predicting the constitutive properties of concrete retrofitted by FRP, 
compared to the constitutive models suggested by other researchers.

Keywords: adaptive neuro‑fuzzy inference system, FRP retrofitting, compressive concrete strength, strain, 2nd elastic 
modulus
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1 Introduction
The performance of concrete structures needs to be 
improved to compensate the   deterioraton induced 
by adverse environment, inadequate maintenance, or 
spontaneously varied natural conditions. The applica-
tion of sectional augmentation or steel plate attachment 
employed to column elements   has limitations due to 
the increase of dead weight to foundations and reduced 
usability.  In contrast, the method employing FRP materi-
als has been broadly propagated, because it enables com-
paratively simple construction work that could secure the 
integrity of concrete structures. Due to its advantages of 
excellent reinforcement effects together with superior 

durability and corrosion resistance realizable in a rather 
short construction period, the FRP materials have been 
broadly employed in recent maintenance and reinforce-
ment works (Al-Nimry and Ghanem 2017).

Richart (1928) et al. conducted  a study to improve the 
strength (of concrete members) through the lateral bind-
ing of concrete, whale Mander et al. (1988) demonstrated 
the effect of lateral binding through their study that 
mathematically examined the stress–strain relationship 
of laterally bound concrete; thereafter, researchers have 
developed the design formulae of laterally bound con-
crete with the development of diverse kinds of fibers.

Lee et  al. (2007) and Cho (2007) also conducted tests 
to predict the strength and strain of the concrete retrofit-
ted with FRP,  and Hosotani and Kawashima (1999) and 
Youssef et al. (2007) proposed the design formulae of the 
lateral binding of rectangular and cylindrical columns 
and then suggested the formulae to predict the ultimate 
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strength and strain of retrofitted structures and the post 
-yield ductility.

These empirical formulae based on respective experi-
ments were presented independently through previously 
conducted studies. Thus staff in actual sites may become 
confused in selecting proper formulae for respective 
applications; and accordingly, a comprehensive examina-
tion   of the capability of the performance prediction of 
each formula is needed. In the meantime, the theory of 
neural networks which uses the human learning capabil-
ity beyond the systematic learning of computers has been 
grafted onto recent engineering applications. The theory 
does not constitute the causal relationship of variables 
used for the design through functions, but, it predicts the 
results by exploiting the neural networks that consist of 
neurons, which are the basic elements involved in human 
perception and judgment. The system applied theory 
has been recently grafted onto the structural engineer-
ing applications (Imam et al. 2015, Lee et al. 2017), and 
rendered excellent predictive effects. For example, Gupta 
et al. (2006) and Kim et al. (2004) introduced the theory 
of neural networks that used the mixing ratio to estimate 
the compressive strength of concrete, and there is a case 
(Park 2006) that studied the reinforcement effect of con-
crete beams  that employed the carbon fiber sheets for 
flexural reinforcement. In this study, the theory of neural 
networks that could imitate the human-decision making 
capability was applied to the prediction of the stress–
strain relationship of concrete retrofitted with FRP.

That is, the basic physical properties that indicate the 
characteristics of fiber reinforcement, the coefficient rep-
resenting the volume, and  the conditions of test speci-
mens to be retrofitted etc. were used as input variables 
to design the prediction system with fuzzy theory, which 
is the discipline belonging to the theories of neural net-
works, to predict the post-reinforcement strength (Ft), 
yield strain (εt), and post-yield elastic modulus (Eg) (see 
Fig.  1). The  results obtained through experiments were 
applied to the prediction system to infer the predictability 
of the data needed for the reinforcement design with FRP. 
This study intended to build up  a system that applied the 
fuzzy theory to predict the reinforcement effect of cylin-
drical compression retrofitted test specimens   that were 
laterally bound with FRP.

2  Adaptive Neuro‑Fuzzy Inference System
The Neural Network (Fukuda 1996) has been known as 
a representative method that imitates human learning 
capability, while the Fuzzy Theory is regarded as an alter-
native way to realize the human decision-making faculty. 
Recently, neuro-fuzzy techniques that imitate human 
learning and decision-making capability by combining 
neural network and fuzzy theories have been developed; 

and  a neuro-fuzzy system like these techniques  is intro-
duced in this study. The neuro-fuzzy system is a fuzzy 
system that introduces the learning capability of neu-
ral network; and the combination of fuzzy logic system 
based on expert knowledge and introduced flexible learn-
ing capability is applied to problems that are unable to be 
solved with conventional concepts.

The fuzzy system (Gil and Park 1995) consists of an 
input membership function, fuzzy rule, and output mem-
bership function (Layer 5). The input membership func-
tion indicates Layer 1 that would be enumerated in the 
input space; and in this study, the reinforcement effect 
was defined as an influential element. The fuzzy rule 
is a combination of fuzzy inference concept and back 
propagation algorithm of neural network; and this also 
indicates the process of learning (Kim et  al. 2004) that 
reaches the final value of designed neuro-fuzzy network 
having minimal error and the final objective value that is 
intended to be attained.

The Adaptive Network-based Fuzzy Inference Sys-
tem (ANFIS) having mixed learning rules (Cao et  al. 
1990) which was equipped to optimize parameters 
associated with the first Sugeno system (Kim 2003) 
was employed in this study. Figure  2 shows the con-
figuration of the neuro-fuzzy system used in this study. 
The neuro-fuzzy system comprises 5 Layers: Layer 1 
is assigned as an input node; Layers 2–4 indicate the 
process of applying the rule of fuzzy logic; and Layer 
5 denotes the output layer. Here, both the input and 
output layers consist of two language layers. Each layer 
plays the following roles, and the output values of each 
Layer indicate the respective weighted values.

Layer 1 is a stage in which the parameters of member-
ship function are determined.

Fig. 1 Define of ascending and descending in Stress–strain relation.
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Here, the O1
i  represents the membership function cor-

responding to each node at ‘Level 1’; and x denotes the 
input value of each ‘Node’. The ci and ai represent the 
membership function designed by the central value and 
value of standard deviation of the i-th input value at the 
first Layer 1. The parameter(s) of membership function is 
(are) determined at Layer 1 through the Eq. (1).

The Layer 2 generates the rule(s) and is a stage deter-
mining the degree of fulfillment of the generated 
rule(s).  It can be represented as the following Eq. (2).

In the figure above, the node implies the number of 
rules; and by calculating the fuzzy product using Eq. (2), 
the output of each node is represented as a strength of 
active function(s) of the rule(s).

Layer 3 is a stage  that represents the degree of fulfill-
ment of normalized rules, and the degree of fulfillment is 
expressed as the following Eq. (3).

(1)O1
i = µAi(x)µAi(x) = exp

{

−

(

x− ci

ai

)2
}

(2)ωi = µAi(x)× µBi

(

y
)

, i = 1, 2

Layer 4 is a stage creating the final rule(s) that generates 
the output(s) as follows. The ω̄i is the value calculated at 
Layer 3; and fi comprises the linear combination(s) to the 
input(s) as expressed in Eq. (4).

Where, {pi, qi, ri} means the parameter set of final 
rule(s).

Layer 5 generates the final output(s) as represented in 
Eq. (5) by adding all input values output from Layer 4.

Values input into the output layer will generate result-
ing output values if they are converged within the pre-
determined error rate; otherwise, they will be re-input 
into Layer 2 for reiterative calculation.

3  Prediction of Retrofitting Effects 
through the Neuro‑Fuzzy System

3.1  Gaining of the Training Data
In this study, 284 data were collected through four 
research papers, which can identify the characteristics 
of reinforcing materials and the conditions of the base 
materials, in the existing researches that used FRP to 
reinforce the compression members, and the composi-
tion is shown in Table 1  (Lee et al. 2007; Lam and Teng 
2002; Hwang 2001; Chun et al. 1999).

The 284 data (Case-1) represented the compres-
sive strength  (Ft), the 96 test specimens (Case-2) gave 
the information of strain (εt), and the 87 test speci-
mens (Case-3) provided the information of Post Yield-
ing Modulus(Eg) that  were used to predict the effects 
of reinforcement; and the accuracy of prediction and 
applicability of the neuro-fuzzy system to the actual 
field were examined.

(3)ω̄i =
ωi

ω1+ω2
, i= 1, 2

(4)O4
i = ω̄ifi = ω̄i(pix + qix + vi)

(5)O5
i = z =

∑

i

ω̄if i =

∑

i ωifi
∑

i ωi

Fig. 2 Conceptual Organization of the ANFIS.

Table 1 Prediction design for  confined concrete using 
ANFIS.

CASE Training set Test set

1 Number of strength  (Ft) data 284 16

2 Number of  strain (εt) data 96 16

3 Number of  Secondary elastic 
modules  (Eg) data

87 16
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3.2  The Learning of Data
The data collected by each set were obtained from tests 
conducted according to test standards specified in KS F 
2405 for the compressive strength test that employed the 
test specimens prepared with the  dimensions of each  of 
(diameter × height) of (100 × 200 mm) or (150 × 300 mm). 
The input variables for the learning of data were selected 
by using the design coefficients and conditions of the 
members to be retrofitted which were employed in exist-
ing studies that examined the reinforcement of the perfor-
mance of structures by using the fiber reinforcement. That 

is, the compressive strength (f ’c) of the concrete to be ret-
rofitted, the thickness of reinforcement (tfrp), the number 
of layers of reinforcement, the elastic modulus of rein-
forcement (Efrp), the rupture strength of reinforcement 
(ffrp), the volumetric ratio of the reinforcement to con-
crete members to be retrofitted (K), and the dimensions 
of members (D, h) to be retrofitted etc. were selected as 
input layers; and the Ft, εt, Eg (see Fig.  3) were selected 
as output layers for the design of the neuro-fuzzy system.

The condition for the learning of data was designed 
by echo with the tolerance below 0.5%; and part of the 

Fig. 3 Fuzzy design for CFRP retrofitting system.

Table 2 Samples for training data set in this study (part in 284 samples)

tfrp,: thickness of FRP;  Efrp: young’s modulus of FRP; ρ: Volume ratio;  ffrp: ultimate strength of FRP; A: Aramid; G: Glass fiber; C: Carbon fiber.

Data unit f’c MPa tfrp cm Layer ply Kind – Efrp GPa ffrp MPa ρ (%) D cm h cm Ft MPa

1 38.6 0.031 1 G 73.3 755 0.816 15 31 45.5

2 30.2 0.017 1 A 224.6 2716 0.68 10 20 46.6

3 26.2 0.1 1 G 19.1 330 2.632 15 61 33.5

4 39.4 0.142 1 G 19.9 363 5.569 10 20 63.1

5 41.0 0.009 2 C 235 3500 0.706 5 10 117.0

6 45.2 0.011 2 C 230.5 3481 0.293 15 30 52.4

7 33.7 0.011 3 C 230.5 3481 0.440 10 20 109.9

8 35.0 0.08 3 G 36 560 2.105 15 44 83.0

9 43.7 0.0193 2 A 210 2173 0.772 10 20 88.0

10 33.28 0.0167 4 C 235 3550 0.668 10 20 111.1

11 20.79 0.0193 2 A 210 2173 0.772 10 20 72.8
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data prepared for the learning of Case-1 (predictions 
of post reinforcement strength) were  is represented in 
Table 2 to help understand the composition of data. The 
column without shade in Table 2 is the input layer, while 
the shaded column denotes the output layer represent-
ing the results of the predictions of post-reinforcement 
strength.

3.3  Distribution of the Data used for the Learning
Figure  4a illustrates the distribution of the data of maxi-
mum compressive strength (21.43–124.40  MPa, sorted 
in descending order) which were collected from existing 
studies to apply the fuzzy theory; Fig. 4b shows the strain 
at maximum compressive strength; and Fig. 4c represents 
the post-yield secondary elastic moduli sorted in descend-
ing order.

Fig. 4 Range of experimental values used as learning data. Fig. 5 Prediction ratio in training stage.
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3.4  Results of the Learning of Data
3.4.1  Results of the Learning
Figure 5a represents the results obtained from the learn-
ing of the neuro-fuzzy system conducted to predict the 
breaking strength of 284 cylindrical test specimens later-
ally bound with reinforcement fiber. The overall predic-
tion error was 5.4% that appeared evenly in the interval 
of the distribution of predicted strength starting from the 
lower values to the higher ones.

Figure 5b illustrates the results with prediction error of 
3.0% obtained from the neuro-fuzzy system applied to 
the prediction of axial strain of test specimens being bro-
ken, while Fig.  5c represents the results with prediction 
error of 8.1% rendered by the neuro-fuzzy system applied 
to the prediction of secondary post-yield elastic moduli of 
87 cylindrical test specimens laterally bound with the rein-
forcement fiber.

where, P.V. means Predictable Value, and E.V. means 
Experimental Value

3.4.2  Statistical Examination
Figure  6 shows the  histogram of the ratio of the result-
ant values obtained from the learning of the neuro-fuzzy 
system to the values obtained from tests conducted by the 
each data set of each model and the corresponding prob-
ability distribution functions for the statistical analysis.

Each model renders the shape of normal distribution; 
and that of Case-2 represents the highest probability dis-
tribution function. The values of the standard deviation 
were 0.075 (Case-1), 0.051 (Case-2), and 0.107 (Case-3); 
and the results show the lowest accuracy of the learning 
conducted to predict the secondary elastic moduli.

(6)
E.R =

abs(P.V − E.V .)

E.V .
× 100(% )

3.4.3  Analysis of Errors
The range of error was examined to assess the accuracy 
of learning of the neuro-fuzzy system. Equation (6) rep-
resenting the percentage of error, the Root Mean Square 
Error  (RMSE) representing the degree of error of pre-
dicted values, and the error of R2 (Absolute fraction 
of variation) representing the deviation of predictions 
from the test results were used to analyze the accuracy of 
learning of neuro-fuzzy system.

Table  3 shows the resultant errors of the learning of 
data in each Case, compared with the  results obtained 
from each calculation of errors. The RMSE of the pre-
dicted strength in Case-1 was about ± 4.78  MPa, and 
that of Case-2 predicted the strain was 0.00096, while it 
was ± 428.66  MPa in Case-3. The values of  R2 represent-
ing the degree of deviation were 0.9957, 0.9982, and 0.9831 
respectively showing the favorable level of learning.

3.4.4  Comparison of the Results of Learning with the Results 
Obtained from the Existing Formulae

Studies that delved into the prediction of stress & strain 
of laterally bound concrete to introduce the predic-
tions into design have been conducted for a long time. 
Most of the prediction formulae developed through 
such studies were based on the regression analysis of 
the data obtained from respective tests. Youssef (2003) 
presented the stress–strain model through the test that 
employed cylindrical test specimens laterally bound 
with FRP, and proposed the stress prediction formula 
of retrofitted concrete as represented in the following 
Eq. (7) through regression analysis.

f ’c: the compressive strength of concrete; fcu: the 
ultimate compressive strength of the test specimen 
retrofitted with FRP; flu: the effective strength of rein-
forcement at the ultimate compressive strength.

Figure  7 shows that the above expression applied to 
the data set used for the learning conducted in this 
study generates an error of about 24.8%. In particu-
lar, the expression did not predict the characteristics 
of strength in the domain beyond 90  MPa. Figure  8 

(7)f cu
f ′c

= 1.0+ 2.25

(

f lu
f ′c

)
5
4

Fig. 6 Error ratio of prediction and actual data on statistical analysis.

Table 3 Results of the Statistical analysis.

Case-1  (Ft) Case-2 (εt) Case-3  (Eg)

RMSE 4.79 0.00097 428.7

R2 0.99889 0.99979 1.009

E.R 5.4 4.1 8.1
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illustrates the ratios of predictions of the case applied 
the neuro-fuzzy system designed in this study to those 
calculated by Eq.  (7); and it represents the more pre-
cise predictions of the neuro-fuzzy system established 
in this study. 

4  Verification of the Outputs of the Neuro‑Fuzzy 
System

4.1  Design of Experiment and Preparation of Test 
Specimens

For the test to be conducted to verify the neuro-fuzzy 
system designed in this study, the 16 test specimens were 
prepared in the laboratory as represented in Table 4. The 
test specimens were made to the dimensions of the gen-
eral test specimen (150 × 300 mm) and the extended one 
(150 × 600 mm; the length of four times of the diameter 
of the cylindrical test specimen) prepared for further 

tests conducted in this study to predict the reinforcement 
effects of cylindrical columns. The cylindrical mold form 
and the pipe made of PVC were used to make cylindrical 
test specimens to measure the compressive strength.

The mixing ratios of concrete used to make  the test 
specimens were determined by the design strength of 
21  MPa, as represented in Table 5. After the placement 
of concrete, all the test specimens were cured for 28 days 
in atmospheric condition, and the measured compressive 
strength was 20.1 MPa.

4.2  Reinforcement of Test Specimens
The test variables of test specimens to be employed for 
the test of reinforcement were determined to be identical 
to variables of the input layer for the learning of data; and 
the amount of reinforcement (ρ) was set by distinguish-
ing the thickness and number of layers of each reinforce-
ment. The surface of concrete was completely dried and 
treated before the reinforcement of test specimens, and 
the dust on the surface of concrete was removed by com-
pressed air. Thereafter, the test specimens were coated 
with epoxy mortar in constant thickness, and the rein-
forcements were attached on each test specimen accord-
ing to respective variables as shown in Fig. 9; both edges 
of test specimens were sheet-wrapped to prevent the 
breaking of the edges. Table 6 shows the physical proper-
ties of the reinforcement employed in this study.  

4.3  The Test and Measurements
A Universal Testing Machine  (UTM) of the capacity of 
2000 kN was employed in the test. Test specimens were 
placed on the center of the loader by using auxiliary fit-
tings made of iron that were fitted on the center of  the 
loading frame, and the load cell was installed on each test 
specimen.

A hinge was inserted between the test specimen and 
loader to prevent eccentricity. A guide was installed on 
the upper and lower edges of the test specimen to meas-
ure the displacement of the test specimen; and displace-
ment meters (LVDTs) of the precision of ± 25 mm were 
installed on the left and right edges of the test specimen 
to measure the axial displacement. Loading up to the 
75% of expected load was carried out by applying load 
control, and thereafter the test specimen was loaded by 
strain control; and  the results of  the test were collected 
through a data collector (UCAM-5BT). Figure 10 shows a 
photo of the testing machine.

4.4  Results of the Test
The test specimens maintained high toughness by the 
reinforcement as shown in Fig. 11, and thereafter broke 
rapidly with the rupture of the reinforcement. The 

Fig. 7 Prediction ratio of confined concrete by Eq. (7).

Fig. 8 Prediction ratio confined concrete between Youssef’s research 
and this study.
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breakdown of the test specimen was initiated by crack-
ing on the part of the bondage between the concrete 
and fiber reinforcement, followed by the rupture of 
reinforcement, and conical breakdown of the test speci-
men. Table 7 summarizes the results of the test. 

4.5  Results of the Verification of the Neuro-Fuzzy System
In this study, 16 data as represented in Table  1 were 
used to verify the performance of the neuro-fuzzy 

system designed in the study. The data set used for the 
verification of the performance of the neuro-fuzzy sys-
tem comprises the compressive strength of concrete to 
be retrofitted, the thickness of reinforcement, the num-
ber of layers of fiber reinforcement, the elastic modulus 
and rupture strength of the reinforcement, the volu-
metric ratio of the reinforcement to concrete, and the 
dimensions of members to be retrofitted, which were 
set as data for an input layer as the data set used for the 
learning of the neuro-fuzzy system, through which the 
compressive strength, strain, and post- yielding modu-
lus of the output layer were estimated.

Figure 12 shows the results of the verification of the 
neuro-fuzzy system, which rendered errors of 11.5%, 
7.5%, and 16.7% respectively. The case of the predic-
tion of strength revealed superior predictions to those 
obtained from the method presented by Yossef thus it 
was judged that the established neuro-fuzzy system can 
be applied to predictions of the degree of reinforcement 
of the compressive strength of the retrofitted members.

Table 4 Summary of retrofitting specimen property.

Name ρ (%) Name ρ (%)

H2- 0 0.53 N2- 0 0.27

H2- 1 0.27 N2- 3 0.27

H2- 2 0.18 N3- 1 0.8

H2- 3 0.13 N3- 3 0.4

H2- 4 0.11 N3- 1 0.4

H2- 1-T 0.53 N3- 1 0.8

H2- 1-A 0.53 N3- 0-A 0.8

H2- 1-B 0.53 N3- 1-B 0.8

Table 5 Mix properties of concrete.

Design Slump W/C (%) Mixture (kg/m3)

C W S G Air Admix

21 MPa 12 cm 54.7 328 180 865 950 4.5
±1.5%

1.5

Fig. 9 Retrofitting process on H2‑I1 specimen.

Table 6 Properties of FRP.

Tensile strength (MPa) Modulus of elasticity (GPa)

1991 158.2
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5  Conclusions
This study intended to appraise the applicability of a 
neuro-fuzzy system to predict the stress–strain rela-
tionship of concrete members retrofitted with fiber 
reinforcement by using the data obtained through tests 
conducted in previous studies. The results obtained 
from this study are summarized as follow:

(1) The compressive strength of concrete members to 
be retrofitted, thickness of reinforcement, num-
ber of reinforcing layers of reinforcement, elastic 
modulus of reinforcement, rupture strength of rein-
forcement, volumetric ratio of reinforcement to 
concrete members to be retrofitted, and dimensions 
of the concrete member to be retrofitted can be 
used as variables of the input layer of the learning of 
the neuro-fuzzy system to estimate the compressive 
strength, strain, and secondary modulus of elastic-
ity of the retrofitted members of the output layer.

(2) The 284 data obtained from tests conducted in 
previous studies were employed as the data set for 
the learning of the adaptive neuro-fuzzy inference 
system (ANFIS) developed for this study, together 
with 16 test specimens retrofitted with fiber rein-
forcement to predict the effects of reinforcement. 
The results of the prediction of the effects of rein-
forcement showed errors of 11.5% for the predicted 
breaking strength, 7.5% for the predicted strain, and 
16.7% for the predicted secondary elastic modulus.

Fig. 10 UTM (Capacity 2000 kN).

Fig. 11 Stress–strain relationship of H series.

Table 7 Summary of the testing data.

*H and N are reference specimens.

**(−) symbol means ‘descending’ at Fig. 1.

Specimen Ft (MPa) εt Eg (MPa)

H* 26.61 0.0023 − 25,974**

H2‑I 0 32.63 0.003 12,810.59

H2‑I 1 31.28 0.0033 2527.83

H2‑I 2 30.67 0.0028 − 13,138.2**

H2‑I 3 31.43 0.0027 − 24,890.9**

H2‑I 4 30.48 0.0027 − 34,703.1**

H2‑I 1‑T 34.86 0.0032 11,652.96

H2‑I 1‑A 35.33 0.0037 5081.056

H2‑I 1‑B 37.02 0.0036 22,674.68

N* 21.13 0.0018 − 19,276.4**

N2‑I0 25.70 0.0031 3156.05

N2‑II3 26.66 0.0031 2852.00

N3‑II1 26.83 0.0039 9814.00

N3‑II3 25.87 0.0035 4602.43

N3‑I1 26.57 0.0034 6210.99

N3‑I1‑T 29.07 0.0036 8967.37

N3‑I0‑A 28.59 0.00378 5697.24

N3‑I1‑B 29.81 0.0037 7984.13
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(3) An adaptive neuro-fuzzy inference system (ANFIS) 
was designed in this study to learn the data 
obtained from experiments using the test speci-
mens prepared by dimensional ratios of the diam-
eter and length of each test specimen of 1:2 and 1:4; 

and the performance of learning of the neuro-fuzzy 
system was verified through tests that rendered 
excellent predictions of the effects of fiber rein-
forcement. Thus it was estimated that the build-up 
of databases of actual members, such as columns or 
beams, would be desirable for further applications 
of this system.
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