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Abstract: Engineered cementitious composites (ECC) possesses characteristics that make it suitable in the zones of high shear

and ductility demand of structural elements; however, there is a lack of an adequate model to predict its shear stiffness. A

theoretical model for the effective shear stiffness of reinforced ECC (RECC) columns is proposed on the basis of the truss-arch

model, with the consideration of the unique property of ECC material. A total of six column specimens subjected to cyclic reverse

loading are conducted, and the main test variables include the shear span-to-depth ratio, the transverse reinforcement ratio and the

axial load ratio. Results show that the shear contribution to the total deflection in the diagonally cracked RECC beam is significant,

and the proposed theoretical model can predict the shear deformation with reasonable accuracy.

Keywords: engineered cementitious composites (ECC), columns, experimentation, shear stiffness, truss, arch.

1. Introduction

Engineered cementitious composites (ECC) invented by Li
et al. (Li 2012; Li and Leung 1992; Li et al. 1993) based on the
basic principle of micromechanics and fracture mechanics is
one of a family of high performance fiber reinforced cement
composite (HPFRCC) (Naaman 1987), which exhibits pseudo
strain hardening and multiple cracking properties under uni-
axial tensile stress. This type of material consists of cement,
mineral admixture, fine aggregates (maximum grain size
usually 0.15 mm), water, admixtures to enhance strength and
workability, and less than 2.0% volume of short fibers. Uni-
axial tensile tests on ECC indicate that multiple fine cracks in
ECC are formed uniformly over the length of the specimen,
and the opening of each crack is usually less than 100 lm,
subsequently, the ultimate tensile strain can exceed 2.0%,
which is several hundred times that of normal concrete.
ECC has attracted the attentions of many researchers

during the past two decades (Yoo and Yoon 2016), due to the
advantages of unique macroscopic pseudo strain hardening,

high energy dissipation capacity and good durability. The
randomly distributed fibers in ECC help to transfer loads at
the internal micro cracks, which leads to the fact that RECC
member can have a relatively higher load carrying capacity
and deformation capacity compared to normal RC member.
Generally, both ultimate strength limit state and service-
ability limit state requirements should be considered in the
structural design. As there is no coarse aggregate in ECC,
the elastic modulus of ECC is usually lower than that of
concrete. Consequently, greater deformation of RECC
member tends to be caused. The design of RECC members
may be controlled by the serviceability limit rather than
strength. In addition, for seismic design, the stiffness of
RECC members of a structure strongly influences the cal-
culated response under seismic action. Therefore, it is
important to accurately predict the effective stiffness up to
yielding of each structural component. Generally, the total
deformation of a structural member can be regarded as the
summation of flexural and shear deformations. However,
even for RC members, the shear mechanisms is not as
clearly elucidated compared to the sound understanding of
flexural behavior, and the shear deformation is usually
underestimated or just neglected. For the newly developed
material, ECC, few researches so far have been reported on
the estimation of shear deformation of ECC members. To
address this issue, an approach to predict the effective shear
stiffness of RECC columns is proposed in the present study,
based on the truss-arch model.
Since the truss concept was first introduced a century ago,

the truss models have wildly used for predicting the ultimate
shear strength of RCmembers, such as the traditional 45� truss
model, constant angle truss model (CATM), variable angle
truss model (VATM), compression field theory (CFT), modi-
fied compression field theory (MCFT), rotating-angle
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softened truss model (RA-STM) and fixed-angle softened
truss model (FA-STM), etc. (ASCE-ACI Committee 445
1998). In terms of the study on shear stiffness or deformation,
Kim and Mander (1999) systematically researched the truss
model and analyzed the shear stiffness of RC columnswith the
VATMwhichwas derived using various numerical integration
schemes. The Programs, VecTor2 (Won and Vecchio 2002)
and Response 2000 (Bentz 2000), were developed based on
MCFT, which can be used to analyze the load–displacement
curves of RC members subjected to the combination of axial
load, shear and flexure. Based on Softened Membrane Model
(SMM) (Hsu and Mo 2010), Mo et al. (2008) developed the
Simulation of Concrete Structures (SCS) program on the
OpenSEES platform to simulate the load–displacement
responses of shear-critical RC elements. Pan et al. (2014)
derived the explicit expression of effective shear stiffness on
the basis of CATM and VATM, which was verified by the
experiment of RC T-section beams.
In the truss-arch model, the shear resistant mechanism is

explicitly considered as the truss action superimposing an
arch action. Arch action in RC members subjected to shear
force has been recognized by many researchers (Ichinose
1992; Kim et al. 1998). Especially, for members with low
shear span-to-depth ratio, if the arch action is not taken into
account, the shear stiffness tends to be underestimated.
Ichinose (1992) presented a truss-arch model and proposed a
design equation to prevent shear failure after the inelastic
flexural deformation, which has been adopted in the Archi-
tectural Institute of Japan Design Guidelines (AIJ 1994). On
the basis of the experimentally measured steel stresses over
the shear span in the RC beams, Kim et al. (1998) proposed
an empirical coefficient, which represents arch action con-
tribution to the total shear capacity. Pan et al. (Pan and Li
2013; Jin and Pan 2015) proposed a new type of truss-arch
model with the consideration of the deformation compati-
bility for both truss model and arch action, and the proposed
model was verified by the shear-critical RC column tests.
The unique tensile strain-hardening property allows

cracked ECC members to carry tensile stresses, and the
tensile stress of cracked ECC can not be directly neglected
like brittle materials such as normal concrete. In the present
study, a theoretical model is proposed on the basis of the
truss-arch model, incorporating the unique properties of
ECC, to predict the effective shear stiffness of RECC col-
umns. Then, six RECC columns subjected to cyclic reverse
loading with various shear span-to-depth ratios, transverse
reinforcement ratios and axial load ratios were studied
experimentally to verify the proposed model.

2. Shear Stiffness for RECC Columns

2.1 Pre-cracking Shear Stiffness
As the applied shear force is less than the cracking shear

force, Vcr, the member keeps diagonally uncracked and its
shear behavior can be considered to be elastic. The shear
stiffness before diagonally cracking, Kv1, can be calculated
through elasticity method, as follows,

Kv1 ¼ GAv ¼
EcAv

2 1þ lð Þ � 0:435EcAv ð1Þ

in which l is the Poisson’s ratio of ECC, and l is equal to
0.15 (Han et al. 2003).

2.2 Truss-arch Model for Fully Diagonally
Cracked Shear Stiffness
The truss-arch model method is employed to calculate the

fully diagonally cracked shear stiffness of a RECC column
in this study. Based on the truss-arch model, the fully
diagonally cracked shear stiffness, Kv2, can be decoupled
into two base components: the truss component, Kt, and the
arch component, Ka. It can be calculated with the following
equation:

Kv2 ¼ Kt þ Ka ð2Þ

In terms of the truss component, constant angle truss model
(CATM) or variable angle truss model (VATM) can be
employed to calculate the fully diagonally cracked shear
stiffness, Kt, of a RECC column. It is well known that struc-
tural members can be divided into two standard regions,
known as B-regions and D-regions (Schlaich et al. 1987),
respectively. Bernoulli’s hypothesis of plane strain distribu-
tion is assumed valid in B-regions, while the strain distribution
along a section is disturbed in D-regions. The cracked shear
stiffness in B-regions of a RECC column can be calculated by
means of CATM, while VATM can be used in D-regions. In
general, in a column with a high shear span-depth ratio,
D-regions only exist near the concentrated loads and supports,
while the other areas can be regarded asB-regions. In this case,
a combined truss model (Fig. 1(a)) should be used to analyze
the shear behavior of the column. However, the use of a
combined truss model is relatively complicated. Pan et al.
(2014) concluded that when the length of shear span
Ls[ dvcothm, the calculated shear stiffness using theCATM is
close to the result calculated by the combined truss model. dv
represents the effective shear depth taken as flexural lever arm
which need not be taken less than 0.9d, hm is the minimum
angle of the inclined strut. To simplify the analysis, only the
CATM, instead of the combined truss model, is used to cal-
culate the shear stiffness of a RECC column with a high shear
span-depth ratio. For a column with a low shear span-depth
ratio, the whole shear span area can be considered as D-re-
gions, andVATMcan be used to describe the shear behavior of
the column (see Fig. 1(b)). The boundary that distinguishes
the high and low shear span-depth ratio can be defined by the
minimum inclined crack angle hm. Therefore, if the relation-
shipLs[ dvcothm is satisfied, the cracked shear stiffness of the
column can be approximately calculated by the CATM;
whereas if Ls B dvcothm, the VATM should be applied. The
determination of the minimum inclined crack angle, hm, will
be discussed later.

2.2.1 Shear Stiffness of CATM
The shear transfer mechanism of a RECC member in

B-regions is revealed in Fig. 2(a). Generally, the inclined
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cracks in B-regions are approximately parallel. When
inclined cracks develop, matrix between two adjacent
inclined cracks carries compressive stress, which can be
considered as a strut. In RC elements, ties in the truss model
just consist of transverse reinforcements; but in RECC ele-
ments, the fiber bridging effect at the cracked interfaces can
persistently carry tensile stresses. Hence, a combination of
transverse reinforcements and fiber bridging effect at the
cracks is considered as ties in the truss model for RECC
columns.
Consider a differential truss in Fig. 2(b) subjected to a

differential shear force dVt, in which the in-plane width of
the tie and strut are dx and dxsinh0, respectively. This dif-
ferential truss can be expressed with the simplified diagram,
as shown in Fig. 2(c). The member forces in the truss sub-
jected to a unit shear force can be easily resolved by the
static equilibrium, and the shear deformation of the differ-
ential truss subjected to dVt can be analyzed based on the
principles of virtual work. When calculating the shear
deformation, the flexural deformation can be eliminated by
assuming that the longitudinal chords (AB and CD in
Fig. 2(c)) are very rigid. Therefore, only the strut BC and the
tie BD are considered when calculating the shear
deformation.
The rigidity of the strut BC in the differential truss model

can be expressed as follows:

ðEAÞBC ¼ Ecbdx sin h0 ð3Þ

in which b and d are the width and effective depth of col-
umn, respectively.
With respect to the tie BD, the rigidity contributed by the

transverse reinforcements is expressed as follows:

EAð ÞBD;s¼
EsAshdx

s
ð4Þ

in which Ash is the cross section area of transverse rein-
forcement at spacing s.
While the rigidity contributed by the fiber bridging effect

of the cracked ECC is assumed as follows:

EAð ÞBD;c¼ cEcbdx ð5Þ

in which c is the reduction factor of the rigidity for cracked
ECC.
The reduction factor c reflects the ratio of degraded

rigidity (when the RECC member fully diagonally cracks) to
uncracked rigidity, and is associated with the strain level
around the cracks of ECC, and the greater the strain is the
less the reduction factor is. Assuming that when the RECC
member was fully diagonally cracked, the transverse rein-
forcement just yielded, the reduction factor c can be then
derived according to strain compatibility between steel and
ECC as follows:

c ¼ n
fcr
fy

ð6Þ

in which fcr and fy are the crack strength of ECC and yield
strength of reinforcing steel, respectively.
Therefore, the total rigidity of the tie BD is as follows:

EAð ÞBD¼
EsAshdx

s
þ cEcbdx ¼ Es

Ash

s
þ cb

n

� �
dx ð7Þ

in which n equals to Es/Ec.
The analysis process of the chord deformations using the

principles of virtual work method is presented in Table 1.
Thus, the shear deformation of the differential truss can be
calculated with the following equation:

Dt ¼
XFfl

EA
¼ dvdVt

Ecbdx

1

sin4 h0
þ 1

cþ nqv

� �
ð8Þ

L

V

D-region

dv

V
A

TM
C

A
TM

V
A

TM
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V
A
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(a)

(b)

Fig. 1 Truss analogy modeling for RECC columns with different k. a Combined truss model for high k b VATM for low k.
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in which qv and fy is the volumetric ratio of transverse
reinforcement to concrete, qv = Ash/(bs).
The corresponding rotation of the differential truss is as

follows:

ht ¼
Dt

dv cot h0
¼ dVt

Ecb cot h0dx
1

sin4 h0
þ 1

cþ nqv

� �
ð9Þ

Then, the differential shear stiffness of the differential truss
can be written as:

dKt ¼
dVt

ht
¼ Ecb cot h0dx

1
sin4 h0

þ 1
cþnqv

ð10Þ

The total shear stiffness of a cracked RECC member based
on the CATM can be then derived by integrating Eq. (10)
through the length of dvcoth0,

Kt ¼
Z dv cot h0

0
dKt ¼

cþ nqvð Þ cot2 h0EcAv

1þ cþ nqvð Þ csc4 h0
ð11Þ

2.2.2 Shear Stiffness of VATM
A diagram of the shear transfer mechanism in D-regions

for a short RECC column is shown in Fig. 3(a). It can be
seen from Fig. 3(a) that the orientation of inclined cracks in
D-regions are different and the cracks are idealized to
intersect in the two diagonal corners. Consider a single
differential truss, consisting of a tie with in-plane width of

Ldx (x ranges from 0 to 1) and two tapered struts with in-
plane width tapered from Ldxsinh1 and Ldxsinh2 to 0
respectively, subjected to a differential shear force dVt

shown in Fig. 3(b). Similarly, the tie in the VATM for a
RECC column also comprises the transverse reinforcements
and the fiber bridging effect at the cracks. The tapered ECC
strut can be idealized as a prismatic strut by averaging the in-
plane width along the strut to simplify the calculation. This
differential truss can be idealized as the simplified calculat-
ing diagram shown in Fig. 3(c). Assuming that the rigidity
of the longitudinal chords in Fig. 3(c) are infinitely rigid, the
shear deformation can be calculated by employing the
principles of virtual work method. The analysis process of
the chord deformations using the principles of virtual work
method is given in Table 2.
The shear deformation of the differential truss can be

calculated with the following equation:

Dt ¼
XFfl

EA
¼ dvdVt

EcAv cot adx
2Bþ 1

cþ nqv

� �
ð12Þ

in which, B ¼ 1þ x2 cot2 a½ �2þ 1þ 1� xð Þ2cot2 a
h i2

:

The corresponding rotation of the differential truss is as
follows:

ht ¼
Dt

dv cot a
¼ dVt

EcAv cot2 adx
2Bþ 1

cþ nqv

� �
ð13Þ

Then, the differential shear stiffness of the differential truss
model can be written as:

θ

V s

V s

s

dv

θ

V s

V s

dv

dx

d v
co

tθ

dx sinθ
f =1

dv

+1

d v
co

t θ

1
sinθ

A C

B D

(a) (b) (c)

Fig. 2 Diagram of CATM.

Table 1 Chord deformations of CATM by the principles of virtual work method.

Member Force Unit load Length Rigidity Deformation

F f l EA Ffl/EA

BC � dVt

sin h0
� 1

sin h0
dv

sin h0
Ecbdx sinh0

dvdVt

Ecb sin
4 h0dx

BD ? dVt ? 1 dv Es
Ash

s þ b
n

� �
dx dvdVt

Es
Ash
s þb

nð Þdx
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dKt ¼
dVt

ht

¼ EcAv cot2 adx

2 1þ x2 cot2 a½ �2þ 1þ 1� xð Þ2cot2 a
h i2� �

þ 1
cþnqv

ð14Þ

By integrating Eq. (14) from 0 to 1, the total shear stiffness
of a cracked RECC member based on VATM can be then
derived as:

Kt¼
Z 1

0
dKt

¼
Z 1

0

EcAvcot2a

2 1þx2cot2a½ �2þ 1þ 1�xð Þ2cot2a
h i2� �

þ 1
cþnqv

dx

ð15Þ

It’s worth noting that a closed-form solution can be hardly
obtained from the Eq. (15). Kim and Mander (1999)
provided several numerical solutions for shear stiffness of
VATM using different numerical integration methods,
including Two-point Gauss, Three-point Gauss, et al. By
comparing the results analyzed by different methods, it can
be concluded that the results are reasonably close. Since the
two-point Gauss integration method can provide the simplest
form of solution with sufficient accuracy, it is selected as the
tool to derive the post-cracking shear stiffness of VATM in

this study. Using the two-point Gauss integration method,
the shear stiffness of VATM can be derived as:

Kt ¼
cþ nqvð ÞEcAv cot2 a

1þ 2 cþ nqvð Þ 1þ 0:04cot2 a½ �2þ 1þ 0:62cot2 a½ �2
n o

ð16Þ

Equation (16) can be further simplified to the following
equation:

Kt ¼
cþ nqvð Þ cot2 aEcAv

1þ 4 cþ nqvð Þ 1þ 0:39 cot2 að Þ2
ð17Þ

2.2.3 Shear Stiffness of Arch Component
The arch component is assumed as a single compressive

strut directed from the compression zone at the top toward
that at the bottom (see Fig. 4). If the column is in double
bending, the inclination of the strut is found from the line
joining the centers of flexural compression at the top and at
the bottom of the column (Fig. 4(a)). If the column is con-
strained with fixed-pinned ends, the inclination of the strut is
formed at the axis at the top and the center of flexural
compression at the bottom of the column (Fig. 4(b)). In the
arch model, the shear deformation is induced by the com-
pression of the strut (Fig. 4(a)). The width of the arch strut is
cacosa, where ca is the effective depth of the strut in the arch
model. And conservatively, effective depth ca is expressed as

α

V s

V s

s

dv

L

dv

dV s

dV s

xL

(1-x)L

Ldx

θ 1

θ 2

Ldxsinθ 1

Ldxsinθ 2

dv

f =1

xL

(1-x)L

+1

-1
sinθ 1

-1
sinθ 2

D

B E

C

A

F

(b)(a) (c)

Fig. 3 Diagram of VATM.

Table 2 Chord deformations of VATM by the principles of virtual work method.

Member Force Unit load Length Rigidity Deformation

F f l EA Ffl/EA

BD � dVt

sin h1
� 1

sin h1
dv

sin h1
EcbL sin h1dx

2
2dvdVt

EcbL sin
4 h1dx

CE � dVt

sin h2
� 1

sin h2
dv

sin h2
EcbL sin h2dx

2
2dvdVt

EcbL sin
4 h2dx

BE ? dVt ? 1 dv Es
Ash

s þ b
n

� �
Ldx dvdVt

Es
Ash
s þb

nð ÞLdx
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ca = x-c, where x is the depth of compressive zone and c is
the thickness of ECC cover. The shear stiffness of the arch
model (Pan and Li 2013) can be calculated with the fol-
lowing equation:

Ka ¼ Ecbca sin
2 ha cos

2 ha ð18Þ

in which ha is the inclination of the strut for a column with
fixed–fixed ends (Fig. 4(a), ha = atan((h-x)/L)) and for a
column with fixed-pinned ends (Fig. 4(b), ha = atan((h–x)/
(2L))). The depth of compressive zone, x, can be estimated
by the following equation proposed by Paulay and Priestley
(1992) for RC members,

x ¼ 0:25þ 0:85
N

f 0c Ag

� �
h ð19Þ

It is worth noting that the ECC material can carry tensile
stress in the tension zone, which may cause greater depth of
compressive zone, compared with the normal concrete. The
method for predicting the depth of compressive zone of ECC
members has not been well studied in resent researches.
Here, the existing equation for RC members is used for
simplicity and conservation. Theoretically, to balance the
sectional tensile force, and therefore, the stiffness due to arch
action will increase, while the predicted shear deformation
will decrease.

2.2.4 Determination of the Minimum Inclined
Crack Angle
As discussed above, the employment of CATM or VATM

for analyzing the shear stiffness should be determined based
on the minimum inclined angle hm. The cotangent of mini-
mum inclined angle, cothm, represents the critical aspect
ratio to utilize CATM; when the aspect ratio is less than
cothm, the VATM should be applied. To determine the
minimum inclined angle, a simplified truss model with two-
point Gauss quadrature can be used, shown as Fig. 5. It is

believed that the minimum inclined crack angle depends on
both flexure and shear components, and will occur at an
inclination that requires the minimum potential energy.
Assuming the truss shown in Fig. 5 is subjected to a unit

shear force, the external work done, EWD, can be written as
the total drift angle of flexure and shear components,

EWD ¼ hf þ hs ð20Þ

As mentioned above, the shear rotation can be obtained as
follows,

hs ¼
1

Kt
¼ 1þ 4 cþ nqvð Þ 1þ 0:39 cot2 að Þ2

cþ nqvð Þ cot2 aEcAv
ð21Þ

The flexural rotation can be induced by the deformations of
the longitudinal chords in Fig. 5. Assuming that the
sectional depth ratio of compression zone of ECC
members is n, and the sectional depth ratio of tension zone
equals to (1-n). The rigidity of the chords in tension (AB,

Va

Va

h
ca=x-c
δa

Δ
a

f a

α c

Va

Va

h/2
ca=x-c

f a

c

x

α

(a) (b)

Fig. 4 Diagram of arch action. a column with fixed–fixed ends b column with fixed pinned ends.

V s

V s

α

θ 2

θ 1

A

B

C

D

E

F

G

H

Fig. 5 Variable angle truss model by two-point Gauss
quadrature.
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BC, and CD in Fig. 5) consists of axial stiffness contributed
by reinforcements and fiber bridging effects of the cracked
ECC, which can be written as,

ðEAÞtens ¼
EsAst

2
þ cEs 1� nð Þbh

n
ð22Þ

Generally, the longitudinal reinforcements in columns are
symmetric about the centroidal axis; therefore, Ast/2 is
applied in Eq. (22), in which Ast is the total area of the
longitudinal reinforcement.
While, the rigidity of the chords in compression (EF, FG,

and GH in Fig. 5) can be expressed as,

ðEAÞcomp ¼
EsAst

2
þ Esnbh

n
ð23Þ

Since no test has been conducted to determine the sectional
depth of compression zone for RECC members, the sectional
depth ratio of compression zone, n, can be estimated by the
following equation (Paulay and Priestley 1992),

n ¼ x

h
¼ 0:25þ 0:85

N

f 0c Ag
ð24Þ

If the VATM with two-point Gauss quadrature shown in
Fig. 5 is subjected to a unit shear force, the deformations of
each chord are listed in Table 3. Then, the flexural drift angle
can be calculated as follows,

hf ¼
Df

L
¼ cot2 a

EcAg

1:46

nqs þ 2c 1� nð Þ þ
0:12

nqs þ 2n

� �
ð25Þ

Therefore, the external work done, EWD, can be written as
the total drift angle of Eq. (21) and (25),

EWD ¼ 1þ 4 cþ nqvð Þ 1þ 0:39 cot2 að Þ2

cþ nqvð Þ cot2 aEcAv

þ cot2 a
EcAg

1:46

nqs þ 2c 1� nð Þ þ
0:12

nqs þ 2n

� �
ð26Þ

Letting a = hm, and dEWD/dhm = 0, the minimum inclined
angle hm can be then derived as,

hm ¼ arctan
0:61þ Av

Ag

1:46
nqsþ2c 1�nð Þ þ 0:12

nqsþ2n

� 	
4þ 1

nqvþc

0
@

1
A

1
4

2
64

3
75

ð27Þ

2.2.5 Determination of Constant Crack Angle
It can be seen from Eq. (11) that the constant crack angle

h0 is the only unknown variable to obtain the shear stiffness
of the CATM. In this study, the constant crack angle h0 is
also derived based on the principle of minimum energy. By
replacing the shear drift angle, hs, in Eq. (26) with Eq. (9)
deduced by the CATM, and letting a = h0, the external work
done, EWD, can be expressed as,

EWD ¼ 1þ cþ nqvð Þ csc4 h0
cþ nqvð Þ cot2 h0EcAv

þ cot2 h0
EcAg

1:46

nqs þ 2c 1� nð Þ þ
0:12

nqs þ 2n

� � ð28Þ

By differentiating Eq. (28) with respect to h0, and letting the
result equals to zero to minimize the external work done, the
constant crack angle h0 can be derived as,

h0 ¼ arctan
1þ Av

Ag

1:46
nqsþ2c 1�nð Þ þ 0:12

nqsþ2n

� 	
1þ 1

nqvþc

0
@

1
A

1
4

2
64

3
75 ð29Þ

2.3 Post-cracking Effective Shear Stiffness
A typical shear force—deformation response of a RECC

column before yielding is shown in Fig. 6. The RECC col-
umn first cracks diagonally when the shear force reaches Vcr,
at which the principal tensile stress in a RECC element
reaches the tensile strength of ECC. Then, the shear stiffness
drops suddenly due to the occurrence of first inclined crack;
and as shear force increases, more inclined cracks form,
which leads to the decease of shear stiffness of the RECC
column. The actual response after cracking is shown as the
curved line AB in Fig. 6. To simplify the calculation for the
effective shear stiffness, the actual shear force–deformation

Table 3 Chord deformations of VATM by two-point Gauss quadrature.

Member Force Unit load Length Rigidity Deformation

F f l EA Ffl/EA

AB cota cota x1L Es
Ast

2 þ c 1�nð Þbh
n

h i
x1L cot2 a

Es
Ast
2 þ

c 1�nð Þbh
n½ �

BC (2 - x1)cota/2 (2 - x1)cota/2 (1 - 2 x1) L Es
Ast

2 þ c 1�nð Þbh
n

h i
L cot2 a 1�x1ð Þ2 1�2x1ð Þ

4Es
Ast
2 þ

c 1�nð Þbh
n½ �

CD cota/2 cota/2 x1L Es
Ast

2 þ c 1�nð Þbh
n

h i
x1L cot2 a

4Es
Ast
2 þ

c 1�nð Þbh
n½ �

EF - cota/2 - cota/2 x1L Es
Ast

2 þ nbh
n

� �
x1L cot2 a

4Es
Ast
2 þ

nbh
nð Þ

FG - x1cota/2 - x1cota/2 (1 - 2 x1) L Es
Ast

2 þ nbh
n

� �
x21 1�2x1ð ÞL cot2 a
4Es

Ast
2 þ

nbh
nð Þ

GH 0 0 x1L Es
Ast

2 þ nbh
n

� �
0

Note x1 = 0.21.
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curve (line AB) can be idealized as the straight solid line AC
(Fig. 6). Assuming the shear stiffness is Kv2 when the col-
umn is fully cracked diagonally, thus, the slope of line AC
can be written as follows:

KAC ¼ Vy � Vcr
Vy

Kv2
� Vcr

Kv1

ð30Þ

The effective shear stiffness between Kv1 and Kv2 (the slope
of the line OP in Fig. 6, and P is an arbitrary point along line
AC) can be further obtained by using the linear interpolation
as follows:

Kveff ¼
V

Vcr

Kv1
þ V�Vcr

KAC

¼ V
Vcr

Kv1
þ V�Vcr

Vy�Vcr
ð Vy

Kv2
� Vcr

Kv1
Þ

ð31Þ

The calculation procedure can be expressed as the flow
chart as shown in Fig. 7.

3. Experimental Program

3.1 Specimens and Material Properties
Six RECC columns, referred to as Specimens E1 * E6,

were tested in this experimental program. All columns had
the same cross section of 300 9 300 mm. The heights of
prepared columns were 500, 600 and 900 mm, and the
corresponding shear span-to-depth ratios were 1.42, 1.75 and
2.75, respectively. The longitudinal reinforcement ratio was
a constant of 1.4% for all specimens. The transverse rein-
forcement ratio qsv was equal to 0.22% for E5 and E6 did
not contain stirrups, while qsv was 0.45% for the others. The
applied axial compression for Specimen E4 was 700 kN,
while it was 350 kN for the others. The detailed information
of specimens is shown in Fig. 8 and Table 4.
The mix proportion of ECCmaterial employed in this study

was based on a high volume of fly ash (the weight ratio of fly
ash to cement is 3.2) and 2.0% PVA fiber in volume fraction.
Based on the tensile uniaxial test results (Pan et al. 2015), the
PVA-ECC materials employed in this study had the tensile
strength ranging from 4 MPa to 4.5 MPa, and the ultimate
tensile strain was ranging from 4.0 to 5.0% at 28 days. A
number of ECC cubes (100 9 100 9 100 mm) and prisms

(100 9 100 9 300 mm) were also prepared and tested in
compression. The tested average cubic compressive strength
of prepared ECC was about 50 MPa, and the corresponding
prismatic compressive strength was approximately 45 MPa.
The elastic modulus of prepared ECC was about 22GPa. The
detailed material properties are listed in Table 5.
The longitudinal steel bars employed in each specimen

were four 20 mm-diameter deformed bars with a yield stress
of 498 MPa. The stirrups used with the specimens were
8 mm-diameter deformed bars with a yield stress of
408 MPa.

3.2 Test Setup and Loading Configuration
The base mat of each specimen was fully fixed, while the

top of the specimen was free to move horizontally. The
transverse load was applied at the top of the column through
a double-action actuator (with force and displacement con-
trol system) with a load capacity of 1000 kN fixed on a
reaction wall. The axial load was applied on the centroid of
the free end section of the specimen through a 1000 kN
hydraulic jack keeping constant throughout the test. During
the test, displacements were measured by means of linear
variable differential transducers (LVDTs), while strains of
reinforcement were measured by means of strain gauges.
The location of strain gauges can be found in Fig. 8. The
axial load was first applied to the target value and maintained
constant by adjusting the readings of instrument panel in the
hydraulic jack during the experiment. In the tests, a force-
control loading program was applied before the longitudinal
reinforcement yielded. The increment of load was initially

δ v1 δ v δ vy Shear deformation

Vcr

V

V y

Shear force

A

P

CB

Kv1

Kveff

Kv2

Uncracked response

Yielding

Fully cracked response

Actural
response Idealized

response

O

Fig. 6 Diagram of effective shear stiffness of RECC columns.

Calculate Kv1 with Eq.(1)

Calculate θm with 
Eq.(27)

L dvcotθm

Calculate θ0 with Eq.(29)

Calculate Kt, using 
CATM (Eq.(11))

Calculate Kt, using 
VATM (Eq.(17))

Calculate Ka, using arch 
model (Eq.(18))

Obtain total shear 
stiffness: Kv2=K t+Ka

Obtain the Kveff with 
Eq.(31) 

NY

Fig. 7 Flowchart showing solution algorithm for effective
shear stiffness.
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50 kN for each step until arriving at 80% of the predicted
yielding load, and then changed the increment of 50 kN into
25 kN. The force-control loading procedure was not chan-
ged until the longitudinal reinforcement yielded. Then, the
specimens were subjected to the cyclic shear force by the
displacement-control loading method with the increment of
each load step equals to the measured yield displacement up
until the shear-resisting capacity drops by more than 20% of
the maximum shear force. In the force-control loading pro-
cedure, all cycles were carried out once, while each dis-
placement level was repeated three times in the
displacement-control loading procedure. The detailed
experiment setup and loading configuration can be found in
the experimental study of ECC columns by Wu et al. (2017).

4. Discussion of Test and Predicted Results

4.1 Crack Patterns and Failure Modes
When the columns failed, main inclined cracks can be

only observed in Specimen E1 which failed by flexure-shear
mode, while others failed by flexure. The crack patterns at
failure are shown in Fig. 9. From Eq. (27), the CATM was
selected to analyze the shear behavior of all the tested col-
umns. It is in accord with the observation, since most of the
inclined cracks were almost parallel to each other in all the

columns as shown in Fig. 9. The measured Vcr, Vy, and
averaged crack angle havg for the tested columns are shown in
Table 6, along with the predicted crack angle hpre by Eq. (29).
After testing, the averaged crack angle havg is obtained by
averaging the measured inclined angles of main diagonal
cracks corresponding to the loading direction in which the
specimen failed at loading moment. The failure point in the
backbone curve is defined as the point at which the lateral
force falls by more than 20% of the maximum shear force,
and then the experiment ends. It is evident that the predicted
crack angles using Eq. (29) are in agreement with the aver-
aged experimentally observed crack angles. Moreover,
Eq. (29) reveals that the inclined crack angle of a RECC
column is dependent on the amount of longitudinal and
transverse reinforcement, as well as the fiber bridging effect.

4.2 Deformation Comparison
To validate the proposed model for calculating the effec-

tive shear stiffness, the total displacements before yielding of
six tested columns, consisting of flexural and shear defor-
mation, were calculated and compared with the measured
data as shown in Fig. 10. In Fig. 10, the test data ‘‘left’’ and
‘‘right’’ mean the data obtained in the negative and positive
loading direction, respectively. The flexural displacement, df,
was obtained by translating the nonlinear moment–curvature
relationship calculated by the strip method into the load–
displacement curve. The shear deformation, ds, was obtained
by ds = V/Kveff, in which the effective shear stiffness Kveff is
calculated by Eq. (3). It’s worth noting that the measured Vcr

and Vy were used directly in calculating Kveff. It can be seen
from Fig. 10 that the calculated flexural deformations are
obviously less than the measured deformations, except for
Specimen E3, which has the highest shear span-to-depth
ratios (k = 2.75). After the columns were cracked diago-
nally, the difference increases significantly between the
calculated flexural deformations and the measured total
deformations of the columns with lower shear span-to-depth
ratios, which indicates that the continuously developed
cracks cause the increase of shear deformation in those
columns. By combining the shear deformation ds calculated
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Strain gauge

D6 @ 80
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 6

00
 o

r 
90

0
55

0
300

30
0

4 D20
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Section A-A

D8 @75 or 150

Fig. 8 Geometry and reinforcement details (unit: mm).

Table 4 Summary of specimen information.

Specimen k P (kN) qsv (%)

E1 1.42 350 0.45

E2 1.75 350 0.45

E3 2.75 350 0.45

E4 1.75 700 0.45

E5 1.75 350 0.22

E6 1.75 350 0

Table 5 Properties of ECC.

Material fcu (MPa) fc (MPa) ft (MPa) et (%) E (GPa)

ECC 49.7 45.0 4.39 4.46 22.2
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by the proposed approach, the calculated load–displacement
curves, with respect to the total displacement (df ? ds), are
in good agreement with the measured responses. The pre-
dicted displacement at yielding for Specimen E3 is slightly
greater than the measured data. This is because the Specimen

E3 has the greatest shear span-to-depth ratio, and conse-
quently the shear contribution to the total deformation was
relatively small compared to the flexural contribution. The
comparison of measured and calculated deformation at
yielding is shown in Table 6.

(b)(a) (c)

(d) (e) (f)

Fig. 9 Crack patterns of specimens at failure. a Specimen E1, b Specimen E2, c Specimen E3, d Specimen E4, e Specimen E5
and f Specimen E6.

Table 6 Summary of experimental and predicted results.

Specimen Vcr (kN) Vy (kN) dy (mm) havg (�) hpre (�) dpre (mm)

E1 200 - 330.05 - 1.84 40 42.5 1.91

330.12 1.92

E2 150 - 280.00 - 3.02 42 42.5 2.90

279.91 3.02

E3 75 - 165.24 - 3.68 45 42.5 4.11

165.92 3.60

E4 200 - 382.09 - 3.09 42 42.8 2.89

380.80 2.84

E5 100 - 202.47 - 2.56 41 41.2 2.54

240.16 2.35

E6 100 - 196.58 - 2.50 40 39.4 2.26

216.24 2.60

Note The negative value represents the data obtained at the negative loading direction.
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4.3 Proportion of Flexural and Shear
Deformation
The percentages of flexural and shear deformations of

each RECC column varied with the ratio V/Vy are shown in
Fig. 11. It can be seen from Fig. 11 that the flexural defor-
mations are greater than the related shear deformations for
all specimens before diagonally cracking. With the devel-
opment of inclined cracks, the proportion of shear defor-
mation increases, and gradually becomes stable. The
proportions of flexural and shear deformations vary with the
different shear span-to-depth ratios. The proportion of shear
deformation decreases with the increase of shear span-to-
depth ratio, and on the contrary, the proportion of flexural
deformation increases. For instance, Specimen E3 with the
highest shear span-to-depth ratio (k = 2.75), the proportion
of flexural deformation exceeds 90% before diagonally
cracking; even if the inclined cracks have fully developed,

the increase rate of shear deformation is much lower than the
other specimens and the percentage of flexural deformation
reduces to around 80%. Compared to Specimen E3, the
increase of shear deformation of Specimen E1 is more sig-
nificant, and when the load level reaches over 0.5Vy, the
percentage of shear deformation goes beyond 50%. Com-
paring the specimens with different transverse reinforcement
ratios, E2 (qsv = 0.45%), E5 (qsv = 0.22%) and E6
(qsv = 0), it can be concluded that the percentage of shear
deformation reduces with the increasing transverse rein-
forcement ratio. For Specimen E6, the percentage of shear
deformation even surpasses that of flexural deformation
when the shear force reaches a certain level after diagonally
cracking. It is evident that shear contribution to the total
deformation for the diagonally cracked RECC columns is
significant, especially for the RECC columns with low shear
span-to-depth ratios.
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Fig. 10 Measured and predicted load–displacement curves of RECC columns. a Specimen E1, b Specimen E2, c Specimen E3,
d Specimen E4, e Specimen E5 and f Specimen E6.
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5. Conclusions

A theoretical model for the effective shear stiffness of
RECC columns is proposed based on the truss-arch model in
this study. From the results of the experimental observation
and the comparison between the tested and predicted, the
following conclusions can be drawn:

1. By assuming that the load–displacement response of
RECC column from the first cracking diagonally to the
yielding is linear, the effective shear stiffness between
the elastic shear stiffness and fully diagonally cracking
shear stiffness is derived using the linear interpolation
method.

2. Based on the truss-arch model, the fully diagonally
cracked shear stiffness is considered as the combination
of a truss component and an arch component. For the

truss component, explicit formulas for calculating the
fully diagonally cracked shear stiffness based on CATM
and VATM were provided, respectively. The selection of
truss model used is determined by the minimum crack
angle which was obtained through the principle of
minimum potential energy. In view of the tensile strain-
hardening behavior of ECC material, the ties in the truss
model for RECC columns were proposed to be
consisted of the transverse reinforcement and the fiber
bridging effect at cracks.

3. Six RECC columns with various shear span-to-depth
ratios, transverse reinforcement ratios and axial loads
were studied experimentally to verify the proposed
model. Comparison of the measured and calculated
deformation of RECC columns indicate that the
observed and calculated crack angles are comparable,
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Fig. 11 Percentage of flexural and shear deformations before yielding of RECC columns. a Specimen E1, b Specimen E2,
c Specimen E3, d Specimen E4, e Specimen E5 and f Specimen E6.
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and the theoretical results using the proposed model of
effective shear stiffness are shown to be consistent with
the shear behavior observed experimentally. By analyz-
ing the proportion of shear and flexural deformation, it
can be concluded that the shear contribution to the total
deformation for the diagonally cracked RECC column is
significant, especially for the RECC columns with low
shear span-to-depth ratios.
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