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Abstract: Tests of the lateral and torsional stability are quite sensitive to the experimental conditions, such as support conditions
and loading system. Controlling all of these conditions in a full-size test is a very challenging task. Therefore, in this paper, an
experimental measurement method that can control the experimental conditions using a small-scale model was proposed to
evaluate the lateral and torsional stability of beams. For this, a loading system was provided to maintain the vertical direction of the
load applied to the beam, and a support frame was produced to satisfy the in-plane and out-of-plane support conditions. The
experimental method using a small-scale model was applied successively to the lateral and torsional behavior and stability of

I-shaped beams. The proposed experimental methods, which effectively accommodate the changes in the geometry and length of
the beam, could contribute to further experimental studies regarding the lateral and torsional stability of flexural members.
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1. Introduction

The lateral and torsional stability is the main issue for the
safety of structures and users from the stages of design to
construction in the field of architectural and civil engineering
(Kalkan 2014; Hurff and Kahn 2012; Lee 2012a, b; Lee
et al. 2016; Kim et al. 2016; Hou and Song 2016; Petrone
et al. 2016; Ramin and Fereidoonfar 2015; Srikar et al.
2016). Analytical investigations into the lateral and torsional
stability have been performed to develop a classical stability
theory based on the steel structural members (Horne 1954;
Salvadori 1955; Timoshenko 1956; Timoshenko and Gere
1961). Several studies (i.e., Talbot and Dhatt 1987; Ren-
garajan et al. 1995; Li et al. 2002; Darilmaz 2011; Brsoum
and Gallagher 1970; Fafard et al. 1987) developed finite
element analysis using shell and plate elements for buckling
analysis, which requires large geometric nonlinearity and
bifurcation.

For slender and long precast concrete flexural members,
most studies (Hansell and Winter 1959; Sant and Bletzacker
1961; Massey 1967; Siev 1960; Revathi and Menon
2007a, b) focused on the classical formulation to propose the

DDepartment of Civil Engineering, Daegu University,
Gyeongsan 38453, Republic of Korea.

2PDepartment of Civil Engineering, Pusan National
University, Busan 46241, Republic of Korea.
*Corresponding Author; E-mail: ympk@pusan.ac.kr
$Seismic Simulation Test Center, Pusan National
University, Busan 46241, Republic of Korea.

Copyright © The Author(s) 2017. This article is an open
access publication

weak-axis flexural rigidity and torsional rigidity associated
with the lateral and torsional instability of concrete beams.
The lateral and torsional stability of the slender and long
concrete beams are also strongly affected by initial geo-
metric imperfections. Recently, Kalkan (2014) and Hurff and
Kahn (2012) have attempted to evaluate the influence of the
initial lateral imperfection in the lateral and torsional buck-
ling of slender, rectangular reinforced and prestressed con-
crete beams. In addition, Lee (2012a, b) examined the initial
lateral deformation caused by environmental thermal effects
to evaluate the lateral behavior and stability of bridge
I-girders using three-dimensional finite element analysis and
experimental data. Moreover, such these imperfections along
the length of the beam are considered to be among the main
causes of the rollover instability collapse of bridge girders
(Oesterle et al. 2007; Zureick et al. 2005), which is the main
issue during the construction of concrete and precast beams.

On the other hand, the experiment of lateral and torsional
stability requires special caution to minimize geometric
imperfections and material irregularities in the manufactur-
ing and testing processes of a specimen, as well as to
implementing support and loading conditions. That is, the
loading system applied to the beam should retain its vertical
direction throughout the testing while allowing longitudinal
(in-plane) and transverse (out-of-plane) transitional and
flexural movements of the beam. In addition, a lateral sup-
port condition should be provided to restrain the transitional
and rotational movements but allow flexural behavior in
both the longitudinal and lateral directions. Such support and
loading conditions are extremely difficult to perform com-
pletely, particularly in a full-size beam test. A slight devia-
tion in the support and loading conditions completely
changes the experimental results. Moreover, the lateral and
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torsional buckling of a beam induces lateral and vertical
deformation combined with a twisting rotation of the beam.
Therefore, this study presented a small-scale experimental
method to implement the support and loading conditions and
minimize the experimental errors when assessing the lateral
and torsional stability of a beam. An experimental frame was
provided to install a specimen and satisfy the loading and
support conditions. The frame was also designed to adapt the
changes in the loading and support conditions, as well as the
size and length of the beam. A loading transfer system was
then provided to retain the initially vertical orientation of the
load to a beam undergoing the coupled deformation and
rotation. The support condition was also designed to satisfy the
in-plane and out-of-plane restraint and movement conditions.
Finally, the instrumentation was carried out to measure the
variations in the deformation and angle and longitudinal strain
in the beam. The lateral and vertical deformations and a
rotational angle of the beam were determined from the coupled
transformations using the measurement method, which was
proposed initially by Zhao et al. (1994, 1995) and later mod-
ified by Stoddard (1997), and applied successively by Kalkan
(2009) and Hurff (2010). In the present study, the measure-
ment method was expanded to allow easier and more useful
instrumentation and data processing. As a result, the proposed
experimental and measurement methods using a small-scale
model can be applied easily and effectively for the lateral and
torsional stability testing of flexural members to evaluate the
critical load and the influencing factors, such as geometric,
support, and loading conditions, in the field of engineering.

2. Objectives and Significance

Tests of the lateral and torsional stability are quite sensitive
to the experimental conditions, such as support condition,
loading system, and material nonlinearity. Moreover, the lat-
eral and torsional buckling test using a full-size beam requires
considerable time and effort to control all these conditions.
Even with careful consideration of these factors, unexpected
errors, such as a deviation from the designed support, loading,
and material conditions, could completely change the exper-
imental results. Therefore, the appropriate loading, support,
and material conditions in a full-size test are extremely dif-
ficult to achieve. Therefore, this study presented a small-scale
experimental method that can control and maintain the load-
ing and support conditions in the lateral and torsional stability
tests of beams. The support system was developed to satisfy
both the in-plane and out-of-plane restraints and movement
conditions. The loading system was designed to retain its
initial vertical direction throughout the course of loading and
allow the lateral and torsional movement of the specimen at
the application point of the load. The experimental method
was applied successively to the lateral and torsional buckling
of small-scaled I-shaped beams. The proposed experimental
methods, which effectively accommodate the changes in the
geometry and length of the beam, could contribute to further
experimental studies regarding the lateral and torsional sta-
bility of flexural members.

3. Experimental Program

3.1 Beam Specimen

The material selected for the small-scale beam model was
polycarbonate, which is strong and durable, as well as lin-
early elastic. Polycarbonate allows easy specimen prepara-
tion and the installation of various sensors, such as strain
gauges, displacement meters, and accelerometers, for an
experiment. In addition, with the advantage of the linear
elasticity of a material, various experiments and explicit
interpretation are available to evaluate the influential factors
on the lateral and torsional stability. The modulus of elas-
ticity, which plays a decisive role in determining the buck-
ling load, was analyzed using the relationship between the
applied load and vertical deflection measured at the middle
of the test beam.

The size of the model beam was scaled down using the
aspect ratios of the section and length of a typical precast
beam, AASHTO Type VI beam.

Figure 1 provides the detailed dimensions of the cross-
section of the AASHTO Type VI and scaled model beam.
The cross-section of the testing specimen neglected the fil-
lets at the connection of the web and flanges for easier
manufacturing, as shown in Fig. 1b. The sectional properties
of the model beam are determined to be similar to those of
the AASHTO Type VI to minimize the influence of the fil-
lets in the lateral and torsional behavior of the beam. The
ratio of the height-to-width of the cross-section of the Type
VI and model beam was 1.71 and 1.80, respectively. The
thickness-to-width ratio of the cross-section in the top flange
of the Type VI and model beam was 0.17 and 0.15,
respectively. The size of the bottom flange of the model
beam was designed to be the same as that of the top flange of
the beam. Therefore, the test beam is doubly symmetrical;
thus, the center of geometry and shear force coincides. The
ratio of the second moment of the section in the weak axis to
that in the strong axis of the Type VI and model beam was
calculated to be 0.09 and 0.10, respectively.

3.2 Support Conditions and Frame

Lateral and torsional stability testing needs to satisfy both
the in-plane (strong-axis) and out-of-plane (weak-axis)
support conditions. Figure 2 shows the support boundary
conditions and a support frame designed for the lateral and
torsional stability testing of a beam. The simple support
condition was implemented using a roller that restrains the
vertical and lateral translations but allows in-plane flexural
rotation of the beam. Furthermore, the lateral and torsional
restraints should be provided along the depth of the beam at
the location of the simply-supported condition. On the other
hand, the lateral support, which restrains the lateral transla-
tion and twisting rotation, can permit rotations about the
strong and weak axes.

Therefore, lateral support and support frames were
designed using a ball caster and circular rod, shown in
Fig. 2. The circular support rod can move laterally to adjust
the width of the beam and is fastened to act as a lateral
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Fig. 1 Cross-section of the a AASHTO Type IV and b test beam (units: mm, not to scale).

support condition. The ball caster, which is in contact with
the side surface of the top and bottom flanges of the beam,
contains grease to minimize friction resistance at the contact
surface of the ball caster and the circular rod. The top and
bottom ball casters, which provide lateral support to the top
and bottom flanges of the beam, respectively, is free to move
up and down, as well as rotate when the rotations about the
strong and weak axes occur in the beam. Therefore, the in-
plane and out-of-plane rotations of a beam are unconstrained
at the support locations.

3.3 Vertical Loading System

The lateral and torsional stability is strongly dependent on
the vertical loading system along with the support condition.
The vertical load applied to a beam should retain its vertical
direction throughout the course of loading even when lateral
and torsional behavior is observed. In addition, the loading
transfer mechanism should not have any resistance on the
lateral deformation and torsional rotation at the application
point of the load. Previous studies using lateral and torsional
buckling experiments focused on full-scale size beams. The
loading mechanisms used in previous studies were either
distributed or point loads. Konig and Pauli (1990) utilized

.Y

Fig. 2 Strong-axis (in-plane) and weak-axis (out-of-plan) supports.

steel and water weights as the distributed load mechanism to
perform the lateral and torsional buckling experiment in
reinforced and prestressed concrete beams. The distributed
load mechanism has limitations on space, logistics, and
safety, which has rarely been applied in the test (Kalkan and
Hurff 2012). Therefore, most of the lateral and torsional
buckling experiments have attempted to use a point load
mechanism to retain the initial vertical and concentrical
position of the applied load without its resistance to the
lateral and torsional restraints of the test beam at the loading
point. Jensen (1978) initially applied a point load for the
lateral and torsional buckling experiment but had difficulties
in retaining the position of the applied load. Therefore, many
studies (i.e., Hansell and Winter 1959; Sant and Bletzacker
1961; Massey 1967; Siev 1960; Revathi and Menon
2007a, b) used roller bearing and ball-and-socket joint
mechanisms to minimize the resistance to the lateral and
rotational deformations of the test beam at the loading point
during the test. Kalkan and Hurff (2012) indicated that the
roller bearing mechanism could induce load eccentricity due
to some difference between the centroid of the applied load
and the beam when the specimen undergoes lateral defor-
mation. Therefore, another load mechanism using a gravity
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Fig. 3 Design of the loading system for the a undeflected and b deflected configurations of a beam.

load simulator, which was originally designed by Yarimci et al.
(1967) to apply a vertical load to a full-scale frame experiment,
was used in the lateral and torsional buckling experiments on
full-scale steel I-beams (Yura and Phillips 1992; Helwig et al.
2005), composite I-beams (Stoddard 1997), and reinforced
concrete beams (Kalkan 2014; Hurff and Kahn 2012). Nev-
ertheless, the gravity load simulator also inclined the loading
unit during the test, which requires an additional control
mechanism to maintain the vertical line of the load.

Based on previous studies, this study devised and proposed
a vertical loading system based on the roller mechanism, as
shown in Fig. 3. The load applied from the loading unit,
mounted to the top of the test frame, is transferred to the beam
through the load transfer rod and plates. The top load transfer
plate, which is connected directly to a load cell device, was
designed to allow free lateral deformation of the beam using a
semicircle notch along the width of the beam without resis-
tance. To retain the vertical and concentric direction of the
load to the beam at the loading point, the load was transferred
to the beam with the help of a ball-and-socket joint. The steel
ball can be free to rotate in the ball-and-socket joint and
semicircle notch, and also move laterally when lateral and
torsional movements of the beam begin. The size of the steel
ball was determined to have some vertical distance between
the top and bottom transfer plates; thus the beam was free to
rotate without any intervention induced by the plates. In
addition, the interface between the steel ball and the top and
bottom plates was greased to minimize friction at the loading
point. Figure 4 shows a picture of the loading transfer system
and the small-scaled model beam. In addition, the loading
system was designed easily to move along the top of the test
frame using screw bolts, and it can be secured firmly to a
target location. Therefore, the proposed loading system can be
easily applicable to the third-point loading as well as the
fourth-point loading, where two vertical loads are applied
simultaneously to the beam.

4. Experimental Measurement
4.1 Instrumentation and Measurements

The small-scaled I-beam, 950 mm long between the
supports with the cross-section, shown in Fig. 1b, was

Fig. 4 Loading transfer system.

installed on the in-plane and out-of-plane support condi-
tions proposed in this study. As described previously, the
beam specimen installed on the support boundary condi-
tion is shown in Fig. 2. A vertical load was then applied to
the middle of the top surface of the beam, and the applied
load was measured using a load cell device installed in the
vertical loading system, shown in Fig. 4. The deflections
and rotation of the beam were measured using wire
potentiometers installed at the mid-span of the beam. The
initial vertical line of the potentiometers begins to incline
as the lateral and torsional deformations occur. That is,
because lateral and vertical deflections are combined with
a twisting rotation of the beam, the deflections and rota-
tion cannot be obtained directly from the measurements
from the potentiometers. Therefore, in this study, the
measurement technique, which was developed by Zhao
et al. (1994, 1995) and modified later by Stoddard (1997),
was employed to acquire the independent lateral and
vertical deflections and twisting rotation. The technique
requires a total of three wire potentiometers: two
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potentiometers installed on the top and bottom of a
specimen in the lateral direction, and one potentiometer
installed vertically at the bottom of the specimen. Figure 5
shows a picture of the two wire potentiometers connected
to the top and bottom of the test beam. In addition to the
lateral wire potentiometers, two vertical potentiometers are
installed in the right and left sides of the bottom flange of
the beam. In fact, one vertical potentiometer is sufficient
to convert the couple deflections and rotation from the
measurement. In this study, another potentiometer was
used in the bottom of the beam to assess the distortion of
the section. Moreover, in this study, a measurement
method using one lateral and two vertical potentiometers
were presented to determine the lateral and vertical
deflections and rotation from the coupled measurements. A
detailed description of the proposed technique is discussed
in Sect. 4.2.

Strain gauges were also installed to measure the varia-
tion in the longitudinal strain along the depth of the cross-
section at the mid-span. A total of four strain gauges were
installed on each side of the cross-section in the longi-
tudinal direction, as shown in Fig. 6: each one on the side
surfaces of the top and bottom flanges and on the one-
fourth and three-fourth locations of the web. When the in-

Lateral potentiometer
at the top flange

Fig. 5 Wire potentiometers for the deflection and rotation
measurements.

Strai
-— rain gauge
at the top flange
Strain gauge
at the 3/4 of the web

Strain gauge
—
at the 1/4 of the web
- Strain gauge
‘ at the bottom flange

Fig. 6 Strain gauges for the strain measurements.

plane flexural bending is dominant, the neutral axis of the
cross-section remains horizontal. As lateral and torsional
deformations occur, the neutral axis begins to rotate due
to the additional tensile and compressive strains in the
convex and concave parts of the beam, respectively.
Therefore, the depth of the compression and tension
zones, as well as the rotation of the neutral axis can be
assessed using the longitudinal strain values obtained
from the strain gauges.

4.2 Method of Calculating Displacements
and Rotational Angle

The testing of lateral and torsional stability of a beam
includes the lateral and vertical deflections combined with a
twisting rotation of the beam. Therefore, Stoddard (1997)
modified the approach proposed by Zhao et al.
(1994, 1995) to propose a method to calculate the lateral
and vertical deflections and rotation at the centroid of the
cross-section (or, shear center in the doubly-symmetry
section) from the coupled deflection and rotation mea-
surements. The method proposed by Stoddard (1997) uses
two potentiometers, connected horizontally to the top and
bottom of a rectangular beam, and another potentiometer,
connected vertically to the bottom of the beam, as depicted
in Fig. 7a.

Instead of using the lateral top and bottom potentiometers,
the use of two vertical potentiometers would be easier and
more useful for instrumentation and data processing.
Therefore, a modified measurement method was proposed to
determine the twisting rotation of the cross-section. Fig-
ure 7b shows the geometric configurations before and after
deformation of the beam. The initial wire lengths of the one
horizontal and two vertical potentiometers, L,, V,, and, B,,
changes to Ly V; and By respectively, with the deformation
and rotation of the beam. Using the Pythagorean Theo-
rem for the two triangles, shown in Fig. 7b, the vertical and
lateral deformations at the bottom of the beam, B, and B,,
respectively, can be calculated using the following
equations:

(B, —B.)’ + B = B} (1)
(Vo—B) +B. =V} 2)

Equations (1) and (2) provide two sets of solutions as
follows:

ByCi % VoCy VoDy =+ ByD>
Bx;B = 5 3
8= (92 — ®)
where,
C\ =B +V:-B} + 1} 4)
D\ =B+ V. +B -V} (5)
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According to Stoddard (Stoddard 1997), the sets of solutions,
presented in Eq. (3), have a symmetrical relationship with
each other. Therefore, one set of realistic solutions should be
selected to determine the lateral and vertical displacement at
the bottom of the beam, at which one horizontal and vertical
potentiometer was connected. Based on the determined
displacements, a twisting rotation of the beam can be
calculated using the Pythagorean Theorem for another
triangle composed at the left side of the bottom of the beam:

[Bi+b- (1 —cosdp)]’ + [V, —B,+b-sing]’ =L} (8)

(a) b

where ¢ is the rotation of the beam. Equation (8) yields two
solutions, as shown in Eq. (9). Similar to the solutions
obtained from Eq. (3), an appropriate solution should be
selected compared to the measured values.

B V=R +E)(R, + E1) — Rs
¢ = (2 arctan( R + E1)

9)
V=R +E) (R, + E1) + Rs
—2 arctan
(Rs + E1)
where,
E =B —2B,V,+V:+B L} (10)
T,
Top Lateral
9 Potentiometer
by Ty
B,
L

Vertical
Potentiometer

Bottom Lateral
Potentiometer

(b) b
e X
x ,—l
L9
u, LY
L ry -
h s
e/,
i/
/¥
B,
= L
Bottom Lateral
v, .
L Potentiometer
Ly
Left Vertical ~ Right Vertical

Potentiometer  Potentiometer

Fig. 7 Configurations of the potentiometers before and after deformation of the beam using a two lateral potentiometers and b two
vertical potentiometers.

382 | International Journal of Concrete Structures and Materials (Vol.11, No.2, June 2017)



Ry = =2b(L; - By) (11)
Ry = 2b(L; + B,) (12)
Ry =2b(B, — V,) (13)
Ry = 2b(2b +2B,) (14)

Subsequently, the lateral and vertical deflections at the
centroid of the cross-section, u. and v, respectively, can be
calculated using the geometric relationships between the
initial and final positions of the cross-section based on the
obtained rotational angle of the beam, as shown in Fig. 7.

uC:Bx+§sin¢+%(lfcosd)) (15)

h b
VC:BerE(lfcosqS)fisinqS (16)

The proposed procedure and equations are based on a
geometrically perfect beam. When including the effects of
the initial twisting angle of the cross-section, shown in
Fig. 8, Eq. (8) can by expressed as

[B. +b-(cos¢; — cosp)]* + [V — B, + b-sing]* = L/%
(17)

Equation (17) was solved to obtain solutions similar to that
of Eq. (9) with the following different terms accounting for
the effects of the initial rotation:

Ry = —2b(L; — B, cos ¢) + (cos* ¢; — 1)b* (18)
Ry = 2b(Ls + By cos ¢,) + (cos” ¢; — 1)b* (19)
Ry = b*(1 + cos ¢;)* + 2bB.(1 + cos ¢;) (20)

With the twisting rotation of the beam obtained from
Eq. (17), the lateral and vertical deflections at the centroid of
the cross-section, including the effects of the initial rotation
of the beam, can be calculated using the following equations:

uc:Bx—&—g(sin(b—sinqﬁi)+§(cos¢i—cos¢) (21)

Vo= B+ (cos by —cosg) 2 (sing —singy)  (22)

Left Vertical ~ Right Vertical
Potentiometer ~ Potentiometer

Fig. 8 Geometry configurations before and after deformation
of the beam with the initial rotational angle of the
cross-section.

On the other hand, when the direction of the initial and
the final rotations of the cross-section are opposite, the
final twisting angle can be obtained simply using Eq. (8)
with no consideration of the initial rotational effect.
Then, the lateral and vertical deflections at the centroid
of the cross-section, which include the effects of the
initial rotation of the beam, can be calculated using
Egs. (21) and (22).

5. Experimental Results and Discussion

5.1 Critical
of the Beam

For two small-scaled I-beams, denoted as ST1 and ST2,
a vertical point load was applied to the middle of the top
flange of the beam. As determined previously, the length
of the beam is 950 mm, and the dimension of the cross-
section is shown in Fig. 1b. Figures 9 and 10 show the
coupled deflections measured from the wired vertical and
lateral potentiometers at the mid-span. The lateral and
torsional instability behavior mainly occurred in the top
flange of the beams under compression. On the other
hand, the bottom flange under tension was mainly
dependent on the in-plane flexure. Immediately after the
lateral and torsional instability occurred, the applied load
was removed to ensure the elastic or inelastic buckling of
the beam. As shown in Figs. 9 and 10, the lateral and
torsional buckling of the small-scaled beams occurred in
the linear elastic range of the material. In fact, polycar-
bonate, which has advantage of linear elasticity and easy
manufacturing, would be good to evaluate the influence of
various factors, such as geometric imperfections, support
conditions, and loading system, in the lateral and torsional
behavior prior to a consideration of material nonlinearity
and plasticity.

From the coupled measurements, the independent verti-
cal and lateral deflections of the beam were calculated.
Figures 11 and 12 show the rotational angle of the beam

Loads and Displacements
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P
ST1 %
400 P
&
4
&
v
St "p‘ " sT2
3 /
o Loading o
3 /
200
Unloading
100
c 1 1 1
0 3 6 9 12

Vertical Displacement (mm)

Fig. 9 Variations in the displacements at the bottom flange of
the beam at the mid-span.
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Fig. 11 Rotational angle of the beam at the mid-span.

and the lateral and vertical displacements at the centroid of
the cross-section, respectively. The critical load of the
beam, P P, at which the lateral and torsional instability
occurred and the lateral and torsional deformations signif-
icantly increased, was determined to be approximately
473 N and 451 N for the ST 1 and ST 2 specimens,
respectively. The lateral displacement and rotational angle
of the beam at the centroid of the cross-section at the
critical condition were approximately 3.86 mm and 0.0639

(a)
500 ST
ST2
FEA
400} ,
300} :
£
-]
S
= 200} .
100} .
0 3 6 9 12 15 18

Vertical Displacement (mm)

radians, respectively, for the ST 1 and 3.13 mm and 0.0616
radians, respectively for the ST 2.

The analytical critical moment of the I-beam under pure
bending conditions, including the effect of the in-plane
deflection, can be calculated as (Kirby and Nethercot 1997;
Chen and Lui 1987)

b EL.GJ
My = = | —2=—/1 4+ W2 23
L\ = (1,/L) * (23)
where W =7 EGCJ Because the proposed experimental

method prevents the beam from warping, the critical
moment calculated from Eq. (23) needs to modify the
support and loading conditions using the following
correction factor (Nethercot and Rockey 1971):

~ 1.916 + 1.851 — 0.424W?
" 140923 —0.466 W2

(24)

Therefore, the critical moment of the beam is calculated to
be 100 kN mm, and the critical vertical load, P,,, is deter-
mined to be 421 N. The modulus of elasticity of polycar-
bonate ranged from approximately 1100 to 1300 N/mm?. In
this study, an average of 1200 N/mm® was used as the

modulus of elasticity for the analytical calculation.
®) 500 ST1
ST2
400 FEA
300 1
£
k]
]
200 1
100 1
0 i 1 1 1 1
0 2 4 6 8 10

Lateral Displacement (mm)

Fig. 12 Variations in the a vertical and b lateral displacements at the shear center of the beam at the mid-span from the
experiments (ST1 and ST2) and finite element analysis (FEA).
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Compared with the critical loads obtained from the analyti-
cal equations, those obtained from the experiment was 12
and 7% larger than that from the analytical procedure for the
ST 1 and ST 2 specimens, respectively. The results from the
proposed experimental method were reasonably in agree-
ment with the analytical results. Slight difference might be
attributed to some frictional resistance at the contact surface
of the lateral support and the side surface of the top and
bottom flanges or some errors in the value of the modulus of
elasticity of polycarbonate.

In addition, DIANA finite element program (DIANA
2016) was employed to compare the lateral behavior and
critical load of the beam. The geometry of the beam was
modeled using shell elements. To minimize the warping
effect of the cross-section, beam elements with the material
properties of steel were attached to the section of the beam at
the both ends. The critical load obtained from the eigenvalue
analysis, called as stability analysis in DIANA, was 432 N
similar to that calculated using the analytical Egs. (23) and
(24). Furthermore, nonlinear analysis accounting for the
geometric nonlinear effects (or large deformation) was also
performed. The initially imperfect geometry was defined to
be the first mode shape, obtained from the eigenvalue
analysis, with a maximum lateral displacement of 1 mm at
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Fig. 13 Lateral displacement of the beam at the vertical load
of 393 N obtained from the nonlinear analysis in
DIANA (2016).
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the mid-span. Figure 13 shows the contours of the lateral
displacement of the beam at the vertical load of 393 N, at
which the lateral and torsional instability occurred. The
critical load obtained from the nonlinear finite element
analysis (FEA) exhibited a somewhat small value, approxi-
mately 9 and 7% smaller than those of the eigenvalue
analysis and analytical equations, respectively. The vertical
and lateral displacements, shown in Fig. 12, were reasonably
in agreement with the experimental results until the lateral
and torsional instability occurred. The critical load of the
experiment was approximately 17 and 13% larger than that
of the nonlinear analysis for the ST1 and ST2 specimens,
respectively. As mentioned previously, some difference
might be caused by unexpected frictional resistance at the
contact surface of the lateral support or at the location of
loading.

5.2 Strains and Neutral Axis of the Beam

Figures 14 and 15 show variations in the longitudinal
strains measured from the strain gauges for the ST1 and ST2
specimens. Since the strain gauges attached on the left side
of the top flange malfunctioned during the test, the strain
values at the upper part of the web (three-fourth of the height
of the web), denoted as web-upper in Figs. 14 and 15, were
used to compare the variations in the strains at the left and
right sides (concave and convex sides, respectively) of the
beam. As the load increases, the bottom flange under tension
and the top flange and web-upper part under compression
show an approximately linear increase in the positive and
negative strains, respectively. When the load reached the
lateral and torsional instability, the lateral deformation sig-
nificantly increased to the right side of the beam, in which an
initial lateral deformation in the beam occurred. That is, the
beams were bent to the right side of the beam in the lateral
direction, which formed a concave and convex in the right
and left sides of the beam, respectively. Therefore, the strains
in the left (concave) side of the beam turned to increase
compression while those in the right (convex) side turned to
increase tension, as shown in Figs. 14 and 15. When the load
was completely removed, all the strains returned to an initial
point with no plastic strains. Therefore, as mentioned
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Fig. 14 Variations in the longitudinal strains measured at the a left and b right sides of the ST1 beam at the mid-span.
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Fig. 16 Strain distribution along the depth of the a ST1 and
b ST2 beams at the critical condition.

previously, the lateral and torsional instability of the beams
occurred in the linear elastic range of the material.

In addition, this study examined the distribution of strains
through the depth of the beam at the mid-span. Figure 16
shows the strain distribution of the ST1 and ST2 beams at
the critical condition of the lateral and torsional stability. The
strains at the top flange in the left (concave) side of the
beam, which were not measured due to the malfunction of

the strain gauges, were predicted using a liner regression
analysis using the strains measured at the web and bottom
flanges. As shown in Fig. 16, the measured strains are
almost linearly distributed along the depth of the cross-sec-
tion at both the left and right (concave and convex,
respectively) sides of the cross-section. Therefore, the strains
at the top flange predicted using the three strains—two
strains measured at the web and one strain at the bottom
flange—are expected to reasonably exhibit the actual
behavior of the beam. The strains in the top and bottom
flanges were under compression and tension, respectively,
induced by the in-plane flexure. The tensile strains in the
bottom flange were similar between the left and right sides of
the section. On the other hand, the compressive strains in the
right (convex) side, which decreased due to the out-of-plane
flexure, were significantly smaller than those in the left
(concave) side. Therefore, the bottom flange in tension was
strongly dependent on the in-plane flexure, and the top
flange in compression generated the lateral and torsional
buckling, which decreased the compression in the right
(convex) side of the section. The decrease in the compres-
sive strains at the right (convex) side indicates that the
neutral axis moves from the centroid of the cross-section to
the top flange. Figure 17 illustrates the neutral axis and the
corresponding compression zones of the ST1 and ST2
beams, determined from the strain profiles along the depth of
the beam at the critical load. With the compression
decreasing in the right (convex) side, the neutral axis moves
up to the top flange, as shown in Fig. 17.

6. Conclusions

Lateral and torsional stability is the main issue for the
safety of structures from the design and construction stages
in the field of engineering. On the other hand, tests of the
lateral and torsional stability are highly susceptible to the
changes in the experimental conditions, such as loading and
support conditions. Therefore, the lateral and torsional sta-
bility experiment, particularly using a full-size beam,
requires careful consideration but is difficult to control all
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Fig. 17 Compression zones for the a ST1 and b ST2 beams at the critical condition.

these experimental conditions. That is, the slight deviation
from the designated conditions could completely change the
experimental results. Moreover, the lateral and vertical
deformation measurements are coupled with a twisting angle
of the beam. Therefore, in this study, an experimental and
measurement method that can implement the experimental
conditions using a small-scale model was proposed. The
conclusions and recommendation proposed by this study are
as follows:

e The lateral and torsional stability experiment should
achieve the in-plane and out-of-plane support conditions.
In this study, the simply supported condition in the
longitudinal direction of the beam was implemented using
a roller that restrains the vertical and lateral translations
but allows in-plane flexure of the beam. The lateral
support conditions, which should restrain lateral transla-
tion and twisting rotation but allow flexural rotations
about the strong and weak axes of the cross-section, were
provided using a ball caster and circular rod support.

e This study also provides a vertical loading system based
on the roller mechanism for easy instrumentation and
handling. The loading transfer system was designed to
free the lateral deformation using a semicircle notch
along the width of the beam and the torsional rotation
with the help of the ball-and-socket joint. The proposed
method has the advantage of maintaining its initially
vertical and concentric position throughout the course of
loading, even when the beam undergoes coupled defor-
mation and rotation.

e The lateral and vertical deflections, combined with a
twisting rotation of the beam, cannot be obtained directly
from the measurement values of the potentiometers.
Thus, a modified measurement method using two
vertical potentiometers, which would be easier and more
useful for instrumentation and data processing, was
presented to determine the lateral and vertical deflections
and rotation from the coupled measurements.

e For small-scaled I-beams, the critical loads obtained
from the proposed experimental method were in good
agreement with those calculated using the analytical
equations. The strains in the top and bottom flanges,
which were under compression and tension, respectively,
were induced by the in-plane flexure. On the other hand,
the compressive strains in the convex side of the beam
decreased due to the out-of-plane flexure. Therefore, the

neutral axis in the concave side moves from the centroid
of the cross-section up to the top flange. The proposed
experimental method, validated in the linear and elastic
range of material, could be further applied to the lateral
and torsional stability testing of flexural members
accounting for various parameters, such as material
nonlinearity, shapes and sizes of geometry, and boundary
conditions.
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