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Abstract: U-shaped thin-walled concrete bridge beams usually suffer the combined actions of flexure, shear and torsion, but no

research about the behavior of U-shaped thin-walled RC beams under combined actions has been reported in literature. Three large

specimens of U-shaped thin-walled RC beams were tested under different torque–bending moment ratios (T–M ratios) of 1:5, 1:1

and 1:0 to investigate the mechanical responses such as crack patterns, reinforcement strains, failure modes and ductility. The

testing results showed that ductile flexural failures occurred for all three of the U-shaped thin-walled beam specimens, although the

combined shear effect of circulatory torque, warping torque and shear force increased as the T–M ratio increased from 1:5 via 1:1

to 1:0, reflected by diagonal cracks and stirrup strains. More specifically, basically symmetrical flexural failure was dominated by

the bending moment when the T–M ratio was 1:5; flexural failure of the loaded half of the U-shaped thin-walled section was

dominated by the combined action of the bending moment and warping moment, while there were only a few cracks on the other

half of the U-shaped section when the T–M ratio was 1:1; and anti-symmetrical flexural failure was dominated by the warping

moment when the T–M ratio was 1:0 (pure torsion). A simple method to calculate the ultimate load of such U-shaped thin-walled

RC beams under different T–M ratios was suggested, and the calculating results were corresponding well with the experimental

results.

Keywords: reinforced concrete, U-shaped thin-walled beam, combined action of torsion and flexure, warping torsion,

ultimate load.

1. Introduction

U-shaped thin-walled reinforced concrete (RC) bridge
beams have been widely used in urban construction of rail
viaducts in China, such as in Shanghai Subway Line 6 and
Guangzhou Subway Line 2, due to the advantage of lower
construction elevations, the excellent sound proof effect and
attractive appearance (He 2003). Under normal service
conditions, this type of member is typically subjected to the
combined action of bending, shear and torsion due to
eccentric traffic load (especially in multilane cases and
curved structure cases) and transverse wind load. However,

according to the authors’ knowledge, no research about the
mechanical response of such U-shaped thin-walled RC
members under combined actions has been reported in lit-
erature. The existing studies about the U-shaped thin-walled
RC bridge beams are mainly concentrated on bending and
shear. In China, the additional torsional effect is indirectly
considered by improving the safety reserve in bending and
shear design, which is unreasonable and uneconomical.
Thus, the mechanical response of the U-shaped thin-walled
RC beams under the combined action of bending, shear and
torsion should be studied to lay the foundation for the
development of a rational design provision.
The major difference in the mechanical mechanism

between a member with an open thin-walled section and a
member with a closed section is the torsional response.
When a closed section member is under pure torsion, the
warping effect is too weak to be neglected, thus only the
well-known circulatory torsion, or St. Venant’s torsion, is
considered. After a century of exploration, there are lots of
achievements in research aimed at the torsional response of
RC members with closed sections, and the widely applied
theoretical model is the spatial softened truss model
(Mitchell and Collins 1974; Hsu and Mo 1985; Vecchio and
Collins 1986; Rahal and Collins 1995a, b, 2006; Jeng and
Hsu 2009; Bernardo et al. 2012a, 2015). Basically, with
specific revisions, it is applicable to all situations dominated
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by circulatory torsion, such as high strength concrete
members (Bernardo et al. 2012b) and box section members
(Bernardo et al. 2013; Jeng 2015; Wang et al. 2015). The
softened truss model is also the theoretical model used to
simulate the behavior of closed section concrete members
under shear (planar softened truss model) (Vecchio and
Collins 1981, 1986, 1988; Pang and Hsu 1995; Tadepalli
et al. 2015; Liang et al. 2016) as well as under the combined
actions of bending, shear and torsion (Rahal and Collins
2003; Rahal 2007; Greene and Belarbi 2009a, b).
As to torsional members with open thin-walled sections,

the warping effect is not negligible. According to Vlasov’s
elastic theory of the open thin-walled member (Vlasov
1961), when the warping deformation of an open thin-walled
member under torsion is restrained, a new internal force
called warping moment corresponding to warping normal
stress will appear. When it occurs, two kinds of internal
torque appears simultaneously, which are circulatory torque
(the same as that in the closed section case) and warping
torque. In 1961, Vlasov (1961) developed the sectorial
coordinate system and derived the theoretical formula to
calculate warping torque and warping moment for open thin-
walled members, which became the basis for analyzing open
thin-walled members under torsion. Thereafter, some
research outcomes on the elastic torsional response of the
open thin-walled member, especially focusing on the shear
deformation induced by the warping torque, have been
reported (Pavazza 2005; Erkmen and Mohareb 2006; Murı́n
and Kutiš 2008; Aminbaghai et al. 2016). When it comes to
the post cracking torsional behavior of RC members with an
open thin-walled section, the above mentioned softened truss
model for circulatory torsion is not accurate anymore
because of the considerable warping effect (Luccioni et al.
1991). In addition the Vlasov’s elastic theory should be
revised due to the cracking of concrete. Zbirohowski-Koscia
(1968) first addressed issues related to the post-cracking
behavior of open thin-walled RC beams under the warping
moment. In 1981, Krpan and Collins tested the torsional
response of a fixed–fixed U-shaped thin-walled RC beam
(Krpan and Collins 1981a). The results confirmed the
dominate role that the warping moment played. In the
analogy to bending, based on Vlasov’s theory, the method to
simulate the post cracking torsional behavior of the
U-shaped thin-walled RC beam was proposed (Krpan and
Collins 1981b). Then Hwang and Hsu (1983) analyzed the
entire torsional behavior of the RC channel beam with a
method from the Fourier series approach. In the following
two decades, few research outcomes on the torsional
behavior of open thin-walled RC members under torsion
were reported in literature. Due to the wide application of
U-shaped thin-walled RC beams in the construction of rail
viaducts in recent years, their torsional behavior has again
drawn research’s attention. Theoretical and experimental
studies on the torsional behavior of U-shaped thin-walled
RC beams have been carried out by our research group
(Chen et al. 2016a, b), and based on Vlasov’s torsional
theory and the nonlinear constitutive relations of materials, a

nonlinear model to predict the torsional response of such
U-shaped thin-walled RC beams has been proposed.
Research into the mechanical response of open thin-walled

RC members under combined actions of bending, shear and
torsion is quite rare. Analytical and experimental studies on
the behavior of RC I-beams under combined bending, shear
and torsion were conducted by Luccioni et al. (1991, 1996),
and a calculation method of ultimate load based on the skew
bending theory (Elfgren et al. 1974) was proposed, where the
skew bending theory was modified by taking warping torque
into account. In the calculation method, the effect of the
warping moment was neglected because, due to the specific
geometrical properties of the I-section, the effect of the
warping moment was weak and ignorable compared to the
effect of the bending moment. However, it is not the case for
U-shaped thin-walled RC beams studied in this paper as the
geometrical properties of the U-section will make the effect of
the warping moment as strong as the bending moment.
Considering the strong warping effect in the U-sections,

the interaction results of bending moment and warping
moment, as well as the interaction results of circulatory
torque, warping torque and shear force should be experi-
mentally studied. In the current paper, considering the
variation of the torque–bending moment ratio (T–M ratio) in
practice, three large U-shaped thin-walled RC beam speci-
mens will be respectively tested under different T–M ratios
of 1:5, 1:1 and 1:0 to investigate the mechanical response.
The crack pattern, reinforcement strain, failure mode and
ductility will be analyzed. Finally, an approach of calculating
the cracking load and the ultimate load of each kind of beam
will be proposed, which will make meaningful contributions
to developing design guidelines for U-shaped thin-walled
RC beams subjected to combined bending, shear and torsion.

2. Experimental Plan

2.1 Testing Specimens
As shown in Fig. 1, three U-shaped thin-walled RC beam

specimens of the same geometric size were designed based on
the bridge beams used in the Nanjing No. 2 rail transit in
China, with a reduced scale of 1:4. Since the width (900 mm)
of the beam cross-section was 10 times larger than the wall
thickness (70 mm) and the span length (6650 mm) of the
beamwas about 100 times thewall thickness, the studied beam
specimens are thin-walled structures. The arrangement of
reinforcements including longitudinal bars and stirrups were
the same for all three beam specimens, which is shown in
Fig. 1b. As shown in Fig. 1a, c, referring to theU-shaped thin-
walled RC beam specimen designed by Krpan and Collins
(1981a), large end diaphragms (solid blocks) with a thickness
of 350 mm were provided to restrain the warping of the end
cross sections. What is more, three pieces of steel plates were
pre-embedded in the concrete (the bidirectional steel bars in
the end diaphragm were welded to the steel plate) on the two
sides and the top of each end diaphragm to restrain longitu-
dinal displacement (elongation and shortening) of the end
cross section, which will be further stated in Sect. 2.2. At mid-
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span, a strengthened diaphragm was set to prevent local fail-
ure. Chamfers of 1:1.125 were added at the internal intersec-
tions between the vertical webs and the bottom slab to avoid
stress concentration.
The U-shaped thin-walled RC beam specimens were cast

in a factory of prefabrication and were moist cured by
covering the surfaces with wet straw bags, with the tem-
perature of about 20–24 �C for 60 days. Then they were
moved into the lab for test preparation and at the age of
80–90 days, the beams were tested. Six concrete prism
specimens (100 mm 9 100 mm 9 300 mm) were cast
in situ for each beam specimen and cured under the same
conditions as the beam specimens. Then the compression
strength and elastic modulus of concrete for each beam was
tested on the same day of the beam testing. The strength and
modulus of elasticity of the reinforcing bars were also
experimentally measured. The material properties of rein-
forcements and concrete are listed in Table 1.

2.2 Experimental Setup
As shown in Fig. 2a, the load was applied eccentrically at

mid-span by a hydraulic jack acting on the loading frame,
which was equivalent to the combined action of bending,

shear and torsion. To make sure the beam ends were com-
pletely fixed, the end diaphragms of the beam were con-
nected to the anchoring device by high-strength bolts to
restrain the bending angle and rotation. What is more, as
shown in Fig. 2a, the three pre-embedded steel plates at each
end diaphragm were welded to the anchoring device to
restrain longitudinal displacement (elongation and shorten-
ing). The anchoring device was fixed to the reaction floor by
high-strength bolts. As shown in Fig. 2b, the three beam
specimens were respectively tested under applied T–M ratios
of 1:5, 1:1 and 1:0 (pure torsion); accordingly, the beam
specimens were denoted as MEM-1:5, MEM-1:1 and MEM-
1:0. The specific T–M ratios at the mid-span section for
MEM-1:5 and MEM-1:1 were respectively achieved by
adjusting lateral eccentricities, which are listed in Table 1. In
the case of MEM-1:0 under pure torsion, the torque was
applied by two jacks acting on the loading frame in opposite
directions. In the rest of the paper, in order to describe the
testing process conveniently, as shown in Fig. 2b for MEM-
1:5 and MEM-1:1, the web near the vertical load was called
loaded web and the other web, away from the vertical load,
was called unloaded web. As to specimen MEM-1:0 under
pure torsion, the web going down during the loading process

Fig. 1 Information of U-shaped thin-walled RC beam specimens (unit: mm). a Top view of U-shaped thin-walled RC beams,
b detailed information of cross-Sect. 1-1, and c detailed information of cross-Sect. 2-2.
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was called loaded web and the web going up was called
unloaded web. A picture of the loading condition of MEM-
1:1 is shown in Fig. 2c.

2.3 Location of Potential Critical Sections
According to the theory (Vlasov 1961), under combined

actions of bending, shear and torsion, the distributions of
internal forces along the beam span, i.e. circulatory torque Tc,
warping torque Tx, warping moment Mx, shear force V and
bending moment Mb, and the distributions of corresponding
stresses around the cross-section are shown in Fig. 3a and b,
respectively. As shown in Fig. 3a, the maximum bending
moment and warping moment (in magnitude) were located at
support and mid-span; and the bending moment and warping
moment at support, and those at mid-span are equal in mag-
nitude while opposite in direction, respectively. Thus, the
support and mid-span are normal stress critical sections. The
maximum circulatory torque occurs at the L/4-section and the
maximum warping torque appears at support and mid-span,
considering that shear stress due to one-unit circulatory torque
is much larger in magnitude than that due to one-unit warping
torque. The shear stress resultant reaches the maximum at the
L/4-section where the maximum circulatory torque was
located. That is to say, theL/4-section is the shear stress critical
section.
As shown in Fig. 3b, normal stress due towarpingmomentMx

anti-symmetrically distributes around the cross-section, while

normal stress due to bending moment Mb symmetrically dis-
tributes; therefore they enhance each other on the loaded half
U-section while counteracting on the unloaded half U-sec-
tion. Thus, for MEM-1:5 and MEM-1:1, under the combined
actions of bendingmoment andwarpingmoment, the loaded half
U-section will be more critical than the unloaded half U-sec-
tion.As shown inFig. 3b, shear stresses due to circulatory torque,
warping torque and shear force distribute differently around the
cross-section, and they enhance one another on the external sur-
face of the loaded web while they do not elsewhere. Therefore,
under the combined actions of circulatory torque, warping torque
and shear force, the external surface of the loaded web will be
more critical than other surfaces of the U-section.

2.4 Arrangement of Measurement Points
and Testing Procedure
Based on the elastic analysis results of the U-shaped thin-

walled beam, the stress critical sections and critical points can
be determined (details in Sect. 2.3). Considering the symmetry
of the internal forces about mid-span (Fig. 3a), the west half-
span of the beam specimen was used as a measuring span to
collect testing data, while the east half-span of the beam
specimen was used to observe the propagation of cracks and
failure procedures. The two normal stress critical sections (i.e.
support and mid-span sections) and the shear stress critical
section (i.e., L/4-section) were selected to measure the data of
reinforcement strains, displacement and rotation. Besides, the

Table 1 Material properties and loading conditions of beam specimens.

MEM-1:5 MEM-1:1 MEM-1:0

Material properties Longitudinal bars Yield strength (MPa) 353.33 353.33 353.33

Ultimate strength
(MPa)

573.33 573.33 573.33

Elastic modules
(GPa)

200 200 200

Diameter (mm) 8 8 8

Stirrups Yield strength (MPa) 276.7 276.7 276.7

Ultimate strength
(MPa)

446.7 446.7 446.7

Elastic modules
(GPa)

200 200 200

Diameter (mm) 6 6 6

Spacing (mm) 70 70 70

Concrete Compressive strength
of prism specimen

(MPa)

39.62 35.40 40.92

Elastic modules
(GPa)

36.7 34.5 34.4

Loading conditions Eccentricity (mm) 166.25 (L/40) 831.25 (L/8) Pure torsion

T-BM ratio 1:5 1:1 1:0

L the span length of beam specimens

International Journal of Concrete Structures and Materials



reinforcement strains at the L/8- and 3L/8-sections were also
measured. As shown in Fig. 4, six measuring points of dis-
placements (D1–D6), twomeasuring points of rotation (R1 and
R2), twelve measuring points of longitudinal bar strains (L1–
L12) and tenmeasuring points of stirrup strains (S1–S10) were
arranged around each selected cross section. The strain gages
were pre-arranged on steel bars. The loading jack used in the
tests, Actuator-243.45, was controlled by an MTS electro-hy-
draulic servo-control system.The loading increment during the
test was first set to 0.5 kN with a loading rate of 0.005 kN/s to
capture the initiation of concrete cracks and then was increased
to 2 kN with a loading rate of 0.015 kN/s. Once the longitu-
dinal bars yielded, the vertical displacement of the jack was
selected to control the loading step, with an increment of 1 mm
at a loading rate of 0.03 mm/s. The experiment was terminated

after the load reached the peak value and subsequently
decreased to 85% of the ultimate load.

3. Test Results and Discussion

3.1 Failure Procedure
The characteristic loading values, i.e. flexural cracking,

diagonal cracking, longitudinal steel bar yielding, stirrup
yielding and their corresponding locations, as well as the
ultimate load, are listed in Table 2, where the first yielding
load was determined when the measured strain first reached
the yielding strain. The crack patterns of the observed span
of the three beam specimens are shown in Fig. 5, in which
the numerical values are the corresponding external torques,
and the bordered ones are first flexural cracking torques (the

Fig. 2 Testing setup of U-shaped thin-walled beams (unit: mm). a Schematic diagram of testing setup, b loading information of
test, specimens, and c loading condition of MEM-1:1.
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smaller one) or first diagonal cracking torques (the larger
one). The photos of failure modes of the loaded web at mid-
span of the three beams are shown in Fig. 6. As shown in
Table 2, Figs. 5 and 6, for all three beam specimens, the first
cracking, the first yielding of reinforcement steel bars and
the flexural failure occurred at support and mid-span (normal
stress critical sections). Compared to Fig. 3b, the corre-
sponding location of flexural cracking and longitudinal bar
yielding were corresponding well with the location where
the maximum tensile normal stress resultant occurs (i.e., for
MEM-1:5 and MEM-1:1, on the top of the loaded web at
support; for MEM-1:0, on the top of the loaded web at
support and on the top of the unloaded web at mid-span). In

addition, the location of concrete crushed is in accordance
with the location where the maximum compressive normal
stress resultant occurs, (i.e., for MEM-1:5 and MEM-1:1, on
the top of the loaded web at mid-span; for MEM-1:0, on the
top of the loaded web at mid-span and on the top of the
unloaded web at support). Those indicate that the flexural
failure modes of U-shaped thin-walled RC beams for dif-
ferent T–M ratios (further discussed in Sect. 3.4) were
dominated by the combined actions of warping moment and
bending moment. The torque–rotation and bending moment-
deflection curves of beam specimens at mid-span are shown
in Fig. 7a and b, respectively (details in Sect. 3.2). It can be
seen from Fig. 7 and Table 2 that, with the increase of the
T–M ratio from 1:5 to 1:0, for every characteristic loading
state, the corresponding torque increased while bending
moment decreased. With the increase of the T–M ratio from
1:5 to 1:1, the ultimate torque increased from 34.8 to 92.0
kNm by 164%, while the corresponding ultimate bending
moments dropped from 174.0 to 92.0 kNm by 47%; and
with the T–M ratio from 1:1 to 1:0, without bearing bending
moment, the ultimate torque of MEM-1:0 reached
147.0 kNm and was 60% higher than that of MEM-1:1 (92.0
kNm). That means that torque significantly weakened the
flexural bearing capacity of the U-shaped thin-walled RC
beam, and vice versa. In other words, the combined action of
bending moment and restrained torsion obviously influenced
the ultimate bearing capacities of the U-shaped thin-walled
RC beam. Nevertheless, as shown in Table 2, the load per-
centages of the flexural cracking and the yielding of longi-
tudinal bars of the three beam specimens are about 11–13
and 57–60%, respectively, which means that the combined
effects of bending, shear and torsion on these two

Fig. 3 Internal forces and stress distributions under mixed torsion, shear and flexure. a Distributions of internal forces and b stress
distributions induced by internal forces. aC ¼ ½chðaL=2Þ � 1�=½a � shðaL=2Þ�; where a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

circulatory torsional stiffness
warping torsional stiffness

q

.

Fig. 4 Arrangement of measuring points around the selected
sections (unit: mm).
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characteristic factors seems similar. As shown in Table 2,
with the T–M ratio increasing from 1:5 via 1:1 to 1:0, the
diagonal cracking torque was reduced from 49 via 33 to 24%
of the ultimate torque; and the first diagonal crack in MEM-
1:5 and MEM-1:1 was flexural-shear type initiating at the
3L/8-section and 5L/16-section, respectively, while the first
diagonal crack in MEM-1:0 was a web-shear type initiated at
the L/4-section. For the whole loading process, no stirrups
yielded in MEM-1:5 and MEM-1:1 while stirrups yielded in
MEM-1:0. Those indicated that the combined shear effect of
circulatory torque, warping torque and shear force (or the
effect of shear stress resultant) increased. What is more,
compared with Fig. 3b, the first diagonal cracking and stir-
rup yielding occurred on the external surface of the loaded
web where the maximum shear stress resultant exists.

3.2 Rotations, Deflections and Ductility
The mid-span torque–rotation curves of the three beam

specimens and the torque–deflection curves of MEM-1:5
and MEM-1:1 (MEM-1:0 was under pure torsion) were

shown in Fig. 7. The rotation of the beam specimen was the
average value of rotations of the loaded web, unloaded web
and bottom slab. Taking the calculation method of the loaded
web rotation as an example, it is calculated from (D6 – D5)/
D, where D6 and D5 are the testing data of horizontal dis-
placement meters shown in Fig. 4, and D is the distance
between them. The deflection is calculated by [(D5 ? D4)/
2]mid-span - [(D3 ? D4)/2]support, where D3 and D4 are test-
ing data of vertical displacement meters at the bottom of the
two webs, taking the direction of loading as positive. As
shown in Fig. 7, with the increase of the T–M ratio, the
rotations at mid-span corresponding to the ultimate torques
increase while the deflections at mid-span decrease.
According to the rotation curves, the ductility coefficient
(ratio between the rotation corresponding to the torque
decreased to 85% of the ultimate torque and the rotation
corresponding to the first yielding of reinforcement) can be
calculated, and the ductility coefficient can also be calculated
from deflection curves. The results were summarized in
Table 3. As shown in Table 3, for MEM-1:5 and MEM-1:1

Table 2 Characteristic loads and their locations of beam specimens.

MEM-1:5 MEM-1:1 MEM-1:0

Flexural cracking Load percentage 13% 11% 12%

Load detail P = 27.0, e = 0.166,
T = 4.5, M = 22.5

P = 11.5, e = 0.831,
T = 9.6, M = 9.6

P = 13.0, e = 1.33,
T = 17.3, M = 0

Location Top of loaded web at
support

Top of loaded web at
support

Top of loaded web at
support and top of

unloaded web at mid-span

Diagonal cracking Load percentage 49% 33% 24%

Load detail P = 103.0, e = 0.166,
T = 17.1, M = 85.5

P = 36.6, e = 0.831,
T = 30.4, M = 30.4

P = 26.8, e = 1.33,
T = 35.7, M = 0

Location External surface of loaded
web at 3L/8-section

External surface of loaded
web at 5L/16-section

External surfaces of both
webs at L/4-section

Steel bar yielding Load percentage 57% 58% 60%

Load detail P = 119.3, e = 0.166,
T = 19.8, M = 99.0

P = 64.3, e = 0.831,
T = 53.4, M = 53.4

P = 66.3, e = 1.33,
T = 88.2, M = 0

Location Top of loaded web at
support

Top of loaded web at
support

Top of loaded web at
support and top of

unloaded web at mid-span

Stirrup yielding Load percentage Not yield Not yield 86%

Load detail Not yield Not yield P = 95.1, e = 1.33,
T = 126.4, M = 0

Location Not yield Not yield External legs of both webs
at L/4-section

Ultimate state Load detail P = 209.6, e = 0.166,
T = 34.8, M = 174.0

P = 110.7, e = 0.831,
T = 92.0, M = 92.0

P = 110.5, e = 1.33,
T = 147.0, M = 0

Location Ductile flexural failure at
both support and mid-span
sections of loaded web

Ductile flexural failure at
both support and mid-span
sections of loaded web

Ductile flexural failure at
both support and mid-span

sections of two webs

The load percentages are given as the percentages to the ultimate load; the load details are: eccentric load applied at mid-span P (kN); load
eccentricity e (m), and for MEM-1:0, ‘e’ is the distance between the two jacks; equivalent torsional moment at mid-span T (kNm); equivalent
bending moment at mid-span M (kNm).
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the rotational ductility coefficient is basically equal to the
deflection ductility coefficient. It can also be seen from
Table 3 that the three beam specimens had similar rotational

ductility coefficients, and for MEM-1:5 and MEM-1:1, they
had similar deflection ductility coefficients. All three beams
under different T–M ratios showed good ductile

Fig. 5 Crack patterns of three beam specimens: a MEM-1:5, b MEM-1:1, and c MEM-1:0. aThe ‘‘ESBS’’ means ‘‘External Surface
of Bottom Slab’’, where the first two letters ‘‘ES’’ means ‘‘External Surface,’’ and the last two letters ‘‘BS’’ means ‘‘Bottom
Slab.’’ As to other abbreviations, the first two letters ‘‘IS’’ means ‘‘Internal Surface,’’ the last two letters ‘‘LW’’ and ‘‘UW’’ mean
‘‘Loaded Web’’ and ‘‘Unloaded Web,’’ respectively.

Fig. 6 Failure models of beam specimens at mid-span: a MEM-1:5, b MEM-1:1, and c MEM-1:0.

Fig. 7 Torque–rotation and bending moment–deflection curves of beam specimens at mid-span: a rotations and b deflections.
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performance. That was because the failure modes of the
three beam specimens were ductile flexural failure, which
will be further discussed in Sect. 3.4.

3.3 Crack Patterns
The crack patterns of the observed span of the three beam

specimens are shown in Fig. 5, in which the numerical
values are the corresponding external torques, and the bor-
dered ones are first flexural cracking torques (the smaller
ones) or first diagonal cracking torques (the larger ones). It
can be seen from Fig. 5 that, for the three beam specimens,
the cracks at support and mid-span are mainly vertical
flexural types, displaying small shear features, which means
at support and mid-span, warping moment and bending
moment predominate while shear force and warping torsion
had little influence. Cracks at the L/4-section are diagonal
types with an inclination of about 45�. The distributions of
cracks along the beam span conform well to the distributions
of internal forces shown in Fig. 3a. For MEM-1:5, flexural
cracks on the loaded web were more fully developed than
those on the unloaded web; for MEM-1:1, flexural cracks
were fully developed on the loaded web but only a few
flexural cracks appeared on the unloaded web; for MEM-1:0,
flexural cracks anti-symmetrically developed on two webs.
The different development of flexural cracks on two webs of
each beam was attributable to the interaction of the bending
moment and warping moment under different T–M ratios,
which will be discussed in detail in the following section. As
to diagonal cracks, for MEM-1:5 and MEM-1:1, they
developed most fully on the external surface of the loaded
web; for MEM-1:0, they developed most fully on the
external surfaces of the loaded and unloaded webs. That
agrees with the distribution of shear stress resultant around
the U-section (Sect. 2.3). Overall, with the increase of the T–
M ratio from 1:5 via 1:1 to 1:0, diagonal cracks were more
and more fully developed, which means the effect of shear
stress resultant increased.

3.4 Failure Modes
According to the distributions of internal forces shown in

Fig. 3a, two kinds of failure modes might occur, i.e. flexural
failure occurs at normal stress critical sections or shear
failure occurs at shear stress critical sections. The photos of
ductile flexure failure modes of the loaded web at mid-span
are shown in Fig. 6, and corresponding to the failure state,
the photos of crack patterns on the external surface of the
loaded web at the L/4-section are also shown in Fig. 8. As
shown in Figs. 6 and 8, for the three beam specimens under
different T–M ratios, typical ductile flexural failure occurred
on the loaded web at mid-span, while at the L/4-section,
more and more diagonal cracks were observed with the
increase of the T–M ratio from 1:5 via 1:1 to 1:0; however
no crushing of concrete appears. What is more, for MEM-
1:5 and MEM-1:1, referring to Fig. 5, since the concrete
crushing appears on the loaded web only, the loaded web
was more critical than the unloaded web. In the following
paragraphs, the failure modes will be further studied based
on the reinforcement strains at these potential critical
sections.
The longitudinal bar strains and stirrup strains at mid-span

and the L/4-section of MEM-1:5, MEM-1:1 and MEM-1:0
are shown in Figs. 9, 10 and 11, respectively. For MEM-1:5
and MEM-1:1, as shown in Figs. 9 and 10, respectively, at
the ultimate state, longitudinal bars at mid-span got very
large strains up to ultimate strain both in tension and in
compression, while longitudinal bars and stirrups at the L/4-
section did not reach yield strain, which confirms that flex-
ural failure occurred while shear failure did not. For MEM-
1:0, as shown in Fig. 11a, at the ultimate state, longitudinal
bars at mid-span also got very large tensile and compressive
strains up to ultimate strain, which confirms that flexural
failure occurred. As to the L/4-section, as shown in Fig. 11c,
d, at the ultimate state, one longitudinal bar and portion of
stirrups reached yield strain. Nevertheless, it can be also seen
from Fig. 11c, d that the longitudinal bar strains and stirrup
strains at the L/4-section were very small when the torque

Table 3 Ductility coefficient of beam specimens.

Rotational ductility coefficient Deflection ductility coefficient

MEM-1:5 9.2 10.3

MEM-1:1 9.3 9.5

MEM-1:0 8.4 No deflection

Fig. 8 Photos of external surface of loaded web at L/4-span at ultimate state: a MEM-1:5, b MEM-1:1, and c MEM-1:0.

International Journal of Concrete Structures and Materials



was less than the first yielding torque of the longitudinal bar
at the support (i.e. 88.2 kNm), and thereafter the strains
increased rapidly. That is to say, the effect of shear stress at
the L/4-section was much weaker than the effect of normal
stress at mid-span and support. The shear failure won’t
occur.
As flexural failure occurred for all the three beam speci-

mens, more attention should be paid to mid-span and sup-
port. It can be seen from Fig. 9a that for MEM-1:5,
longitudinal bar strains in the loaded half U-section (red
lines) were larger than those in the unloaded half U-section
(black lines); and from Fig. 10a, for MEM-1:1, longitudinal
bars in the loaded half U-section got very large strains while
those in the unloaded half U-section got small strains. In
addition, from Fig. 11a for MEM-1:0, longitudinal bars in
the loaded and unloaded half U-sections got basically equal
strains. To clarify, the distributions of measured longitudinal
bar strains around the mid-span cross section at first yielding
load are shown in Fig. 12. It can be seen from Fig. 12a that
for MEM-1:5, the loaded and unloaded half U-sections are
bent in the same direction, and longitudinal bars in the
loaded half U-section got larger strains than those in the

unloaded half U-section. That is to say, for MEM-1:5, the
vertical cracks, longitudinal bar strains and flexural failure
were dominated by the bending moment, and the effect of
the small warping moment made the loaded half U-section a
bit more critical than the unloaded half U-section. As can be
seen from Fig. 12b for MEM-1:1, longitudinal bars in the
loaded half U-section got very large strains while strains of
longitudinal bars in the unloaded half U-section were small.
That indicates that the vertical cracks, longitudinal bar
strains and flexural failure were dominated by a combined
action of bending moment and warping moment, and after
the interaction of warping normal stress and bending normal
stress of basically equal magnitude, the normal stress
resultant on the loaded half U-section was large while that on
the unloaded half U-section was small. For MEM-1:0 shown
in Fig. 12c, the two webs of the U-shaped section were bent
under the warping moment. The vertical cracks, longitudinal
bar strains and flexural failure were dominated by the
warping moment. It is worthwhile mentioning that for the
U-shaped thin-walled RC beam under pure torsion tested by
Krpan and Collins (1981a), although the final failure of the
beam specimen was initiated by the unexpected anchorage

Fig. 9 Reinforcement strains of MEM-1:5. a Longitudinal bars strains at mid-span, b stirrup strains at mid-span, c longitudinal bars
strains at quarter span, and d stirrup strains at quarter span. aThe ‘‘LW’’ and ‘‘UW’’ mean ‘‘Loaded Web’’ and ‘‘Unloaded
Web,’’ respectively.

International Journal of Concrete Structures and Materials



failure of the longitudinal bar, there was no doubt that the
failure was also dominated by the warping just like MEM-
1:0, with flexural cracking at mid-span and support ahead of
diagonal cracking at L/4, as well as yielding of the longi-
tudinal bar at mid-span and support ahead of stirrup yielding
at L/4.
It can be also seen from Fig. 12 that for the three beam

specimens, longitudinal bar strains changed in a linear
fashion around the U-shaped section, which agrees with the
distribution of normal stresses induced by the bending and
warping moment.

4. Method to Calculate the First Cracking
Load and the Ultimate Load

A method to calculate the first cracking (i.e. flexural
cracking) load and the ultimate load of the U-shaped thin-
walled RC beams under combined actions of torsion,
bending and shear will be suggested here. Considering the
experimental results that, for all three beam specimens under
different T–M ratios, the ductile flexural failure was domi-
nated by the warping moment and bending moment at mid-

span and at support, and the shear action (combined shear
action of shear force and torque) at mid-span and at support
is very weak and negligible. This was reflected by the
extremely small stirrup strains at mid-span shown in
Figs. 9b, 10b and 11b; thus the algorithm is measured by the
normal stresses caused by the warping moment and bending
moment at support and mid-span, where the shear effect is
neglected.

4.1 Calculation of the Flexural Cracking Load
At support or at mid-span, the concrete would crack when

the normal stress resultant of bending normal stress rb and
warping normal stress rx exceeded the tensile strength of
concrete, i.e. 0:63

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 0c ðMPaÞ
p

(318 2014). As stated in
Sect. 3.1, referring to Fig. 3b, for MEM-1:5 and MEM-1:1,
the maximal normal stress resultant is located on the top of
the loaded web at support, and for MEM-1:0, the maximal
normal stress resultant is located on the top of the loaded
web at support and on the top of the unloaded web at mid-
span. Considering the beam flexural theory, the maximum
normal stress by the bending moment can be obtained:

Fig. 10 Reinforcement strains of MEM-1:1. a Longitudinal bars strains at mid-span, b stirrup strains at mid-span, c longitudinal
bars strains at quarter span, and d stirrup strains at quarter span. aThe ‘‘LW’’ and ‘‘UW’’ mean ‘‘Loaded Web’’ and
‘‘Unloaded Web,’’ respectively.
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rb;max ¼
Mb

I
ymax ð1Þ

where I is the moment of inertia and y is the distance from
the neutral axis to the maximum tensile stress point. Based
on the theory (Vlasov 1961), when a fixed–fixed open thin-
walled member is subjected to a concentrated torque T at

mid-span, the warping moment Mx(z) along the beam span
can be obtained by:

MxðzÞ ¼ 0:5T
chðazÞ � ch½aðL=2� zÞ�

a � shðaL=2Þ ð0� z� L=2Þ

ð2Þ

Fig. 11 Reinforcement strains of MEM-1:0. a Longitudinal bars strains at mid-span, b stirrup strains at mid-span, c longitudinal
bars strains at quarter span, and d stirrup strains at quarter span. aThe ‘‘LW’’ and ‘‘UW’’ mean ‘‘Loaded Web’’ and ‘‘Unloaded
Web,’’ respectively.

Fig. 12 Distributions of measured longitudinal bar strain around mid-span cross-section: a MEM-1:5, b MEM-1:1, and c MEM-1:0.
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where L is the span length, a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GK=EcIxx
p

is the cross-
sectional stiffness ratio between circulatory torsion and
warping torsion, Ec is the elastic modulus of concrete, G is
the concrete shear modulus taken as 0.4Ec, K ¼

P

t3i bi=3 is
the St. Venant’s torsional constant and Ixx ¼

R

A x
2dA is the

principal sectorial moment of inertia, in which x is the
principal sectorial coordinate. For the support section, z = 0,
denoting C ¼ ½chðaL=2Þ � 1�=½a � shðaL=2Þ�; the warping
moment at support can thus be obtained from Eq. (2) as:

Mxð0Þ ¼ �TC=2 ð3Þ

The normal stress produced by the warping moment can be
calculated by:

rx ¼ Mx

Ixx
x ð4Þ

Thus, the maximum normal stress produced by the warping
moment can be obtained by:

rx;max ¼
Mxð0Þ
Ixx

xmin ¼ � TC

2Ixx
xmin ð5Þ

The maximal tensile stress under combined action of
warping moment and bending moment can be obtained by
adding Eqs. (1) and (5),

rmax ¼
Mb

I
ymax þ � TC

2Ixx
xmin

� �

ð6Þ

Introducing the tensile strength of concrete rmax ¼
0:63

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 0c ðMPaÞ
p

and the T–M ratios of 1:5, 1:1 and 1:0 into
Eq. (6), then the flexural cracking load of MEM-1:5, MEM-
1:1 and MEM-1:0 can be obtained, respectively.
Apart from the three beam specimens tested in this paper,

the cracking torque of the U-shaped thin-walled RC beam
specimen under pure torsion tested by Krpan and Col-
lins(1981a) is also calculated by the proposed method
(denoted as MEM-Collins-1:0). The comparison of the testing
results and calculated values was shown in Table 4. As shown
in Table 4, the predictions of flexural cracking torque are good

(with an average test/calculation ratio of 1.04) and the dis-
persion is acceptable (with a coefficient of variation of 11.5%).

4.2 Calculation of the Ultimate Load
Considering the interaction of bending normal stress and

warping normal stress, for MEM-1:5 and MEM-1:1, the
flexural failure modes have confirmed that the loaded half
U-section is more critical than the unloaded half U-section
(see details in Sects. 2.3 and 3.4). As for MEM-1:0, the
flexural failure mode was dominated by the warping
moment, the loaded half U-section was also critical as the
unloaded half U-section. Therefore, for U-shaped thin-wal-
led RC beams with different T–M ratios, the ultimate bearing
capacity could be determined with the loaded half U-section
at support and mid-span considering the combined actions of
the bending moment and warping moment.

4.2.1 Equivalent Action Acting on the Loaded Half
U-Section at Mid-Span
Under the warping moment, according to the theory

(Vlasov 1961), the distribution of warping normal stress at
mid-span was shown in Fig. 13. As shown in Fig. 13, since
the warping moment is a self-balancing internal force, con-
sidering the anti-symmetrical distribution of warping normal
stress about axis y1 and the interaction of warping normal
stress and bending normal stress (superposition on the loa-
ded half U-section while counteracting on the unloaded half
U-section, details in Sect. 2.3), as well as considering the
test results that the loaded half U-section was critical for all
three beams, it is assumed that the effect of warping normal
stress can be considered on two divided half-U-sections (i.e.
loaded half U-section and unloaded half U-section). The
warping normal stress acting on the loaded half U-section
can be integrated as an equivalent moment Meq ¼
R

A rxy1 � dA acting around the neutral axis and an axial force
Neq ¼

R

A rxdA acting at the neutral axis. Also, the bending
moment acting on the U-section can be considered on two
divided half-U-sections, with 0.5 Mb for each. As a result,
for MEM-1:5 and MEM-1:1 under combined actions of the
warping moment and bending moment, a combined action of

Table 4 Comparison of test cracking torque and calculated cracking torque.

Beams Cracking torque (kNm) Test/calculation

Test Calculation

MEM-1:5 4.5 4.7 0.96

MEM-1:1 9.6 10.2 0.94

MEM-1:0 17.3 16.9 1.02

MEM-Collins-1:0 23 18.5 1.24

Average value 1.04

SD 0.12

Coefficient of variation 11.5%
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a moment Meq ? 0.5 Mb and an axial force Neq act on the
loaded half U-section. And for MEM-1:0, a moment Meq and
an axial force Neq act on the loaded half U-section. Consid-
ering Eqs. (2) and (4), denoting g1 ¼

R

A x � y1 � dA; g2 ¼
R

A x � dA :

Meq ¼
Z

A
rx � y1 � dA ¼

Z

A

Mxð0:5LÞ
Ixx

x � y1 � dA ¼ TC

2Ixx
g1

ð7Þ

Neq ¼
Z

A
rx � dA ¼

Z

A

Mxð0:5LÞ
Ixx

x � dA ¼ TC

2Ixx
g2 ð8Þ

4.2.2 Ultimate Equilibrium Equation on the
Loaded Half U-Section at Mid-Span
According to the method of calculating the bending

capacity of RC shear walls (GB50010 2010), the stress
distribution of the loaded half U-section at the ultimate stress
state was shown in Fig. 14. The following four assumptions
are made: (a) The compression was resisted by compressive
concrete and compressive bars on the top, neglecting the
contribution of distributing bars; (b) the contribution of
tensile concrete is disregarded. The tension was resisted by
bottom tensile bars and partial distributing bars; (c) All
tensile bars at the bottom got ultimate strength, where the
nonuniformity of warping normal stress in the bottom slab
(Fig. 13) is neglected, considering that at the ultimate state, a
longitudinal bar at measuring point 5 got ultimate strain
(Figs. 9a, 10a and 11a); (d) since the stress near the neutral
axis is low, only distributing bars located beyond 1.5 times
the depth of the compression zone are considered to con-
tribute to the tensile resistance.

According to ACI 318-14 (2014), the compressive stress
of concrete in the compression zone was represented by the
equivalent rectangular stress block and has a uniform value
of 0.85fc, where fc is the compressive strength of concrete
obtained from the standard prism test. Thus, referring to
Fig. 14, the axial force equilibrium equation and the moment
equilibrium equation of the loaded half U-section can be
derived as follows:

fyAs þ fyAsdðh0 ¼ 1:5xÞ=hd � 0:85fcbx� f 0y A
0
s ¼ Neq

¼ TC

2Ixx
g2 ð9Þ

fyAsðh0 ¼ 0:5xÞ þ fy½Asdðh0 � 1:5xÞ=hd�ð0:5h0 þ 0:25xÞ
þ f 0y A

0
sð0:5x� a0Þ

¼ ðMeq þ 0:5MÞ þ Neqðh0 � 0:5xÞ

¼ TC

2Ixx
g1 þ 0:5M

� �

þ TC

2Ixx
g2ðh0 � 0:5xÞ

ð10Þ

where Asd is the area of all distributing bars, x is the depth of
a concrete equivalent rectangular stress block and the
effective area of distributing bars can be expressed by
Asd(h0 – 1.5x)/hd and fy and f 0y are the ultimate tensile stress
and compressive stress of longitudinal bars, respectively,
where absolute value is applied for f 0y . Introducing the T–M
ratios of 1:5, 1:1 and 1:0 into Eqs. (9) and (10), then the
mid-span ultimate torque of MEM-1:5, MEM-1:1 and
MEM-1:0 can be obtained, respectively. By the same algo-
rithm, the support ultimate torques can be obtained, and the
smaller one between the mid-span ultimate torque and the
support ultimate torque is the true ultimate torque. To
illustrate the proposed method, the calculation of cracking
torque and ultimate torque of MEM-1:1 is shown in
Appendix.

4.2.3 Comparison of Calculating Results
and Testing Results
The ultimate capacities of the four beam specimens

including MEM-Collins-1:0 are calculated with the proposed
method. The comparison of testing results and calculating
values was shown in Table 5. As shown in Table 5, the
average ratio of the test results and predicted ultimate torque
with the proposedmethod is 1.04, and the variation coefficient

Fig. 13 Equivalent action of normal stresses by warping
moment at mid-span.

Fig. 14 Stress condition of the loaded half U-section at the ultimate state.
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is 3.8%. This means that the proposed method can accurately
predict the ultimate capacities of the U-shaped thin-walled RC
beams under combined actions of bending, shear and torsion.
Also, the ultimate capacities are calculated with the

method proposed by Elfgren et al. (1974) and with the
method proposed by Luccioni et al. (1991). As can be seen
from Table 5, according to the method proposed by Elfgren
and Karlsson et al., the average ratio of test results and
calculated results was 1.29, which should be attributed to the
fact that the method based on the skew bending theory did
not take into account the restrained torsion mechanism. For
the calculation method proposed by Luccioni and Reimun-
din et al., as shown in Table 5, the average ratio of test
results and predicted ultimate torques is 0.8. The reason for
overestimating the ultimate capacities is that although the
restrained torsion mechanism was considered, the effect of
warping moment is underestimated.

5. Conclusions

Based on the testing results and analysis of the U-shaped
thin-walled RC beams under different T–M ratios of 1:5, 1:1
and 1:0, the following conclusions could be drawn:

1. Ductile flexural failures occurred on the three beam
specimens, which were dominated by the combined
actions of the bending moment and warping moment.
Specifically, for T–M ratios of 1:5, flexural failure was
mainly dominated by the bending moment; for T–M
ratios of 1:1, flexural failure of the loaded half
U-section was dominated by the combined action of
the bending moment and warping moment, while
normal stress resultant on the unloaded half U-section
was very small; for T–M ratios of 1:0, antisymmetric
flexural failure of the two webs was dominated by the
warping moment.

2. As the T–M ratio increased, the combined shear stress
resultant of circulatory torque, warping torque and shear
force increased, reflecting more diagonal cracks and
larger stirrup strains.

3. The three beam specimens under different T–M ratios
showed good ductile performance, with a deflection
ductility coefficient larger than 9.0 and rotational
ductility coefficient larger than 8.0.

4. A simple method to calculate the flexural cracking
torque and the ultimate torque of the U-shaped thin-
walled RC beams under combined actions of torsion,
bending and shear was suggested, and the calculated
results were corresponding well with the testing results.
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Appendix: Calculation of MEM-1:1

The cracking torque and ultimate torque of MEM-1:1 are
calculated to illustrate the proposed method.

Table 5 Comparison of test ultimate torques and calculated ultimate torques.

Beams Ultimate torque (kNm) Test/calculation

Test Proposed method Elfgren et al.
(1974)

Luccioni et al.
(1991)

Proposed method Elfgren et al.
(1974)

Luccioni et al.
(1991)

MEM-1:5 34.8 35.5 28.9 38.3 0.98 1.20 0.91

MEM-1:1 92.0 88.5 71.8 111.5 1.04 1.28 0.83

MEM-1:0 147.0 139.0 107.3 198.2 1.06 1.37 0.74

MEM-Collins-
1:0

266.0 248.9 198.7 369.8 1.07 1.34 0.72

Average value 1.04 1.29 0.80

SD 0.04 0.07 0.07

Coefficient of
variation

3.8% 5.4% 8.8%
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(1) Calculate the geometric properties of the U-section
The centroid coordinate and the principle sectorial
coordinate on the U-section are respectively shown in
Fig. 15a, b, according to which the moment of inertia is
I ¼

R

A y
2dA ¼ 0:0029 ðm4Þ; the circulatory torsional

constant is K ¼
P

t3i hi=3 ¼ 0:0002 ðm4Þ and the
sectorial moment of inertia is Ixx ¼

R

A w
2dA ¼

0:00034 ðm6Þ:
(2) Calculate the cracking torque

For MEM-1:1, the concrete modulus of elasticity is
E = 34.5 9 109 (Pa), and the shear modulus is taken as
G = 0.4E = 13.8 9 109 Pa. The circulatory torsional
stiffness is GK ¼ 2:76� 106Nm2: The warping tor-
sional stiffness is EIxx ¼ 1:173� 107Nm4: The stiff-
ness ratio is a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GK=EIxx
p

¼ 0:485m�1: The quan-
tity C ¼ ½chðaL=2Þ � 1�=½a � shðaL=2Þ� ¼ 1:376m; ,
where L = 6.65 m.
Substituting I, ymax, C, Ixx and xmin into Eq. (6) gives:

amax ¼
Mb

I
ymax þ � TC

2Ixx
xmin

� �

¼ Mb

0:0029
� 0:342þ 1:376T

0:00068
� 0:1187

ð11Þ

Considering T: Mb = 1:1,

amax ¼
T

0:0029
0:342þ 1:376T

0:00068
� 0:1187 ¼ 367:1T

ð12Þ

Introducing the tensile strength of concrete

ft ¼ 0:63
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 0c ðMPaÞ
q

¼ 3:75� 106 � Pa gives
rmax ¼ 367:1T ¼ ft ¼ 3:75� 106 ð13Þ

Then the cracking torque Tcr = 10.2 kNm.

(3) Calculate the ultimate torque
The ultimate torque of the beam specimen is the
smaller one between the ultimate torque determined on
the mid-span section and that determined on the
support section. The algorithm is the same. Here, the
mid-span ultimate torque is calculated to illustrate the
calculation method. To obtain ultimate torque, the

quantity g1 ¼
R

A

x � y � dA ¼ 4:738� 10�4m5 and g2 ¼
R

A

x � dA ¼ 1:581� 10�4m4 are calculated first. Then

Substitute C, Ixx, g1 and g2 into Eqs. (9) and (10); also

substitute fy = 573.3 9 106 Pa, f 0y ¼ 353:3� 106 Pa;

As ¼301:44�10�6 m2;Asd ¼ 703:36� 10�6 m2; A0
s ¼

100:48� 10�6 m2; h0 ¼ 0:486m; hd ¼ 0:472m;

h0 ¼ 0:286m; a0 ¼ 0:014m; fc ¼ 35:4� 106 Pa into
Eqs. (9) and (10). Since T: Mb = 1:1, the bending
moment M in the equations can be replaced by torque
T:

fyAs þ fyAsdðh0 ¼ 1:5xÞ=hd � 0:85fcbx� f 0y A
0
s ¼

TC

2Ixx
g2

ð14Þ

fyAsðh0 ¼ 0:5xÞ þ fy½Asdðh0 � 1:5xÞ=hd�ð0:5h0 þ 0:25xÞ
þ f 0y A

0
sð0:5x� a0Þ

¼ TC

2Ixx
g1 þ 0:5T

� �

þ TC

2Ixx
g2ðh0 � 0:5xÞ

ð15Þ

Now, in Eqs. (14) and (15), only two unknown variables
exist, which are torque T and compression depth
x. Therefore, the ultimate torque at mid-span can be
determined by the two coupling equations:
Tu
md = 88.5 kNm.

The ultimate torque at support can be determined by the
same algorithm: Tu

sp = 88.9 kNm. Thus, the ultimate torque
of MEM-1:1 is Tu = 88.5 kNm.
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