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ORIGINAL ARTICLE

Modelling of Stirrup Confinement Effects 
in RC Layered Beam Finite Elements Using a 3D 
Yield Criterion and Transversal Equilibrium 
Constraints
Péter Zoltán Berke*   and Thierry Jacques Massart

Abstract 

Apart from its recognized strengthening effect for shear loading, the presence of stirrups in reinforced concrete results 
in an increase of the ductility of structural members and in the capacity of reaching higher longitudinal compressive 
stress levels provided by transversal confinement. These effects are usually represented phenomenologically in fibre 
beam models by artificially increasing the compressive strength and the ultimate compressive strain of concrete. Two 
numerical formulations for layered beam descriptions accounting explicitly for transversal confinement are imple-
mented and assessed in this contribution. The influence of stirrups is incorporated by means of a multi-dimensional 
yield surface for concrete, combined with equilibrium constraints for the transversal direction involving concrete and 
steel stirrups, and with a concrete ultimate strain dependent on the hydrostatic stress. This contribution focuses on 
the numerical formulations of both frameworks, and on their assessment against experimental results available in the 
literature.
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1  Introduction
The robustness of reinforced concrete structures is highly 
dependent on their capacity to deform in a ductile man-
ner. One of the most important design considerations for 
ensuring ductility is the provision of transverse reinforce-
ments (stirrups) in order to postpone shear failure and to 
prevent buckling in columns. Even though stirrups have 
been used for decades, several questions, such as obtain-
ing the most efficient geometrical stirrup distribution, is 
still subject of ongoing research (Ding et al. 2011; Corte 
and Boel 2013; Breveglieri et al. 2015). Stirrups exert lat-
eral compressive stresses on concrete as it expands in the 
transversal directions due to loading, which improves 
the structural members strength and ductility. In several 

scenarios the ductility of the reinforced concrete mem-
bers is of utmost importance, such as in progressive col-
lapse (Menchel et al. 2009; Hou and Song 2016; Petrone 
et al. 2016; Rashidian et al. 2016) and resistance against 
blast loading (Lim et al. 2016; Codina et al. 2016).

The material response of confined concrete is a research 
topic with a long history, dating back to the 1920s. 
Research on concrete cylinders confined by hydrostatic 
pressure or by spiral stirrups was conducted in Richart 
et al. (1928, 1929), corresponding to one of the pioneer-
ing works in the field. Different researchers, such as in 
Kent and Park (1971), Sargin (1971), Sheikh and Uzumeri 
(1980), Ahmad and Shah (1982), Park et al. (1982), Scott 
et al. (1982), Mander et al. (1988a, b), Xiao (1989), Saatci-
oglu and Razvi (1992), Cusson and Paultre (1995), Hong 
and Han (2005), carried out experimental and theoretical 
work on the behaviour of confined concrete and devel-
oped several analytical models. Some constitutive models 
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derived from these experiments are employed in building 
codes for confined concrete behaviour. Yet such models 
do not allow considering all situations for numerical non-
linear analyses that involve multi-axial loading, since they 
do not cover all possible stress conditions.

The behaviour of concrete under multi-axial stress con-
ditions was intensively studied to develop a general crite-
rion for irreversible material response (Buyukozturk and 
Tseng 1984; Imran and Pantazopoulou 1996; Sfer et  al. 
2002; Tan 2005; Lu 2005; Gabet et al. 2008; Malécot et al. 
2010; Hammoud et al. 2014; Zhou et al. 2014) (plasticity 
and/or failure). Numerous types of concrete failure crite-
ria have been developed, aimed at defining an adequate 
shape of the limit surface (Chen 1982; Comi 2001; Cho 
and Park 2003; Dede and Ayvaz 2010; Comi et al. 2012; 
Bao et al. 2013). For quasi-brittle materials like concrete, 
the failure criterion is affected by the hydrostatic stress, 
including the effect of the lateral stresses generated by 
stirrups in reinforced concrete members. The fact that 
the strength of concrete with active confinement by fluid 
pressure was observed to be similar to that of concrete 
with stirrups (Richart et al. 1929) also confirms that the 
consideration of the multi-axial behaviour of concrete 
should be taken into account in the representation of 
the effects of stirrups. Several contributions addressed 
the multi-axial behaviour of concrete in the modelling of 
the structural response of reinforced concrete members 
with stirrups (Cho and Park 2003; Saritas and Filippou 
2009; Garzón-Roca et al. 2012). Other existing formula-
tions proposed in Petrangeli et al. (1999), Mullapudi and 
Ayoub (2010), Stramandinoli and Rovere (2012), Mul-
lapudi and Ayoub (2013) used layered (2D)/fibre (3D) 
beam models. These works focused on the incorporation 
of shear deformation, and used a force-based approach 
with the softened membrane model (Mullapudi and 
Ayoub 2010, 2013) or modified compression field theory 
(Stramandinoli and Rovere 2012). In Petrangeli et  al. 
(1999), Mullapudi and Ayoub (2010), Stramandinoli and 
Rovere (2012) a biaxial stress state was assumed for con-
crete in beam elements for planar frames with a single 
transversal equilibrium condition, while (Mullapudi and 
Ayoub 2013) takes the triaxial stress state into account in 
a 3D formulation.

The primary goals of the present contribution are the 
implementation and assessment of two novel stirrup con-
finement formulations with different assumptions of the 
transversal equilibrium. This is achieved in a physically-
based layered beam finite element model involving the 
axial and the lateral reinforcements, and a triaxial constitu-
tive law for concrete. The present work is based on a novel 
combination of numerical ingredients not yet applied to 
the study of stirrups effects. A displacement-based 2D 
layered beam formulation (Santafé Iribarren et  al. 2011; 

Zendaoui et al. 2016) is used with Bernoulli kinematics in 
a corotational framework. It involves a triaxial stress state 
for concrete, solving two simultaneous transversal equilib-
rium constraints in the beam cross section. Additionally, a 
dependency of concrete ultimate strain on the hydrostatic 
stress is postulated, which governs the failure by crushing 
of the concrete layers in the model. A special emphasis 
is given to the validation of the implemented numerical 
model through qualitative and quantitative comparison 
with experimental data reported in the literature.

2 � Computational Framework
2.1 � Corotational Layered Beam Finite Element
A Bernoulli layered beam finite element for planar 
frames is used here, without loss of generality for the 
applicability of the concepts to other beam kinemat-
ics. For clarity, the main governing equations are briefly 
recalled, with more details available in Crisfield (1995), 
Battini (2002), Oliveira et al. (2014), Oliveira (2015).

The beams are assumed contained in the (x, y) plane, 
z is the out-of-plane direction. A corotational frame-
work is used to incorporate large rotations and cate-
nary actions. Strains are therefore computed in a 
rotating reference frame attached to the finite element 
to uncouple the rigid body rotation from physical 
strains. Assuming that strains remain small in the local 
frame, the axial, ul a , and transversal displacements, vl t , 
in the rotated element axes are interpolated using lin-
ear and cubic shape functions, respectively. The average 
axial strain, ǫ(x) =

∂ul a(x)

∂x
 and the beam curvature 

χ(x) =
∂2vl t(x)

∂x2
 , i.e., the generalized strains E = {ǫ, χ}T 

are evaluated with a three point Gauss integration 
scheme.

The beam cross section is discretized in layers of finite 
height. The axial strain in a given layer i is obtained con-
sidering the Bernoulli beam kinematics according to:

where y i is the position of the layer center of mass with 
respect to the neutral axis of the total beam section 
(Fig.  1). For simplicity, the bond between concrete and 
steel reinforcement is assumed perfect, resulting in axial 
strain compatibility in each layer. The assumptions made 
on the transversal strains are presented in Sects. 2.4 and 
2.5.

The average axial stress in a layer i, σ i
x , is obtained using 

a weighted average of the axial stress of concrete and of 
steel

(1)ǫix = ǫ − y i χ
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with �i
s =

Ai
s

Ai
t

 , the surface fraction of the longitudinal 

steel reinforcement in layer i, and σ c i
x  and σ s i

x  the axial 
stress developed in concrete and steel in that layer, 
respectively. When the presence of stirrups is not taken 
into account explicitly the computation of stresses in 
steel and concrete can be performed using two separate 
uniaxial problems. When stirrups are considered this no 
longer is the case, as it will be explained in Sects. 2.4 to 
2.5.

Based on longitudinal layer stresses, the general-
ized stresses at an integration point, � = {N , M}T , are 
obtained from a finite sum over all of the layers in the 
beam cross section defined by:

where N and M are the axial force and bending moment 
conjugated to ǫ and χ respectively, and nlay is the number 
of layers in the beam cross section. Generalized stresses 
are then used to compute the internal force vector of the 
element.

(2)σ i
x =

(

1−�i
s

)

σ c i
x +�i

s σ
s i
x

(3)























N =

nlay
�

i=1

σ i
x A

i
t

M =

nlay
�

i=1

σ i
x y

i Ai
t

The structural problem is solved using a Newton-Raph-
son incremental-iterative scheme. This requires the deri-
vation of the structural tangent stiffness matrix of the 
elements, that is composed of contributions from the 
change in geometry and from the sectional tangent stiff-
ness relating the variation of the generalized stresses to 
the variation of the generalized strains, [H ]sec =

∂�

∂E
 . This 

sectional tangent stiffness can be obtained from the sca-
lar valued material tangent stiffness, Hi , of each layer i, 
computed from the axial material tangent stiffness of 
each material using:

with hc ix  and hs ix  the (scalar) material tangent stiffness of 
concrete and steel in the axial direction.

2.2 � Constitutive Behaviour for Steel and Concrete
A unidimensional description, i.e. these elements work 
in pure tension or in pure compression, is used to model 
the response of the steel reinforcements and stirrups with 
an elasto-plastic behaviour. The buckling of steel bars 
under compression is disregarded. The stress in the steel 
bars placed in the axial, σ s

x (ǫx) , and in the two transversal 
directions, σ s

y

(

ǫy
)

 and σ s
z (ǫz) , is obtained using three sep-

arate unidimensional return-mapping operations when 
in the plastic domain. The material response is assumed 
symmetric in tension and in compression with isotropic 
hardening defined by:

where σ s
0
 and σ s

Y  denote the initial and the current yield 
strength of the material, K is the hardening parameter, 
m the hardening exponent and κs the cumulative plas-
tic strain in steel. A total-strain-based criterion is used 
to account for steel fracture, i.e. once the ultimate strain 
value, ǫsu , has been reached in tension or in compression 
in a layer, no stress can be developed in steel in that layer 
for any subsequent loading steps.

Stirrups are responsible for confining the concrete 
core of a RC member, i.e. for the generation of compres-
sive transversal stresses in concrete. This motivates tak-
ing into account the multi-axial behaviour of concrete. 
An elasto-plastic behaviour is assumed for the concrete 
material with zero strength in tension, as in earlier works 
(Santafé Iribarren et al. 2011; Oliveira et al. 2014). Plas-
ticity (irreversible deformation) is used to represent the 
bulk material degradation in compression by a softening 
behaviour, described by:

(4)Hi = (1−�s) h
c i
x +�i

s h
s i
x

(5)σ s
Y = σ s

0 (1+ K κs)m

(6)σ c
Y = σ c

0 exp(h κ
c)

Fig. 1  Axial beam cross section discretized into layers along the 
beam height (stirrups are not shown) with At

i and At
i the total and the 

steel area in layer i, respectively.
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where σ c
0
 and σ c

Y  are the initial and the current yield 
strength of the material, h < 0 is the softening parameter 
and κc the cumulative compressive plastic strain measure 
in concrete.

A triaxial stress state is taken into account for con-
crete. The non-zero stress components are the compres-
sive axial, in-plane and out-of plane transversal stresses, 
denoted as σ c

x , σ c
y  and σ c

z  , respectively. In the non-linear 
regime the stress tensor σ c(ǫ) is computed using a multi-
dimensional yield surface. Various expressions for such 

surfaces are available for concrete in the literature. Here, 
the yield criterion for concrete under multi-axial com-
pression is inspired from Comi (2001) and reads:

with J1 [MPa] and J2 [MPa2 ] the first and second invari-
ants of the stress tensor, respectively, and σ c

Y (κ
c) [MPa] 

the current yield stress (Eq. (6)). α [MPa−1 ] and β [−] are 
obtained by fitting the plane stress section of the yield 
surface to data presented in Comi (2001), and a = 1 
MPa−1 is a constant introduced for dimensional consist-
ency. The evolution of the yield criterion as a function 
of the out-of-plane stress component is shown in Fig.  2 
(with σI , σII , σIII and σ0  the principal stresses and the ini-
tial yield strength, respectively). As expected, the elastic 
domain is increased by the presence of the transversal 
compressive stress components.

2.3 � Concrete Ultimate Strain in Confined Concrete
The ductility of reinforced concrete sections is known to 
critically depend on the compressive stress states. Practi-
cally, in the case of RC members this is reflected by their 
ultimate strain capacity being dependent on the pres-
ence and ratio of stirrups. In the layered beam model a 
stress-based plastic criterion alone cannot account for 
the increase of the ultimate strain in concrete in the con-
fined core. As in the case of steel, a strain based criterion 
is employed here for the detection of full failure of con-
crete under compression. When the maximum longitudi-
nal compressive total strain in concrete reaches the value 
of the ultimate strain, ǫcu , the concrete layer is considered 
as broken and no stress is carried by the material subse-
quently. For clarity, it is mentioned that the zero tension 

(7)Fy
(

σ
c
, κc

)

= a J2 + α J21 + β J1 − σ c
Y

(

κc
)

Fig. 2  Yield function evolution with the out-of-plane stress 
component (Eq. (7)), the black dots correspond to data reported in 
Comi (2001), obtained for plane stress.

Fig. 3  a Unidimensional representation of the concrete constitutive model and b variation of the ultimate strain in concrete as a function of the 
hydrostatic pressure, according to Eq. (8) and the parameter set used in Sect. 3.2.
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assumption for concrete behaviour does not trigger this 
failure criterion in the model (Fig. 3).

Among the various contributions in the literature dedi-
cated to compressive ductility of concrete, the experimen-
tal work of Imran and Pantazopoulou (1996) was taken as 
the basis for the relationship used here. The analysis of the 
data presented in Imran and Pantazopoulou (1996) shows a 
steep increase of concrete ultimate strain for low confining 
stress states followed by small subsequent variations for 
large confining stress states. Here, the following depend-
ence of the ultimate strain of concrete, ǫcu , on the hydro-

static stress in concrete, p = −
σ c
x + σ c

y + σ c
z

3
  is proposed:

with ǫcu 0 the ultimate strain of concrete without confine-
ment (e.g. from a uniaxial compression test), and with K 
and n material parameters to identify. The parameter n 
influences the global shape of the ǫcu(p) curve. A higher 
value of n results in a ǫcu(p) curve that reaches a plateau-
like regime at higher hydrostatic pressure values and 
conversely, a lower value of n produces a flatter curve. 
Variations in n and the multiplier, K, have a low influ-
ence for low hydrostatic pressure values while the high 
hydrostatic pressure regime is more sensitive to them. 
A computational study showed that the sensitivity of the 
structural response to these material parameters depends 
also on the studied structure. Based on computational 
results, bending dominated cases are expected to be more 
sensitive to their variation than compression dominated 
ones. In this work n = 0.4 is used, because it yields the 
best approximation of the data extracted from Imran and 
Pantazopoulou (1996). The multiplier, K [MPa−n ], can be 
estimated by fitting with experimentally available data, as 
illustrated in Sect. 3 using the experimentally measured 
structural response of reinforced concrete members with 
and without stirrups.

2.4 � Layerwise Transversal Equilibrium Formulation 
for Confined Concrete

Although the transversal equilibrium equations used 
here are similar to the ones of Petrangeli et  al. (1999), 
Mullapudi and Ayoub (2010), the numerical framework 
in which they are embedded is different.

First the kinematical assumptions are presented. The 
axial strain component in a given layer i, ǫix is directly 
computed from the displacement vector (Eq. (1)). A per-
fect adherence between steel and concrete is assumed, 
i.e. the axial and the transversal strains in the concrete 
core and in steel reinforcement are considered to be 
equal layerwise, leading to the following set of kinemati-
cal constraints for a given layer i:

(8)ǫcu = ǫcu 0 + K pn

This means that a constant value of strain is not enforced 
along the stirrups in the height of the cross section, i.e. 
strains can vary in a stepwise manner along stirrups 
when going from a layer to the next. While the adopted 
simplification does not reflect the real kinematics of 
the adherence between stirrups and concrete (possibly 
including micro-slip and debonding), it has been suc-
cessfully used in numerical models (Petrangeli et al. 1999; 
Mullapudi and Ayoub 2010, 2013). It carries the advan-
tage of a simple implementation because the strain (and 
stress) state of each layer is uncoupled from the behav-
iour of the neighbouring layers.

Equation  (9) need to be complemented by equations 
ensuring transversal equilibrium involving the stresses in 
concrete and in steel in the confined core. Let us consider 
the in-plane transversal (y) direction only for the equi-
librium constraint (equations in the z direction can be 
derived similarly). First, a geometrical variable express-
ing the stirrup area fraction in a smeared sense along the 
beam length is defined. The parameter �y is defined as 
the ratio of the area in the (x, z) plane of all of the stirrup 
steel bars, defined as As

(x, z) , to the area of confined con-
crete Acc

(x, z) in this plane. In layer i the tension in stirrups 
equilibrates compressive transversal normal stress σ c i

y  in 
concrete. The transversal equilibrium condition along y is 
written as

in which the stress state along y depends on the complete 
deformation state, ǫi =

{

ǫix, ǫ
i
y, ǫ

i
z

}T
 . Considering the 

direction z for layer i, it results in a second transversal 
stress equilibrium condition, similar to Eq. (10):

with �z =
As
(x, y)

Acc
(x, y)

 . Since ǫix is given, the unknowns in 

Eqs. (10–11) expressed for layer i are ǫiy and ǫiz that have 
to generate transversal stresses in steel and in concrete 
that satisfy the equilibrium constraints. The total number 
of transversal strain unknowns at an integration point of 
the beam with a confined concrete core section discre-
tized into nc layers along the height is thus 2× nc . Note 

(9)







ǫc ix = ǫs ix = ǫix
ǫc iy = ǫs iy = ǫiy
ǫc iz = ǫs iz = ǫiz

(10)σ c i
y (ǫi)+�y σ

s i
y

(

ǫiy

)

= 0

(11)σ c i
z (ǫi)+�z σ

s i
z

(

ǫiz

)

= 0
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that in this model �y and �z are weighting factors of the 
stress in the steel stirrups that are fixed by the amount of 
reinforcement in the beam cross section.

The formulation implemented in this work shows simi-
larity to the equilibrium constraint used for 2D beams in 
Petrangeli et al. (1999), Mullapudi and Ayoub (2010). How-
ever, as originality it includes the out-of plane transversal 
stress component as well, in a corotational framework. 
The corresponding system of equations is non-linear in 
the general case, since both materials exhibit a non-linear 
behaviour. The problem of finding the set of strains satis-
fying Eqs. (10) and (11) is solved using a Newton-Raphson 
iterative scheme on the level of a single layer, as explained 
in Sect. 2.6.

2.5 � Constant Out‑of‑Plane Strain Formulation for Confined 
Concrete

This subsection is dedicated to a second possible formula-
tion based on different kinematical assumptions. The layer-
wise equality of strain in concrete and steel in the in-plane 
transversal direction y is maintained, but the same strain is 
assumed in the out-of-plane direction, z, for all of the con-
fined concrete layers and stirrups. This new assumption 
avoids defining different out of plane strains for different 
layers along the height. The main equations of this formula-
tion are as follows.

As earlier, a perfect adherence is assumed in the axial 
and in the in-plane transversal directions between concrete 
and steel, leading to the first two equations in Eq.  (9). As 
opposed to the layerwise formulation (in which ǫiz may be 
different in every layer discretizing the cross section in the 
y direction), the strain along z is assumed here to be the 
same in the whole confined concrete core, described by:

The transversal equilibrium generated by stresses in con-
crete and in steel in the confined core is enforced by the 
satisfaction of a set of nc + 1 equations now, solved at the 
level of the confined core cross section discretized into nc 
layers.

with As
(x, y) the stirrup total cross-sectional area in the 

(x, y) plane. ti and s stand for the thickness of layer i and 
the spacing of stirrups along the beam axis, respectively. 
For the sake of comparison with the out-of-plane stress 

equilibrium of the layerwise formulation, �z =
As
(x, y)

s
 can 

be used to rewrite the second equation in Eq. (13) as:

(12)ǫc iz = ǫsz = ǫz

(13)







σ c i
y

�

ǫ
i
�

+�y σ
s i
y

�

ǫiy

�

= 0
�nc

i=1
σ c i
z

�

ǫ
i
�

ti s + As
(x, y) σ

s
z (ǫz) = 0

Note that in Eq. (14) the effective concrete area that car-
ries stresses in the out-of-plane direction is not assumed 
to be constant, the active zone in compression varies 
depending on the loading. The solution of the system of 
transversal equilibrium equations (Eq.  (13)) involves the 
out-of-plane stress contributions from all of the nc layers 
in the confined core. Therefore a purely layerwise solu-
tion of the transversal equilibrium problem is no longer 
possible, as explained in the following.

2.6 � Numerical Solution of the Transversal Equilibrium 
Problems

The requirement to satisfy transversal equilibrium condi-
tions introduces an additional complexity requiring the 
nesting of the stress update procedures of the layers in 
an external iterative loop. In both stirrup formulations, a 
Newton-Raphson procedure is set up using the residual 
form of Eqs. (10–11) or (13). The solution algorithms for 
the unconfined layers and for both stirrup formulations 
are compared in Fig. 4.

In both stirrup formulations update of the transver-
sal strain unknowns is performed in a two-step algo-
rithm, starting with an elastic predictor that is computed 
using the assumption of a purely elastic increment start-
ing from the last converged configuration. In case the 
resulting strain estimates lead to the violation of any of 
the yield functions (i.e. of concrete or of steel) in any of 
the layers, an iterative correction step is done. The plas-
tification of both concrete, longitudinal reinforcements 
and stirrups is taken into account in the present models. 
For this, the construction of the tangent stiffness opera-
tor, corresponding to the derivative of the residuals with 
respect to the unknowns is necessary. This operator is 
defined as:

For the layerwise formulation Klw is a ( 2× 2 ) matrix with 
riy and riz corresponding to the residual form of the equa-
tions (10) and (11), respectively. The terms in Klw depend 
on the tangent material stiffness of steel ( 1× 1 ) and con-
crete ( 3× 3 ) in layer i, that are natural by-products of 

(14)
nlay
∑

i=1

σ c i
z

(

ǫ
i
)

ti +�z σ
s
z (ǫz) = 0

(15)Klw =















∂riy

∂ǫiy

∂riy

∂ǫiz

∂riz
∂ǫiy

∂riz
∂ǫiz














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the return-mapping operations used for the update of 
stresses in these materials (Simo and Taylor 1985).

The size of the tangent stiffness operator for the con-
stant out-of-plane formulation depends on the number of 
layers that constitute the confined core cross section, nc . 
It reads:

with vectors �Ry =
{

r1y , r
2
y , ..., r

nc
y

}T
 , 

�ǫy =
{

ǫ1y , ǫ
2
y , ..., ǫ

nc
y

}T
 corresponding to the residual form 

of the set of in-plane transversal equilibrium equations in 
Eq.  (13) and to the in-plane transversal strains in every 
layer in the confined core, respectively. rz denotes the 
residual form of the last equation in Eq. (13) and ǫz is the 
out-of-plane transversal strain common to all of the lay-
ers of the confined core. Kǫz is thus an (nc + 1)× (nc + 1) 
matrix, with terms depending on the material tangent 
stiffness of concrete and steel.

(16)Kǫz =













∂ �Ry

∂�ǫy

∂ �Ry

∂ǫz

∂rz

∂�ǫy

∂rz

∂ǫz













Updating the axial stress components in every layer 
as explained above is required for the computation of 
the internal force vector of the finite element through 
Eqs. (2) and (3). The sectional stiffness required for the 
computation of the structural tangent stiffness matrix 
of the finite element depends on the axial material stiff-
ness of each constituent in the layers through Eq.  (4). 
The axial material stiffness of steel, hs ix  , is directly 
obtained from the uniaxial return-mapping operations. 

The computation of hc ix =
∂σ c i

x

∂ǫix
 is more complex, as it 

involves an intrinsic coupling of all of the strain com-
ponents through the transversal equilibrium equations. 
The concrete tangent stiffness in layer i is obtained as:

where h̃cij =
∂σc i

∂ǫj
 represents an element from the ( 3× 3 ) 

material tangent stiffness matrix of concrete. The expres-
sions of 

∂ǫy

∂ǫx
 and 

∂ǫz

∂ǫx
 can be derived through straightfor-

ward mathematical developments from the linearized 

(17)hc ix = h̃c ixx + h̃c ixy
∂ǫy

∂ǫx
+ h̃c ixz

∂ǫz

∂ǫx

Fig. 4  Flowcharts of the solution algorithms used for a the black layerwise and b for the constant out-of-plane strain stirrup formulations with {ǫ̃ i
x } 

and {ǫ̃ i
y } the vector of axial and the in-plane transversal strains of the layers.
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version of Eqs. (11–10) and (13) for the layerwise and for 
the constant out-of-plane formulations, respectively.

3 � Assessment with Respect to Experimental 
Results

This section is dedicated to the simulation of the experi-
mental response of structural members reported in 
the literature. The performance of the proposed stirrup 
representations is assessed in terms of the strength and 
ductility enhancement effects and of the correlation to 
experimental results when available.

3.1 � Column Compression
In this section a uniaxial compression test of a RC col-
umn is presented. The reinforcement scheme and the 
stirrup ratio are taken from experimental work (Lew et al. 
2011). The column cross section is shown in Fig. 5. The 
stirrups are placed with a 4 inches interdistance along the 
axis of the column, considered to be 1 meter long. The 
material and geometrical parameters of the setup are 
given in Table 1. The Poisson ratio of concrete is taken as 
0.2 in all simulations. The column is fixed at one end and 
the axial displacement of its other extremity is prescribed 
in a quasi-static simulation. A single beam finite element 
is used with 100 layers in the cross section. The structural 
response is computed (i) with no stirrups, (ii) with a lay-
erwise stirrup representation (Sect. 2.4), and (iii) with a 
constant out-of-plane strain assumption (Sect. 2.5).

For the sake of clarity, a first set of simulations attempts 
to uncouple the influence of stirrups on the strength 
enhancement and on the concrete ductility enhancement 
by artificially considering the same, constant ultimate 
strain in concrete for the cases with and without stirrups. 
This implies that concrete crushing occurs at the same 
axial displacement, independently of the presence of 
stirrups. The only effect on the structural response is in 
this case due to the axial stress level in concrete, which is 
expected to be higher due to the confinement effect when 
stirrups are present.

In Fig. 6, showing the axial reaction force vs. axial dis-
placement curves, the first linear elastic phase is followed 
by a plastic plateau when stirrups are not considered. 
The reaction force remains practically constant from 2.8 
mm axial displacement until concrete failure, shown by 
the sudden decrease in the reaction force at 5.3 mm axial 
displacement. The almost constant normal force in the 
column without stirrups is explained by a sectional level 
balance between the exponential softening behaviour of 
concrete and the non-linear hardening behaviour of steel 
in the uniaxial constitutive laws of the layers. Concrete 
fails in crushing when its ultimate strain ( ǫcu = 0.0053 ) is 
reached and only the steel reinforcement then contrib-
utes to the axial reaction force from this point on. Due 
to the uniaxial loading condition concrete failure occurs 
simultaneously in all layers, which also corresponds to 
the final structural failure. At 5.3 mm axial displacement 

Fig. 5  Cross sections of the columns with and without strirrups used 
in Lew et al. (2011) (unit: mm).

Table 1  Model parameters used in  the  column compression and  beam bending simulations when  ǫcu depends 
on the hydrostatic stress.

For the column compression, some simulations with constant concrete ultimate strain were performed with ǫcu = 0.0053.

Es (GPa) σ
s
0

 (MPa) K (MPa) m ǫ
s
u �y �z �z (m)

200 469 250 0.1 0.14 0.00899 0.00899 0.00498

Ec  (GPa) σ
c
0

 (MPa) α (1/MPa) β hc ǫ
c
u 0 k n

27 32 0.0962 12.7435 − 5 0.0035 0.00062 0.4

Fig. 6  Reaction force vs. displacement curves of the column 
compression with constant concrete ultimate strain ǫcu = 0.0053.
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the reaction force suddenly drops from 19.9 to 4.2  MN 
due to concrete crushing.

As expected, in the presence of stirrups the concrete 
crushing occurs at the same axial displacement, since the 
same concrete ultimate strain is used. Both implemented 
stirrup models yield the same structural response, since 
in uniaxial compression all strain and stress compo-
nents remain homogeneous in the confined concrete 
volume (Fig.  7), and both transversal equilibrium con-
ditions result in the same stress state. Differences in the 
sectional response between the two stirrup models are 
expected only when strain and stress gradients appear in 
the confined concrete volume (e.g. in the case of bend-
ing in Sect.  3.2). The main differences with respect to 
the case without stirrups are the higher reaction force 
in the plastic response resulting from the confinement 
effect of stirrups and their monotonous increase until 
concrete crushing. The peak reaction force with stirrups 
is close to 23 MN, 15% higher than in the case without 
stirrups. In fact, considering the monotonous increase 
in the reaction force when stirrups are considered the 
difference between the peak load with and without stir-
rups is expected to grow if the concrete ultimate strain is 
increased.

At peak reaction force the axial stress level in concrete 
is − 31.6 MPa in the unconfined layers and − 39.4 MPa in 
the confined concrete layers (24.6% relative increase), as 
shown in Fig. 7. This higher axial stress level in the con-
fined concrete core can be reached due to the − 3.9 MPa 
transversal confining stresses (same in both transversal 
directions because the stirrup ratio is the same).

In a second step, the ultimate strain in concrete is set 
to be dependent on the hydrostatic stress in the confined 
concrete layers through Eq.  (8) with an initial concrete 
ultimate strain of ǫcu 0 = 0.0035 . This corresponds to a 
standard value for concrete without confinement effects. 
The material parameters appearing in Eq.  (8) are close 
to the ones in Sect.  3.2, fitted to experimental data. As 
expected, the structural response without stirrups only 
differs from the previous case by exhibiting concrete 
crushing at lower axial displacement due to the decrease 
of the ultimate strain in concrete from 0.0053 to 0.0035 
(Fig. 8). As earlier, and for the same reasons of a homo-
geneous stress state in the confined concrete core, the 
response of both stirrup models is practically identi-
cal. The reaction force vs. displacement curves of mod-
els with stirrups show a first sudden drop in the reaction 
force at 3.5 mm axial displacement, which corresponds to 
the crushing of the non confined concrete cover. This is 
followed by a monotonous increase in the reaction force 
until crushing of the confined layers occurs at 5.3  mm 
axial displacement (relative increase of over 50% with 
respect to the case without stirrups). The area under the 
reaction force vs. displacement curves is proportional to 
the dissipated energy due to plastic straining of concrete 
and steel in the column. Due to the higher reaction forces 
and later concrete crushing in the confined core a signifi-
cant relative increase of 84.5% is obtained in the energy 
dissipated until structural failure with respect to the case 
without stirrups.

Fig. 7  Axial stress distribution in concrete at peak load for constant 
ǫcu = 0.0053 , a without stirrups and b considering stirrups, with axial 
reinforcements shown in black.

Fig. 8  Reaction force vs. displacement curves of the column 
compression with the concrete ultimate strain being function of the 
hydrostatic pressure.
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3.2 � Numerical‑Experimental Correlation in a Four‑Point 
Bending Test

In this section a direct qualitative and quantitative com-
parison is presented between numerical results and 
experimental data of a displacement controlled four 
point bending test investigating the influence of stir-
rups on the structural behaviour. In the experimental 
work reported in Biolzi et al. (2014), several beams have 
been tested, either with a cross section including bot-
tom reinforcements only or with a cross section with top 
and bottom reinforcements and stirrups. The beam cross 
sections considered in this study (Biolzi et al. 2014) and 
used here are shown in Fig. 9 together with the bound-
ary conditions applied in the numerical model. The struc-
ture is discretized into 14 finite elements with 100 layers 
in the cross section. In the quasi-static simulations the 
vertical displacement of points f and g shown in Fig.  9 
is prescribed.When present, the stirrups are placed at 
an interdistance of 15 centimetres along the axis of the 

beam. The corresponding geometrical properties of the 
sections with stirrups are described by the parameters 
�y = 0.00344 , �z = 0.00160 and �z = 0.00038 m. Differ-
ent beams made of three different concrete grades were 
considered in the experimental work, referred to as con-
crete with 40, 75 and 90 MPa nominal compressive yield 
limit (Biolzi et  al. 2014). The material parameters used 
in simulations for these concretes and steel are given in 
Table 2.

While several of the material parameters have been 
measured in Biolzi et al. (2014), such as the elastic modu-
lus and yield strength of steel and of the three concrete 
grades, the parameters governing the ultimate strain in 
concrete needed to be determined. The ultimate strain of 
concrete without confinement effects, ǫcu 0 , was identified 
in order to have a good match between the experimental 
and the numerical load vs. displacement curves without 
stirrups. Its value was observed to be the lowest for con-
crete with a 90 MPa nominal compressive yield strength. 
The ultimate concrete strain parameter, K = 0.00059 , 
was identified by matching the computationally obtained 
load-displacement curve for the 40  MPa concrete with 
stirrups with the experimental data, using the previously 
determined ǫcu 0 and n = 0.4 . K and n were subsequently 
kept the same in the simulations for other grades of con-
crete. A physically acceptable steel ultimate strain of over 
10% was assumed.

The experimental failure mode of all studied beams 
involved systematically concrete crushing on the top of 
the beams at mid-span and the initiation of the beam fail-
ure occurred at less than 3% of axial strain in tension in 
the reinforcements, therefore no fine tuning of the steel 
ultimate strain parameter was required. The softening 
parameter for concrete was kept h = −5 , corresponding 
to a slight softening, as in Oliveira (2015).

The applied load vs. mid-span vertical displacement 
curves issued from simulations are plotted on top of the 
experimental data in Fig. 10. The following main observa-
tions can be made on these curves: (i) all beams without 
stirrups exhibit a brittle behaviour with an early failure 
and a steep decrease in the reaction forces, (ii) all beams 
with stirrups have a significantly more ductile response 

Fig. 9  Cross sections of the beams studied experimentally in Biolzi 
et al. (2014) together with the imposed boundary conditions in the 
simulations and the finite element mesh with x marks showing the 
nodal positions (unit: mm).

Table 2  Material properties for steel and for the three concrete grades used in the four point bending simulations.

Es (GPa) σ
s
0

 (MPa) K (MPa) m ǫ
s
u

Steel 200 516.5 1.445 1 0.15

Ec  (GPa) σ
c
0

 (MPa) α (1/MPa) β ǫ
c
u 0

40 MPa 37.4 55.47 0.1099 23.5574 0.0010

75 MPa 39.2 74.56 0.1111 32.1400 0.0010

90 MPa 41.5 81.61 0.1113 35.2978 0.0007
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forming a long plateau at a roughly constant reaction 
force before final failure, (iii) the force level of this pla-
teau is similar for all three concrete grades and (iv) the 
mid-span vertical displacement at failure is the highest 
for the 75 MPa concrete and lowest for the 40 MPa con-
crete grades.

Using a parameter set with the majority of the mate-
rial parameters taken from measurements in Biolzi et al. 
(2014), the computed structural behaviour for all six 
considered cases matches well the experimental data, 
both in terms of load vs. displacement curves and failure 
mechanism.

First, the response of the numerical beam models with-
out stirrups are examined. All three beams with different 
concretes exhibit a similar structural behaviour charac-
terized by a single peak in the reaction force (shown by 
point A0 in Fig. 10 only for the 40 MPa grade concrete for 
the sake of good visibility), followed by a steep, monoto-
nous decrease leading to failure by concrete crushing. 
The slightly lower structural stiffness in the simulations 

at the start of the loading is potentially due to the zero 
tension assumption in concrete. The post-peak steep 
decrease in the reaction force is explained by the con-
tinuous progression of failure of the concrete layers in 
compression starting from the top of the section. The 
main material parameter controlling the start of failure 
is thus the ultimate strain in concrete. The single case 
presenting a discrepancy is the 75  MPa concrete grade, 
where experimentally a significantly more ductile struc-
tural behaviour, similar to the one of beams with stirrups 
(formation of a plateau at constant reaction force level) 
was observed. This corresponds to an unexpected struc-
tural response that cannot be explained based on the 
simulations.

Indeed, no mechanism potentially responsible for an 
increase in the reaction force after the initiation of grad-
ual concrete crushing could be identified in the case of 
beams without top reinforcements and stirrups.

The structural response of beams using the layerwise 
and the constant out-of-plane strain stirrup formulations 
in the simulations are next examined. As observed in the 
experiments, the structural behaviour with stirrups is 
similar and the structural failure by concrete crushing is 
obtained for all three concrete grades. The common char-
acteristics when considering stirrups are a much higher 
ductility of the structure (the deflection at failure is mul-
tiplied by a factor of 5) and the presence of a plateau at a 
force level almost independent from the concrete grade. 
Particular points in the structural response allowing for 
a deeper insight into the evolution to structural failure (A 
to D) are highlighted in Fig.  10. Note that even though 
the position of these points may vary as a function of the 
concrete grade, the same corresponding phenomena are 
present in all responses with stirrups. Point A is the first 
peak in the reaction force, corresponding to the initiation 
of the crushing of the concrete cover. The top concrete 
cover is fully failed by crushing at point B, as illustrated 
in Fig.  11 showing sectional longitudinal normal stress 
distribution at mid-span for point B. The crushing of the 
concrete cover is of brittle nature and results in a steep 
decrease in the reaction forces. This first peak is not 
apparent in the experimental load-displacement curves, 
potentially because of the more gradual nature of con-
crete crushing in a real life test than its layerwise numeri-
cal representation.

Between points B and C the reaction force is monoto-
nously increasing with a slope similar to the experimen-
tal one. On the sectional level, the stress in the confined 
concrete core and in the steel reinforcements is increas-
ing with the top reinforcements already working in the 
plastic regime. Point C is the start of a visible decrease 
in the tangent of the load-displacement curve. This cor-
responds to the start of the plastic response of the whole 

Fig. 10  Reaction force vs. mid-span vertical displacement curves for 
setups with different concrete grades with and without stirrups and 
experimental data shown in thick solid lines.
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cross section, i.e. including the bottom reinforcement in 
tension. Figure C ′ in Fig. 11 shows that all the layers that 
discretize the cross section of the bottom reinforcement 
are plastic (black colour) in the increment directly fol-
lowing point C.

Between points C and D the reaction forces of the 
structure evolve smoothly, their magnitude being gov-
erned by the axial behaviour of confined concrete and 
the hardening behaviour of the top and bottom steel rein-
forcements. The number of layers developing stresses in 

the cross section varies smoothly and no additional layers 
fail until point D is reached.

Point D in Fig. 10 corresponds to the initiation of the 
crushing of the confined core in the numerical model. It 
matches the final drop in the experimental load-displace-
ment curves associated to a concrete crushing failure 
mode. In the simulations point D is the last increment 
in which all the layers in the confined concrete core are 
unbroken, i.e. in the following increments a gradual fail-
ure of confined concrete layers by crushing propagates 
from the top reinforcement to the bottom (point D’ in 

Fig. 11  Composite axial stress distribution close to mid-span at points A to D in Fig. 10 with crushed concrete layers and plastic steel shown in 
green and black, respectively.
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Fig. 11). As opposed to the experimental observation, in 
the numerical model this results in a gradual decrease 
of the reaction force instead of a large drop. This can 
be explained by the simplified modelling that does not 
reproduce the breakdown of the confinement condi-
tions in the concrete core when cracks penetrate it. Such 
effects are very complex to tackle using a layered beam 
formulation. Experimentally, this phenomenon can result 
in various structural responses, potentially depending 
on the material microstructure of concrete and the gen-
erated complex local stress states around the cracks. In 
the experimental work (Biolzi et al. 2014), both a strong 
drop in the reaction forces (90 MPa concrete grade) and 
a more ductile structural response (75  MPa concrete 
grade) were observed. Therefore, even though no “sud-
den” structural failure shown by a drop in the reaction 
force appears in the numerical load-displacement curves 
at point D, it can be considered as the last increment 
before initiating structural collapse.

Both numerical formulations for stirrups show a simi-
lar structural response. The main difference is the mag-
nitude of the vertical mid-span displacement at point D. 
The layerwise stirrup formulation predicts a slightly ear-
lier failure than the formulation based on the constant 
out-of-plane strain assumption. This can be explained by 
the difference in the ultimate strain of the confined con-
crete layers (Fig. 12) as a result of different stress states 
in the models. At point D the in-plane transversal stress 

component gives close values in both stirrup formula-
tions (in the order of some tenth of MPa to 1 MPa) but 
the out-of plane transversal stress is significantly higher 
in the constant out-of-plane strain (around 9.5–10 MPa) 
than in the layerwise formulation (some tenth of MPa). 
This is a natural outcome of the fact that in this formu-
lation only the concrete layers in compression carry 
stresses that equilibrate the force generated in the out-of-
plane direction by the steel stirrup. The result generally 
is a smaller effective area (and its evolution) over which 
concrete stresses can act in the z direction, compared to 
the layerwise formulation. Because of the nature of the 
considered concrete yield surface a higher value of the 
confining stress allows for the development of a higher 
axial stress. The increased capacity of the confined con-
crete layers to carry stress results in the development of 
a higher hydrostatic stress, which influences beneficially 
the ultimate strain of confined concrete. Considering 
the experimentally-inspired asymptotic nature of the 
increase in concrete ultimate strain as a function of the 
confining hydrostatic stress, the peak value of ultimate 
strain at point D remains close in both stirrup formula-
tions, as shown in Fig.  12. On the other hand, this par-
ticular test was observed to be extremely sensitive to 
the ultimate strain in concrete, therefore even a small 
variation in its value is apparent in the load-displacement 
curves.

Fig. 12  Ultimate strain in concrete for different stirrup formulations in the cross section of a FE close to mid-span at point D in Fig. 10.
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Note that the stirrups generating compressive con-
finement were observed to remain elastic, with stresses 
in tension reaching peak values over 300 MPa with both 
stirrup models.

The vertical displacement at mid-span at structural 
failure matches best the experimental values with the 
constant out-of-plane strain stirrup formulation. The 
general trend is that a higher initial yield strength in 
concrete leads to a larger increase in the vertical dis-
placement at failure (point D) when stirrups are con-
sidered, because the capacity to develop higher stresses 
in the material (both in the axial and transversal direc-
tions) influences beneficially the concrete ultimate 
strain. The reason why the vertical displacement at 
failure is close for 75 and 90  MPa concrete grades is 
that the initial ultimate strain in concrete was taken 
lower for the 90 MPa concrete (Table 2), based on the 
fit performed on the load-displacement curves without 
stirrups.

Note that the layerwise formulation also gives a good, 
but somewhat lower estimation to the vertical displace-
ment at failure, with the same trends.

With the adopted Bernoulli beam assumption the reac-
tion forces/moments are generated by the axial stress 
component in the layers. An explanation for having very 
similar force levels between points C and D in the load 
versus displacement curves when using different con-
crete grades can be given based on the axial stress distri-
bution in concrete in the beam cross section (Fig. 13). As 

expected, the stress levels are higher when concrete with 
a higher initial yield strength is considered. The reason 
why the structural response is practically the same for the 
three concrete grades, even though the axial stress levels 
are different, stems from their distribution in the cross 
section. For the 40  MPa concrete grade the axial stress 
distribution in the layerwise formulation takes a low peak 
stress value (− 56.6 MPa) with a larger compressed zone 
(i.e. in more layers). Conversely the 90  MPa concrete 
stress distribution has a higher peak stress (− 82.5 MPa) 
on a smaller number of layers. The integration (finite 
summation) of these different axial stress contributions 
in the cross section results in similar generalized stresses 
on the sectional level.

It is worth mentioning that in all examples above the 
axial stress in confined concrete reached higher values 
than the uniaxial yield strength although a softening 
behaviour is considered (up to 12% higher at point D for 
90  MPa concrete grade and the constant out-of-plane 
strain formulation) due to the multi-dimensional stress 
state in concrete.

4 � Discussion
The formulations developed in this contribution per-
form well in the structural computations in capturing 
the experimentally observed effects of stirrups on the 
strength and ultimate strain of confined concrete. The 
uniaxial compression of a column corresponds to a limit 
case in which the influence of stirrups is maximized, 

Fig. 13  Axial stress distribution in concrete for different stirrup formulations in the cross section of a FE close to mid-span at point D in Fig. 10.
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since the increase in peak concrete axial stress and in 
ultimate strain due to confinement is present in all layers 
of the confined core. The good agreement with experi-
mental data in Sect. 3.2 shows that the numerical mod-
els remain valid for more complex stress distributions 
in the beam cross section. The impact of the simplifying 
assumptions used in the simulations is discussed here.

Even though the structural response of both stirrup 
formulations are close to each other, the local stress state 
in the confined concrete layers are quite different. The 
out-of plane transversal stress component can be up to 
an order of magnitude lower in the case of the layerwise 
with respect to the constant out-of-plane strain stirrup 
formulation in the same increment. In Eq. (11) the total 
concrete core projected cross section (which are usually 
similar in both transversal directions) is used as area on 
which the confined concrete’s stresses counteract the 
forces generated in the steel stirrups. The layerwise trans-
versal equilibrium conditions and kinematic ties in the y 
and z directions are similar, leading to stresses in the in-
plane and in the out-of-plane transversal directions of the 
same order of magnitude. In the equilibrium equation 
of the constant out-of-plane strain condition the effec-
tive concrete area that carries stresses in the out-of-plane 
direction is not assumed to be constant. It corresponds to 
the cross-sectional area formed by the layers in compres-
sion in this model, which can be small compared to the 
total concrete core’s cross-sectional area in some relevant 
practical loading cases. Which one of these simplifying 
modelling assumptions for stirrups and resulting stress 
states in confined concrete is more realistic should be 
further investigated in future work, possibly linking it to 
experimental measurements or full 3D simulations.

Depending on the application the variation of the ulti-
mate strain of confined concrete can be dominant on the 
structural response (Sects. 3.1 and 3.2) or less important. 
This depends on the final structural failure mode and, 
in cases where concrete crushing is a dominant feature 
in the failure evolution, the parameters ǫcu 0 , K in Eq.  (8) 
should be determined carefully. Maintaining n = 0.4 is 
proposed, since the resulting relationship reflects well 
the experimentally observed first rapid, than gradual 
variation in the ultimate strain as a function of increas-
ing hydrostatic stress (Imran and Pantazopoulou 1996). 
Solving the additional transversal equilibrium constraints 
obviously results in an increase in computational time 
compared to the model using uniaxial material repre-
sentations only: up to 1.5 and 2.5 times for the layer-
wise and the constant out-of-plane strain formulations, 
respectively.

The layerwise stirrup formulation is computationally 
cheaper, because local iterations are performed sepa-
rately for each layer. The number of operations depends 

on the degree of non-linearity of the single layer problem. 
In the constant out-of-plane strain stirrup formulation, 
iterations are required on the confined core level when 
only a few fibres exhibit a non-linear behaviour (Fig. 4b).

5 � Conclusion and Perspectives
This contribution presented two numerical formula-
tions for a Bernoulli layered beam element for planar RC 
frames, allowing for a physically-based representation of 
stirrup confinement effects in concrete. In the proposed 
scheme, the stresses and their nonlinear, multi-dimen-
sional evolution in concrete are determined as a function 
of the beam geometry, the yield function and the hard-
ening/softening behaviour of each material. Additionally, 
the ultimate strain in concrete is taken as function of the 
hydrostatic stress, following an experimentally-inspired 
relationship (Imran and Pantazopoulou 1996).

Examples of structural computations were presented in 
which the influence of stirrups on the structural behav-
iour was shown to be captured properly with respect to 
previously conducted experiments. This work allows 
drawing the following main conclusions.

• • Capturing the stirrup confinement effects is achieved 
by the coupling of (i) the transversal equilibrium con-
ditions using a multi-dimensional yield surface for 
concrete (responsible for the gain in stress levels) 
and (ii) the increase of the ultimate strain of concrete, 
defined here as a function of the hydrostatic stress. 
These result in higher structural strength and ductil-
ity and the capacity of the confined concrete volume 
to dissipate more energy during degradation.

• • A satisfying agreement between the predictions 
of the numerical formulations and experimental 
structural response for several concrete grades was 
obtained using a physically sound modelling param-
eter set in Sect. 3.2.

• • An increase of around 25% in the concrete axial 
stress in the confined core has been observed numer-
ically, compared to layers without confinement.

• • Matching the experimental data, an increase factor of 
5 in the vertical displacement at mid-span at failure 
was observed when stirrups were considered in the 
simulations of the four point bending test.

• • Coupled with the increase in the stress levels this 
leads to a higher capacity of the structural member to 
dissipate energy until failure (more than 80% higher 
than in the uniaxial compression case).

• • With the values used for the material parameters 
governing the evolution of the ultimate strain in con-
crete, both developed stirrup models produce similar 
structural responses. The local stress state in the con-
fined concrete core is then however different, with 
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the out-of-plane transversal stress taking significantly 
higher values in the constant out-of-plane strain stir-
rup formulation.

In the present layered beam methodology the accuracy of 
the generalized stress computation depends critically on 
nlay . The use of a different numerical integration scheme 
of the layer stresses in the beam cross-section is part of 
future work aiming for accuracy with a potentially lower 
computational cost. In the current work the experimen-
tal data was carefully chosen to present failure modes 
that a layered Bernoulli beam formulation is capable of 
reproducing. A layered beam finite element based on the 
Timoshenko beam theory would have a wider field of 
applicability and it is part of future developments. Future 
work also involves applying the developed stirrup models 
for the study of larger structures and further assessment 
of which one gives more realistic results. The implemen-
tation of an averaged transversal strain formulation yield-
ing constant transversal strains in the stirrups (Petrangeli 
et  al. 1999) is envisioned together with the inclusion of 
an adequate bond slip model (Oliveira et al. 2008; Santos 
and Henriques 2015).
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