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Abstract 

In 2013, our research group published a contribution in which a new version of genetic programming, called Geo-
metric Semantic Genetic Programming (GSGP), was fostered as an appropriate computational intelligence method for 
predicting the strength of high-performance concrete. That successful work, in which GSGP was shown to outper-
form the existing systems, allowed us to promote GSGP as the new state-of-the-art technology for high-performance 
concrete strength prediction. In this paper, we propose, for the first time, a novel genetic programming system 
called Nested Align Genetic Programming (NAGP). NAGP exploits semantic awareness in a completely different way 
compared to GSGP. The reported experimental results show that NAGP is able to significantly outperform GSGP for 
high-performance concrete strength prediction. More specifically, not only NAGP is able to obtain more accurate pre-
dictions than GSGP, but NAGP is also able to generate predictive models with a much smaller size, and thus easier to 
understand and interpret, than the ones generated by GSGP. Thanks to this ability of NAGP, we are able here to show 
the model evolved by NAGP, which was impossible for GSGP.
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1  Background
Concrete is a material mainly used for the construction 
of buildings. It is made from a mixture of broken stone or 
gravel, sand, cement, water and other possible aggregates, 
which can be spread or poured into moulds and forms a 
stone-like mass on hardening. Many different possible 
formulas of mixtures exist, each of which provides dif-
ferent characteristics and performance, and concrete is 
nowadays one of the most commonly used human-made 
artifacts (Lomborg 2001). Some of the concrete mixtures 
commonly used in the present days can be very complex, 
and the choice of the appropriate mixture depends on 
the objectives that the project needs to achieve. Objec-
tives can, for instance, be related to resistance, aesthetics 

and, in general, they have to respect local legislations 
and building codes. As usual in Engineering, the design 
begins by establishing the requirements of the concrete, 
usually taking into account several different features. 
Typically, those features include the weather condi-
tions that the concrete will be exposed to, the required 
strength of the material, the cost of the different aggre-
gates, the facility/difficulty of the mixing, the placement, 
the performance, and the trade-offs between all these 
characteristics and possibly many others. Subsequently, 
mixtures are planned, generally using cement, coarse and 
fine aggregates, water and other types of components. A 
noteworthy attention must also be given to the mixing 
procedure, that has to be clearly defined, together with 
the conditions the concrete may be employed in. Once 
all these things are clearly specified, designers can finally 
be confident that the concrete structure will perform as 
expected. In the recent years, in the concrete construc-
tion industry, the term high-performance concrete 
(HPC) has become important (Yeh 1998). Compared to 
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conventional concrete, HPC usually integrates the basic 
ingredients with supplementary cementitious materi-
als, including for instance fly ash, blast furnace slag and 
chemical admixture, such as superplasticizer (Kumar 
et  al. 2012). HPC is a very complex material, and mod-
eling its behavior is a very hard task.

In the past few years, an extremely insightful result 
appeared, known as Abrams’ water-to-cement ratio (w/c) 
law (Abrams 1927; Nagaraj and Banu 1996). This law 
establishes a relationship between the concrete’s strength 
and the w/c ratio, basically asserting that the concrete’s 
strength varies inversely with the w/c ratio. One of the 
consequences is that the strengths of different concretes 
are identical as long as their w/c ratios remain the same, 
regardless of the details of the compositions. The impli-
cations of the Abrams’ rule are controversial and they 
have been the object of a debate for several years. For 
instance, one of these implications seems to be that the 
quality of the cement paste controls the strength of the 
concrete. But an analysis of a variety of experimental 
data seems to contradict this hypothesis (Popovics 1990). 
For instance, in Popovics (1990) it is demonstrated that 
if two concrete mixtures have the same w/c ratio, then 
the strength of the concrete with the higher cement con-
tent is lower. A few years later, several studies have inde-
pendently demonstrated that the concrete’s strength is 
determined not only by the w/c ratio, but also by other 
ingredients [see for instance (Yeh 1998; Bhanja and Sen-
gupta 2005)], In conclusion, the Abrams’ law is nowadays 
considered as practically acceptable in many cases, but a 
few significant deviations have been reported. Currently, 
empirical equations are used for estimating the concrete 
strength. These equations are based on tests that are usu-
ally performed without further cementitious materials. 
The validity of these relationships for concrete in case of 
presence of supplementary cementitious materials (like 
for instance fly ash or blast furnace slag) is nowadays the 
object of investigation (Bhanja and Sengupta 2005). All 
these aspects highlight the need for reliable and accu-
rate techniques that allow modeling the behavior of HPC 
materials.

To tackle this problem, Yeh and Lien (2009) proposed 
a novel knowledge discovery method, called Genetic 
Operation Tree (GOT), which consists in a composition 
of operation trees (OT) and genetic algorithms (GA), to 
automatically produce self-organized formulas to predict 
compressive strength of HPC. In GOT, OT plays the role 
of the architecture to represent an explicit formula, and 
GA plays the role of the mechanism to optimize the OT 
to fit experimental data. The presented results showed 
that GOT can produce formulas which are more accu-
rate than nonlinear regression formulas but less accurate 
than neural network models. However, neural networks 

are black box models, while GOT can produce explicit 
formulas, which is an important advantage in practical 
applications.

A few years later, Chou et al. (2010) presented a com-
parison of several data mining methods to optimize the 
prediction accuracy of the compressive strength of HPC. 
The presented results indicated that multiple additive 
regression tree (MART) was superior in prediction accu-
racy, training time, and aversion to overfitting to all the 
other studied methods.

Cheng et  al. (2013) asserted that traditional methods 
are not sufficient for such a complex application as the 
optimization of prediction accuracy of the compressive 
strength of HPC. In particular, they identified important 
limitations of the existing methods, such as their expen-
sive costs, their limitations of use, and their inability to 
address nonlinear relationships among components 
and concrete properties. Consequently, in two different 
contributions, Cheng and colleagues introduced novel 
methods and applied them to this type of application. 
In Cheng et  al. (2013), they introduced a novel GA—
based evolutionary support vector machine (called GA-
ESIM), which combines the K-means and chaos genetic 
algorithm (KCGA) with the evolutionary support vec-
tor machine inference model (ESIM), showing interest-
ing results. In Cheng et  al. (2014), they introduced the 
Genetic Weighted Pyramid Operation Tree (GWPOT). 
GWPOT is an improvement of Yeh and Lien’s GOT 
method (Yeh and Lien 2009), and it was shown to out-
perform several widely used artificial intelligence models, 
including the artificial neural network, support vector 
machine, and ESIM.

In the same research track, in 2013 our research group 
investigated for the first time the use of Genetic Pro-
gramming (GP) (Poli et al. 2008; Koza 1992) as an appro-
priate technology for predicting the HPC strength. GP is 
a computational intelligence method aimed at evolving a 
population of programs or individuals (in our case, pre-
dictive models for the HPC strength) using principles 
inspired by the theory of evolution of Charles Darwin. 
Basilar to GP is the definition of a language to code the 
programs and a function, called fitness, that for each pos-
sible program quantifies its quality in solving the prob-
lem at hand (in our case, the problem of predicting the 
HPC strength). Fitness is often calculated by running 
the program on a set of data (usually called training 
instances, or training cases) and quantifying the differ-
ence between the behaviour of the program on those data 
and the (known) expected behaviour. It is a recent trend 
in the GP research community to develop and study 
methods to integrate semantic awareness in this evolu-
tionary process, where with the term semantics we gen-
erally indicate the vector of the output values calculated 
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by a model on all the available training cases. Our work 
from 2013 (Castelli et  al. 2013) clearly indicated that a 
relatively recent and sophisticated version of GP, that 
exploits semantic awareness, called Geometric Seman-
tic GP (GSGP) (Moraglio et al. 2012; Vanneschi 2017) is 
able to outperform standard GP, predicting HPC strength 
with high accuracy. This success motivated us to pursue 
the research, with the objective of further improving the 
results obtained by GSGP, possibly investigating new and 
more promising ways of exploiting semantic awareness. 
The contribution of this work is twofold:

• In the first place, we deepen a very recent and prom-
ising idea to exploit semantic awareness in GP, called 
alignment in the error space (Ruberto et  al. 2014), 
that received relatively little attention by the GP com-
munity so far;

• Secondly, we define a novel computational intelli-
gence method, called Nested Align Genetic Program-
ming (NAGP), based on the concept of alignment in 
the error space, that is able to outperform GSGP for 
HPC strength prediction.

The former contribution is important for the GP com-
munity because it represents a further step forward in a 
very popular research line (improving GP with semantic 
awareness). On the other hand, considering that GSGP 
is regarded as the state-of-the-art computational tech-
nology for HPC strength prediction, the latter contribu-
tion promises to have a tremendous impact on this very 
important applicative domain.

As we will see in the continuation of this paper, NAGP 
has two competitive advantages compared to GSGP: not 
only NAGP is able to obtain more accurate predictive 
models for the HPC strength, but these models are also 
smaller in size, which makes them more readable and 
interpretable. This last characteristic is very important in 
a complex application such as the HPC strength predic-
tion. In fact, the dimension of the model is clearly con-
nected with the ability of users to understand the model.

The paper is organized as follows: Sect.  2 contains a 
gentle introduction to  GP, also offering pointers to bib-
liographic material for deepening the subject. Section  3 
introduces GSGP, motivating the reasons for its recent 
success. In Sect.  4, we introduce the idea of alignment 
in the error space, also discussing some previous pre-
liminary studies in which this idea was developed. In 
Sect. 5, we present for the first time NAGP and a variant 
of NAGP called NAGP_β, motivating every single step 
of their implementation. In Sect. 6, we describe the data 
and the experimental settings and we present and discuss 
the obtained experimental results, comparing the perfor-
mance of NAGP and NAGP_β to the one of GSGP for the 

HPC strength prediction. Finally, Sect.  7 concludes the 
paper and proposes suggestions for future research.

2  An Introduction to Genetic Programming
Genetic Programming (GP) (Koza 1992) is a computa-
tional method that belongs to the computational intel-
ligence research area called evolutionary computation 
(Eiben and Smith 2003). GP consists of the automated 
learning of computer programs by means of a process 
inspired by the theory of biological evolution of Darwin. 
In the context of  GP, the word program can be inter-
preted in general terms, and thus GP can be applied to 
the particular cases of learning expressions, functions 
and, as in this work, data-driven predictive models. In 
GP, programs are typically encoded by defining a set  F 
of primitive functional operators and a set  T of termi-
nal symbols. Typical examples of primitive functional 
operators may include arithmetic operations (+, −, *, 
etc.), other mathematical functions (such as sin, cos, 
log, exp), or, according to the context and type of prob-
lem, also boolean operations (such as AND, OR, NOT), or 
more complex constructs such as conditional operations 
(such as If–Then-Else), iterative operations (such as 
While-Do) and other domain-specific functions that 
may be defined. Each terminal is typically either a vari-
able or a constant, defined on the problem domain. The 
objective of GP is to navigate the space of all possible 
programs that can be constructed by composing sym-
bols in F and T, looking for the most appropriate ones for 
solving the problem at hand. Generation by generation, 
GP stochastically transforms populations of programs 
into new, hopefully improved, populations of programs. 
The appropriateness of a solution in solving the problem 
(i.e. its quality) is expressed by using an objective func-
tion (the fitness function). The search process of GP is 
graphically depicted in Fig. 1.

In order to transform a population into a new pop-
ulation of candidate solutions, GP selects the most 

Fig. 1 A graphical high-level overview of the GP algorithm.
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promising programs that are contained in the current 
population and applies to those programs some particu-
lar search operators called genetic operators, typically 
crossover and mutation. The standard genetic opera-
tors (Koza 1992) act on the structure of the programs 
that represent the candidate solutions. In other terms, 
standard genetic operators act at a syntactic level. More 
specifically, standard crossover is traditionally used to 
combine the genetic material of two parents by swapping 
a part of one parent with a part of the other. Consider-
ing the standard tree-based representation of programs 
often used by GP (Koza 1992), after choosing two indi-
viduals based on their fitness, standard crossover selects 
a random subtree in each parent and swaps the selected 
subtrees between the two parents, thus generating new 
programs, the offspring. On the other hand, standard 
mutation introduces random changes in the structures of 
the individuals in the population. For instance, the tradi-
tional and commonly used mutation operator, called sub-
tree mutation, works by randomly selecting a point in a 
tree, removing whatever is currently at the selected point 
and whatever is below the selected point and inserting 
a randomly generated tree at that point. As we clarify 
in Sect. 3, GSGP (Moraglio et al. 2012; Vanneschi 2017) 
uses genetic operators that are different from the stand-
ard ones, since they are able to act at the semantic level. 
The reader who is interested in deepening GP is referred 
to Poli et al. (2008) and Koza (1992).

2.1  Symbolic Regression with Genetic Programming
The prediction of HPC strength is typically a symbolic 
regression problem. So, it is appropriate to introduce 
here the general idea of symbolic regression and the way 
in which this kind of problem is typically approached 
with GP. In symbolic regression, the goal is to search for 
the symbolic expression TO : Rp → R that best fits a par-
ticular training set T = {(x1, t1), . . . , (xn, tn)} of n input/
output pairs with xi ∈ Rp and ti ∈ R . The general sym-
bolic regression problem can then be defined as:

where G is the solution space defined by the primitive 
set (functions and terminals) and f is the fitness function, 
based on a distance (or error) between a program’s out-
put  T (xi) and the expected, or target, output  ti . In other 
words, the objective of symbolic regression is to find a 
function   TO (called data model) that perfectly matches 
the given input data into the known targets. In symbolic 
regression, the primitive set is generally composed of 
a set of functional symbols F containing mathematical 
functions (such as, for instance, arithmetic functions, 
trigonometric functions, exponentials, logarithms, etc.) 

(1)
To ← argminT∈Gf (T (xi), ti) with i = 1, 2, . . . , n

and by a set of terminal symbols T containing p vari-
ables (one variable for each feature in the dataset), plus, 
optionally, a set of numeric constants.

3  Geometric Semantic Genetic Programming
Even though the term semantics can have several dif-
ferent interpretations, it is a common trend in the 
GP community (and this is what we do also here) to 
identify the semantics of a solution with the vector 
s(T ) = [T (x1),T (x2), . . . ,T (xn)] of its output values on 
the training data (Moraglio et  al. 2012; Vanneschi et  al. 
2014). From this perspective, a GP individual can be 
identified by a point [its semantics s(T)] in a multidimen-
sional space that we call semantic space (where the num-
ber of dimensions is equal to the number of observations 
in the training set, or training cases). The term Geomet-
ric Semantic Genetic Programming (GSGP) (Vanneschi 
2017) indicates a recently introduced variant of GP in 
which traditional crossover and mutation are replaced by 
so-called Geometric Semantic Operators (GSOs), which 
exploit semantic awareness and induce precise geomet-
ric properties on the semantic space. GSOs, introduced 
by Moraglio et al. (2012), are becoming more and more 
popular in the GP community (Vanneschi et  al. 2014) 
because of their property of inducing a unimodal error 
surface (characterized by the absence of locally optimal 
solutions on training data) on any problem consisting 
of matching sets of input data into known targets (like 
for instance supervised learning problems such as sym-
bolic regression and classification). The interested reader 
is referred to (Vanneschi 2017) for an introduction to 
GSGP where the property of unimodality of the error 
surface is carefully explained. Here, we report the defini-
tion of the GSOs as given by Moraglio et al. for real func-
tions domains, since these are the operators we will use 
in this work. For applications that consider other types of 
data, the reader is referred to Moraglio et al. (2012).

Geometric semantic crossover generates, as the unique 
offspring of parents T1, T2, the expression:

where TR is a random real function whose output values 
range in the interval [0,1]. Analogously, geometric seman-
tic mutation returns, as the result of the mutation of an 
individual T : Rn → R , the expression:

where TR1 and TR2 are random real functions with codo-
main in [0,1] and ms is a parameter called mutation step. 
Moraglio and co-authors show that geometric seman-
tic crossover corresponds to geometric crossover in the 
semantic space (i.e. the point representing the offspring 
stands on the segment joining the points representing the 

(2)TXO = (T1 · TR)+ ((1− TR) · T2)

(3)TM = T +ms · (TR1 − TR2)
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parents) and geometric semantic mutation corresponds 
to box mutation on the semantic space (i.e. the point 
representing the offspring stands into a box of radius ms, 
centered in the point representing the parent).

As Moraglio and co-authors point out, GSGP has an 
important drawback: GSOs create much larger offspring 
than their parents and the fast growth of the individu-
als in the population rapidly makes fitness evaluation 
unbearably slow, making the system unusable. In Castelli 
et al. (2015), a possible workaround to this problem was 
proposed by our research team, consisting in an imple-
mentation of Moraglio’s operators that makes them not 
only usable in practice, but also very efficient. With this 
implementation, the size of the individuals at the end of 
the evolution is still very large, but they are represented 
in a particularly clever way (using memory pointers and 
avoiding repetitions) that allows us to store them in 
memory efficiently. So, using this implementation, we 
are able to generate very accurate predictive models, but 
these models are so large that they cannot be read and 
interpreted. In other words, GSGP is a very effective and 
efficient “black-box” computational method. It is the 
implementation introduced in Castelli et  al. (2015) that 
was used with success in Castelli et al. (2013) for the pre-
diction of HPC strength. One of the main motivations of 
the present work is the ambition of generating predictive 
models for HPC strength that could have the same per-
formance as the ones obtained by GSGP in Castelli et al. 
(2013), or even better if possible, but that could also have 
a much smaller size. In other words, while still having 
very accurate predictive models for the HPC strength, we 
also want models that are readable and interpretable.

4  Previous Work on Alignment in the Error Space
Few years after the introduction of GSGP, a new way of 
exploiting semantic awareness was presented in Ruberto 
et al. (2014) and further developed in Castelli et al. (2014) 
and Gonçalves et  al. (2016). The idea, which is also the 
focus of this paper, is based on the concept of error space, 
which is exemplified in Fig. 2.

In the genotypic space, programs are represented by 
their syntactic structures [for instance trees as in Koza 
(1992), or any other of the existing representations]. As 
explained above, semantics can be represented as a point 
in a space that we call semantic space. In supervised 
learning, the target is also a point in the semantic space, 
but usually (except for the rare case where the target 
value is equal to zero for each training case) it does not 
correspond to the origin of the Cartesian system. Then, 
we translate each point in the semantic space by subtract-
ing the target from it. In this way, for each individual, 
we obtain a new point, that we call error vector, and we 
call the corresponding space error space. The target, by 

construction, corresponds to the origin of the Cartesian 
system in the error space. In Ruberto et  al. (2014), the 
concepts of optimally aligned, and optimally coplanar, 
individuals were introduced, together with their impor-
tant implications that are summarized here.

Two individuals A and B are optimally aligned if a sca-
lar constant k exists such that 

where →eA and →eB are the error vectors of A and B 
respectively. From this definition, it is not difficult to see 
that two individuals are optimally aligned if the straight 
line joining their error vectors also intersects the origin 
in the error space. This property is graphically shown 
in Fig.  3a. Analogously, and extending the idea to three 
dimensions, three individuals are optimally coplanar if 
the bi-dimensional plane in which their error vectors lie 
in the error space also intersects the origin. This property 
is shown in Fig. 3b.

In Ruberto et al. (2014), it is proven that given any pair 
of optimally aligned individuals A and B, it is possible to 
reconstruct a globally optimal solution Popt . This solution 
is defined in Eq. (3):

where k is the same constant as in Eq.  (2). This optimal 
solution is represented in a tree shape in Fig. 4.

Analogously, in Ruberto et al. (2014), it was also proven 
that given any triplet of optimally coplanar individuals, 
it is possible to analytically construct a globally optimal 
solution [the reader is referred to Ruberto et al. (2014) for 
the equation of the globally optimal solution in that case]. 
As Fig. 3b shows, the three-dimensional property is just 
an extension of the bi-dimensional one; in fact, if three 
individuals A, B and C are optimally coplanar, it is always 
possible to find a vector →m that is aligned with →eA and 
→eB and that is also aligned with →eC and the origin.

Several possible ways of searching for alignments 
can be imagined. In Ruberto et  al. (2014), one first 

(4)→eA = k · →eB

(5)Popt =
1

1− k
A−

k

1− k
B

Fig. 2 A simple 2D vision of genotypic, semantic and error spaces.
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preliminary attempt was made by fixing one direction, 
called attractor, and “pushing” all the individuals in the 
population towards an alignment with the attractor. In 
this way, it is possible to maintain the traditional repre-
sentation of solutions where each solution is represented 
by one program. The other face of the coin is that, in 
this way, we strongly restrict what GP can do, forcing 
the alignment to necessarily happen in just one prefixed 
direction, i.e. the one of the attractor. The objective of 
this paper is to relieve this constraint by defining a new 
GP system that is generally able to evolve vectors of pro-
grams (even though only vectors of size equal to 2 will be 
used in this paper).

In Castelli et al. (2014), a first attempt of using a mul-
tiple program representation was made. In that work, 
individuals were pairs of programs, and fitness was the 
angle between the respective error vectors. This situation 
is graphically represented in Fig. 5, where the two error 
vectors are called →a and →b and the angle used as fit-
ness is called ϑ. It is obvious that if ϑ is equal to zero, then 
→a and →b are aligned between each other and with the 
origin. Thus, the objective of GP is to minimize ϑ.

In this way, alignments could be found in any possible 
direction of the error space, with no restrictions. From 

now on, for the sake of clarity, this type of individual (i.e. 
individuals characterized by more than one program) will 
be called multi-individuals. In Castelli et  al. (2014), the 
following problems of this approach were reported:

• Generation of semantically identical, or very similar, 
expressions;

• k constant in Eq. (3) equal, or very close, to zero;
• Generation of expressions with huge error values.

These problems strongly limited the work, at the point 
that the approach itself was considered as unusable in 
practice in Castelli et al. (2014). These problems are dis-
cussed here, while in Sect.  5 we describe how the pro-
posed method, NAGP, overcomes them.

4.1  Issue 1: Generation of Semantically Identical, or Very 
Similar, Expressions

A simple way for GP to find two expressions that are opti-
mally aligned in the error space is to find two expressions 
that have exactly the same semantics (and consequently 
the same error vector). However, this causes a problem 
once we try to reconstruct the optimal solution as in 
Eq. (3). In fact, if the two expressions have the same error 
vector, the k value in Eq. (3) is equal to 1, which gives a 
denominator equal to zero. Experience tells us that GP 
tends very often to generate multi-individuals that have 
this kind of problem. Also, it is worth pointing out that 
even preventing GP from generating multi-individuals 
that have an identical semantics, GP may still push the 
evolution towards the generation of multi-individuals 
whose expressions have semantics that are very similar 
to each other. This leads to a k constant in Eq.  (3) that, 
although not being exactly equal to 1, has a value that is 
very close to 1. As a consequence, the denominator in 
Eq. (3), although not being exactly equal to zero, may be 
very close to zero and thus the value calculated by Eq. (3) 

Fig. 3 Optimally aligned individuals (a) and optimally coplanar 
individuals (b).

Fig. 4 A tree representation of the globally optimal solution Popt , 
where A and B are optimally aligned programs.

Fig. 5 Angle between solutions in the error space.
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could be a huge number. This would force a GP system 
to deal with unbearably large numbers during all its exe-
cution, which may lead to several problems, including 
numeric overflow.

4.2  Issue 2: k Constant in Eq. (3) Equal, or Very Close, 
to Zero

Looking at Eq.  (3), one may notice that if k is equal to 
zero, then expression B is irrelevant and the recon-
structed solution Popt is equal to expression A. A similar 
problem also manifests itself when k is not exactly equal 
to zero, but very close to zero. In this last case, both 
expressions A and B contribute to Popt , but the contribu-
tion of B may be so small to be considered as marginal, 
and Popt would de facto be extremely similar to A. Expe-
rience tells us that, unless this issue is taken care of, the 
evolution would very often generate such situations. 
This basically turns a multi-individual alignment-based 
system into traditional GP, in which only one of the pro-
grams in the multi-individual matters. If we really want 
to study the effectiveness of multi-individual alignment-
based systems, we have to avoid this kind of situations.

4.3  Issue 3: Generation of Expressions with Huge Error 
Values

Theoretically speaking, systems based on the concept 
of alignment in the error space could limit themselves 
to searching for expressions that are optimally aligned, 
without taking into account their performance (i.e. how 
close their semantics are to the target). However, expe-
rience tells us that, if we give GP the only task of find-
ing aligned expressions, GP frequently tends to generate 
expressions whose semantics contain unbearably large 
values. Once again, this may lead to several problems, 
including numeric overflow, and a successful system 
should definitely prevent this from happening.

One fact that should be remarked is that none of the 
previous issues can be taken into account with simple 
conditions that prevent some precise situations from 
happening. For instance, one may consider solving 
Issue  1 by simply testing if the expressions in a multi-
individual are semantically identical to each other, and 
rejecting the multi-individual if that happens. But, as 
already discussed, expressions that have very similar 
semantics between each other may also cause problems. 
Furthermore, the idea of introducing a threshold ε to the 
semantic diversity of the expressions in a multi-individ-
ual, and rejecting all the multi-individuals for which the 
diversity is smaller than ε does not seem a brilliant solu-
tion. In fact, experience tells us that GP would tend to 
generate multi-individuals with a diversity equal, or very 
close to ε itself. Analogously, if we consider Issue 2, nei-
ther rejecting multi-individuals that have a k constant 

equal to zero, nor rejecting individuals that have an abso-
lute value of k larger than a given threshold would solve 
the problem. Finally, considering Issue 3, also rejecting 
individuals that have the coordinates of the semantic vec-
tor larger than a given threshold δmax would not solve the 
problem since GP would tend to generate expressions in 
which the coordinates of the semantic vector are equal, 
or very close, to δmax itself.

In such a situation, we believe that a promising way to 
effectively solve these issues (besides defining the spe-
cific conditions mentioned above) is to take the issues 
into account in the selection process, for instance giving 
more probability of being selected for mating to multi-
individuals that have large semantic diversity between 
the expressions, values of k that are, as much as possi-
ble, far from zero and expressions whose semantics are, 
as much as possible, close to the target. These ideas are 
implemented in NAGP, which is described below.

5  Nested Align Genetic Programming
Nested Align GP (NAGP) uses multi-individuals, and 
thus it extends the first attempt proposed in Castelli et al. 
(2014). In this section, we describe selection, mutation 
and population initialization of NAGP, keeping in mind 
that no crossover has been defined yet for this method. 
While doing this, we also explain how NAGP overcomes 
the problems described in Sect.  4. Figure  6 contains a 
high-level flowchart of NAGP, showing its general func-
tioning. In the last part of this section, we also define a 
variant of the NAGP method, called NAGP_β, that will 
also be taken into account in our experimental study.

5.1  Selection
Besides trying to optimize the performance of the multi-
individuals, selection is the phase that takes into account 
the issues described in Sect. 4. NAGP contains five selec-
tion criteria, that have been organized into a nested 
tournament. Let ϕ1,ϕ2, . . . ,ϕm be the expressions charac-
terizing a multi-individual. It is worth pointing out that 
only the case m = 2 is taken into account in this paper. 
But the concept is general, and so it is explained using m 
expressions. The selection criteria are:

• Criterion 1: diversity (calculated using the stand-
ard deviation) of the semantics of the expressions 
ϕ1,ϕ2, . . . ,ϕm (to be maximized).

• Criterion 2: the absolute value of the k constant that 
characterizes the reconstructed expression Popt in 
Eq. (3) (to be maximized).

• Criterion 3: the sum of the errors of the single expres-
sions ϕ1,ϕ2, . . . ,ϕm (to be minimized).

• Criterion 4: the angle between the error vectors of 
the expressions ϕ1,ϕ2, . . . ,ϕm (to be minimized).
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• Criterion 5: the error of the reconstructed expression 
Popt in Eq. (3) (to be minimized).

The nested tournament works as follows: an individual 
is selected if it is the winner of a tournament, that we 
call T5 , that is based on Criterion 5. All the participants 
in tournament T5 , instead of being individuals chosen 
at random as in the traditional tournament selection 

algorithm, are winners of previous tournaments (that we 
call tournaments of type T4 ), which are based on Crite-
rion 4. Analogously, for all i = 4, 3, 2, all participants in 
the tournaments of type Ti are winners of previous tour-
naments (that we will call tournaments of type Ti−1 ), 
based on Criterion i − 1. Finally, the participants in the 
tournaments of type T1 (the kind of tournament that is 
based on Criterion 1) are individuals selected at random 
from the population. In this way, an individual, in order 
to be selected, has to undergo five selection layers, each 
of which is based on one of the five different chosen crite-
ria. Motivations for the chosen criteria follow:

• Criterion 1 was introduced to counteract Issue 1 in 
Sect.  4. Maximizing the semantic diversity of the 
expressions in a multi-individual should naturally 
prevent GP from creating multi-individuals with 
identical semantics or semantics that are very similar 
to each other.

• Criterion 2 was introduced to counteract Issue 2 in 
Sect. 4. Maximizing the absolute value of constant k 
should naturally allow GP to generate multi-individ-
uals for which k’s value is neither equal nor close to 
zero.

• Criterion 3 was introduced to counteract Issue 3 in 
Sect.  4. If the expressions that characterize a multi-
individual have a “reasonable” error, then their 
semantics should be reasonably similar to the target, 
thus naturally avoiding the appearance of unbearably 
large numbers.

• Criterion 4 is a performance criterion: if the angle 
between the error vectors of the expressions 
ϕ1,ϕ2, . . . ,ϕm is equal to zero, then Eq. (3) allows us 
to reconstruct a perfect solution Popt (see Fig.  5 for 
the bidimensional case). Also, the smaller this angle, 
the smaller should be the error of Popt . Neverthe-
less, experience tells us that multi-individuals may 
exist with similar values of this angle, but very differ-
ent values of the error of the reconstructed solution 
Popt , due for example to individuals with a very large 
distance from the target. This fact made us conclude 
that Criterion 4 cannot be the only performance 
objective, and suggested to us to also introduce Cri-
terion 5.

• Criterion 5 is a further performance criterion. 
Among multi-individuals with the same angle 
between the error vectors of the expressions 
ϕ1,ϕ2, . . . ,ϕm , the preferred ones will be the ones for 
which the reconstructed solution Popt has the small-
est error.

The motivation for choosing a nested tournament, 
instead of, for instance, a Pareto-based multi-objective 

Fig. 6 High level flowchart of NAGP (see the text for a definition of 
the acceptance requirements).
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optimization is that the nested tournament has the 
advantage of forcing the search for an optimal solution 
on all the five criteria. This point is important if one con-
siders, for instance, Criteria 1, 2 and 3: these criteria have 
to be optimized as much as possible before considering 
the two “performance” criteria, because otherwise the 
selected individual may have to be rejected by the algo-
rithm (indeed, NAGP may reject individuals, as will be 
clearer in the continuation, and Criterias 1, 2 and 3 have 
the objective of “pushing” the evolution away from those 
individuals, thus minimizing the number of rejections).

5.2  Mutation
The mechanism we have implemented for applying muta-
tion to a multi-individual is extremely simple: for each 
expression ϕi in a multi-individual, mutation is applied 
to ϕi with a given mutation probability pm , where pm is a 
parameter of the system. It is worth remarking that in our 
implementation all expressions ϕi of a multi-individual 
have the same probability of undergoing mutation, but 
this probability is applied independently to each of them. 
So, some expressions could be mutated, and some oth-
ers could remain unchanged. The type of mutation that 
is applied to expressions is Koza’s standard subtree muta-
tion (Koza 1992).

To this “basic” mutation algorithm, we have also 
decided to add a mechanism of rejection, in order to 
help the selection process in counteracting the issues 
discussed in Sect. 4. Given a prefixed parameter that we 
call  δk , if the multi-individual generated by mutation has 
a k constant included in the range [1− δk , 1+ δk ] , or 
in the range −δk , δk , then the k constant is considered, 
respectively, too close to 1 or too close to 0 and the multi-
individual is rejected. In this case, a new individual is 
selected for mutation, using again the nested tournament 
discussed above. The combined effect of this rejection 
process and of the selection algorithm should strongly 
counteract the issues discussed in Sect. 4. In fact, when 
k is equal to 1, or equal to 0, or even close to 1 or 0 inside 
a given prefixed toleration radius δk , the multi-individual 
is not allowed to survive. For all the other multi-individ-
uals, distance between k and 1 and between k and 0 are 
used as optimization objectives, to be maximized. This 
allows NAGP to evolve multi-individuals with k values 
that are “reasonably far” from 0 and 1.

The last detail about mutation that needs to be dis-
cussed is the following: in order to further counteract 
Issue 1 (i.e. to avoid the natural tendency of NAGP to 
generate multi-individuals with semantically identical, 
or very similar, expressions), every time that a multi-
individual is generated, before being inserted in the 
population, one of the two expressions is multiplied by a 
constant λ (in this way, the semantics of that expression 

is “translated” by a factor λ). In this paper, λ is a ran-
dom number generated with uniform distribution in the 
range [0, 100]. Preliminary experiments have shown that 
this variation of one of the two expressions is beneficial 
in terms of the quality of the final solution returned by 
NAGP. Furthermore, several different ranges of variation 
for λ have been tested, and [0, 100] seems to be an appro-
priate one, at least for the studied application.

5.3  Initialization
NAGP initializes a population of multi-individuals using 
multiple executions of the Ramped Half and Half algo-
rithm (Koza 1992). More specifically, let n be the num-
ber of expressions in a multi-individual (n = 2 in our 
experiments), and let m be the size of the population that 
has to be initialized. NAGP runs n times the Ramped 
Half and Half algorithm, thus creating n “traditional” 
populations of programs P1, P2, . . . ,Pn , where each 
population contains m trees. Let P = {Π1,Π2, . . . Πm} 
be the population that NAGP has to initialize (where, 
for each i = 1, 2, . . . ,m , Πi is an n-dimensional multi-
individual). Then, for each i = 1, 2, . . . ,m and for each 
j = 1, 2, . . . , n , the jth program of multi-individual Πi is 
the jth tree in population  Pi.

To this “basic” initialization algorithm, we have 
added an adjustment mechanism to make sure that the 
initial population does not contain multi-individuals 
with a k equal, or close, to 0 and 1. More in particular, 
given a prefixed number α of expressions, that is a new 
parameter of the system, if the created multi-individ-
ual has a k value included in the range [1− δk , 1+ δk ] , 
or in the range −δk , δk (where δk is the same parameter 
as the one used for implementing rejections of mutated 
individuals), then  α randomly chosen expressions in 
the multi-individual are removed and replaced by as 
many new randomly generated expressions. Then the 
k value is calculated again, and the process is repeated 
until the multi-individual has a k value that stays out-
side the ranges [1− δk , 1+ δk ] and −δk , δk . Only when 
this happens, the multi-individual is accepted into the 
population. Given that only multi-individuals of two 
expressions are considered in this paper, in our experi-
ments we have always used α = 1.

Besides NAGP, the following variant was also 
implemented:

5.3.1  NAGP_β
This method integrates a multi-individual approach 
with a traditional single-expression GP approach. 
More precisely, the method begins as NAGP, but after 
β generations (where β is a parameter of the system), 
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the evolution is done by GSGP. In order to “transform” 
a population of multi-individuals into a population of 
traditional single-expression individuals, each multi-
individual is replaced by the reconstructed solution 
Popt in Eq.  (3). The rationale behind the introduction 
of NAGP_β is that alignment-based systems are known 
to have a very quick improvement in fitness in the first 
generations, which may sometimes cause overfitting of 
training data [the reader is referred to (Ruberto et  al. 
2014; Castelli et  al. 2014; Gonçalves et  al. 2016) for a 
discussion of the issue]. Given that GSGP, instead, is 
known for being a slow optimization process, able to 
limit overfitting under certain circumstances [see 
Vanneschi et  al. (2013)], the idea is transforming 
NAGP into GSGP, possibly before overfitting arises. 
Even though a deep study of parameter β is strongly 
in demand, only the value β = 50 is used in this paper. 
The choice for this particular value of β derives from 
a preliminary set of experiments that have indicated 
the appropriateness of this value. Furthermore, as will 
become clearer in the next section, after approximately 
50 generations, it is possible to observe a sort of stag-
nation in the evolution of NAGP (in other words, the 
error on the training set is not improving anymore). 
For this reason, from now on, the name NAGP_50 will 
be used for this method.

6  Experimental Study
6.1  Data Set Information
Following the same procedure described in Yeh (1998), 
experimental data from 17 different sources were used 
to check the reliability of the strength model. Data were 
assembled for concrete containing cement plus fly ash, 
blast furnace slag, and superplasticizer. A determina-
tion was made to ensure that these mixtures were a fairly 
representative group for all of the major parameters that 
influence the strength of HPC and present the complete 
information required for such an evaluation. The dataset 

is the one that was used in Yeh and Lien (2009), Chou 
et al. (2010), Cheng et al. (2013, 2014) and Castelli et al. 
(2013) and it consists of 1028 observations and 8 vari-
ables. Some facts about those variables are reported in 
Table 1.

6.2  Experimental Settings
For each of the studied computational methods, 30 inde-
pendent executions (runs) were performed, using a dif-
ferent partitioning of the dataset into training and test 
set. More particularly, for each run 70% of the observa-
tions were selected at random with uniform distribution 
to form the training set, while the remaining 30% form 
the test set. The parameters used are summarized in 
Table  2. Besides those parameters, the primitive opera-
tors were addition, subtraction, multiplication, and divi-
sion protected as in Koza (1992). The terminal symbols 
included one variable for each feature in the dataset, plus 
the following numerical constants: − 1.0, − 0.75, − 0.5, 
− 0.25, 0.25, 0.5, 0.75, 1.0. Parent selection was done 
using tournaments of size 5 for GSGP, and tournaments 
of size 10 for each layer of the nested selection for NAGP. 
The same selection as in NAGP was also performed in 
the first 50 generations of NAGP_50. Crossover rate was 
equal to zero (i.e., no crossover was performed during the 
evolution) for all the studied methods. While NAGP and 
NAGP_50 do not have a crossover operator implemented 

Table 1 The variables used to describe each instance in the studied dataset.

For each variable minimum, maximum, a kg/m3 average, median and standard deviation values are reported.

ID Name (unit measure) Minimum Maximum Average Median Standard 
deviation

X0 Cement (kg/m3) 102.0 540.0 281.2 272.9 104.5

X1 Fly ash (kg/m3) 0.0 359.4 73.9 22.0 86.3

X2 Blast furnace slag (kg/m3) 0.0 200.1 54.2 0.0 64.0

X3 Water (kg/m3) 121.8 247.0 181.6 185.0 21.4

X4 Superplasticizer (kg/m3) 0.0 32.2 6.2 6.4 6.0

X5 Coarse aggregate (kg/m3) 801.0 1145.0 972.9 968.0 77.8

X6 Fine aggregate (kg/m3) 594.0 992.6 773.6 779.5 80.2

X7 Age of testing (days) 1.0 365.0 45.7 28.0 63.2

Table 2 GP parameters used in our experiments.

Parameter Setting

Population size 100

Max. numb. of generations 200

Initialization Ramped H–H

Maximum depth for evolution 17

Maximum depth for initialization 6

δk 0.02
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yet, the motivation for not using crossover in GSGP can 
be found in Castelli et al. (2014).

6.3  Experimental Results, Comparison with GSGP
The experimental results are organized as follows:

• Fig. 7 reports the results of the training error and the 
error of the best individual on the training set, evalu-
ated on the test set (from now on, the terms training 
error and test error will be used for simplicity);

• Fig.  8 reports the results of the size of the evolved 
solutions (expressed as number of tree nodes);

• Table 3 reports the results of the study of statistical 
significance that we have performed on the results of 
the training and test error.

From Fig.  7, we can see that NAGP_50 clearly out-
performs the other two studied methods both on 
training and on unseen data. Also, if we compare 
NAGP to GSGP, we can observe that these two meth-
ods returned similar results, with a slight preference 
of GSGP on training data, and a slight preference 
of NAGP on unseen data. From plots of Fig. 7a, b, we 
can also have a visual rendering of how useful it is for 
NAGP_50 to “switch” from the NAGP algorithm to the 
GSGP algorithm after 50 generations. In fact, both on 

the training and on the test set, it is possible to notice 
a rapid improvement of the curve of NAGP_50, which 
looks like a sudden descending “step”, at generation 50.

Now, let us discuss Fig. 8, that reports the dimensions 
of the evolved programs. GSGP and NAGP_50 gener-
ate much larger individuals compared to NAGP. This 
was expected, given that generating large individuals 
is a known drawback of GSOs (Moraglio et  al. 2012). 
The fact that in the first 50 generations NAGP_50 does 
not use GSOs only partially limits the problem, simply 
delaying the code growth, that is, after generation 50, as 
strong as for GSGP. On the other hand, it is clearly vis-
ible that NAGP is able to generate individuals that are 

Fig. 7 Results of the error for the three studied methods. a Evolution of training error; b evolution of test error; c boxplots of the training error at 
the end of the run; d boxplots of the test error at the end of the run. All results are medians over 30 independent runs.

Fig. 8 Evolution of the size of the individuals.
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much smaller: after a first initial phase in which also for 
NAGP the size of the individuals grows, we can see that 
NAGP basically has no further code growth (the curve, 
after an initial phase of growth, rapidly stabilizes and 
it is practically parallel to the horizontal axis). Last but 
not least, it is also interesting to remark that the final 
model generated by NAGP has around only 50 tree 
nodes, which is a remarkably small model size for such 
a complex application as the one studied here.

To analyse the statistical significance of the results 
of the training and test errors, a set of tests has been 
performed. The Lilliefors test has shown that the data 
are not normally distributed and hence a rank-based 
statistic has been used. The Mann–Whitney U-test for 
pairwise data comparison with Bonferroni correction 
has been used, under the alternative hypothesis that 
the samples do not have equal medians at the end of the 
run, with a significance level α = 0.05. The p-values are 
reported in Table  3, where statistically significant dif-
ferences are highlighted with p-values in italics.

As we can observe, all the differences between the 
results obtained with all the studied methods are statis-
tically significant.

The conclusion is straightforward: NAGP_50 out-
performs GSGP in terms of prediction accuracy, but 
returns results that are comparable to the ones of GSGP 
in terms of the size of the model. On the other hand, 
NAGP outperforms GSGP in terms of prediction accu-
racy on unseen data and also in terms of model size.

6.4  Experimental Results, Comparison Other Machine 
Learning Techniques

This section compares the results obtained by NAGP 
and NAGP_50 with the ones achieved with other state-
of-the-art machine learning (ML) methods. The same 30 
different partitions of the dataset used in the previous 
part of the experimental study were considered. To run 
the ML techniques, we used the implementation pro-
vided by the Weka public domain software (Weka 2018). 
The techniques taken into account are: linear regres-
sion (LIN) (Weisberg 2005), isotonic regression (ISO) 
(Hoffmann 2009), an instance-based learner that uses an 

entropic distance measure (K*) (Cleary and Trigg 1995), 
multilayer perceptron (MLP) (Haykin 1999) trained with 
back propagation algorithm, radial basis function net-
work (RBF) (Haykin 1999), and support vector machines 
(SVMs) (Schölkopf and Smola 2002) with a polynomial 
kernel.

As done for the previous experimental phase, a pre-
liminary study has been performed in order to find the 
best tuning of the parameters for all the considered 
techniques. In particular, using the facilities provided 
by Weka, we performed a grid search parameter tuning, 
where different combinations of the parameters were 
tested. Table  4 shows the interval of tested values for 
each parameter and for each technique.

The results of the comparison we performed are 
reported in Figs. 9 and 10 where the performance on the 
training and test sets are presented, respectively. We start 
the analysis of the results by commenting the perfor-
mance on the training set.

As one can show in Fig. 9, K* is the best performer on 
the training set, producing better quality models with 
respect to all the other studied techniques. MLP is the 
second-best technique, followed by NAGP_50 and SVMs. 
LIN outperforms both GSGP and NAGP, while ISO pro-
duces similar results with respect to NAGP. Finally, the 
worst performer is RBF. Focusing on NAGP_50, it is 
important to highlight that its performance is compara-
ble to MLP and SVM, two techniques that are commonly 
used to address this kind of problem.

While the results on the training data are important, 
the performance on the test set is a fundamental indica-
tor to assess the robustness of the model with respect to 
its ability to generalize over unseen instances. This is a 
property that must be ensured in order to use a ML tech-
nique for addressing a real-world problem. According to 
Fig.  10, NAGP_50 outperforms all the other techniques 
taken into consideration on the test set. Interestingly, its 
performance is comparable with the one achieved on the 
training set, presenting no evidence of overfitting. This 
indicates that NAGP_50 produces robust models that are 
able to generalize over unseen data.

To assess the statistical significance of the results pre-
sented in Figs. 9 and 10, the same type of statistical test 
as the ones presented in the previous section was per-
formed, with α = 0.05 and the Bonferroni correction. 
Table  5 reports the p-values returned by the Mann–
Whitney test with respect to the results achieved on the 
training set. Results reported in italic are those in which 
the null hypotheses can be rejected (i.e. the statistically 
significant results). According to these results, NAGP_50 
produces results that are comparable with SVMs, while 
K* is the best performer followed by MLP.

Table 3 p-values returned by  the  Mann–Whitney U-test 
on  training and  test sets under  the  null hypothesis 
that the samples have the same median.

Italics denotes statistically significant values.

Training set Test set

NAGP NAGP_50 NAGP NAGP_50

GSGP 3.38E−08 3.58E−06 6.98E−06 2.18E−05

NAGP 6.51E−11 1.20E−09
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Table  6 reports the p-values of the Mann–Whitney 
test with respect to the results achieved on the test set. 
According to these p-values, it is possible to state the 
NAGP_50 is the best performer, producing solutions 
that outperform the other techniques in a statistically 
significant way. SVMs are not able to produce the same 
good-quality performance on the test set, overfitting the 
training data. Interestingly, all the non-GP techniques, 
except LIN, suffer from overfitting, hence producing 
models that are not able to generalize well on unseen 
data.

6.5  Experimental Results, Discussion of an Evolved Model
In this section, we show and discuss the best multi-
individual evolved by NAGP in our simulations. It is 
important to point out that, as Fig. 8 clearly shows, this 
would not be possible for NAGP_50 and for GSGP, since 

these two methods use GSOs and these operators cause 
a rapid growth in the size of the evolved solutions. For 
this reason, it was not possible to show the final model 
in Cheng et al. (2013), while it is possible in the present 
contribution.

The best multi-individual evolved by NAGP in all the 
runs that we have performed was composed by the fol-
lowing expressions, in prefix notation:

6.5.1  Expression 1
(* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* 
(* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* 
(* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* 
(* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (+ (* X0 (− X6 
(* (+ (− (/ (* X3 (− − 0.75 X5)) (/ (/ 0.5 (+ − 1.0 − 0.25)) 
(/− 1.0 0.75))) (− X1 (− (/ X7 0.25) (+ (* (/− 0.75 (+ X7 
X0)) (* (− 1.0 X6) (− (* (/ (+ X2 X1) − 0.25) (+ (/ X7 

Table 4 Parameter tuning.

For each technique, the table reports the tuned parameters and the value used in the experiments that were performed. The reader is referred to the Weka ML tool 
documentation (Weka 2018) for the explanation of these parameters.

Technique Parameter name Values tested [min;max;# of values tested] Best value

LIN ridge [1.0E−7;1.0E−9;3] 1.00E−08

eliminateColinearAttributes True; False True

ISO – – –

K* globalBlend [0;100;10] 30

MLP learningRate [0.1;0.4;4] 0.15

momentum [0.1;0.4;4] 0.1

hiddenLayers [1, 7] 3

trainingTime [500;1000;5] 1000

RBF minStdDev [0.1;0.5;5] 0.2

ridge [1.0E−7;1.0E−9;3] 1.00E−08

SVM DegreePolynomialKernel [1, 4] 2

regOptimizer RegSMO; RegSMOimproved RegSMOimproved

Fig. 9 Root mean squared error on the training set.
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Fig. 10 Root mean squared error on the test set.

Table 5 p-values returned by the Mann–Whitney U-test for the results achieved on the training set.

Italic is used to denote statistically significant differences between the considered techniques.

Training

GSGP NAGP NAGP50 LIN ISO K* MLP RBF SVM

GSGP – 2.19E−01 6.51E−11 1.39E−02 4.63E−02 6.26E−11 3.59E−08 6.26E−11 6.95E−11

NAGP – 6.51E−11 4.22E−07 4.01E−01 6.26E−11 1.22E−08 6.26E−11 6.26E−11

NAGP50 – 6.26E−11 6.26E−11 6.26E−11 1.16E−01 6.26E−11 3.56E−02

LIN – 1.87E−10 6.03E−11 2.13E−07 6.03E−11 6.03E−11

ISO – 6.03E−11 1.56E−08 6.03E−11 6.03E−11

K* – 6.03E−11 6.03E−11 6.03E−11

MLP – 6.03E−11 2.80E−03

RBF – 6.03E−11

SVM –

Table 6 p-values returned by the Mann–Whitney U-test for the results achieved on the test set.

Italic is used to denote statistically significant differences between the considered techniques.

Test

GSGP NAGP NAGP50 LIN ISO K* MLP RBF SVM

GSGP – 4.19E−01 1.45E−09 3.31E−07 5.11E−08 5.86E−01 6.41E−01 1.16E−09 1.87E−04

NAGP – 1.20E−09 7.25E−08 1.88E−09 6.52E−01 4.27E−01 6.26E−11 2.25E−04

NAGP50 – 1.71E−09 1.16E−09 1.16E−09 1.16E−09 1.16E−09 2.07E−09

LIN – 6.07E−11 6.06E−11 2.98E−07 6.06E−11 4.79E−05

ISO – 4.28E−09 1.60E−03 1.12E−09 6.04E−11

K* – 9.88E−01 6.03E−11 2.96E−06

MLP – 9.83E−05 3.55E−02

RBF – 6.03E−11

SVM –
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(+ − 0.5 (/ (/ X4 (+ − 1.0 X1)) X7))) (− (− 0.25 1.0) (+ 
(+ X7 X1) (− 1.0 − 0.25))))) 0.5))) 0.5)))) (− (/ (− (+ − 0.5 
(*− 0.25 0.75)) (/ (* (/ X5 (− − 0.25 0.5)) (+ X0 (− (/ 
(− − 0.25 X3) (/ (/ (/ (/ (− (* (/ X2− 1.0) X0) X6)− 0.25) 
(/ (/ (+ − 0.25− 1.0) (+ X7− 0.5)) (+ − 0.25 − 0.75))) 
X1) X1)) − 0.75))) (/ (/ (/ (+ X6 (/ 0.25 (*− 0.75 1.0))) 
0.75) (+ − 1.0 (+ 1.0 X3)))− 1.0))) (/ X6 (/ (+ (+ 
X6 − 1.0) (*− 0.5 (− 1.0 (− − 0.75 X3)))) 0.75)))− 0.25)) 
(/ X7 (* (+ − 0.75 (/ 1.0 (* (/ X6 (/ 0.75 (+ 0.75 X4))) (* 
(− (+ − 0.25 X4) 0.75) (* X6 (/ (* (/− 0.25 (+ (− − 0.5 X6) 
1.0)) (− X6 0.25)) X7)))))) X7))))) (* X7 − 0.5)) 34.0) X5) 
33.0) 36.0) X6) 23.0) 31.0) 23.0) 20.0) 31.0) 39.0) 39.0) 
(− X6 1.0)) 36.0) 28.0) 34.0) 22.0) 25.0) 38.0) 26.0) 29.0) 
34.0) 27.0) 30.0) 23.0) 33.0) 35.0) 24.0) 34.0) 36.0) 36.0) 
37.0) 38.0) 36.0) 27.0) 39.0) 36.0) 20.0) 34.0) 37.0) 37.0) 
37.0) 36.0) 32.0) 37.0) 39.0) 33.0) 26.0) 39.0) 31.0) 33.0) 
24.0) 27.0) 27.0) 33.0) 39.0) 37.0) 38.0) 36.0) 32.0) 23.0) 
35.0) 24.0) 39.0) 26.0) 26.0) (+ (+ X0 (* (− 1.0 (+ (/ X2 
0.75) − 0.75))− 0.5)) (+ (* X1 1.0) X7))) 26.0) 37.0) 37.0) 
27.0) 32.0) 38.0) 22.0) 37.0) 34.0) 31.0) 28.0) 30.0) 21.0) 
26.0) 23.0) 20.0) 38.0) 38.0) 33.0) 32.0) 21.0) 24.0) 20.0) 
37.0) 30.0) 21.0).

6.5.2  Expression 2
(* (* (/X4 (+ X7 (+ (* (− (− (/(* (− (/(+ 1.0 X3) (− X1 
(− (− X2 X6) − 0.75))) (− (/(− X2 X4) (* (+ (/(+ − 1.0 
0.25) (+ 0.25 X0)) (+ X3 (− X3 0.5))) X4)) X4)) X1) 
(/0.75− 0.25)) (− X5 − 1.0)) (+ − 0.5 0.5)) (/− 1.0 X2)) 
(− X6 X2)))) X7) 21.0).

The reader is referred to Table  1 for a reference to 
the different variables used in this expression (only the 
IDs—X0, X1,…, X7—referenced in the table are used in 
the above expressions). If we consider the reconstructed 
expression Popt [as in Eq. (3)] using these two expressions, 
Popt has an error on the training set equal to 9.53 and 
an error on the test set equal to 9.06. Both the relation-
ship between the training and test error (they have the 
same order of magnitude and the error on the test set is 
even smaller) and a comparison with the median results 
reported in Fig. 7 allow us to conclude that this solution 
has a very good performance, with no overfitting.

The first thought that comes to mind when watch-
ing these two expressions is that the first one is signifi-
cantly different from the second one: first of all in terms 
of size (the first expression is clearly larger than the sec-
ond), but also in terms of tree shape. Observing the first 
expression, in fact, one may notice a sort of skewed and 

unbalanced shape consisting of several multiplications 
by constant numbers. This observation is not surprising: 
the first of these two expressions, in fact, is the one that 
has undergone the multiplication by the constant λ dur-
ing the mutation events, as explained in Sect.  5. These 
continuous multiplications by constants have, of course, 
also an impact on the size of the expression (this is the 
reason why the first expression is larger than the sec-
ond one). However, it is easy to understand that all these 
multiplications by a constant can be easily simplified, i.e. 
transformed into one single multiplication by a constant. 
Concerning the second expression, instead, we can see 
that it is much simpler and quite easy to read (numeric 
simplifications are possible also on this second expres-
sion, which would make it even simpler and easier to 
read).

Concerning the variables used by the two models, 
Table 7 shows the number of times that each of the varia-
bles appears in these two expressions. From this table, we 
can see that variables X6 and X7 are the ones that appear 
most frequently in the expressions, and thus we hypoth-
esize that these variables are considered as the most 
useful, i.e. informative, ones by NAGP for the correct 
reconstruction of the target. These variables represent 
fine aggregate (expressed in kg/m3) and age of testing 
(expressed in number of days), respectively.

7  Conclusions and Future Work
High-performance concrete is one of the most com-
monly used human-made artifacts nowadays. It is a very 
complex material and optimizing it in order to obtain 
the desired behavior is an extremely hard task. For this 
reason, effective computational intelligence systems 
are much in demand. In particular, the task of predict-
ing the strength of high-performance concrete is very 
difficult and the problem has been the focus of a recent 
investigation. This paper extends a recent publication 
of our research group (Castelli et  al. 2013), significantly 
improving the results. In that paper, we proposed a new 
Genetic Programming (GP) system, called Geometric 
Semantic GP (GSGP), for the prediction of the strength 
of high-performance concrete, showing that GSGP was 
able to outperform existing methods. In this work, we 
propose a new system, called Nested Align GP (NAGP), 
with the objective of further improving the results that 
we obtained with GSGP. As for GSGP, NAGP integrates 
semantic awareness in the evolutionary process of GP. 

Table 7 Number of occurrences of each variable in the expressions presented in Sect. 6.5.

Variable X0 X1 X2 X3 X4 X5 X6 X7

Number of occurrences 6 9 7 7 7 4 14 13
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However, differently from GSGP, NAGP exploits a new 
and promising concept bound to semantics, i.e. the con-
cept of alignment in the error space. In order to effec-
tively take advantage of the concept of alignment, NAGP 
evolves set of expressions (instead of single expressions, 
like traditional GP or GSGP do), that we have called 
multi-individuals. Furthermore, a variant of NAGP, 
called NAGP_β was presented, that is able to switch, at a 
prefixed generation β, from a multi-individual represen-
tation to a more traditional single-expression represen-
tation. The presented experiments show that the results 
returned by NAGP and NAGP_ β improve the ones of 
GSGP from two different viewpoints: on one hand, both 
NAGP and NAGP_ β significantly outperform GSGP 
from the point of view of the prediction accuracy; sec-
ondly, NAGP is able to generate predictive models that 
are much smaller, and thus more readable and interpret-
able, than the ones generated by GSGP. In this way, in 
this paper we have been able to show a model evolved 
by NAGP, which was impossible in Castelli et al. (2013). 
These results allow us to foster NAGP as the new state-
of-the-art for high-performance concrete prediction with 
computational intelligence.

Future work can be divided into two main parts: the 
work that is needed, and planned, to further improve 
NAGP and its variant, and the work that we intend to 
perform to further improve the results on the prediction 
of the strength of high-performance concrete.

Concerning NAGP, we believe that one of the most 
important limitations of this paper is that only align-
ments in two dimensions are considered. In other words, 
NAGP evolves individuals that are pairs of programs 
and so NAGP is only able to search for pairs of opti-
mally aligned programs. Our current research is focused 
on extending the method to more than two dimensions. 
For instance, we are currently working on the develop-
ment of systems that evolve individuals that are triplets 
of programs, aimed at finding triplets of optimally copla-
nar individuals. The subsequent step will be to further 
extend the method, possibly generalizing to any number 
of dimensions. The design of self-configuring methods, 
that automatically decide the most appropriate dimen-
sion, is one of the most ambitious goals of our current 
work. Concerning NAGP_β, a methodological study on 
the impact of the β parameter is planned. Last but not 
least, we are planning to study and develop several differ-
ent possible types of crossover for NAGP.

Concerning possible ways of improving the prediction 
of the strength of high-performance concrete, we are cur-
rently working on two different, although related, direc-
tions: on one hand, we are developing a new algorithm 
that integrates clustering techniques as a pre-processing 
step. On the other hand, we are also planning to develop 

a system that is highly specialized for high-performance 
concrete strength prediction, integrating into the system 
a set of rules coding some problem knowledge coming 
from domain experts. Last but not least, we are plan-
ning to validate the proposed systems on other real-life 
datasets.
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