
Vanneschi et al. Int J Concr Struct Mater (2018) 12:72
https://doi.org/10.1186/s40069-018-0300-5

ORIGINAL ARTICLE

Accurate High Performance Concrete
Prediction with an Alignment-Based Genetic
Programming System
Leonardo Vanneschi1*, Mauro Castelli1, Kristen Scott1 and Aleš Popovič1,2

Abstract

In 2013, our research group published a contribution in which a new version of genetic programming, called Geo-
metric Semantic Genetic Programming (GSGP), was fostered as an appropriate computational intelligence method for
predicting the strength of high-performance concrete. That successful work, in which GSGP was shown to outper-
form the existing systems, allowed us to promote GSGP as the new state-of-the-art technology for high-performance
concrete strength prediction. In this paper, we propose, for the first time, a novel genetic programming system
called Nested Align Genetic Programming (NAGP). NAGP exploits semantic awareness in a completely different way
compared to GSGP. The reported experimental results show that NAGP is able to significantly outperform GSGP for
high-performance concrete strength prediction. More specifically, not only NAGP is able to obtain more accurate pre-
dictions than GSGP, but NAGP is also able to generate predictive models with a much smaller size, and thus easier to
understand and interpret, than the ones generated by GSGP. Thanks to this ability of NAGP, we are able here to show
the model evolved by NAGP, which was impossible for GSGP.

Keywords: high performance concrete, strength prediction, artificial intelligence, genetic programming, semantic
awareness

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

1 Background
Concrete is a material mainly used for the construction
of buildings. It is made from a mixture of broken stone or
gravel, sand, cement, water and other possible aggregates,
which can be spread or poured into moulds and forms a
stone-like mass on hardening. Many different possible
formulas of mixtures exist, each of which provides dif-
ferent characteristics and performance, and concrete is
nowadays one of the most commonly used human-made
artifacts (Lomborg 2001). Some of the concrete mixtures
commonly used in the present days can be very complex,
and the choice of the appropriate mixture depends on
the objectives that the project needs to achieve. Objec-
tives can, for instance, be related to resistance, aesthetics

and, in general, they have to respect local legislations
and building codes. As usual in Engineering, the design
begins by establishing the requirements of the concrete,
usually taking into account several different features.
Typically, those features include the weather condi-
tions that the concrete will be exposed to, the required
strength of the material, the cost of the different aggre-
gates, the facility/difficulty of the mixing, the placement,
the performance, and the trade-offs between all these
characteristics and possibly many others. Subsequently,
mixtures are planned, generally using cement, coarse and
fine aggregates, water and other types of components. A
noteworthy attention must also be given to the mixing
procedure, that has to be clearly defined, together with
the conditions the concrete may be employed in. Once
all these things are clearly specified, designers can finally
be confident that the concrete structure will perform as
expected. In the recent years, in the concrete construc-
tion industry, the term high-performance concrete
(HPC) has become important (Yeh 1998). Compared to

Open Access

International Journal of Concrete
Structures and Materials

*Correspondence: lvanneschi@novaims.unl.pt
1 NOVA Information Management School (NOVA IMS), Universidade Nova
de Lisboa, Campus de Campolide, 1070-312 Lisbon, Portugal
Full list of author information is available at the end of the article
Journal information: ISSN 1976-0485 / eISSN 2234-1315

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40069-018-0300-5&domain=pdf

Page 2 of 17Vanneschi et al. Int J Concr Struct Mater (2018) 12:72

conventional concrete, HPC usually integrates the basic
ingredients with supplementary cementitious materi-
als, including for instance fly ash, blast furnace slag and
chemical admixture, such as superplasticizer (Kumar
et al. 2012). HPC is a very complex material, and mod-
eling its behavior is a very hard task.

In the past few years, an extremely insightful result
appeared, known as Abrams’ water-to-cement ratio (w/c)
law (Abrams 1927; Nagaraj and Banu 1996). This law
establishes a relationship between the concrete’s strength
and the w/c ratio, basically asserting that the concrete’s
strength varies inversely with the w/c ratio. One of the
consequences is that the strengths of different concretes
are identical as long as their w/c ratios remain the same,
regardless of the details of the compositions. The impli-
cations of the Abrams’ rule are controversial and they
have been the object of a debate for several years. For
instance, one of these implications seems to be that the
quality of the cement paste controls the strength of the
concrete. But an analysis of a variety of experimental
data seems to contradict this hypothesis (Popovics 1990).
For instance, in Popovics (1990) it is demonstrated that
if two concrete mixtures have the same w/c ratio, then
the strength of the concrete with the higher cement con-
tent is lower. A few years later, several studies have inde-
pendently demonstrated that the concrete’s strength is
determined not only by the w/c ratio, but also by other
ingredients [see for instance (Yeh 1998; Bhanja and Sen-
gupta 2005)], In conclusion, the Abrams’ law is nowadays
considered as practically acceptable in many cases, but a
few significant deviations have been reported. Currently,
empirical equations are used for estimating the concrete
strength. These equations are based on tests that are usu-
ally performed without further cementitious materials.
The validity of these relationships for concrete in case of
presence of supplementary cementitious materials (like
for instance fly ash or blast furnace slag) is nowadays the
object of investigation (Bhanja and Sengupta 2005). All
these aspects highlight the need for reliable and accu-
rate techniques that allow modeling the behavior of HPC
materials.

To tackle this problem, Yeh and Lien (2009) proposed
a novel knowledge discovery method, called Genetic
Operation Tree (GOT), which consists in a composition
of operation trees (OT) and genetic algorithms (GA), to
automatically produce self-organized formulas to predict
compressive strength of HPC. In GOT, OT plays the role
of the architecture to represent an explicit formula, and
GA plays the role of the mechanism to optimize the OT
to fit experimental data. The presented results showed
that GOT can produce formulas which are more accu-
rate than nonlinear regression formulas but less accurate
than neural network models. However, neural networks

are black box models, while GOT can produce explicit
formulas, which is an important advantage in practical
applications.

A few years later, Chou et al. (2010) presented a com-
parison of several data mining methods to optimize the
prediction accuracy of the compressive strength of HPC.
The presented results indicated that multiple additive
regression tree (MART) was superior in prediction accu-
racy, training time, and aversion to overfitting to all the
other studied methods.

Cheng et al. (2013) asserted that traditional methods
are not sufficient for such a complex application as the
optimization of prediction accuracy of the compressive
strength of HPC. In particular, they identified important
limitations of the existing methods, such as their expen-
sive costs, their limitations of use, and their inability to
address nonlinear relationships among components
and concrete properties. Consequently, in two different
contributions, Cheng and colleagues introduced novel
methods and applied them to this type of application.
In Cheng et al. (2013), they introduced a novel GA—
based evolutionary support vector machine (called GA-
ESIM), which combines the K-means and chaos genetic
algorithm (KCGA) with the evolutionary support vec-
tor machine inference model (ESIM), showing interest-
ing results. In Cheng et al. (2014), they introduced the
Genetic Weighted Pyramid Operation Tree (GWPOT).
GWPOT is an improvement of Yeh and Lien’s GOT
method (Yeh and Lien 2009), and it was shown to out-
perform several widely used artificial intelligence models,
including the artificial neural network, support vector
machine, and ESIM.

In the same research track, in 2013 our research group
investigated for the first time the use of Genetic Pro-
gramming (GP) (Poli et al. 2008; Koza 1992) as an appro-
priate technology for predicting the HPC strength. GP is
a computational intelligence method aimed at evolving a
population of programs or individuals (in our case, pre-
dictive models for the HPC strength) using principles
inspired by the theory of evolution of Charles Darwin.
Basilar to GP is the definition of a language to code the
programs and a function, called fitness, that for each pos-
sible program quantifies its quality in solving the prob-
lem at hand (in our case, the problem of predicting the
HPC strength). Fitness is often calculated by running
the program on a set of data (usually called training
instances, or training cases) and quantifying the differ-
ence between the behaviour of the program on those data
and the (known) expected behaviour. It is a recent trend
in the GP research community to develop and study
methods to integrate semantic awareness in this evolu-
tionary process, where with the term semantics we gen-
erally indicate the vector of the output values calculated

Page 3 of 17Vanneschi et al. Int J Concr Struct Mater (2018) 12:72

by a model on all the available training cases. Our work
from 2013 (Castelli et al. 2013) clearly indicated that a
relatively recent and sophisticated version of GP, that
exploits semantic awareness, called Geometric Seman-
tic GP (GSGP) (Moraglio et al. 2012; Vanneschi 2017) is
able to outperform standard GP, predicting HPC strength
with high accuracy. This success motivated us to pursue
the research, with the objective of further improving the
results obtained by GSGP, possibly investigating new and
more promising ways of exploiting semantic awareness.
The contribution of this work is twofold:

• In the first place, we deepen a very recent and prom-
ising idea to exploit semantic awareness in GP, called
alignment in the error space (Ruberto et al. 2014),
that received relatively little attention by the GP com-
munity so far;

• Secondly, we define a novel computational intelli-
gence method, called Nested Align Genetic Program-
ming (NAGP), based on the concept of alignment in
the error space, that is able to outperform GSGP for
HPC strength prediction.

The former contribution is important for the GP com-
munity because it represents a further step forward in a
very popular research line (improving GP with semantic
awareness). On the other hand, considering that GSGP
is regarded as the state-of-the-art computational tech-
nology for HPC strength prediction, the latter contribu-
tion promises to have a tremendous impact on this very
important applicative domain.

As we will see in the continuation of this paper, NAGP
has two competitive advantages compared to GSGP: not
only NAGP is able to obtain more accurate predictive
models for the HPC strength, but these models are also
smaller in size, which makes them more readable and
interpretable. This last characteristic is very important in
a complex application such as the HPC strength predic-
tion. In fact, the dimension of the model is clearly con-
nected with the ability of users to understand the model.

The paper is organized as follows: Sect. 2 contains a
gentle introduction to GP, also offering pointers to bib-
liographic material for deepening the subject. Section 3
introduces GSGP, motivating the reasons for its recent
success. In Sect. 4, we introduce the idea of alignment
in the error space, also discussing some previous pre-
liminary studies in which this idea was developed. In
Sect. 5, we present for the first time NAGP and a variant
of NAGP called NAGP_β, motivating every single step
of their implementation. In Sect. 6, we describe the data
and the experimental settings and we present and discuss
the obtained experimental results, comparing the perfor-
mance of NAGP and NAGP_β to the one of GSGP for the

HPC strength prediction. Finally, Sect. 7 concludes the
paper and proposes suggestions for future research.

2 An Introduction to Genetic Programming
Genetic Programming (GP) (Koza 1992) is a computa-
tional method that belongs to the computational intel-
ligence research area called evolutionary computation
(Eiben and Smith 2003). GP consists of the automated
learning of computer programs by means of a process
inspired by the theory of biological evolution of Darwin.
In the context of GP, the word program can be inter-
preted in general terms, and thus GP can be applied to
the particular cases of learning expressions, functions
and, as in this work, data-driven predictive models. In
GP, programs are typically encoded by defining a set F
of primitive functional operators and a set T of termi-
nal symbols. Typical examples of primitive functional
operators may include arithmetic operations (+, −, *,
etc.), other mathematical functions (such as sin, cos,
log, exp), or, according to the context and type of prob-
lem, also boolean operations (such as AND, OR, NOT), or
more complex constructs such as conditional operations
(such as If–Then-Else), iterative operations (such as
While-Do) and other domain-specific functions that
may be defined. Each terminal is typically either a vari-
able or a constant, defined on the problem domain. The
objective of GP is to navigate the space of all possible
programs that can be constructed by composing sym-
bols in F and T, looking for the most appropriate ones for
solving the problem at hand. Generation by generation,
GP stochastically transforms populations of programs
into new, hopefully improved, populations of programs.
The appropriateness of a solution in solving the problem
(i.e. its quality) is expressed by using an objective func-
tion (the fitness function). The search process of GP is
graphically depicted in Fig. 1.

In order to transform a population into a new pop-
ulation of candidate solutions, GP selects the most

Fig. 1 A graphical high-level overview of the GP algorithm.

Page 4 of 17Vanneschi et al. Int J Concr Struct Mater (2018) 12:72

promising programs that are contained in the current
population and applies to those programs some particu-
lar search operators called genetic operators, typically
crossover and mutation. The standard genetic opera-
tors (Koza 1992) act on the structure of the programs
that represent the candidate solutions. In other terms,
standard genetic operators act at a syntactic level. More
specifically, standard crossover is traditionally used to
combine the genetic material of two parents by swapping
a part of one parent with a part of the other. Consider-
ing the standard tree-based representation of programs
often used by GP (Koza 1992), after choosing two indi-
viduals based on their fitness, standard crossover selects
a random subtree in each parent and swaps the selected
subtrees between the two parents, thus generating new
programs, the offspring. On the other hand, standard
mutation introduces random changes in the structures of
the individuals in the population. For instance, the tradi-
tional and commonly used mutation operator, called sub-
tree mutation, works by randomly selecting a point in a
tree, removing whatever is currently at the selected point
and whatever is below the selected point and inserting
a randomly generated tree at that point. As we clarify
in Sect. 3, GSGP (Moraglio et al. 2012; Vanneschi 2017)
uses genetic operators that are different from the stand-
ard ones, since they are able to act at the semantic level.
The reader who is interested in deepening GP is referred
to Poli et al. (2008) and Koza (1992).

2.1 Symbolic Regression with Genetic Programming
The prediction of HPC strength is typically a symbolic
regression problem. So, it is appropriate to introduce
here the general idea of symbolic regression and the way
in which this kind of problem is typically approached
with GP. In symbolic regression, the goal is to search for
the symbolic expression TO : Rp → R that best fits a par-
ticular training set T = {(x1, t1), . . . , (xn, tn)} of n input/
output pairs with xi ∈ Rp and ti ∈ R . The general sym-
bolic regression problem can then be defined as:

where G is the solution space defined by the primitive
set (functions and terminals) and f is the fitness function,
based on a distance (or error) between a program’s out-
put T (xi) and the expected, or target, output ti . In other
words, the objective of symbolic regression is to find a
function TO (called data model) that perfectly matches
the given input data into the known targets. In symbolic
regression, the primitive set is generally composed of
a set of functional symbols F containing mathematical
functions (such as, for instance, arithmetic functions,
trigonometric functions, exponentials, logarithms, etc.)

(1)
To ← argminT∈Gf (T (xi), ti) with i = 1, 2, . . . , n

and by a set of terminal symbols T containing p vari-
ables (one variable for each feature in the dataset), plus,
optionally, a set of numeric constants.

3 Geometric Semantic Genetic Programming
Even though the term semantics can have several dif-
ferent interpretations, it is a common trend in the
GP community (and this is what we do also here) to
identify the semantics of a solution with the vector
s(T) = [T (x1),T (x2), . . . ,T (xn)] of its output values on
the training data (Moraglio et al. 2012; Vanneschi et al.
2014). From this perspective, a GP individual can be
identified by a point [its semantics s(T)] in a multidimen-
sional space that we call semantic space (where the num-
ber of dimensions is equal to the number of observations
in the training set, or training cases). The term Geomet-
ric Semantic Genetic Programming (GSGP) (Vanneschi
2017) indicates a recently introduced variant of GP in
which traditional crossover and mutation are replaced by
so-called Geometric Semantic Operators (GSOs), which
exploit semantic awareness and induce precise geomet-
ric properties on the semantic space. GSOs, introduced
by Moraglio et al. (2012), are becoming more and more
popular in the GP community (Vanneschi et al. 2014)
because of their property of inducing a unimodal error
surface (characterized by the absence of locally optimal
solutions on training data) on any problem consisting
of matching sets of input data into known targets (like
for instance supervised learning problems such as sym-
bolic regression and classification). The interested reader
is referred to (Vanneschi 2017) for an introduction to
GSGP where the property of unimodality of the error
surface is carefully explained. Here, we report the defini-
tion of the GSOs as given by Moraglio et al. for real func-
tions domains, since these are the operators we will use
in this work. For applications that consider other types of
data, the reader is referred to Moraglio et al. (2012).

Geometric semantic crossover generates, as the unique
offspring of parents T1, T2, the expression:

where TR is a random real function whose output values
range in the interval [0,1]. Analogously, geometric seman-
tic mutation returns, as the result of the mutation of an
individual T : Rn → R , the expression:

where TR1 and TR2 are random real functions with codo-
main in [0,1] and ms is a parameter called mutation step.
Moraglio and co-authors show that geometric seman-
tic crossover corresponds to geometric crossover in the
semantic space (i.e. the point representing the offspring
stands on the segment joining the points representing the

(2)TXO = (T1 · TR)+ ((1− TR) · T2)

(3)TM = T +ms · (TR1 − TR2)

Page 5 of 17Vanneschi et al. Int J Concr Struct Mater (2018) 12:72

parents) and geometric semantic mutation corresponds
to box mutation on the semantic space (i.e. the point
representing the offspring stands into a box of radius ms,
centered in the point representing the parent).

As Moraglio and co-authors point out, GSGP has an
important drawback: GSOs create much larger offspring
than their parents and the fast growth of the individu-
als in the population rapidly makes fitness evaluation
unbearably slow, making the system unusable. In Castelli
et al. (2015), a possible workaround to this problem was
proposed by our research team, consisting in an imple-
mentation of Moraglio’s operators that makes them not
only usable in practice, but also very efficient. With this
implementation, the size of the individuals at the end of
the evolution is still very large, but they are represented
in a particularly clever way (using memory pointers and
avoiding repetitions) that allows us to store them in
memory efficiently. So, using this implementation, we
are able to generate very accurate predictive models, but
these models are so large that they cannot be read and
interpreted. In other words, GSGP is a very effective and
efficient “black-box” computational method. It is the
implementation introduced in Castelli et al. (2015) that
was used with success in Castelli et al. (2013) for the pre-
diction of HPC strength. One of the main motivations of
the present work is the ambition of generating predictive
models for HPC strength that could have the same per-
formance as the ones obtained by GSGP in Castelli et al.
(2013), or even better if possible, but that could also have
a much smaller size. In other words, while still having
very accurate predictive models for the HPC strength, we
also want models that are readable and interpretable.

4 Previous Work on Alignment in the Error Space
Few years after the introduction of GSGP, a new way of
exploiting semantic awareness was presented in Ruberto
et al. (2014) and further developed in Castelli et al. (2014)
and Gonçalves et al. (2016). The idea, which is also the
focus of this paper, is based on the concept of error space,
which is exemplified in Fig. 2.

In the genotypic space, programs are represented by
their syntactic structures [for instance trees as in Koza
(1992), or any other of the existing representations]. As
explained above, semantics can be represented as a point
in a space that we call semantic space. In supervised
learning, the target is also a point in the semantic space,
but usually (except for the rare case where the target
value is equal to zero for each training case) it does not
correspond to the origin of the Cartesian system. Then,
we translate each point in the semantic space by subtract-
ing the target from it. In this way, for each individual,
we obtain a new point, that we call error vector, and we
call the corresponding space error space. The target, by

construction, corresponds to the origin of the Cartesian
system in the error space. In Ruberto et al. (2014), the
concepts of optimally aligned, and optimally coplanar,
individuals were introduced, together with their impor-
tant implications that are summarized here.

Two individuals A and B are optimally aligned if a sca-
lar constant k exists such that

where →eA and →eB are the error vectors of A and B
respectively. From this definition, it is not difficult to see
that two individuals are optimally aligned if the straight
line joining their error vectors also intersects the origin
in the error space. This property is graphically shown
in Fig. 3a. Analogously, and extending the idea to three
dimensions, three individuals are optimally coplanar if
the bi-dimensional plane in which their error vectors lie
in the error space also intersects the origin. This property
is shown in Fig. 3b.

In Ruberto et al. (2014), it is proven that given any pair
of optimally aligned individuals A and B, it is possible to
reconstruct a globally optimal solution Popt . This solution
is defined in Eq. (3):

where k is the same constant as in Eq. (2). This optimal
solution is represented in a tree shape in Fig. 4.

Analogously, in Ruberto et al. (2014), it was also proven
that given any triplet of optimally coplanar individuals,
it is possible to analytically construct a globally optimal
solution [the reader is referred to Ruberto et al. (2014) for
the equation of the globally optimal solution in that case].
As Fig. 3b shows, the three-dimensional property is just
an extension of the bi-dimensional one; in fact, if three
individuals A, B and C are optimally coplanar, it is always
possible to find a vector →m that is aligned with →eA and
→eB and that is also aligned with →eC and the origin.

Several possible ways of searching for alignments
can be imagined. In Ruberto et al. (2014), one first

(4)→eA = k · →eB

(5)Popt =
1

1− k
A−

k

1− k
B

Fig. 2 A simple 2D vision of genotypic, semantic and error spaces.

Page 6 of 17Vanneschi et al. Int J Concr Struct Mater (2018) 12:72

preliminary attempt was made by fixing one direction,
called attractor, and “pushing” all the individuals in the
population towards an alignment with the attractor. In
this way, it is possible to maintain the traditional repre-
sentation of solutions where each solution is represented
by one program. The other face of the coin is that, in
this way, we strongly restrict what GP can do, forcing
the alignment to necessarily happen in just one prefixed
direction, i.e. the one of the attractor. The objective of
this paper is to relieve this constraint by defining a new
GP system that is generally able to evolve vectors of pro-
grams (even though only vectors of size equal to 2 will be
used in this paper).

In Castelli et al. (2014), a first attempt of using a mul-
tiple program representation was made. In that work,
individuals were pairs of programs, and fitness was the
angle between the respective error vectors. This situation
is graphically represented in Fig. 5, where the two error
vectors are called →a and →b and the angle used as fit-
ness is called ϑ. It is obvious that if ϑ is equal to zero, then
→a and →b are aligned between each other and with the
origin. Thus, the objective of GP is to minimize ϑ.

In this way, alignments could be found in any possible
direction of the error space, with no restrictions. From

now on, for the sake of clarity, this type of individual (i.e.
individuals characterized by more than one program) will
be called multi-individuals. In Castelli et al. (2014), the
following problems of this approach were reported:

• Generation of semantically identical, or very similar,
expressions;

• k constant in Eq. (3) equal, or very close, to zero;
• Generation of expressions with huge error values.

These problems strongly limited the work, at the point
that the approach itself was considered as unusable in
practice in Castelli et al. (2014). These problems are dis-
cussed here, while in Sect. 5 we describe how the pro-
posed method, NAGP, overcomes them.

4.1 Issue 1: Generation of Semantically Identical, or Very
Similar, Expressions

A simple way for GP to find two expressions that are opti-
mally aligned in the error space is to find two expressions
that have exactly the same semantics (and consequently
the same error vector). However, this causes a problem
once we try to reconstruct the optimal solution as in
Eq. (3). In fact, if the two expressions have the same error
vector, the k value in Eq. (3) is equal to 1, which gives a
denominator equal to zero. Experience tells us that GP
tends very often to generate multi-individuals that have
this kind of problem. Also, it is worth pointing out that
even preventing GP from generating multi-individuals
that have an identical semantics, GP may still push the
evolution towards the generation of multi-individuals
whose expressions have semantics that are very similar
to each other. This leads to a k constant in Eq. (3) that,
although not being exactly equal to 1, has a value that is
very close to 1. As a consequence, the denominator in
Eq. (3), although not being exactly equal to zero, may be
very close to zero and thus the value calculated by Eq. (3)

Fig. 3 Optimally aligned individuals (a) and optimally coplanar
individuals (b).

Fig. 4 A tree representation of the globally optimal solution Popt ,
where A and B are optimally aligned programs.

Fig. 5 Angle between solutions in the error space.

Page 7 of 17Vanneschi et al. Int J Concr Struct Mater (2018) 12:72

could be a huge number. This would force a GP system
to deal with unbearably large numbers during all its exe-
cution, which may lead to several problems, including
numeric overflow.

4.2 Issue 2: k Constant in Eq. (3) Equal, or Very Close,
to Zero

Looking at Eq. (3), one may notice that if k is equal to
zero, then expression B is irrelevant and the recon-
structed solution Popt is equal to expression A. A similar
problem also manifests itself when k is not exactly equal
to zero, but very close to zero. In this last case, both
expressions A and B contribute to Popt , but the contribu-
tion of B may be so small to be considered as marginal,
and Popt would de facto be extremely similar to A. Expe-
rience tells us that, unless this issue is taken care of, the
evolution would very often generate such situations.
This basically turns a multi-individual alignment-based
system into traditional GP, in which only one of the pro-
grams in the multi-individual matters. If we really want
to study the effectiveness of multi-individual alignment-
based systems, we have to avoid this kind of situations.

4.3 Issue 3: Generation of Expressions with Huge Error
Values

Theoretically speaking, systems based on the concept
of alignment in the error space could limit themselves
to searching for expressions that are optimally aligned,
without taking into account their performance (i.e. how
close their semantics are to the target). However, expe-
rience tells us that, if we give GP the only task of find-
ing aligned expressions, GP frequently tends to generate
expressions whose semantics contain unbearably large
values. Once again, this may lead to several problems,
including numeric overflow, and a successful system
should definitely prevent this from happening.

One fact that should be remarked is that none of the
previous issues can be taken into account with simple
conditions that prevent some precise situations from
happening. For instance, one may consider solving
Issue 1 by simply testing if the expressions in a multi-
individual are semantically identical to each other, and
rejecting the multi-individual if that happens. But, as
already discussed, expressions that have very similar
semantics between each other may also cause problems.
Furthermore, the idea of introducing a threshold ε to the
semantic diversity of the expressions in a multi-individ-
ual, and rejecting all the multi-individuals for which the
diversity is smaller than ε does not seem a brilliant solu-
tion. In fact, experience tells us that GP would tend to
generate multi-individuals with a diversity equal, or very
close to ε itself. Analogously, if we consider Issue 2, nei-
ther rejecting multi-individuals that have a k constant

equal to zero, nor rejecting individuals that have an abso-
lute value of k larger than a given threshold would solve
the problem. Finally, considering Issue 3, also rejecting
individuals that have the coordinates of the semantic vec-
tor larger than a given threshold δmax would not solve the
problem since GP would tend to generate expressions in
which the coordinates of the semantic vector are equal,
or very close, to δmax itself.

In such a situation, we believe that a promising way to
effectively solve these issues (besides defining the spe-
cific conditions mentioned above) is to take the issues
into account in the selection process, for instance giving
more probability of being selected for mating to multi-
individuals that have large semantic diversity between
the expressions, values of k that are, as much as possi-
ble, far from zero and expressions whose semantics are,
as much as possible, close to the target. These ideas are
implemented in NAGP, which is described below.

5 Nested Align Genetic Programming
Nested Align GP (NAGP) uses multi-individuals, and
thus it extends the first attempt proposed in Castelli et al.
(2014). In this section, we describe selection, mutation
and population initialization of NAGP, keeping in mind
that no crossover has been defined yet for this method.
While doing this, we also explain how NAGP overcomes
the problems described in Sect. 4. Figure 6 contains a
high-level flowchart of NAGP, showing its general func-
tioning. In the last part of this section, we also define a
variant of the NAGP method, called NAGP_β, that will
also be taken into account in our experimental study.

5.1 Selection
Besides trying to optimize the performance of the multi-
individuals, selection is the phase that takes into account
the issues described in Sect. 4. NAGP contains five selec-
tion criteria, that have been organized into a nested
tournament. Let ϕ1,ϕ2, . . . ,ϕm be the expressions charac-
terizing a multi-individual. It is worth pointing out that
only the case m = 2 is taken into account in this paper.
But the concept is general, and so it is explained using m
expressions. The selection criteria are:

• Criterion 1: diversity (calculated using the stand-
ard deviation) of the semantics of the expressions
ϕ1,ϕ2, . . . ,ϕm (to be maximized).

• Criterion 2: the absolute value of the k constant that
characterizes the reconstructed expression Popt in
Eq. (3) (to be maximized).

• Criterion 3: the sum of the errors of the single expres-
sions ϕ1,ϕ2, . . . ,ϕm (to be minimized).

• Criterion 4: the angle between the error vectors of
the expressions ϕ1,ϕ2, . . . ,ϕm (to be minimized).

Page 8 of 17Vanneschi et al. Int J Concr Struct Mater (2018) 12:72

• Criterion 5: the error of the reconstructed expression
Popt in Eq. (3) (to be minimized).

The nested tournament works as follows: an individual
is selected if it is the winner of a tournament, that we
call T5 , that is based on Criterion 5. All the participants
in tournament T5 , instead of being individuals chosen
at random as in the traditional tournament selection

algorithm, are winners of previous tournaments (that we
call tournaments of type T4), which are based on Crite-
rion 4. Analogously, for all i = 4, 3, 2, all participants in
the tournaments of type Ti are winners of previous tour-
naments (that we will call tournaments of type Ti−1),
based on Criterion i − 1. Finally, the participants in the
tournaments of type T1 (the kind of tournament that is
based on Criterion 1) are individuals selected at random
from the population. In this way, an individual, in order
to be selected, has to undergo five selection layers, each
of which is based on one of the five different chosen crite-
ria. Motivations for the chosen criteria follow:

• Criterion 1 was introduced to counteract Issue 1 in
Sect. 4. Maximizing the semantic diversity of the
expressions in a multi-individual should naturally
prevent GP from creating multi-individuals with
identical semantics or semantics that are very similar
to each other.

• Criterion 2 was introduced to counteract Issue 2 in
Sect. 4. Maximizing the absolute value of constant k
should naturally allow GP to generate multi-individ-
uals for which k’s value is neither equal nor close to
zero.

• Criterion 3 was introduced to counteract Issue 3 in
Sect. 4. If the expressions that characterize a multi-
individual have a “reasonable” error, then their
semantics should be reasonably similar to the target,
thus naturally avoiding the appearance of unbearably
large numbers.

• Criterion 4 is a performance criterion: if the angle
between the error vectors of the expressions
ϕ1,ϕ2, . . . ,ϕm is equal to zero, then Eq. (3) allows us
to reconstruct a perfect solution Popt (see Fig. 5 for
the bidimensional case). Also, the smaller this angle,
the smaller should be the error of Popt . Neverthe-
less, experience tells us that multi-individuals may
exist with similar values of this angle, but very differ-
ent values of the error of the reconstructed solution
Popt , due for example to individuals with a very large
distance from the target. This fact made us conclude
that Criterion 4 cannot be the only performance
objective, and suggested to us to also introduce Cri-
terion 5.

• Criterion 5 is a further performance criterion.
Among multi-individuals with the same angle
between the error vectors of the expressions
ϕ1,ϕ2, . . . ,ϕm , the preferred ones will be the ones for
which the reconstructed solution Popt has the small-
est error.

The motivation for choosing a nested tournament,
instead of, for instance, a Pareto-based multi-objective

Fig. 6 High level flowchart of NAGP (see the text for a definition of
the acceptance requirements).

Page 9 of 17Vanneschi et al. Int J Concr Struct Mater (2018) 12:72

optimization is that the nested tournament has the
advantage of forcing the search for an optimal solution
on all the five criteria. This point is important if one con-
siders, for instance, Criteria 1, 2 and 3: these criteria have
to be optimized as much as possible before considering
the two “performance” criteria, because otherwise the
selected individual may have to be rejected by the algo-
rithm (indeed, NAGP may reject individuals, as will be
clearer in the continuation, and Criterias 1, 2 and 3 have
the objective of “pushing” the evolution away from those
individuals, thus minimizing the number of rejections).

5.2 Mutation
The mechanism we have implemented for applying muta-
tion to a multi-individual is extremely simple: for each
expression ϕi in a multi-individual, mutation is applied
to ϕi with a given mutation probability pm , where pm is a
parameter of the system. It is worth remarking that in our
implementation all expressions ϕi of a multi-individual
have the same probability of undergoing mutation, but
this probability is applied independently to each of them.
So, some expressions could be mutated, and some oth-
ers could remain unchanged. The type of mutation that
is applied to expressions is Koza’s standard subtree muta-
tion (Koza 1992).

To this “basic” mutation algorithm, we have also
decided to add a mechanism of rejection, in order to
help the selection process in counteracting the issues
discussed in Sect. 4. Given a prefixed parameter that we
call δk , if the multi-individual generated by mutation has
a k constant included in the range [1− δk , 1+ δk] , or
in the range −δk , δk , then the k constant is considered,
respectively, too close to 1 or too close to 0 and the multi-
individual is rejected. In this case, a new individual is
selected for mutation, using again the nested tournament
discussed above. The combined effect of this rejection
process and of the selection algorithm should strongly
counteract the issues discussed in Sect. 4. In fact, when
k is equal to 1, or equal to 0, or even close to 1 or 0 inside
a given prefixed toleration radius δk , the multi-individual
is not allowed to survive. For all the other multi-individ-
uals, distance between k and 1 and between k and 0 are
used as optimization objectives, to be maximized. This
allows NAGP to evolve multi-individuals with k values
that are “reasonably far” from 0 and 1.

The last detail about mutation that needs to be dis-
cussed is the following: in order to further counteract
Issue 1 (i.e. to avoid the natural tendency of NAGP to
generate multi-individuals with semantically identical,
or very similar, expressions), every time that a multi-
individual is generated, before being inserted in the
population, one of the two expressions is multiplied by a
constant λ (in this way, the semantics of that expression

is “translated” by a factor λ). In this paper, λ is a ran-
dom number generated with uniform distribution in the
range [0, 100]. Preliminary experiments have shown that
this variation of one of the two expressions is beneficial
in terms of the quality of the final solution returned by
NAGP. Furthermore, several different ranges of variation
for λ have been tested, and [0, 100] seems to be an appro-
priate one, at least for the studied application.

5.3 Initialization
NAGP initializes a population of multi-individuals using
multiple executions of the Ramped Half and Half algo-
rithm (Koza 1992). More specifically, let n be the num-
ber of expressions in a multi-individual (n = 2 in our
experiments), and let m be the size of the population that
has to be initialized. NAGP runs n times the Ramped
Half and Half algorithm, thus creating n “traditional”
populations of programs P1, P2, . . . ,Pn , where each
population contains m trees. Let P = {Π1,Π2, . . . Πm}
be the population that NAGP has to initialize (where,
for each i = 1, 2, . . . ,m , Πi is an n-dimensional multi-
individual). Then, for each i = 1, 2, . . . ,m and for each
j = 1, 2, . . . , n , the jth program of multi-individual Πi is
the jth tree in population Pi.

To this “basic” initialization algorithm, we have
added an adjustment mechanism to make sure that the
initial population does not contain multi-individuals
with a k equal, or close, to 0 and 1. More in particular,
given a prefixed number α of expressions, that is a new
parameter of the system, if the created multi-individ-
ual has a k value included in the range [1− δk , 1+ δk] ,
or in the range −δk , δk (where δk is the same parameter
as the one used for implementing rejections of mutated
individuals), then α randomly chosen expressions in
the multi-individual are removed and replaced by as
many new randomly generated expressions. Then the
k value is calculated again, and the process is repeated
until the multi-individual has a k value that stays out-
side the ranges [1− δk , 1+ δk] and −δk , δk . Only when
this happens, the multi-individual is accepted into the
population. Given that only multi-individuals of two
expressions are considered in this paper, in our experi-
ments we have always used α = 1.

Besides NAGP, the following variant was also
implemented:

5.3.1 NAGP_β
This method integrates a multi-individual approach
with a traditional single-expression GP approach.
More precisely, the method begins as NAGP, but after
β generations (where β is a parameter of the system),

Page 10 of 17Vanneschi et al. Int J Concr Struct Mater (2018) 12:72

the evolution is done by GSGP. In order to “transform”
a population of multi-individuals into a population of
traditional single-expression individuals, each multi-
individual is replaced by the reconstructed solution
Popt in Eq. (3). The rationale behind the introduction
of NAGP_β is that alignment-based systems are known
to have a very quick improvement in fitness in the first
generations, which may sometimes cause overfitting of
training data [the reader is referred to (Ruberto et al.
2014; Castelli et al. 2014; Gonçalves et al. 2016) for a
discussion of the issue]. Given that GSGP, instead, is
known for being a slow optimization process, able to
limit overfitting under certain circumstances [see
Vanneschi et al. (2013)], the idea is transforming
NAGP into GSGP, possibly before overfitting arises.
Even though a deep study of parameter β is strongly
in demand, only the value β = 50 is used in this paper.
The choice for this particular value of β derives from
a preliminary set of experiments that have indicated
the appropriateness of this value. Furthermore, as will
become clearer in the next section, after approximately
50 generations, it is possible to observe a sort of stag-
nation in the evolution of NAGP (in other words, the
error on the training set is not improving anymore).
For this reason, from now on, the name NAGP_50 will
be used for this method.

6 Experimental Study
6.1 Data Set Information
Following the same procedure described in Yeh (1998),
experimental data from 17 different sources were used
to check the reliability of the strength model. Data were
assembled for concrete containing cement plus fly ash,
blast furnace slag, and superplasticizer. A determina-
tion was made to ensure that these mixtures were a fairly
representative group for all of the major parameters that
influence the strength of HPC and present the complete
information required for such an evaluation. The dataset

is the one that was used in Yeh and Lien (2009), Chou
et al. (2010), Cheng et al. (2013, 2014) and Castelli et al.
(2013) and it consists of 1028 observations and 8 vari-
ables. Some facts about those variables are reported in
Table 1.

6.2 Experimental Settings
For each of the studied computational methods, 30 inde-
pendent executions (runs) were performed, using a dif-
ferent partitioning of the dataset into training and test
set. More particularly, for each run 70% of the observa-
tions were selected at random with uniform distribution
to form the training set, while the remaining 30% form
the test set. The parameters used are summarized in
Table 2. Besides those parameters, the primitive opera-
tors were addition, subtraction, multiplication, and divi-
sion protected as in Koza (1992). The terminal symbols
included one variable for each feature in the dataset, plus
the following numerical constants: − 1.0, − 0.75, − 0.5,
− 0.25, 0.25, 0.5, 0.75, 1.0. Parent selection was done
using tournaments of size 5 for GSGP, and tournaments
of size 10 for each layer of the nested selection for NAGP.
The same selection as in NAGP was also performed in
the first 50 generations of NAGP_50. Crossover rate was
equal to zero (i.e., no crossover was performed during the
evolution) for all the studied methods. While NAGP and
NAGP_50 do not have a crossover operator implemented

Table 1 The variables used to describe each instance in the studied dataset.

For each variable minimum, maximum, a kg/m3 average, median and standard deviation values are reported.

ID Name (unit measure) Minimum Maximum Average Median Standard
deviation

X0 Cement (kg/m3) 102.0 540.0 281.2 272.9 104.5

X1 Fly ash (kg/m3) 0.0 359.4 73.9 22.0 86.3

X2 Blast furnace slag (kg/m3) 0.0 200.1 54.2 0.0 64.0

X3 Water (kg/m3) 121.8 247.0 181.6 185.0 21.4

X4 Superplasticizer (kg/m3) 0.0 32.2 6.2 6.4 6.0

X5 Coarse aggregate (kg/m3) 801.0 1145.0 972.9 968.0 77.8

X6 Fine aggregate (kg/m3) 594.0 992.6 773.6 779.5 80.2

X7 Age of testing (days) 1.0 365.0 45.7 28.0 63.2

Table 2 GP parameters used in our experiments.

Parameter Setting

Population size 100

Max. numb. of generations 200

Initialization Ramped H–H

Maximum depth for evolution 17

Maximum depth for initialization 6

δk 0.02

Page 11 of 17Vanneschi et al. Int J Concr Struct Mater (2018) 12:72

yet, the motivation for not using crossover in GSGP can
be found in Castelli et al. (2014).

6.3 Experimental Results, Comparison with GSGP
The experimental results are organized as follows:

• Fig. 7 reports the results of the training error and the
error of the best individual on the training set, evalu-
ated on the test set (from now on, the terms training
error and test error will be used for simplicity);

• Fig. 8 reports the results of the size of the evolved
solutions (expressed as number of tree nodes);

• Table 3 reports the results of the study of statistical
significance that we have performed on the results of
the training and test error.

From Fig. 7, we can see that NAGP_50 clearly out-
performs the other two studied methods both on
training and on unseen data. Also, if we compare
NAGP to GSGP, we can observe that these two meth-
ods returned similar results, with a slight preference
of GSGP on training data, and a slight preference
of NAGP on unseen data. From plots of Fig. 7a, b, we
can also have a visual rendering of how useful it is for
NAGP_50 to “switch” from the NAGP algorithm to the
GSGP algorithm after 50 generations. In fact, both on

the training and on the test set, it is possible to notice
a rapid improvement of the curve of NAGP_50, which
looks like a sudden descending “step”, at generation 50.

Now, let us discuss Fig. 8, that reports the dimensions
of the evolved programs. GSGP and NAGP_50 gener-
ate much larger individuals compared to NAGP. This
was expected, given that generating large individuals
is a known drawback of GSOs (Moraglio et al. 2012).
The fact that in the first 50 generations NAGP_50 does
not use GSOs only partially limits the problem, simply
delaying the code growth, that is, after generation 50, as
strong as for GSGP. On the other hand, it is clearly vis-
ible that NAGP is able to generate individuals that are

Fig. 7 Results of the error for the three studied methods. a Evolution of training error; b evolution of test error; c boxplots of the training error at
the end of the run; d boxplots of the test error at the end of the run. All results are medians over 30 independent runs.

Fig. 8 Evolution of the size of the individuals.

Page 12 of 17Vanneschi et al. Int J Concr Struct Mater (2018) 12:72

much smaller: after a first initial phase in which also for
NAGP the size of the individuals grows, we can see that
NAGP basically has no further code growth (the curve,
after an initial phase of growth, rapidly stabilizes and
it is practically parallel to the horizontal axis). Last but
not least, it is also interesting to remark that the final
model generated by NAGP has around only 50 tree
nodes, which is a remarkably small model size for such
a complex application as the one studied here.

To analyse the statistical significance of the results
of the training and test errors, a set of tests has been
performed. The Lilliefors test has shown that the data
are not normally distributed and hence a rank-based
statistic has been used. The Mann–Whitney U-test for
pairwise data comparison with Bonferroni correction
has been used, under the alternative hypothesis that
the samples do not have equal medians at the end of the
run, with a significance level α = 0.05. The p-values are
reported in Table 3, where statistically significant dif-
ferences are highlighted with p-values in italics.

As we can observe, all the differences between the
results obtained with all the studied methods are statis-
tically significant.

The conclusion is straightforward: NAGP_50 out-
performs GSGP in terms of prediction accuracy, but
returns results that are comparable to the ones of GSGP
in terms of the size of the model. On the other hand,
NAGP outperforms GSGP in terms of prediction accu-
racy on unseen data and also in terms of model size.

6.4 Experimental Results, Comparison Other Machine
Learning Techniques

This section compares the results obtained by NAGP
and NAGP_50 with the ones achieved with other state-
of-the-art machine learning (ML) methods. The same 30
different partitions of the dataset used in the previous
part of the experimental study were considered. To run
the ML techniques, we used the implementation pro-
vided by the Weka public domain software (Weka 2018).
The techniques taken into account are: linear regres-
sion (LIN) (Weisberg 2005), isotonic regression (ISO)
(Hoffmann 2009), an instance-based learner that uses an

entropic distance measure (K*) (Cleary and Trigg 1995),
multilayer perceptron (MLP) (Haykin 1999) trained with
back propagation algorithm, radial basis function net-
work (RBF) (Haykin 1999), and support vector machines
(SVMs) (Schölkopf and Smola 2002) with a polynomial
kernel.

As done for the previous experimental phase, a pre-
liminary study has been performed in order to find the
best tuning of the parameters for all the considered
techniques. In particular, using the facilities provided
by Weka, we performed a grid search parameter tuning,
where different combinations of the parameters were
tested. Table 4 shows the interval of tested values for
each parameter and for each technique.

The results of the comparison we performed are
reported in Figs. 9 and 10 where the performance on the
training and test sets are presented, respectively. We start
the analysis of the results by commenting the perfor-
mance on the training set.

As one can show in Fig. 9, K* is the best performer on
the training set, producing better quality models with
respect to all the other studied techniques. MLP is the
second-best technique, followed by NAGP_50 and SVMs.
LIN outperforms both GSGP and NAGP, while ISO pro-
duces similar results with respect to NAGP. Finally, the
worst performer is RBF. Focusing on NAGP_50, it is
important to highlight that its performance is compara-
ble to MLP and SVM, two techniques that are commonly
used to address this kind of problem.

While the results on the training data are important,
the performance on the test set is a fundamental indica-
tor to assess the robustness of the model with respect to
its ability to generalize over unseen instances. This is a
property that must be ensured in order to use a ML tech-
nique for addressing a real-world problem. According to
Fig. 10, NAGP_50 outperforms all the other techniques
taken into consideration on the test set. Interestingly, its
performance is comparable with the one achieved on the
training set, presenting no evidence of overfitting. This
indicates that NAGP_50 produces robust models that are
able to generalize over unseen data.

To assess the statistical significance of the results pre-
sented in Figs. 9 and 10, the same type of statistical test
as the ones presented in the previous section was per-
formed, with α = 0.05 and the Bonferroni correction.
Table 5 reports the p-values returned by the Mann–
Whitney test with respect to the results achieved on the
training set. Results reported in italic are those in which
the null hypotheses can be rejected (i.e. the statistically
significant results). According to these results, NAGP_50
produces results that are comparable with SVMs, while
K* is the best performer followed by MLP.

Table 3 p-values returned by the Mann–Whitney U-test
on training and test sets under the null hypothesis
that the samples have the same median.

Italics denotes statistically significant values.

Training set Test set

NAGP NAGP_50 NAGP NAGP_50

GSGP 3.38E−08 3.58E−06 6.98E−06 2.18E−05

NAGP 6.51E−11 1.20E−09

Page 13 of 17Vanneschi et al. Int J Concr Struct Mater (2018) 12:72

Table 6 reports the p-values of the Mann–Whitney
test with respect to the results achieved on the test set.
According to these p-values, it is possible to state the
NAGP_50 is the best performer, producing solutions
that outperform the other techniques in a statistically
significant way. SVMs are not able to produce the same
good-quality performance on the test set, overfitting the
training data. Interestingly, all the non-GP techniques,
except LIN, suffer from overfitting, hence producing
models that are not able to generalize well on unseen
data.

6.5 Experimental Results, Discussion of an Evolved Model
In this section, we show and discuss the best multi-
individual evolved by NAGP in our simulations. It is
important to point out that, as Fig. 8 clearly shows, this
would not be possible for NAGP_50 and for GSGP, since

these two methods use GSOs and these operators cause
a rapid growth in the size of the evolved solutions. For
this reason, it was not possible to show the final model
in Cheng et al. (2013), while it is possible in the present
contribution.

The best multi-individual evolved by NAGP in all the
runs that we have performed was composed by the fol-
lowing expressions, in prefix notation:

6.5.1 Expression 1
(*
(*
(*
(* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (+ (* X0 (− X6
(* (+ (− (/ (* X3 (− − 0.75 X5)) (/ (/ 0.5 (+ − 1.0 − 0.25))
(/− 1.0 0.75))) (− X1 (− (/ X7 0.25) (+ (* (/− 0.75 (+ X7
X0)) (* (− 1.0 X6) (− (* (/ (+ X2 X1) − 0.25) (+ (/ X7

Table 4 Parameter tuning.

For each technique, the table reports the tuned parameters and the value used in the experiments that were performed. The reader is referred to the Weka ML tool
documentation (Weka 2018) for the explanation of these parameters.

Technique Parameter name Values tested [min;max;# of values tested] Best value

LIN ridge [1.0E−7;1.0E−9;3] 1.00E−08

eliminateColinearAttributes True; False True

ISO – – –

K* globalBlend [0;100;10] 30

MLP learningRate [0.1;0.4;4] 0.15

momentum [0.1;0.4;4] 0.1

hiddenLayers [1, 7] 3

trainingTime [500;1000;5] 1000

RBF minStdDev [0.1;0.5;5] 0.2

ridge [1.0E−7;1.0E−9;3] 1.00E−08

SVM DegreePolynomialKernel [1, 4] 2

regOptimizer RegSMO; RegSMOimproved RegSMOimproved

Fig. 9 Root mean squared error on the training set.

Page 14 of 17Vanneschi et al. Int J Concr Struct Mater (2018) 12:72

Fig. 10 Root mean squared error on the test set.

Table 5 p-values returned by the Mann–Whitney U-test for the results achieved on the training set.

Italic is used to denote statistically significant differences between the considered techniques.

Training

GSGP NAGP NAGP50 LIN ISO K* MLP RBF SVM

GSGP – 2.19E−01 6.51E−11 1.39E−02 4.63E−02 6.26E−11 3.59E−08 6.26E−11 6.95E−11

NAGP – 6.51E−11 4.22E−07 4.01E−01 6.26E−11 1.22E−08 6.26E−11 6.26E−11

NAGP50 – 6.26E−11 6.26E−11 6.26E−11 1.16E−01 6.26E−11 3.56E−02

LIN – 1.87E−10 6.03E−11 2.13E−07 6.03E−11 6.03E−11

ISO – 6.03E−11 1.56E−08 6.03E−11 6.03E−11

K* – 6.03E−11 6.03E−11 6.03E−11

MLP – 6.03E−11 2.80E−03

RBF – 6.03E−11

SVM –

Table 6 p-values returned by the Mann–Whitney U-test for the results achieved on the test set.

Italic is used to denote statistically significant differences between the considered techniques.

Test

GSGP NAGP NAGP50 LIN ISO K* MLP RBF SVM

GSGP – 4.19E−01 1.45E−09 3.31E−07 5.11E−08 5.86E−01 6.41E−01 1.16E−09 1.87E−04

NAGP – 1.20E−09 7.25E−08 1.88E−09 6.52E−01 4.27E−01 6.26E−11 2.25E−04

NAGP50 – 1.71E−09 1.16E−09 1.16E−09 1.16E−09 1.16E−09 2.07E−09

LIN – 6.07E−11 6.06E−11 2.98E−07 6.06E−11 4.79E−05

ISO – 4.28E−09 1.60E−03 1.12E−09 6.04E−11

K* – 9.88E−01 6.03E−11 2.96E−06

MLP – 9.83E−05 3.55E−02

RBF – 6.03E−11

SVM –

Page 15 of 17Vanneschi et al. Int J Concr Struct Mater (2018) 12:72

(+ − 0.5 (/ (/ X4 (+ − 1.0 X1)) X7))) (− (− 0.25 1.0) (+
(+ X7 X1) (− 1.0 − 0.25))))) 0.5))) 0.5)))) (− (/ (− (+ − 0.5
(*− 0.25 0.75)) (/ (* (/ X5 (− − 0.25 0.5)) (+ X0 (− (/
(− − 0.25 X3) (/ (/ (/ (/ (− (* (/ X2− 1.0) X0) X6)− 0.25)
(/ (/ (+ − 0.25− 1.0) (+ X7− 0.5)) (+ − 0.25 − 0.75)))
X1) X1)) − 0.75))) (/ (/ (/ (+ X6 (/ 0.25 (*− 0.75 1.0)))
0.75) (+ − 1.0 (+ 1.0 X3)))− 1.0))) (/ X6 (/ (+ (+
X6 − 1.0) (*− 0.5 (− 1.0 (− − 0.75 X3)))) 0.75)))− 0.25))
(/ X7 (* (+ − 0.75 (/ 1.0 (* (/ X6 (/ 0.75 (+ 0.75 X4))) (*
(− (+ − 0.25 X4) 0.75) (* X6 (/ (* (/− 0.25 (+ (− − 0.5 X6)
1.0)) (− X6 0.25)) X7)))))) X7))))) (* X7 − 0.5)) 34.0) X5)
33.0) 36.0) X6) 23.0) 31.0) 23.0) 20.0) 31.0) 39.0) 39.0)
(− X6 1.0)) 36.0) 28.0) 34.0) 22.0) 25.0) 38.0) 26.0) 29.0)
34.0) 27.0) 30.0) 23.0) 33.0) 35.0) 24.0) 34.0) 36.0) 36.0)
37.0) 38.0) 36.0) 27.0) 39.0) 36.0) 20.0) 34.0) 37.0) 37.0)
37.0) 36.0) 32.0) 37.0) 39.0) 33.0) 26.0) 39.0) 31.0) 33.0)
24.0) 27.0) 27.0) 33.0) 39.0) 37.0) 38.0) 36.0) 32.0) 23.0)
35.0) 24.0) 39.0) 26.0) 26.0) (+ (+ X0 (* (− 1.0 (+ (/ X2
0.75) − 0.75))− 0.5)) (+ (* X1 1.0) X7))) 26.0) 37.0) 37.0)
27.0) 32.0) 38.0) 22.0) 37.0) 34.0) 31.0) 28.0) 30.0) 21.0)
26.0) 23.0) 20.0) 38.0) 38.0) 33.0) 32.0) 21.0) 24.0) 20.0)
37.0) 30.0) 21.0).

6.5.2 Expression 2
(* (* (/X4 (+ X7 (+ (* (− (− (/(* (− (/(+ 1.0 X3) (− X1
(− (− X2 X6) − 0.75))) (− (/(− X2 X4) (* (+ (/(+ − 1.0
0.25) (+ 0.25 X0)) (+ X3 (− X3 0.5))) X4)) X4)) X1)
(/0.75− 0.25)) (− X5 − 1.0)) (+ − 0.5 0.5)) (/− 1.0 X2))
(− X6 X2)))) X7) 21.0).

The reader is referred to Table 1 for a reference to
the different variables used in this expression (only the
IDs—X0, X1,…, X7—referenced in the table are used in
the above expressions). If we consider the reconstructed
expression Popt [as in Eq. (3)] using these two expressions,
Popt has an error on the training set equal to 9.53 and
an error on the test set equal to 9.06. Both the relation-
ship between the training and test error (they have the
same order of magnitude and the error on the test set is
even smaller) and a comparison with the median results
reported in Fig. 7 allow us to conclude that this solution
has a very good performance, with no overfitting.

The first thought that comes to mind when watch-
ing these two expressions is that the first one is signifi-
cantly different from the second one: first of all in terms
of size (the first expression is clearly larger than the sec-
ond), but also in terms of tree shape. Observing the first
expression, in fact, one may notice a sort of skewed and

unbalanced shape consisting of several multiplications
by constant numbers. This observation is not surprising:
the first of these two expressions, in fact, is the one that
has undergone the multiplication by the constant λ dur-
ing the mutation events, as explained in Sect. 5. These
continuous multiplications by constants have, of course,
also an impact on the size of the expression (this is the
reason why the first expression is larger than the sec-
ond one). However, it is easy to understand that all these
multiplications by a constant can be easily simplified, i.e.
transformed into one single multiplication by a constant.
Concerning the second expression, instead, we can see
that it is much simpler and quite easy to read (numeric
simplifications are possible also on this second expres-
sion, which would make it even simpler and easier to
read).

Concerning the variables used by the two models,
Table 7 shows the number of times that each of the varia-
bles appears in these two expressions. From this table, we
can see that variables X6 and X7 are the ones that appear
most frequently in the expressions, and thus we hypoth-
esize that these variables are considered as the most
useful, i.e. informative, ones by NAGP for the correct
reconstruction of the target. These variables represent
fine aggregate (expressed in kg/m3) and age of testing
(expressed in number of days), respectively.

7 Conclusions and Future Work
High-performance concrete is one of the most com-
monly used human-made artifacts nowadays. It is a very
complex material and optimizing it in order to obtain
the desired behavior is an extremely hard task. For this
reason, effective computational intelligence systems
are much in demand. In particular, the task of predict-
ing the strength of high-performance concrete is very
difficult and the problem has been the focus of a recent
investigation. This paper extends a recent publication
of our research group (Castelli et al. 2013), significantly
improving the results. In that paper, we proposed a new
Genetic Programming (GP) system, called Geometric
Semantic GP (GSGP), for the prediction of the strength
of high-performance concrete, showing that GSGP was
able to outperform existing methods. In this work, we
propose a new system, called Nested Align GP (NAGP),
with the objective of further improving the results that
we obtained with GSGP. As for GSGP, NAGP integrates
semantic awareness in the evolutionary process of GP.

Table 7 Number of occurrences of each variable in the expressions presented in Sect. 6.5.

Variable X0 X1 X2 X3 X4 X5 X6 X7

Number of occurrences 6 9 7 7 7 4 14 13

Page 16 of 17Vanneschi et al. Int J Concr Struct Mater (2018) 12:72

However, differently from GSGP, NAGP exploits a new
and promising concept bound to semantics, i.e. the con-
cept of alignment in the error space. In order to effec-
tively take advantage of the concept of alignment, NAGP
evolves set of expressions (instead of single expressions,
like traditional GP or GSGP do), that we have called
multi-individuals. Furthermore, a variant of NAGP,
called NAGP_β was presented, that is able to switch, at a
prefixed generation β, from a multi-individual represen-
tation to a more traditional single-expression represen-
tation. The presented experiments show that the results
returned by NAGP and NAGP_ β improve the ones of
GSGP from two different viewpoints: on one hand, both
NAGP and NAGP_ β significantly outperform GSGP
from the point of view of the prediction accuracy; sec-
ondly, NAGP is able to generate predictive models that
are much smaller, and thus more readable and interpret-
able, than the ones generated by GSGP. In this way, in
this paper we have been able to show a model evolved
by NAGP, which was impossible in Castelli et al. (2013).
These results allow us to foster NAGP as the new state-
of-the-art for high-performance concrete prediction with
computational intelligence.

Future work can be divided into two main parts: the
work that is needed, and planned, to further improve
NAGP and its variant, and the work that we intend to
perform to further improve the results on the prediction
of the strength of high-performance concrete.

Concerning NAGP, we believe that one of the most
important limitations of this paper is that only align-
ments in two dimensions are considered. In other words,
NAGP evolves individuals that are pairs of programs
and so NAGP is only able to search for pairs of opti-
mally aligned programs. Our current research is focused
on extending the method to more than two dimensions.
For instance, we are currently working on the develop-
ment of systems that evolve individuals that are triplets
of programs, aimed at finding triplets of optimally copla-
nar individuals. The subsequent step will be to further
extend the method, possibly generalizing to any number
of dimensions. The design of self-configuring methods,
that automatically decide the most appropriate dimen-
sion, is one of the most ambitious goals of our current
work. Concerning NAGP_β, a methodological study on
the impact of the β parameter is planned. Last but not
least, we are planning to study and develop several differ-
ent possible types of crossover for NAGP.

Concerning possible ways of improving the prediction
of the strength of high-performance concrete, we are cur-
rently working on two different, although related, direc-
tions: on one hand, we are developing a new algorithm
that integrates clustering techniques as a pre-processing
step. On the other hand, we are also planning to develop

a system that is highly specialized for high-performance
concrete strength prediction, integrating into the system
a set of rules coding some problem knowledge coming
from domain experts. Last but not least, we are plan-
ning to validate the proposed systems on other real-life
datasets.

Authors’ contributions
LV and MC designed the proposed method. KS implemented the system and
performed the experiments. AP performed the statistical analysis and proof-
read the paper. All the authors wrote the paper. All authors read and approved
the final manuscript.

Author details
1 NOVA Information Management School (NOVA IMS), Universidade Nova de
Lisboa, Campus de Campolide, 1070-312 Lisbon, Portugal. 2 Faculty of Eco-
nomics, University of Ljubljana, 1000 Ljubljana, Slovenia.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 27 November 2017 Accepted: 24 July 2018

References
Abrams, D. A. (1927). Water-cement ration as a basis of concrete quality. ACI

Materials Journal, 23(2), 452–457.
Bhanja, S., & Sengupta, B. (2005). Influence of silica fume on the tensile

strength of concrete. Cement and Concrete Research, 35(4), 743–747.
Castelli, M., Silva, S., & Vanneschi, L. (2015). A C ++ framework for geometric

semantic genetic programming. Genetic Programming and Evolvable
Machines, 16(1), 73–81.

Castelli, M., Vanneschi, L., & Silva, S. (2013). Prediction of high performance
concrete strength using genetic programming with geometric semantic
genetic operators. Expert Systems with Applications, 40(17), 6856–6862.

Castelli, M., Vanneschi, L., Silva, S., & Ruberto, S. (2014). How to exploit align-
ment in the error space: Two different gp models. In R. Riolo, W.P. Worzel,
& M. Kotanchek (Eds.), Genetic programming theory and practice XII, genetic
and evolutionary computation (pp. 133–148). Ann Arbor, USA: Springer.

Cheng, M. Y., Firdausi, P. M., & Prayogo, D. (2014). High-performance concrete
compressive strength prediction using Genetic Weighted Pyramid
Operation Tree (GWPOT). Engineering Applications of Artificial Intelligence,
29, 104–113.

Cheng, M. Y., Prayogo, D., & Wu, Y. W. (2013). Novel genetic algorithm-based
evolutionary support vector machine for optimizing high-performance
concrete mixture. Journal of Computing in Civil Engineering, 28(4),
06014003.

Chou, J. S., Chiu, C. K., Farfoura, M., & Al-Taharwa, I. (2010). Optimizing the
prediction accuracy of concrete compressive strength based on a
comparison of data-mining techniques. Journal of Computing in Civil
Engineering, 25(3), 242–253.

Cleary, J. G., & Trigg, L. E. (1995). K*: An instance-based learner using an
entropic distance measure. In Machine learning proceedings 1995 (pp.
108–114).

Eiben, E., & Smith, J., E. (2003). Introduction to evolutionary computing. Berlin:
Springer.

Frank, E, Hall, M. A., & Witten, I. H. (2016). The WEKA workbench. Online Appen-
dix for “Data Mining: Practical Machine Learning Tools and Techniques” (4th
ed.). Morgan Kaufmann.

Gonçalves, I., Silva, S., Fonseca, C. M., & Castelli, M. (2016). Arbitrarily close
alignments in the error space: A geometric semantic genetic program-
ming approach. In Proceedings of the 2016 on Genetic and Evolutionary

Page 17 of 17Vanneschi et al. Int J Concr Struct Mater (2018) 12:72

Computation Conference Companion, GECCO’16 companion (pp. 99–100).
New York, NY, USA: ACM.

Haykin, S. (1999). Neural networks: A comprehensive foundation. New Jersey:
Prentice Hall.

Hoffmann, L. (2009). Multivariate isotonic regression and its algorithms. Wichita
State University, College of Liberal Arts and Sciences, Department of
Mathematics and Statistics.

Koza, J. R. (1992). Genetic programming: On the programming of computers by
means of natural selection. Cambridge, MA, USA: MIT Press.

Kumar, M., Singh, S. K., & Singh, N. P. (2012). Heat evolution during the hydra-
tion of portland cement in the presence of fly ash, calcium hydroxide and
super plasticizer. Thermochimica Acta, 548(Supplement C), 27–32.

Lomborg, B. (2001). The skeptical environmentalist: Measuring the real state of the
world. Cambridge: Cambridge University Press.

Moraglio, A., Krawiec, K., & Johnson, C. (2012). Geometric semantic genetic
programming. In C. Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, and
M. Pavone (Eds.), Parallel problem solving from nature—PPSN XII. Lecture
notes in computer science, vol. 7491 (pp. 21–31). Berlin: Springer.

Nagaraj, T. S., & Banu, Z. (1996). Generalization of abrams’ law. Cement and
Concrete Research, 26(6), 933–942.

Poli, R., Langdon, W., B., & Mcphee, N., F. (2008). A field guide to genetic program-
ming. March.

Popovics, S. (1990). Analysis of concrete strength versus water-cement ratio
relationship. ACI Materials Journal, 87(5), 517–529.

Ruberto, S., Vanneschi, L., Castelli, M., & Silva, S. (2014). ESAGP—A semantic GP
framework based on alignment in the error space (pp. 150–161). Berlin:
Springer.

Schölkopf, B., & Smola, A. (2002). Learning with kernels: Support vector machines,
regularization, optimization and beyond. Adaptative computation and
machine learning series. Cambridge: The MIT Press.

Vanneschi, L. (2017). An introduction to geometric semantic genetic program-
ming (pp. 3–42). Cham: Springer.

Vanneschi, L., Castelli, M., Manzoni, L., & Silva, S. (2013). A new implementation
of geometric semantic GP and its application to problems in pharma-
cokinetics. In Proceedings of the 16th European Conference on Genetic
Programming, EuroGP 2013. Lecture notes in computer science, vol. 7831
(pp 205–216). Vienna, Austria: Springer.

Vanneschi, L., Castelli, M., & Silva, S. (2014). A survey of semantic methods in
genetic programming. Genetic Programming and Evolvable Machines, 15,
1–20.

Weisberg, S. (2005). Applied linear regression. Wiley series in probability and
statistics. New York: Wiley.

Yeh, I.-C. (1998). Modeling of strength of high-performance concrete
using artificial neural networks. Cement and Concrete Research, 28(12),
1797–1808.

Yeh, I. C., & Lien, L. C. (2009). Knowledge discovery of concrete material
using genetic operation trees. Expert Systems with Applications, 36(3),
5807–5812.

	Accurate High Performance Concrete Prediction with an Alignment-Based Genetic Programming System
	Abstract
	1 Background
	2 An Introduction to Genetic Programming
	2.1 Symbolic Regression with Genetic Programming

	3 Geometric Semantic Genetic Programming
	4 Previous Work on Alignment in the Error Space
	4.1 Issue 1: Generation of Semantically Identical, or Very Similar, Expressions
	4.2 Issue 2: k Constant in Eq. (3) Equal, or Very Close, to Zero
	4.3 Issue 3: Generation of Expressions with Huge Error Values

	5 Nested Align Genetic Programming
	5.1 Selection
	5.2 Mutation
	5.3 Initialization
	5.3.1 NAGP_β

	6 Experimental Study
	6.1 Data Set Information
	6.2 Experimental Settings
	6.3 Experimental Results, Comparison with GSGP
	6.4 Experimental Results, Comparison Other Machine Learning Techniques
	6.5 Experimental Results, Discussion of an Evolved Model
	6.5.1 Expression 1
	6.5.2 Expression 2

	7 Conclusions and Future Work
	Authors’ contributions
	References

