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Abstract: In this paper, an analytical model to rationally evaluate the shear strength of reinforced concrete beams with stirrups

has been developed. In the developed model, a shear critical section has been idealized with a single web element for shear and the

top and bottom chords for flexure, respectively. With the longitudinal strain at the mid-depth in the shear critical section, evaluated

from the flexural analysis, the web element has been analyzed, based on the analysis procedure modified from the modified

compression field theory finite element formulation. Through the comparison with the test results of 201 reinforced concrete beams

with stirrups exhibiting shear failure before flexural yielding, it was investigated that the developed model well predicted the actual

shear strength of reinforced concrete beams with stirrups. In addition, it was investigated that the developed model rationally

considered the effect of main parameters such as concrete compressive strength, shear span–depth ratio, stirrup ratio, and member

depth. Through simplification, the developed model can be useful to develop more rational shear design provisions for reinforced

concrete members with stirrups.

Keywords: shear, shear strength, stirrup, MCFT, diagonal crack angle.

1. Introduction

Although a number of researches have been conducted to
evaluate shear strength of reinforced concrete beams for the
last century, it is still hard to well predict actual shear
strength because shear behavior of reinforced concrete
beams is very complicating due to many parameters such as
concrete compressive strength, stirrup ratio, shear span-to-
depth ratio, longitudinal reinforcement ratio, and so on (Kim
2004; Lee et al. 2010; Labib et al. 2013; Russo et al. 2013;
Mofidi and Chaallal 2014; Jeong and Kim 2014; Chiu et al.
2016; El-Sayed and Shuraim 2016). On evaluating shear
strength of reinforced concrete beams, even shear design
provisions around the world are much different through each
other, even from theoretical basis, specifically for reinforced
concrete beams with stirrups (Eurocode 2 2004; ACI 318
2014; CSA A23.3 2014).
For reinforced concrete beams with stirrups and with not

small shear span-to-depth ratio, ACI 318-14 (2014) simply
evaluates shear strength as sum of concrete and stirrup contri-
butions (Vc and Vs, respectively), based on 45� truss model. In
this provision, Vc is affected neither by stirrup ratio nor by

deformation due to flexure since only force equilibrium is
considered. Eurocode 2 (2004) acknowledges only contribution
of stirrups on evaluating shear strength of reinforced concrete
beams with stirrups, based on variable angle truss model. In
Eurocode 2, only force equilibrium is considered with variable
diagonal angle of compression strut while deformation due to
flexure is not considered. CSA A23.3 (2014) is based on the
variable truss angle model as like Eurocode 2, but it considers
effect of deformation due to flexure on evaluating contribution
of concrete and stirrups for shear strength. CSA A23.3 con-
siders that deformation of web due to flexure affects shear
strengths provided by concrete and stirrups since it was devel-
oped through simplifying the Modified Compression Field
Theory (Vecchio and Collins 1986), which can consider com-
patibility and equilibrium together.
For reinforced concrete beams with small shear span-to-

depth ratio, ACI 318-14 recommends to employ strut-and-tie
model. On the other hand, Eurocode 2 provides a simple
method; applied shear force within short shear span can be
artificially reduced so that more shear force can be resisted
by acknowledging effect of arch action.
As summarized in the above and Table 1, even theoretical

basis is quite different through the shear design provisions,
so predictions show relatively lots of scatter on shear
strength of reinforced concrete beams with stirrups. There-
fore, this paper focuses on development of an analytical
model which can rationally considers effect of arch action,
contribution of concrete, and diagonal angle of compression
strut in reinforced concrete web all together. In order to
simply evaluate effects of the main parameters, the analytical
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model is developed to be much simpler than section analysis
with layers model (Bentz 2001; Guner and Vecchio 2008).

2. Development of Single Web Shear
Element Model

2.1 Idealization of a RC Beam for Modelling
To evaluate shear strength of a reinforced concrete beam

with stirrups subjected to flexural shear, the reinforced
concrete beam is idealized to have three layers; top com-
pression chord, single web shear element, and bottom ten-
sion chord, as illustrated in Fig. 1.
In the idealized reinforced concrete beam under the con-

centrated load (P) in Fig. 1, the followings are fundamen-
tally assumed; (1) the top compression and bottom tension
chords fully resist the flexural moment caused by the con-
centrated load; (2) the web shear element along with the top
compression chord supports shear stress developed in the
RC beam. Based on the assumption that the top compression
chord is not cracked while the web shear element is cracked,
shear stress exhibits parabolic distribution through the non-
cracked region based on Gere and Goodno (2013) while it
exhibits a uniform distribution through the web shear ele-
ment, as presented in Vecchio and Collins (1988) where
shear stress distribution was analyzed for RC beams with
rectangular section; and (3) critical section is located at the
middle of the main diagonal crack based on Collins et al.
(1996). Figure 2 illustrates the idealized shear stress distri-
bution along depth.

2.2 Flexural Behavior with Top and Bottom
Chords
Adopting Bernoulli’s hypothesis, linear longitudinal strain

distribution along the cross section of the RC beam can be
considered. To satisfy force equilibrium to the longitudinal

direction, compression at the top of the section is assumed to
be fully resisted by the concrete section while the tension at
the bottom of the section is resisted by the longitudinal
tensile reinforcement. Thus, the following equation can be
derived;

�ec � Ec � Ac;top ¼ es � Es � As ð1Þ

where ec and es are the longitudinal strains at the top and
bottom chords due to the bending moment. In satisfying the
above equation, it should be noted that the concrete and
main longitudinal tensile reinforcement still exhibit a linear–
elastic behavior as most reinforced concrete beams in liter-
ature exhibit shear failure before yielding. If nonlinearity is
exhibited due to significant flexural bending moment,
Eq. (1) should be modified accordingly to consider the
stress–strain response of the concrete and reinforcements.
After diagonal cracking, the web shear element is sub-

jected to additional longitudinal compressive force. The
longitudinal compressive force on the web shear element due
to shear force is defined as follows:

Nx ¼ rx � bw � z ð2Þ

where Nx is longitudinal compressive force on the web shear
element due to shear force.
The longitudinal compressive force on the web shear

element due to shear force is assumed to be equally shared
by the top and bottom chords in order to satisfy force
equilibrium through the section. Taking the flexural moment
applied on the critical section, M, and considering the shear
force contribution, the subsequent equations for strains at the
top and bottom chords are derived considering the effect of
the longitudinal compressive force on the web shear
element:

P

Rebar

0.5 cotd

d cotV

0.5 cot

0.5 cot

T V

C V

web
Shear

element

Top compression chord

Fig. 1 Idealization of a RC beam.

Table 1 Comparison through shear design provisions for RC beams with stirrups.

Vc Vs Main diagonal angle (h)

ACI 318-14 (2014) Vc ¼ 0:17
ffiffiffiffi

f 0c
p

bwd Vs ¼ Avfvyd=s 45�

Eurocode 2 (2004) – Vs ¼ Avfvyz=s 21.8�–45.0�

CSA A23.3 (2014) Vc ¼ b
ffiffiffiffi

f 0c
p

bwz Vs ¼ Avfvyz cot h=s C 29.0�
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ec þ Dec ¼ � M

z
þ Nx

2

� �

1

Ec � Ac;top

� �

ð3Þ

and

es þ Des ¼
M

z
þ Nx

2

� �

1

Es � As

� �

ð4Þ

where Dec and Des are the additional longitudinal strains at
the top and bottom chords due to the shear force, and z is the
internal lever arm length which can be chosen to 0.9 times
the effective depth of the section. From Eqs. (1)–(4), the
strains at the top and bottom chords can be calculated for a
given flexural moment at the section.

2.3 Longitudinal Strain and Shear Stress
at a Shear Critical Section
Using Eqs. (1)–(4), the longitudinal strain at the mid-

depth ex, can be calculated as following:

ex ¼
ec þ Dec þ es þ Desð Þ

2

¼ 1

Es � As
þ 1

Ec � Ac;top

� �

� M

z
þ Nx

2

� �

ð5Þ

This calculation is done by employing numerical analysis
until the force equilibrium to the longitudinal direction is
satisfied. The calculated longitudinal strain serves as repre-
sentative longitudinal strain in the web shear element.
Therefore, it is taken into an account for shear analysis of the
web shear element.
By considering the shear stress distribution as described in

Fig. 2, the contribution of the top compression chord on the
shear force is calculated to 0.07 V by considering geomet-
rical shape of shear stress distribution. Therefore, 0.93 V is
resisted by the web shear element. Since the shear stress
distribution is constant through the web shear element, the
shear stress acting on the web shear element can be evalu-
ated as following;

sxy ¼ 0:93
V

b � z ð6Þ

where V is the shear force in the critical section.

Taking the shear span in the RC beam subjected to a
concentrated load, the flexural moment is observed to vary
while the shear force remains constant. Therefore, location
of shear critical section should be reasonably chosen for the
analysis. When the principal tensile direction in the web
shear element is h, it can be considered that the critical
section has a distance of 0.5d coth from the concentrated
load (Collins et al. 1996), as illustrated in Fig. 2. In addition,
when the shear span-to-depth ratio is small, the shear force
acting on the web shear element can be significantly reduced
by arch action (Park and Paulay 1975). Consequently, by
adopting the coefficient to consider the arch action intro-
duced in Eurocode 2 (2004), the actual shear force at the
critical section can be calculated as follows:

V ¼
ba=dM

a� 0:5d cot h
for cot h� a=d ð7aÞ

where ba=d ¼ a=2d, not less than 0.25 and not larger than
1.0.
When the shear span-to-depth ratio is too small, the

principal tensile direction in the web shear element is limited
to d cot h� a. In this case, the shear critical section should
be chosen at the middle in the shear span, so the actual shear
force for a given flexural moment can be calculated as
following:

V ¼
ba=dM

0:5a
for cot h[ a=d ð7bÞ

2.4 Shear Analysis for the Web Shear Element
From the flexural analysis with the top and bottom chords,

two parameters are essential to the shear analysis for the web
shear element at the critical section; the shear stress acting
on the web shear element and the longitudinal strain at the
mid-depth. These are calculated for a given flexural moment.
Then, the subsequent shear analysis of the web shear ele-
ment can be done by employing the MCFT (Vecchio and
Collins 1986), which adequately predicts structural behavior
of a reinforced concrete element subjected to bi-axial stress
while considering compatibility, equilibrium, and constitu-
tive relations of the materials together.

Shear stress distribu�on

P

Rebar

0.5 cotd

d

along top chord

along web
shear element

Fig. 2 Idealized shear stress distribution in a RC beam.
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Taking the finite element implementation procedure with
the MCFT derived by Vecchio (1990), which employs a
secant material stiffness formulation, the relationship
between the stresses and strains in the web shear element can
be expressed as:

rf g ¼ D½ � ef g ð8Þ

where frg ¼ frx; ry; rxygT denotes the longitudinal, trans-
verse, and shear stresses, feg ¼ fex; ey; cxygT is longitudinal,
transverse, and shear strains, and [D] is a stiffness matrix of
the web shear element.
Since the web shear element can be considered as a plane

stress element, [D] can be expressed as a 3 9 3 matrix
which can be evaluated for given strains ef g through con-
sidering constitutive relations of the materials, concrete and
steel reinforcements. Therefore, Eq. (8) becomes

rx
ry
sxy

8

<

:

9

=

;

¼
D11 D12 D13

D21 D22 D23

D31 D23 D33

2

4

3

5

ex
ey
cxy

8

<

:

9

=

;

ð9Þ

In the above equation, known variables are the longitudinal
strain at the mid-depth ex and the shear stress acting on the
web shear element sxy, which are calculated from the flexural
analysis. In addition, when the shear span-to-depth ratio is
not so small, the transverse stress of the web shear element
ry can be assumed to 0. Therefore, Eq. (8) has three known
variables ex; ry; cxy

� �

and three unknown variables
rx; ey; cxy
� �

, so it can be decomposed to two parts, then
transformed as follows:

rx ¼ D11ex þ D12ey þ D13cxy ð10Þ

ey
cxy

� �

¼ D22 D23

D32 D33

	 
�1 ry
sxy

� �

� D21

D31

� �

ex

	 


ð11Þ

In the above equations, the entries in the stiffness matrix
(from D11 to D33) are evaluated for given strains in the web
shear element. This indicates that Eqs. (10) and (11) can be

solved for the unknown variables rx,ey, and cxy. Conse-
quently, stresses and strains in the web shear element at a
critical section can be calculated for a given flexural
moment.

2.5 Stiffness Matrix [D] for the Web Shear
Element
As the web shear element is composed of both concrete

and reinforcement, the stiffness matrix [D] is evaluated
through the superposition of a stiffness matrix for concrete
[Dc] and a stiffness matrix for steel reinforcements [Ds]
described as follows:

½D� ¼ ½Dc� þ ½Ds� ð12Þ

2.5.1 Development of the Stiffness Matrix
for the Steel Reinforcements, [Ds]
Since most reinforced concrete beams with stirrups have

longitudinal and transverse reinforcements without any
inclined steel reinforcements, the stiffness matrix for steel
reinforcements can be simply evaluated from the following
equation.

Ds½ � ¼
qsxEsx 0 0
0 qsyEsy 0
0 0 0

2

4

3

5 ð13Þ

where qsx is an equivalent longitudinal reinforcement ratio in
the web shear element, qsy is a stirrup ratio, Esx and Esy are
secant stiffness for the longitudinal reinforcements and
stirrups. Regarding qsx, several researches assumed that the
main tensile longitudinal reinforcements excluding the area
required to resist the bending moment can be acknowledged
to have contribution on the longitudinal behavior of the web
shear element (Paul et al. 1988; Lee and Kim 2004).
However, this assumption undesirably affects the
longitudinal stiffness in the web shear element, specifically
resulted by large bending moments. In this paper, therefore,
equivalent yield strength of the longitudinal reinforcement in
the web shear element is employed by excluding the tensile
stress of the main longitudinal reinforcement due to the
bending moment, instead of reducing the equivalent

2cf

cf

pf

p c 2

2cE

Fig. 3 Principal compressive stress–strain response of con-
crete (Vecchio and Collins 1993).

1cE

crf

1cf

cr 1

Fig. 4 Principal tensile stress–strain response of concrete
(Vecchio and Collins 1982).
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longitudinal reinforcement ratio. Consequently, as the steel
reinforcements in the web shear element undergo an elasto-
plastic behavior, the secant stiffness of the reinforcement in
the web shear element can be evaluated in both directions
with the followings:

Esx ¼
fsx
ex

� fsxy � esEs

ex
ð14Þ

Esy ¼
fsy
ey

� fsyy
ey

ð15Þ

where fsx and fsy are stresses of longitudinal and transverse
reinforcements in the web shear element, respectively. Esx

and Esy are the elastic moduli of the longitudinal and

transverse reinforcements, respectively, and fsxy and fsyy are
the yield strengths of the steel reinforcements.

2.5.2 Stiffness Matrix for Concrete, [Dc]
To develop the stiffness matrix for concrete [Dc], the prin-

cipal strains and its angles in the web shear element should be
calculated, subsequently the principal stresses associated with
these strains can then be evaluated using the constitutive
relations for concrete. For the strains ex, ey, and cxy in the web
shear element, the principal strains e1 and e2, and principal
tensile direction h can be calculated as followings:

e1 ¼
ex þ ey

2
þ R ð16Þ

Set εx
Equa�on(1),(2),(3),(4),(5)

Calculate force at the bo�om chord

Calculate strain at the bo�om chord
)

Check 

Calculate τxy
Equa�on(6),(7a),(7b)

No
Yes

Assume strain at the top, εc

Calculate force at the top chord

Calculate strain at the top chord
C=T, 

Assume εy and γxy
εy== εx , γxy= εx

Calculate ε1, ε2, θ
Equa�on(16),(17),(18),(19)

Calculate rebar stresses

Calculate concrete stresses
Equa�on(20a),(20b),(21),(22a),(22b),(23)

Set-up the s�ffness matrices
Equa�on(12),(13),(24),(25),(26)

Output results

Calculate εy and γxy
Equa�on(9),(10),(11)

Check convergence on
εy and γxy

No
Yes

Increase

Fl
ex

ur
al

 A
na

ly
si

s Shear Analysis

Fig. 5 Analysis algorithm.
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e2 ¼
ex þ ey

2
� R ð17Þ

h ¼ 1

2
cos�1 ey � ex

2R

� �

ð18Þ

where R is a radius of strain Mohr’s circle, which can be
calculated from

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ex � ey
2

� �2
þ

cxy
2

� �2
r

ð19Þ

The principal compressive stress of concrete fc2 can be
evaluated from the principal compressive strain e2, with the
consideration of the compression softening effect that the

compressive behavior of concrete is softened by increasing
lateral tensile strain in a cracked reinforced concrete as
presented in Fig. 3 (Vecchio and Collins 1993). Based on
Hognestad’s model (Hognestad 1951), the stress–strain
response of concrete along the principal compressive direc-
tion can be calculated as following:

fc2 ¼ fp 2
e2
ep

� e2
ep

� �2
" #

for e2 � ep ð20aÞ

fc2max ¼ bpfc for e2\ep ð20bÞ

where fp ¼ bpf
0
c for the peak compressive stress of concrete,

ep ¼ bpec for the strain corresponding to fp, and bp is a factor
to consider the compression softening effect, which depends

Table 2 Range of parameters in the test results for verification.

Parameters Range of values

Concrete compressive strength (f
0

c ) 13.8–125.3 MPa

Depth (d) 126–925 mm

Shear span-to-depth ratio (a/d) 0.85–6.98

Shear reinforcement (qvfvy) 0.29–5.46 MPa
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Fig. 6 Shear strength prediction results.
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on the principal compressive and tensile strains together
presented in the following equation (Vecchio and Collins
1986).

bp ¼
1

0:8� 0:34 e1
ec

� 1:0 ð21Þ

Considering the principal tensile direction, the tensile
response of the concrete behaves differently before and after
cracking. The stress–strain relationship follows a linear–
elastic behavior before cracking, while tensile stress decays
slowly as the tensile strain increases after cracking due to the
bond interaction between the concrete and the reinforce-
ment; this is known as the tension stiffening effect. By
adopting the tension stiffening model proposed by Vecchio
and Collins (1982) in Fig. 4, the principal tensile stress of

concrete in the web shear element can be calculated as
follows:

fc1 ¼ Ece1 for e1 � ecr ð22aÞ

fc1 ¼
fcr

1þ
ffiffiffiffiffiffiffiffiffiffiffi

200e1
p � fc1;max for e1 [ ecr ð22bÞ

where fcr is the cracking strength of concrete, and ecr is the
cracking strain calculated from ecr ¼ fcr=Ec where Ec is the
elastic modulus of concrete.
In Eq. (22b), fc1;max is the maximum limit of the tension

stiffening effect, which considers local yielding of the steel
reinforcements along crack. For the web shear element
containing longitudinal and transverse steel reinforcements,
fc1;max is calculated as following:

Table 3 Comparison between model predictions (prediction/test).

Model Proposed Eurocode 2 (2004) ACI 318-14 (2014) CSA A23.3 (2014)

Mean value 1.16 1.37 1.39 1.39

CoV 0.22 0.31 0.36 0.32
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Fig. 7 Variation in concrete compressive strength effect.
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fc1;max ¼ qsx fsxy � esEs � fsx
� �

cos2 h
þ qsy fsyy � fsy

� �

sin2 h ð23Þ

Upon deriving the principal stresses in the concrete, the
stiffness matrix for the concrete in the web shear element can
then be developed using the secant stiffness formulation
given as:

Dc½ �0¼
EC1 0 0
0 EC2 0
0 0 Gc

2

4

3

5 ð24Þ

where EC1 ¼ fc1=e1, EC2 ¼ fc2=e2, and Gc ¼
EC1EC2= EC2 þ EC2

� �

as illustrated in Figs. 3 and 4.
To express Dc½ �0 along the longitudinal direction, the

principal tensile stress angle, h, is used to develop a trans-
formation matrix given as:

Tc½ � ¼
cos2 h sin2 h cos h sin h
sin2 h cos2 h � cos h sin h

�2 cos h sin h 2 cos h sin h cos2 h� sin2 h
� �

2

4

3

5

ð25Þ

This is then combined with the local stiffness matrix for
concrete Dc½ �0 to give the global stiffness matrix for concrete
[Dc] using the equation:

½Dc� ¼ ½Tc�T ½Dc�0½Tc� ð26Þ

2.6 Analysis Algorithm
In Fig. 5, the analysis algorithm describing the overall

process of the proposed model to evaluate shear strength of
RC beams is presented. The algorithm can be divided into
two parts; the flexural analysis part and the shear analysis
part.
In the analysis algorithm, the longitudinal strain ex at mid-

depth in a shear critical section is initially given. With the
given ex, the compressive strain at the top chord ec is
assumed, then forces at the top and bottom chords can be
calculated. Through iterative procedure, strain at the top
chord satisfying force equilibrium along the critical section
can be found. Then, shear stress along the web shear element
sxy can be calculated, which will be used as input for the
shear analysis part. For the shear analysis part, the transverse
strain ey and shear strain cxy are initially assumed. Through
the shear analysis procedure for the web shear element, ey
and cxy can be checked for convergence. If convergence is
attained, it is indicated that the reinforced concrete beam can
resist the applied load. To find the ultimate shear capacity,
the longitudinal strain at the mid-depth ex is gradually
increased, and the whole procedure is repeated again until ey
and cxy diverge. When divergence is occurred, the shear
force at the last analysis step just before the divergence can
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Fig. 8 Variation in effect of member size.
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be defined as ultimate shear capacity of the reinforced
concrete beam. The analysis was conducted with Matlab
(2010).

3. Verification of the Proposed Model

3.1 Database for the Verification
Verification of the proposed model was conducted with

201 test results of RC beams with a rectangular cross section
and stirrups exhibiting shear failure before yielding of the
main longitudinal reinforcement (Clark 1951; Bresler and
Scordelis 1963; Delbaiky and Elniema 1982; Smith and
Vantsiotis 1982; Mphonde and Franz 1984; Hsiung and
Frantz 1985; Elzanaty et al. 1986; Narayanan and Darwish
1987; Johnson and Ramirez 1989; Mau and Hsu 1989;
Roller and Russell 1990; Saram and Al-Musawi 1992; Xie
et al. 1994; Kriski 1996; Yoon et al. 1996; Shin et al. 1996;
McGormley et al. 1996; Tan et al. 1997; Kong and Rangan
1998; Collins and Kuchma 1999; Peng 1999; Oh and Shin
2001; Angelakos et al. 2001; Tompos and Frosch 2002; Cho
2003). The shear strength based on Eurocode 2 (2004), ACI
318-14 (2014) and CSA A23.3 (2014) are also evaluated on
these specimens, and compared against the results from the
proposed model.
Parameters known to affect the shear strength of RC

beams are also investigated to check whether the proposed

model adequately accounts for their contribution in calcu-
lating the shear strength of the RC beams. These parameters
are shown in the Table 2. Noted that the database in the
table consists of 129 beams with a=d[ 2:0 and 72 beams
with a=d� 2:0.

3.2 Comparison Results
The results with the proposed model for 201 RC beams

showed a mean value of 1.16 and a coefficient of variance
(CoV) of 0.22 on the comparison between the experimental
results and predicted values. A graphical representation of
this result is presented in Fig. 6. To investigate the adequacy
of the proposed model on prediction of shear strength for RC
beams, comparison results with the predictions by the ACI
318-14 (2014), Eurocode 2 (2004) and CSA A23.3 (2014)
were also presented in the figure. ACI 318-14 gave a mean
value of 1.37 and a CoVof 0.31 while those of the Eurocode
2 gave a mean value of 1.39 and a CoVof 0.36, and those of
CSA A23.3 was 1.39 and 0.32, respectively; the three shear
design provisions showed larger values for the mean as well
as CoV than those of the proposed model as presented in
Table 3.
Significant difference among the proposed model and the

code provisions can also be found through Figs. 7, 8, 9, and
10 where effects of main parameters on shear strength were
investigated. As can be seen in Fig. 7 and 8, no clear ten-
dency was investigated with the effect of concrete
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compressive strength and member depth on the predictions
for shear strength. On the other hand, as compared in Fig. 9,
the effect of shear span-to-depth ratio was quite clear; ACI
318-14 and CSA A23.3 significantly underestimated shear
strength of reinforced concrete beams with shear span-to-
depth ratio less than 2. Unlike these two design provisions,
predictions by Eurocode 2 were not significantly affected
although it showed lots of scatter from the test results. In the
case of the proposed model, predictions showed good
agreement with the test results regardless of shear span-to-
depth ratio as it considered the effect of arch action with
Eq. (7a).
In addition, clear tendency was investigated with the effect

of shear reinforcement ratio on the predictions for shear
strength. As can be seen in Fig. 10, Eurocode 2 significantly
underestimated shear strength of reinforced concrete beams
with small shear reinforcement ratio because concrete con-
tribution was not acknowledged. On the other hand, the
proposed model still showed good agreement with the test
results since concrete contribution was rationally acknowl-
edged through the analysis of web shear element by
employing the MCFT. It is noted that scatters with ACI
318-14 and CSA A23.3 were mainly due to the effect of
shear span-to-depth ratio as investigated in Fig. 9, not due to
the effect of shear reinforcement ratio.
Figure 11 shows more detailed investigations focused on

angle of concrete compressive strut or diagonal crack which

means how many stirrups have contribution on shear
strength. As can be seen in the figure, the diagonal crack
angle was constant to 45� according to ACI 318-14 while it
was evaluated to 22� in most cases according to Eurocode 2.
From these results, it can be inferred that shear strength
provided by stirrups is generally underestimated by ACI
318-14 while overestimated by Eurocode 2. On the other
hand, the proposed model and CSA A23.3 showed similar
evaluation results on the diagonal crack angle since they
were developed through simplification of the MCFT,
although more scatter was found with the proposed model.
In addition to the diagonal crack angle, contribution of

concrete on the shear strength was also investigated with a
coefficient b, which is used in CSA A23.3 to evaluate the
concrete contribution. The coefficient b can be evaluated
from the following equation;

b ¼ Vn � Vs
ffiffiffiffi

f 0c
p

bd
ð27Þ

Figure 12 shows b values evaluated from the proposed
model and the code provisions. As can be seen in the figure,
b was constant by ACI 318-14 and Eurocode 2; 0.18 and
0.00, respectively. CSA A23.3 evaluated some variation on
b mainly due to the flexural effect on the web. b was pre-
dicted within some range regardless of shear span-to-depth
ratio. Since the effect of arch action was not considered,
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CSA A23.3 generally tended to underestimate shear strength
of reinforced concrete beams with short shear span-to-depth
ratio. On the other hand, the proposed model evaluated that
b increased as shear span-to-depth ratio decreased when the
shear span-to-depth ratio was smaller than 2, since it took the
effect of arch action into the account.
As investigated in Figs. 11 and 12, it can be concluded

that the proposed model well captured stirrup and concrete

contributions together through rational evaluation on diag-
onal crack angle and b coefficient. Consequently, this was
resulted in comparison results that the proposed model
showed good agreement with the test results on shear
strength of reinforced concrete beams with stirrups.
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4. Conclusion

In this paper, a rational analysis model to evaluate shear
strength of reinforced concrete beams with stirrups has been
developed. To develop the analysis model, a reinforced
concrete beam was idealized with top and bottom chords and
a single web shear element, which were designated to resist
flexural bending moment and shear force, respectively. With
consideration of the top and bottom chords, simple flexural
analysis was employed, which gave longitudinal strain at the
mid depth in a shear critical section. With the strain at the
mid-depth, shear analysis was conducted for the single web
shear element which was treated as a cracked orthotropic
reinforced concrete element. For the shear analysis, finite
element analysis procedure based on the MCFT was modi-
fied accordingly to consider the strain at the mid-depth.
Thus, interaction between flexural and shear behaviors in a
reinforced concrete beam could be rationally considered.
For verification of the developed analysis model, 201

reinforced concrete beams with stirrups exhibiting shear
failure were analyzed. The comparison between the test
results and predictions showed that the proposed analysis
model well predicted the actual shear capacities of reinforced
concrete beams while the shear design provisions such as
ACI 318-14, Eurocode 2, and CSA A23.3 showed signifi-
cant scatter on the predictions. Furthermore, contributions of
stirrups and concrete, which were noted to h and b,
respectively, were evaluated with the proposed analysis
model, and compared with the shear design provisions. It
was investigated that the proposed analysis model well
captured effect of main parameters on h as like CSA A23.3,
and it well reflected concrete contribution on shear strength,
especially for beams with small shear span-to-depth ratio.
Although the developed analysis model is more compli-

cating than the shear design provisions, contributions of
concrete and stirrups at the ultimate can be rigorously
evaluated, so it might be useful to develop more rational
shear design provisions through simplification. In addition,
through simple modification, the proposed analysis model
would be useful to evaluate shear strength of reinforced
concrete beams with advanced materials such as steel fibers,
FRP sheets, and so on.
Since the developed analysis procedure considers linear-

elastic behavior for the top and compression chords, the
developed analysis procedure should be adequately modified
to more precisely evaluate shear strength of reinforced
concrete beams exhibiting yielding of main longitudinal
rebars or crushing of top compression chord.
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