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Abstract: During earthquake, reinforced concrete walls show complicated post-yield behavior varying with shear span-to-depth

ratio, re-bar detail, and loading condition. In the present study, a macro-model for the nonlinear analysis of multi-story wall

structures was developed. To conveniently describe the coupled flexure-compression and shear responses, a reinforced concrete

wall was idealized with longitudinal and diagonal uniaxial elements. Simplified cyclic material models were used to describe the

cyclic behavior of concrete and re-bars. For verification, the proposed method was applied to various existing test specimens of

isolated and coupled walls. The results showed that the predictions agreed well with the test results including the load-carrying

capacity, deformation capacity, and failure mode. Further the proposed model was applied to an existing wall structure tested on a

shaking table. Three-dimensional nonlinear time history analyses using the proposed model were performed for the test specimen.

The time history responses of the proposed method agreed with the test results including the lateral displacements and base shear.

Keywords: nonlinear analysis, macro model, cyclic loads, earthquake loads, structural wall, reinforced concrete.

1. Introduction

Recently, nonlinear analysis has became popular in the
earthquake design and evaluation of structures due to the
advances in earthquake engineering and numerical analysis
[ATC 40 (1996), FEMA 356 (ASCE 2000); FEMA 440
(ASCE 2005)]. In particular, reinforced concrete walls are
used in many high-rise buildings as the primary lateral load-
resistant system. Thus, an effective analytical method for
walls is required to evaluate the overall inelastic response of
buildings with walls. Both microscopic finite element
models and macroscopic models can be used for the non-
linear analysis of wall systems. The microscopic finite ele-
ment models can provide detailed local responses of walls
with accuracy (Park and Klingner 1997; Okamura and
Maekawa 1991; Stevens et al. 1991; Feenstra and de Borst
1993; Mansour and Hsu 2005; Wong and Vecchio 2002;
Palermo and Vecchio 2007; Petrangeli et al. 1999; D’Am-
brisi and Filippou 1999). However, it requires tremendous
efforts and time for modeling and numerical computations.
The macroscopic models, on the other hand, are simple and
practical though their application is limited depending on the
assumptions that each model is based on (Kabeyasawa et al.
1982; Vulcano and Bertero 1987; Orakcal 2004; Orakcal
et al. 2006; Park and Eom 2007; Monti and Spacone 2000;

Wallace 2012). Currently, because of the efficiency of the
macroscopic models, existing structural analysis platforms
such as Perform 3D (Computer and Structures Inc. 2006),
OpenSEES (PEER 2001), and DRAIN-2DX (Prakash et al.
1993) use macroscopic models for the nonlinear analysis of
wall systems.
Figure 1 shows various macroscopic models for the non-

linear analysis of walls subjected to cyclic loading. In Fig. 1,
the existing macroscopic models use multiple vertical uni-
axial elements of concrete and re-bar in order to describe the
flexure-compression responses of walls such as the reloca-
tion of neutral axis in wall cross-sections, tension stiffening
behavior of concrete, flexural crack opening and closing, and
the confinement effect of the concrete in boundary elements.
Previous studies (Vulcano and Bertero 1987; Orakcal 2004;
Orakcal et al. 2006) show that the flexure-compression
response of walls can be accurately predicted by using the
existing macroscopic models. On the other hand, the existing
macroscopic models use a horizontal uniaxial element (i.e.
shear spring element) in order to describe the shear response
of walls. However, the horizontal uniaxial element does not
accurately describe the shear action associated with inclined
cracking and diagonal strut action of the web concrete. Thus,
it is difficult to accurately estimate the shear response of
short and medium-rise wall, which is significantly affected
by diagonal strut action.
In the present study, a macro finite element model was

developed to predict the coupled flexure-compression and shear
responses of the reinforced concrete walls subjected to cyclic
loading. The macro-model was idealized with multiple longi-
tudinal uniaxial elements of concrete and re-bar to describe the
flexure- compression responses of walls. To describe the shear

SEN Structural Engineers Co., R&D Team, Seoul 07229,

Korea.

*Corresponding Author; E-mail: dkkim@senkuzo.com

Copyright � The Author(s) 2016. This article is published

with open access at Springerlink.com

International Journal of Concrete Structures and Materials
Vol.10, No.1, pp.99–112, March 2016
DOI 10.1007/s40069-016-0131-1
ISSN 1976-0485 / eISSN 2234-1315

99



response significantly affected by cyclic loading, diagonal strut
elements were used. In the diagonal strut elements, for the web
concrete, uniaxial cyclic models of concrete and steel re-bar
were used. In the cyclic models, the confinement effect of
concrete in wall boundary elements and the compressive soft-
ening of web concrete were considered. For verification, the
proposed macro-model was applied to existing slender, low-
rise, and coupled wall specimens subjected to cyclic loading.
Further, the proposed macro-model was applied to three-di-
mensional nonlinear time history analysis for a 1:5 scale
10-story R.C. wall specimen of residential building specimen,
which was tested on a shaking table.

2. Proposed Macro-Model

Figure 2 shows the proposed macro-model for walls. The
proposed model consists of dimensionless lateral rigid beam

elements, longitudinal uniaxial elements, diagonal uniaxial
elements of concrete and re-bar. The longitudinal uniaxial
elements of concrete and re-bar connecting the top and
bottom rigid beams are used to describe the flexure-com-
pression action of the wall. The plane section assumption
was used by the top and bottom rigid beams. The diagonal
elements of concrete are used to describe the shear response
of the wall associated with the inclined cracking and strut
action of the web concrete.
Each longitudinal element consists of concrete and re-bar,

as shown in Fig. 2a. Perfect bond is assumed between the
concrete and re-bar. Therefore, the concrete and re-bar have
identical axial elongation or shortening due to the flexure-
compression response of walls. The section areas Alc and Alr

of the concrete and re-bar in a longitudinal element are
defined with the tributary areas of the concrete and re-bars
assigned to the longitudinal element at the wall cross-section
(see Fig. 2b).

Fig. 1 Existing macro-models for structural walls. a Kabeyasawa et al. (1982), b Linda and Bachmann (1994), c Vulcano and
Bertero (1987), d Monti and Spacone (2000).

Fig. 2 Proposed macro-element for reinforced concrete wall. a Longitudinal-and-Diagonal-Line-Element-Model (LDLEM) element,
b tributary areas of concrete and re-bar of each longitudinal uniaxial element, c diagonal concrete strut of wall web
concrete, d multiple sets of X-type diagonal concrete struts.
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Alc ¼ ð1� qÞbs ð1Þ

Alr ¼ qbs ð2Þ

where b and s are the width and depth of the wall cross-
section segment assigned to a longitudinal element and q is
the longitudinal reinforcement ratio of the cross-section
segment bs. The number of the longitudinal uniaxial ele-
ments can be increased to accurately describe the axial stress
and strain distribution in the wall cross-section.
The diagonal element is defined with the concrete strut

with an inclination angle of hc, which is determined as the
angle of the inclined cracking in the web concrete, as shown
in Fig. 2c. Basically, the diagonal element is symmetrically
arranged at the center of the web concrete. The section area
Adc of the diagonal element is defined as the area of the web
concrete transverse to the inclined cracking (hc) as follows.

Adc ¼ bwhw cos hc ð3Þ

where bw and hw are the width and depth of the web con-
crete. The depth hw of the web concrete is defined as the net
tension zone depth of the wall cross section, which is cal-
culated by subtracting the compression zone depths sub-
jected to the positive and negative moments from the overall
wall depth (see Fig. 2c). If a very high axial load is applied
to a wall, the depth hw of the web concrete can be decreased
to zero by definition, as shown in Fig. 2c. In such case, the
proposed macro-model should not be used. If diagonal re-
bars with area Adr and inclination angle hr are used in the
wall web, the diagonal uniaxial element of re-bar (Adr) can
be added to the macro-element.
The height lm of a macro-element may significantly affect

the overall response of walls, because the strains of longi-
tudinal and diagonal uniaxial elements due to the flexure-
compression and shear response of walls are assumed to be
uniform over the height lm. Thus, the height lm of the macro-
element should be sufficiently small to accurately predict the
flexure-compression response which is affected by the
moment gradient along the wall height as well as the shear
response influenced by the inclined cracking (hc) and strut
action of the web concrete. Basically, lm should be smaller
than hw cot hc. If a refined wall model is required to address
detailed response of the flexure-compression and shear
actions, a smaller lm can be used.
For detailed shear response of short and medium-rise

walls, multiple X-type diagonal uniaxial elements of con-
crete can be used, as shown in Fig. 2d. When n sets of X-
type diagonal elements are used, the section area of each
diagonal concrete element is determined as bwhw cos hc=n
and the spacing between the parallel diagonal concrete ele-
ments is sd ¼ ðhw � lm tan hcÞ=ðn� 1Þ: In this case, the
height lm of a macro-element should be smaller than hw cot
hc. lm ¼ hw cot hc=n is recommended.
The depth hw of the web concrete can be determined by

sectional analysis about the axial load applied to the wall, as
shown in Fig. 2c. However, it is difficult to determine the
depth hw of the web concrete in actual building structures

without nonlinear analysis because the arrangement and
cross-section shape of walls are complicate. In that case, hw
can be approximately determined as follows. First, a trial hw
which is less than the overall depth of the wall cross section
is assumed to establish an initial macro-model. Nonlinear
analysis is then performed for the wall model. If the com-
pression zone of wall cross section resulting from the non-
linear analysis is located outside the assumed hw, the
assumed hw is acceptable. Otherwise, a smaller hw should be
used, on the basis of the numerical analysis result.
The inelastic behavior of reinforced concrete walls are

significantly affected by the inclined cracking angle hc of the
web concrete. However, it is difficult to accurately estimate
hc without sophisticated nonlinear numerical analysis
because the web concrete is subjected to biaxial stresses.
According to Oesterle et al. (1984), Vecchino and Collins
(1986), and Bentz et al. (2006), the inclined cracking angle
hc varies from 35 to 55� depending on vertical and horizontal
reinforcement ratios of the web concrete. In the present
study, for convenience, hc = 45� is used for diagonal uni-
axial elements of concrete. For more accurate analysis, the
angle hc can be determined by using the modified com-
pression field theory (Vecchino and Collins 1986; Bentz
et al. 2006) or the softened truss model (Hsu and Mo 1985).
If shear reinforcement (i.e. horizontal reinforcement) is not

sufficient, premature yielding of shear reinforcement occurs
before flexural yielding of walls, which can increase the shear
deformation of the wall under cyclic loading. However, the
proposed macro-element cannot address the premature
yielding of shear reinforcement since the dimensionless rigid
beam elements restrain the tensile strain of shear reinforce-
ment at the top and bottom of the macro-element. Therefore,
the proposed method should be applied to the walls that have
sufficient horizontal shear reinforcement.
The proposed macro-element can be easily incorporated

into existing numerical analysis programs. Though a macro-
element have a number of uniaxial elements of concrete and
re-bar, the number of degree-of-freedoms of a macro-ele-
ment can be reduced to a rectangular element with only 6
degree-of-freedoms (u1, u4, v1, v2, v3, and v4, see Fig. 2a) by
static condensation. Thus, the number of degree-of-freedoms
can be significantly reduced, which save time and efforts in
modeling and numerical computations.
In the present study, it was assumed that the shear force

was carried by the non-flexural area (grey area in Fig. 4),
which was determined by the longitudinal reinforcement
ratio. Also the diagonal elements, which affect the lateral
stiffness of the wall, were determined by the non-flexural
area. This indicates that the lateral stiffness of the wall can
be easily simulated by the geometry and the longitudinal
reinforcement ratio of the wall.

3. Material Models of Concrete and Re-bar

The cyclic stress–strain relationship of concrete developed
by Chang and Mander (1994) was used for uniaxial concrete
elements of the proposed macro-element. In Fig. 3a, three
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types of curves are used to describe the cyclic stress–strain
relationship: the compressive envelope curve, the tensile
envelope curve, and the unloading/reloading curve con-
necting smoothly the two envelope curves. Basically, the
Chang and Mander’s concrete model is defined by the initial
modulus of elasticity (Ec), stress and strain at the compres-
sion peak strength (fcp and ecp), post-crushing strain at zero
compression stress (esp), stress and strain (ftp and etp) at the
tension peak strength, and post-tensile cracking strain at zero
tensile stress (ecrk) (see Fig. 3a). Detailed equations defining
the stress–strain relationship can be found in the relevant
reference (Chang and Mander 1994).
For longitudinal concrete elements, the compressive

stresses and strains are defined as fcp ¼ f 0c ; ecp = eco, and
esp = ecu. f 0c is the compressive strength, eco is the strain
corresponding to f 0c , and ecu (= 2eco, Zhang and Hsu 1998) is
the ultimate strain. When concrete is confined by lateral
reinforcement, the compressive strength and deformation
capacity are increased. In this case, the increased material
properties fcc, ecco, and eccu of the confined concrete replace
fcp, ecp, and esp, respectively (Mander et al. 1988).

fcc ¼ K f 0c ð4aÞ

ecco ¼ �0:002 1þ 5ðK � 1Þð Þ ð4bÞ

eccu ¼ �0:012 ð4cÞ

K ¼ �1:254þ 2:254
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 7:94f 0l =f
0
c

q

� 2f 0l =f
0
c ð4dÞ

where f 0l is the effective confining stress due to the lateral
confinement reinforcement. f 0l can be determined based on
the volumetric ratio and yield stress of the confinement
reinforcement (Mander et al. 1988). The tensile stresses and
strains in the Chang and Mander’s model are defined as
ftp ¼ 0:31

ffiffiffiffi

f 0c
p

(Zhang and Hsu 1998), etp ¼ ftp=Ec; and
ecrk ¼ 2etp:
For diagonal concrete elements, the compressive strength

of concrete was defined considering the effect of coexisting
diagonal cracking: when inclined cracking occurs in the web
concrete, the compressive strength of the web concrete
decreases (Vecchino and Collins 1986; Zhang and Hsu

1998). According to Vecchino and Collins (1986), the
effective compressive strength of a concrete strut is defined
as a function of the transverse tensile strain et orthogonal to
the concrete strut.

fce ¼
f 0c

0:8� 0:34et=eco
� f 0c ð5Þ

As shown in Fig. 4, the transverse tensile strain et can be
calculated by using horizontal and vertical displacements of
a virtual four-node plane element enclosing the diagonal
concrete element as follows.

et ¼ ey sin
2 hc þ c cos hc sin hc ð6Þ

where,

ey ¼
ðv4 � v1Þ þ ðv3 � v2Þ

2lm
and c

¼ ðu4 � u1Þ
lm

þ ðv4 � v1Þ þ ðv3 � v2Þ
2hw

ð7Þ

In Eqs. (6) and (7), u1, u4, v1, v2, v3, and v4 are the
horizontal and vertical displacements of the virtual four-node
plane element; ey and c are the mean vertical strain and shear
strain of the virtual plane element (see Fig. 4). Note that the
horizontal strain ex of the virtual plane element is zero
because the dimensionless rigid beam elements at the top
and bottom of the macro-element restrain the horizontal
expansion due to shear.

In the proposed method, web concrete crushing is assumed
to occur when the compressive stress of the diagonal con-
crete element is greater than the effective compressive
strength fce calculated by Eq. (3).
For the longitudinal and diagonal uniaxial re-bar elements,

the Menegotto and Pinto’s model addressing tension stiff-
ening effect and the Bauschinger effect was used (Menegotto
and Pinto 1973). As shown in Fig. 3b, two slopes Es and bEs

are used to define the nonlinear stress–strain relationship of
re-bars under cyclic loading (Es = the modulus of elasticity
of re-bar; and b = the strain hardening ratio). Further details
of the Menegotto and Pinto’s model can be found in the
reference (Menegotto and Pinto 1973).

Fig. 3 Cyclic stress–strain relationships of concrete and re-bar uniaxial elements. a Cyclic model for concrete (Chang and
Mander’s model), b cyclic model for re-bar (Menegotto and Pinto’s model).
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4. Verification of Proposed Model

For verification, the proposed macro-model was applied to
existing isolated and coupled wall specimens subjected to
cyclic loading. Table 1 shows the material and geometric
properties of the wall specimens. For nonlinear analysis, a
computer program for structural analysis, OpenSEES, was
used OpenSEES (PEER 2001). The OpenSEES material
models, Concrete07 and Steel02, are the same as the con-
crete and re-bar models of Sect. 3. Therefore, Concrete07
and Steel02 were used for the longitudinal and diagonal
uniaxial elements of the macro-element (OpenSEES PEER
2001).

4.1 Slender Walls
Figure 5a shows the reinforcement details and geometric

properties of slender wall specimens RW2 and TW2
(Thomsen and Wallace 2004). The shear span length and the
overall depth of the cross section were l = 3810 mm and
h = 1219 mm, respectively (shear span-to-depth ratio

l/h = 3.13). RW2 with rectangular cross section and TW2
with T-shaped cross section were subjected to axial com-
pression loads = 0:07Agf 0c and 0:075Agf 0c ; respectively,
where Ag is the gross area of cross section. Due to the large
shear span-to-depth ratio and the axial compression loads,
the cyclic behavior of RW2 and TW2 was dominated by
flexure-compression (Thomsen and Wallace 2004). The
compressive strength of concrete was f 0c = 34.0 MPa for
RW2 and 41.7 MPa for TW2. The yield stress of re-bars was
fy = 414 MPa. Reinforcement details of RW2 and TW2 are
presented in detail in Thomsen and Wallace (2004) and
Massone and Wallace (2009).
Figure 5b shows the macro-models of RW2 and TW2 for

nonlinear analysis. RW2 and TW2 were idealized with five
macro-elements (lm = 762 mm B hw cot hc). Each macro-
element consisted of eight longitudinal uniaxial elements of
concrete and re-bar (L1 and L2). A set of X-type diagonal
uniaxial concrete elements (D, hc = 45�) was located at the
center of thewall web. The section areas of the concrete and re-
bar elements are presented in Fig. 5b. The concrete confined
with hoops and cross ties were represented as the shaded areas
at the cross sections, as shown in Fig. 5a. Since the end zone of
the cross sections of RW2 and TW2 included confined and
unconfined concretes, the confined and unconfined concretes
were separately considered as the section areas Alcc and Alc

(see L1 element of Fig. 5b). The section area of the diagonal
concrete element D was calculated using hw = 1019 mm for
RW2 and 889 mm for TW2. The depths hw of web concrete in
RW2 and TW2 were estimated from sectional analysis using
the actual material strengths [see Eq. (3)].
Figure 5c compares the lateral load–drift ratio relation-

ships of RW2 and TW2 resulting from the macro-model
analysis and the test. In the case of RW2 with rectangular
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Fig. 4 Transverse tensile strain orthogonal to diagonal con-
crete strut.

Table 1 Dimensions and properties of existing wall specimens.

Specimens Cross section f 0c (MPa) fy (MPa) As=A0s (mm2) Aw (mm2) d (mm) P=ðAgf 0c Þ (%)

Thomsen 2004

RW2 Rectangular 34.0 448 570/570 253 1200 7.0

TW2 T-Shaped 41.7 448 1965/713 253 1200 7.5

Salonikios 1999

MSW2 Rectangular 26.2 585 301/301 193 1100 0.0

MSW3 24.1 585 301/301 193 1100 7.0

Sittipunt 2001

W1 Barbell-type 36.6 390 1432/1432 392 1300 0.0

W2 35.8 390 1432/1432 549 1300 0.0

Massone 2009

Test1 Rectangular 25.5 424 804/804 796 1456 0.0

Test6 31.4 424 258/258 398 1456 10.0

Lee 2010

RCSW T-shaped 23.3 552 942/942 2984 1555 0.0

RCSW-B 23.5 552 942/942 2984 1555 0.0
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cross section, the proposed method accurately predicted well
the initial stiffness, load-carrying capacity, and unloading/
reloading behaviors during cyclic loading. The flexural
pinching caused by axial compression load was also pre-
dicted well. On the other hand, for TW2 with T-shaped cross
section, the load-carrying capacity and initial stiffness were
slightly overestimated under the negative loading in which
the flange wall was in compression (see Fig. 5c). This is
because TW2 with T-shaped cross section was idealized with
the two-dimensional macro-elements; therefore, the shear-
lag behavior of the flange wall in the vertical direction could
not be addressed (see Fig. 5a).
In the test, TW2 failed due to the compressive softening of

the concrete and the subsequent spalling of the cover con-
crete (see dotted lines in Fig. 5c). On the other hand, web
concrete crushing did not occur in RW2 and TW2 because
the axial compression load restrained the transverse tensile
strain et of the web concrete. The failure mode of the
numerical analysis correlated with the test results.

4.2 Low-Rise Walls
The proposed method was applied to low-rise wall spec-

imens, MSW2 and MSW3 (Salonikios et al. 1999, 2000). In
Fig. 6a, the shear span length and the overall depth of cross
section were l = 1800 mm and h = 1200 mm, respectively
(l/h = 1.50). Both MSW2 and MSW3 had rectangular cross
sections with confined end zones. No axial compression load
was applied to MSW2. Small axial force, N ¼ 0:07Agf 0c
(= 210 kN) was applied to MSW3. The concrete strength
was f 0c = 26.2 MPa for MSW2 and 24.1 MPa for MSW3.
The yield stress was fy = 585 MPa for D8 bars and
610 MPa for D4 bars. The reinforcement details, geometric
properties, and material properties are presented in Saloni-
kios et al. (1999, 2000).
Figure 6b shows the macro-models. Four macro-elements

were used for each wall specimen (lm = 450 mm & (hw cot
hc)/n). Seventeen longitudinal uniaxial elements of concrete
and re-bar were used for each macro-element. For the lon-
gitudinal element L1 in the end zones of the cross sections,

Fig. 5 Slender wall specimens RW2 and TW2 (Thomsen and Wallace 2004). a Dimensions and re-bar details (mm), b LDLEM
modelling of wall specimens, c comparison of LDLEM analysis and test results.
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the confined and unconfined concretes were considered (see
Fig. 6b). To accurately evaluate the shear response of the
wall specimens, two sets of X-type diagonal concrete ele-
ments D were used for each macro-element (hc = 45�;
hw = 948 mm for MSW2 and MSW3; and n = 2). The
section areas of concrete and re-bar of the longitudinal and
diagonal elements are presented in Fig. 6b.
Figure 6c compares the lateral load–drift ratio relation-

ships predicted by the proposed method with the test results.
In MSW2 without no axial compression load, pinching and
shear-slip deformation were significant in the cyclic
response. On the other hand, in MSW3 subjected to axial
compression load N ¼ 0:07Agf 0c , the pinching and shear-slip
deformation were decreased as the axial compression load
restrained inclined diagonal cracking in the web. As shown
in Fig. 6c, the proposed method predicted the shear
responses of MSW2 and MSW3 with reasonable precision.
Ultimately, strength degradation due to softening of the
unconfined cover concrete occurred in MSW2 (see dashed
line in Fig. 6c). However, the proposed method did not
properly capture such strength degradation (see solid line in
Fig. 6c). In MSW3 subjected to N ¼ 0:07Agf 0c , the load-
carrying capacity was decreased due to the second-order
effect and softening of the unconfined cover concrete. The
analysis results correlated well with the test results. Web
concrete crushing didn’t occur in both specimens. Neither

the test nor the proposed method predicted the web concrete
crushing failure of MSW2 and MSW3.
The proposed method was applied to wall specimens W1

and W2 with barbell-shaped cross sections (Sittipunt et al.
2001). As shown in Fig. 7a, the shear span length and the
overall depth of cross section were l = 2150 mm
(= 1900 ? 500/2 mm) and h = 1500 mm, respectively
(l/h = 1.43). Figure 7b shows the macro-models. Three
macro-elements were used for each wall specimen. Thirteen
longitudinal elements of concrete and re-bar and two sets of
X-type diagonal elements of concrete were used for each
macro-element (hc = 45�; hw = 1252 mm for W1 and
1366 mm for W2; and n = 2). The concrete strength was
f 0c = 36.6 MPa for W1 and 35.8 MPa for W2. The yield
stress of re-bar was fy = 473 MPa for D16 bars, 425 MPa
for D12 bars, and 450 MPa for D10 bars. The vertical and
horizontal reinforcement ratios were qv = 0.0052 and
qh = 0.0039 for W1 and qv = 0.0079 and qh = 0.0052 for
W2.
Figure 7c compares the lateral load–drift ratio relation-

ships of W1 and W2 predicted by the proposed method with
the test results. The solid and dashed lines indicate the
predictions and the test results, respectively. When compared
to MSW2 and MSW3, W1 and W2 showed significant
shear-slip deformation and pinching in the cyclic responses.
As shown in Fig. 7c, the proposed method predicted the

Fig. 6 Low-rise wall specimens MSW2 and MSW3 (Salonikios et al. 1999). a Dimensions and re-bar details (mm), b analysis
model and element areas (mm2, MPa), c comparison of LDLEM analysis and test results.
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shear responses of W1 and W2 with reasonable precision.
The numerical analysis predicted web crushing of diagonal
element D at lateral drift ratios -1.80 % (W1) and -1.70 %
(W2) (see grey diamond remarks in Fig. 7). The predicted
failure modes agree with the test results.

4.3 Squat Walls
The proposed method was applied to squat wall specimens

Test1 and Test6 (Massone et al. 2009). In Fig. 8a, the shear
span length and the overall depth of the cross section were

l = 1520 mm and h = 1520 mm for Test1 (l/h = 1.00) and
l = 1220 mm and h = 1370 mm for Test6 (l/h = 0.89).
Test6 was subjected to a moderate axial compression load
N = 0.10 Agf 0c , while Test1 was not subjected to axial
compression load (N = 0). The concrete strength was
f 0c = 25.5 MPa for Test1 and 31.4 MPa for Test6. The yield
stress was fy = 448 MPa for D16 bars and 427 MPa for D13
bars.
Figure 8b shows the macro-models of Test1 and Test6.

Four macro-elements were used for each wall specimen.

Fig. 7 Low-rise wall specimens W1 and W2 with barbell-shaped cross section (Sittipunt et al. 2001). a Dimensions and re-bar
details (mm), b analysis model and element areas (mm2, MPa), c comparison of LDLEM analysis and test results.

Fig. 8 Squat wall specimens Test1 and Test6 (Massone et al. 2009). a Dimensions and re-bar details (mm), b analysis model and
element areas, c comparison of LDLEM analysis and test results.
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Eleven longitudinal elements of concrete and re-bar were
used for each macro-element. For the shear response of the
squat wall specimens, two sets of X-type diagonal elements
D were used for each macro-element (hc = 45�;
hw = 1202 mm for Test1 and hw = 1251 mm for Test6; and
n = 2). The section areas of concrete and re-bar of the
longitudinal and diagonal elements are presented in Fig. 8b.

Figure 8c compares the lateral load–drift ratio relation-
ships predicted by the proposed method with the test
results. Although the proposed method predicted well the
pinching and web concrete crushing in the cyclic
responses varying with the axial compression load, the
load-carrying capacities of Test1 and Test6 were
underestimated.

Fig. 9 Coupled wall specimens RCSW (Lee et al. 2010). a Dimensions and re-bar details (mm), b analysis model and element
areas, c comparison of LDLEM analysis and test results.

Fig. 10 3-Dimesional 1/5 scale RC wall building model and analysis model. a 1/5 scale test model, b scheme of analysis model.
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4.4 Coupled Walls
The proposed method was applied to a coupled wall

specimen RCSW (Lee et al. 2010). Figure 9a shows the
configurations, cross sections, and reinforcement details of
RCSW. RCSW consisted of a T-shaped wall, a wall-column,
and slabs (see Fig. 9a). The wall and wall-column were
connected by the link slabs (thickness = 90 mm). The shear
span of RCSW was l = 3910 mm. The total depth of the
cross section including the T-shaped wall, wall-column, and
opening was h = 2442 mm. The concrete strength was
f 0c = 23.3 MPa. The yield stress of re-bars was
fy = 553 MPa for D10 bars and 340 MPa for D6 bars. The
hoop re-bars for concrete confinement were not used in the
T-shaped wall and wall-column (see Fig. 9a).

Figure 9b shows the macro-model. The T-shaped wall and
wall-column were modeled with five and eleven macro-
elements, respectively. In the T-shaped wall, ten longitudinal
elements (L1 and L2) of concrete and re-bar were used for
each macro-element. Since the cyclic response of the
T-shaped wall was expected to be dominated by shear, two
sets of X-type diagonal elements (D1, hw = 922 mm) of
concrete were used. On the other hand, for the wall-column
which was dominated by flexure-compression, four longi-
tudinal elements (L1 and L2) and a set of X-type diagonal
elements (D2, hw = 149 mm) were used. The link slabs
(thickness = 90 mm) which are dominated by flexural
action were modeled with equivalent beam elements (non-
linear Beam-Column Element of OpenSEES (PEER 2001)
with fiber section).
Figure 9c compares the lateral load–drift ratio relation-

ship. The solid and dashed lines indicate the prediction and
the test result, respectively. The proposed method accurately
predicted the overall cyclic responses. As shown in Fig. 9c,
at a lateral drift ratio of 1.7 %, compression softening and
subsequent spalling of the unconfined cover concrete
occurred at the boundary of the web wall in the T-shaped
wall. The failure mode agreed with the test result.

4.5 Shaking Table Test for Wall-Slab Structure
Lee et al. (2011) reported results of a shaking table test on

a 1:5 scale 10-story R.C. wall specimen of a residential
building. Using the proposed macro-model, three-dimen-
sional nonlinear time history analyses were performed. The
predicted results were compared with the test result.
Figure 10a shows the test specimen. The external dimen-

sions of the specimen were 3560 mm 9 2220 mm 9

5400 mm (x-length 9 y-length 9 height). The thicknesses
of the exterior wall, interior wall, and slab were 36, 32, and
40 mm, respectively. In the wall, 3 mm diameter bars were

Fig. 11 Unit model for 3-D wall building.

Fig. 12 Shell element grid for slabs in 3-D wall building.
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used for the vertical bars, and 2 mm diameter bars were used
for the horizontal bars. For slabs, 2 mm diameter bars were
used.
Taft earthquake acceleration (N69E, S21E) was applied to

the shaking table in the x and y-directions, simultaneously.
The peak input acceleration levels of the earthquake events
were gradually increased from 0.07 to 0.525 g. In the present
study, test results of the peak ground acceleration (PGA) of

0.374 g, which was close to the design acceleration for site
class SC in Korea Building Code, were used to compare the
shaking table test and the numerical analysis result.
The dynamic periods of the 1:5 scale specimen were

evaluated by the white noise input and the FFT analysis.
Before the earthquake test, the dynamic periods in the x and
y-directions were 0.24 and 0.18 s, respectively. During the
earthquake of 0.374 g, the dynamic periods in the x and
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Fig. 13 Displacement of each story in 3-D wall building. a X-direction, b Y-direction.
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y-directions were increased to 0.40 and 0.30 s due to
structural damages of the specimen.
Figure 10b shows scheme of the nonlinear numerical

analysis model for the R.C. wall specimen. To describe the
proposed macro-model, out-of-plane bending of the wall,
and effect of the slab, the truss element, the elastic beam-
column element, and the shell element of the OpenSEES
(PEER 2001) were used, respectively. Nonlinear materials of
the OpenSEES, Concrete07 and Steel02, were used for the
longitudinal and diagonal uniaxial elements of the macro-
element.
Figure 11 presents a unit model for the three-dimensional

behavior of a wall, and the contribution of each component
to the six-degrees of freedom. For in-plan-action of the wall,
the proposed macro-model using vertical and diagonal
trusses was used, horizontal rigid beams were used. For out-
of-plane bending of the wall, vertical flexural element was
used. As shown in Fig. 12, the slab was divided into
37 9 18 grid. Shell elements were used to describe the six-
degrees of freedom of the slab.
The out-of-plane flexural stiffness of the wall and the

flexural stiffness of the slab should be considered as cracked
sections. Considering translation of the neutral axis, 15 % of
the gross flexural stiffness (= 0.5Igx) was used for the out-of-
plane flexural stiffness of the wall, and 20 % of the gross
flexural stiffness was used for the slab (shell element). From
the eigenvalues of the analysis model, the Rayleigh damping
of 5 % was applied to the analysis model.
Figure 13 shows the net displacements of each story

excluding the foundation displacement. In the x-direction
(Fig. 13a), the results of the analysis model were similar to
those of the shaking table test. The dynamic period of the
analysis model was 0.42 s which was close to that of the test
specimen (= 0.40 s).
In the y-direction (Fig. 13b), the period of the analysis

model was 0.26 s which was smaller than that of the test
specimen (= 0.30 s). For this reason the displacements of the
numerical analysis were smaller than those of the test
specimen. This result indicates that the damages of the walls
in the y-direction were not well predicted by the numerical
analysis.
In Fig. 14, the base shear forces of the shaking table test

and the numerical analysis were compared. The base shear
force in the x-direction was well predicted by the analysis

model. For the y-direction, the base shear force predicted by
the numerical analysis model was similar to that of the
shaking table test.

5. Summary and Conclusions

In the present study, a macro-model for the nonlinear anal-
ysis of wall structures was developed. For convenience in
modeling and numerical computation, the macro-model is
idealized with longitudinal and diagonal uniaxial elements of
concrete and re-bar. The proposed model is similar to the truss
model that is popular in the design of reinforced concrete
members. The proposed model was intended to describe both
the flexure-compression and the shear responses, with rea-
sonable precision. Particularly, the proposed model focused
on accurate prediction of the shear response of walls associ-
ated with inclined cracking and diagonal strut action of the
web concrete. The longitudinal and diagonal uniaxial ele-
ments consist of concrete and re-bar. Simplified cyclic models
for the concrete and re-bar were used.
For verification, the proposed macro-model was applied to

isolated wall specimens and a coupled wall specimen sub-
jected to cyclic loading. The results showed that the pro-
posed macro-model predicted well the flexure-compression
and shear responses of the slender, short, and coupled walls,
addressing the effects of various design parameters (e.g.
shear span-to-depth ratio, axial compression force, rein-
forcement ratio, and the shape of cross sections). The char-
acteristics of cyclic responses including strength- and
stiffness-degradations, pinching behavior, and the overall
shape of cyclic curves were reasonably captured.
Further, the proposed macro-model was applied to three-

dimensional nonlinear time history analyses for a 1:5 scale
10-story R.C. wall-type residential building specimen, which
was tested on shaking table. The predictions were compared
with the shaking table test results. The results showed that
the displacements, the base shear forces, and the global
deformation correlated well with the shaking test results.
However, the following limitations should be considered

when the proposed macro-model is used: 1) the macro-
model should not be used for walls subjected to very high
axial compression load; 2) The walls should have sufficient
shear reinforcement to resist in-plane shear.
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Fig. 14 Base shear of 3-D wall building. a X-direction, b Y-direction.
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