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Project Objectives 
 
The objectives of this work are: 
 
(i) to obtain a better understanding of dynamic tests (based on vibration and wave propagation) 
used to compute the dynamic Young’s Modulus (Ed) and to improve application by establishing 
consistent and accurate formulas to compute Ed and  
(ii) to better understand the relationship between the static Young’s modulus (E) in concrete and 
Ed.  This project started formally on October 1, 2006 and was completed on September 30, 2007.  
 
Project Deliverables 

 
The following deliverables were provided by this project: 

 
o  Three progress reports, delivered to CRC in Fall 2006, Fall 2007 and Spring 2008; 
o  an oral technical presentation of progress to date to the CRC committee meeting during 

the Spring 2007 ACI conference in Atlanta; 
o  an oral technical presentation of overall progress to ACI Committee 363 (High Strength) 

during the Spring 2008 ACI conference in Los Angeles;  
o  this final report, which lists accomplishments achieved during the project. All three 

investigators contributed to the preparation and review of the oral presentations and 
final report. 

 
Background and significance of work to concrete industry 
 
The static Young’s modulus (E) is defined as the ratio of the axial stress to axial strain for a 
material subjected to uni-axial load [Neville 1997]. It is important that E of concrete be known 
because engineers increasingly use this value in the structural design process.  For example, E is 
needed to analyze the cross-sectional response of a reinforced concrete beam [Leet and Bernal 
1997].  In recent years building specifications have even required a specific E of concrete to be 
met, mostly to limit excessive deformation and sway in tall buildings. For example, the designer 
of the Two Union Square Building in Seattle required concrete with E of at least 50 GPa 
[Godfrey 1987]. 
  



 

However, once a structure is erected the in situ elastic properties cannot be measured directly 
without damaging the structure itself. Most often E is inferred from the compressive strength (fc) 
of companion cylinders, rather than being measured directly, through the application of 
established empirical relations. This approach often leads to overly conservative results because, 
in order to meet the minimum E requirement, concrete with much higher fc is used than the 
specification requires, which leads to unnecessarily high material costs.  Enhanced understanding 
of the relation between E and compressive strength, with respect to different types of concrete, 
would improve the efficacy of the estimation of E from strength.  
 
Non-destructive dynamic methods can be used to estimate in-place E, but the meaning of the 
obtained dynamic modulus is uncertain because Ed is known to be different (higher) from that 
obtained by direct static testing of a cylinder drawn from the structure. Concrete is expected to 
show a nonlinear dependence between stress and strain, even at low values of deformation 
caused by quasi-static tests and dynamic tests based on stress-wave propagation [Powers 1938; 
Bell 1984]. Quasi-static experiments show a nonlinear dependence between stress and strain 
even at infinitesimal values of deformation for a wide range of materials (metal, stone, concrete, 
wood, glass, polymers, etc.). The nonlinear stress-strain relationship for concrete is well 
described by a quadratic parabola [Shkolnik 1996]. The non-linear behavior provides the bases 
for the conventionally accepted view why Ed is higher than E, since concrete is subjected to very 
small strains in dynamic testing. [Neville 1997]. Although this argument is conceptually 
satisfying, experimental test results show that this may not in fact be the the case: low-strain 
static test data agree with higher strain (stressed to 40% of ultimate) static test data, as shown in 
Figure 1. Therefore it is important to understand precisely how and why the E and Ed are related 
to each other.   
 
Furthermore, it is known that Ed values for a given concrete obtained by different dynamic tests 
do not agree with each other [Philleo 1955].  In general, Ed obtained from pulsed wave 
propagation measurements are significantly higher than those obtained from vibration resonance 
measurements carried out on the same specimen. Ed varies significantly even within one type of 
measurement: Ed computed from vibration resonance of prismatic beams is known to be, on 
average, significantly higher than that computed from cylinders for the same concrete mixture.  
The work will have significant impact on the technical community since more accurate 
monitoring and in-place control of concrete E would be enabled. As such the work would likely 
influence existing testing standards, concrete design specifications, concrete quality control, 
inspection of structures, and development of commercial NDE equipment. The work includes 
significant in-kind contributions from a certified construction materials testing firm and a 
concrete ready-mix supplier. 
 
Scope of experimental tests 
 
Test samples 
 
The investigating team members received from CTLGroup a test data matrix from over 200 high 
strength concrete samples (150mmx300mm and 100mmx200mm cylinders).  Measured 
compressive strength of these samples ranged from 24MPa to 161MPa, E from 25.3GPa to 
61.7GPa, and testing age from 4 days to 730 days.  
 



 

A range of concrete cylinder (100mmx200mm) and beam (150mmx150mmx530mm) samples 
were additionally cast at the laboratories of the University of Illinois. The concrete mixture 
proportions varied to include two different w/c, two different coarse aggregate types, with both 
air-entrained and non-air entrained conditions. Multiple samples were cast from each mixture. In 
addition, identically-shaped cylinder and beams samples comprised of nominally linearly-elastic  
and homogeneous material (aluminum) were obtained and tested.  
 
Test methods 
 
These samples were tested using the standard static loading method to determine Young’s 
modulus of elasticity specified in ASTM C469 - 02e1, Standard Test Method for Static Modulus 
of Elasticity and Poisson's Ratio of Concrete in Compression (C469). The standard compressive 
strength of most of the cylindrical specimens was also measured, following standard procedure 
ASTM C39 / C39M - 05e2, Standard Test Method for Compressive Strength of Cylindrical 
Concrete Specimens (C39). Resonance frequencies can be used to estimate E knowing the 
dimensions and mass of the specimen. The dynamic modulus values were obtained using the 
standard longitudinal and flexural vibration method specified in ASTM C215 – 02, Standard Test 
Method for Fundamental Transverse, Longitudinal, and Torsional Frequencies of Concrete 
Specimens  (C215) (see Figure 2 for testing configuration), and through thickness ultrasonic 
pulse velocity (UPV) measurements specified by ASTM C597 – 02, Standard Test Method for 
Pulse Velocity Through Concrete (C597). An estimate of Poisson’s ratio is needed to obtained Ed 
from the transverse resonance method in C215 and the UPV value from C597; an estimate of 
Poisson’s ratio is not needed for the longitudinal resonance method in C215. The formula that 
relates longitudinal vibrational resonance frequency to Ed in ASTM C215 is based on basic one-
dimensional, plane-section motion assumptions, whereas that for the flexural vibrations do 
account for rotary inertia effects. 
 
Ed can be computed from P-wave velocity (VP) using 
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where ρ is mass density and ν is Poisson’s ratio.  
 
Two modified vibration methods were also used: the two frequency method for cylinders 
[Subramaniam et al. 2000] and the Love’s correction method for cylinders [Love 1944]. The two 
frequency method obtains an accurate estimate of both the dynamic Poisson’s ratio and the 
dynamic modulus of elasticity from one vibration measurement where the frequenc ies of the  first 
two longitudinal modes of a cylindrical specimen are measured:   
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where ?d =  dynamic Poisson’s ratio,  f1= first longitudinal resonance frequency, Hz and  f2= 
second longitudinal resonance frequency, Hz and  A1, B1, and C1 are constants based on the 
dimensions of the cylinder [Subramaniam et al., 2000]. The elastic modulus is then determined 
from the Poisson’s ratio and the measured first longitudinal resonance frequency as follows: 
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where Ed = dynamic modulus of elasticity, Pa, ?d = dynamic Poisson’s Ratio, ? = density, kg/m3, 

R0= radius of the cylinder, m,  
1 2

2 2 2( ) ( )n d df A B Cυ υ= + +  and A2, B2, and C2 are constants based 
on the dimensions of the cylinder [Subramaniam et al., 2000]. 
 
For the Love’s correction method, the fundamental longitudinal resonance frequency (f) of a 
cylinder with length L and diameter d is measured, and a value of Poisson’s ratio is assumed. 
Then Ed is computed as 
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where m=1 for the fundamental mode and κ= d/2v2 for cylinders. In this work, only the 
fundamental mode in cylinders was measured.  
 
 
Project Findings 
 
The project findings are based on the analysis of the experimental test data. 

 
Dynamic test methods on control sample 

 
The dynamic vibration methods were first applied to a homogenous, uniform material with 
known properties. The tests were carried out on beam and cylinder samples made from 
aluminum. The geometries of the aluminum samples replicate those of the concrete samples. The 
material properties of the aluminum were verified using ultrasonic P-wave and S-wave velocity 
measurements: E = 10.4x106 psi GPa and Poisson’s ratio = 0.33. All four vibration tests were 
applied to the specimens: ASTM C215 using transverse vibrations (both beam and cylinder), 
ASTM C215 using longitudinal vibrations (both beam and cylinder), Love’s correction for 
longitudinal vibrations (cylinders only) and the two-frequency method (cylinders only). The 
results from the tests are shown in Figure 3. The ASTM C215 measurements with longitudinal 
vibration consistently underestimate the actual value, while the ASTM C215 transverse 
measurements overestimate the actual value. The amount of under- and over-estimation increases 
when cylinders are used. The largest discrepancy with the actual value is provided by ASTM 
C215 using longitudinal resonances with cylindrical specimens. The Love’s correction and two 
frequency methods give accurate estimates of E for Aluminum cylinders, when correct values of 
Poisson’s ratio are assumed in the computations. 
  
Dynamic test methods on concrete samples 
 



 

The test results from the aluminum samples indicate that the various vibration tests provide 
different values of E for the same sample. This was confirmed by tests carried out on high 
strength concrete cylinder samples provided by CTLGroup. Figure 4 shows a comparison of Ed 
values obtained by ASTM C215 using the transverse and longitudinal modes measured on the 
same sample. The results confirm that the transverse vibration measurements are consistently 
higher than the longitudinal measurements. This discrepancy appears to widen as the Ed value 
increases. The agreement between longitudinal and transverse resonance values improves for all 
values of Ed when the Love’s correction in applied to the longitudinal resonances, where a 
Poisson’s ratio of 0.25 was assumed. This is shown in Figure 5. 
 
One issue related to the use of Love’s correction for cylinders, ultrasonic pulse velocity and  
ASTM C215 using the transverse mode methods is that a value of Poisson’s ratio must be 
assumed or measured for the computation. Furthermore, it is known that both static and dynamic 
Poisson’s ratio vary across a broad range of values for concrete, usually between 0.15 and 0.25, 
and that the dynamic and static values of Poisson’s ratio are not strongly related to each other. 
Considering this, incorrect estimates of Poisson’s ratio for concrete are likely when a single 
value is assumed for a given concrete. The effects of this possible mis-estimation on each 
method should be considered. Examination of the formulas for each method reveals that mis-
estimates of Poisson’s ratio affect differently the accuracy of E estimates from each method. 
ASTM C215 using longitudinal resonances and the two-frequency method for cylinders do not 
rely on an estimate of Poisson’s ratio in the computation.  Love’s correction for cylinders shows 
only a small disruption of E estimates owing to mis-estimation of Poisson’s ratio. ASTM C215 
using transverse modes shows moderate disruption, while ultrasonic P-wave velocity shows large 
disruption. This last point suggests that E estimates from P-wave velocity are not reliable for 
concrete; this is confirmed by test results, shown in Figure 6, that show that Ed measurements 
from P-wave velocity significantly over-predict those obtained from ASTM C215 longitudinal 
vibration, when median values of Poisson’s ratio are assumed for the concrete. Interestingly, the 
agreement between E measured by the two methods improves when an artificially high value of 
Poisson’s ratio (0.28) is assumed for all concretes, as shown in Figure 7.  
 
The behavior shown in Figures 6 and 7 is unexpected, and cannot be readily explained by 
conventional theory for elastic and homogeneous materials. It is possible, however, that 
composite nature of concrete has a role in this behavior. To investigate this, a set of special two-
phase (cement paste and coarse aggregate) concrete samples with varying proportions of the 
phases were produced. Photos of the range two-phase concrete samples are shown in Figure 8. 
These samples represent the extreme cases of the two-phase mixture arrangement. Any global 
property of the two-phase composite should be bounded by the Voigt and Ruess (parallel and 
series configurations, respectively) combinations of the properties of the individual phases 
themselves. Several composite material properties were investigated across the different phase 
compositions. As expected, the material mass density of the composite follows the upper bound  
of the Voigt model combination of the density of the individual phases. Interestingly, the global 
static and dynamic (ASTM C215 using longitudinal mode) moduli are different from each other 
across the different phase compositions, as shown in Figure 9. Dynamic modulus is consistently 
higher than static modulus, and it tends to follow the upper-bound Voigt mixture rule. On the 
other hand, the static modulus lies in-between the upper and lower bounds. In other words, static 
and dynamic moduli follow different mixture behaviors in composite materia ls such as concrete. 
It is this difference that may cause dynamic moduli to be higher than static moduli in conc rete. It 



 

should be noted that this difference between static and dynamic moduli is not observed in cement 
paste samples, which are more homogeneous. 
 
Comparison of E and Ed for high strength concrete 
 
Several attempts have been made to correlate static (E) and dynamic (Ed) moduli for concrete.  
The simplest of these empirical relations is proposed by Lydon and Balendran [Neville, 1997]  
 

E = 0.83 Ed. 
 
 
Another empirical relationship for concrete’s elastic moduli was proposed by Swamy and 
Bandyopadhyay and is now accepted as part of British testing standard BS8110 Part2:   
 
     E = 1.25Ed – 19    
    
where both units of E and Ed are in GPa.  This expression does not apply for lightweight 
concretes or concrete that contains more than 500 kg of cement per cubic meter of concrete 
[Neville, 1997].   
 
Shkolnik proposed relations between dynamic and static moduli for concrete, based on thermo-
fluctation theory, which depends on strain rate of loading and the temperature [Shkolnik 1996; 
Shkolnik 2005]. The vibration of atoms with average kinetic energy causes stresses on the 
atomic bonds of the same magnitude as the strength of materials. Thus at atomic-molecular level 
the fracture of a material is controlled by breaking of atomic bonds at thermal fluctuation. The 
thermal fluctuations of energy, exceeding the average thermal energy of atoms, naturally, depend 
on the time or rate of loading and predetermine the mechanical properties (modulus of elasticity, 
strength) of real materials. By coupling the nonlinear stress-strain material model with the kinetic 
(thermofluctuation) theory of solid strength, a physically proved expression was applied for 
modulus of elasticity of concrete of a material. Considering the samples provided by the 
CTLGroup, which were tested at a nominal value of stress/strength ratio of 0.24, rate of loading  
0.24MPa/s, and temperature of 20 oC 9, the thermoflucutaion theory gives: 
 

E = Ed – 5864 
 
for units of MPa. The constant at the right side of equation is determined in accordance with 
ASTM C469.  
 
For both lightweight and normal concretes, Popovics suggested a more general relationship 
between the static and dynamic moduli as a function of the density of the concrete 
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where k = 0.23 for units of psi and ? is density, lbs/ft3 [Popovics, 1975].  Whatever the relation 
between the moduli, it is thought to be unaffected by air entrainment, method of curing, 
condition at test, or the type of cement used [Neville, 1997].     



 

 
In Figures 10-12, the fit of the four shown equations that relate Ed to E are shown for the high-
strength concrete cylinder data obtained from CTLGroup. In addition, a best fit fine to the data is 
also shown. Only the fundamental longitudinal and fundamental transverse modes were provided 
by CTLGroup, so only three analyses methods are possible: ASTM C215 using longitudinal 
resonance for cylinders, ASTM C215 using transverse resonance for cylinders, and Love’s 
correction for longitudinal vibration. For ASTM C215 using transverse vibration and the Love’s 
correction method, a Poisson’s ratio of 0.25 was assumed. The  predictions for Ed are shown in 
Figures 10, 11 and 12, respectively.  The mean absolute errors (in GPa) for each fit are also in the 
figures. In general the data show a linear, or nearly linear, dependence between E and Ed across 
the full range of modulus values. In all three data sets, the fitted line shows the best fit (lowest 
mean absolute error) and the equation proposed by Lyndon and Balendran show the poorest fit 
(highest mean absolute errors); it appears that the latter equation is inappropriate for high 
strength concrete. The remaining three equations show reasonable fit, where the mean absolute 
error is always below 2GPa. The best fit line exhibits absolute mean error below 1.3 GPa. It is 
interesting to note that the predictions using ASTM C215 with transverse resonance show 
approximately 10% higher error for the fit line, suggesting that the transverse resonance data 
may exhibit a higher degree of scatter. 
 
More complete statistical analysis of the predicted E data is shown in Tables 1 and 2. In Table 1, 
column 1 has the lowest Mean E, STDEV, CV, and P-values at longitudinal and transverse 
vibrations. The relative mean deviations are all negative for longitudinal vibration, but for 
transverse vibration two of them are negative (columns 1 and  3), and two- positive (columns 2 
and 4). The MAPE does not exceed 10% at longitudinal and transverse vibration. The column 2 
illustrates the highest P-value at longitudinal vibration (P-value = 0.282), and column 4 at 
transverse vibration (P-value=0.827). The relative difference between the Mean E for column 4 
at transverse vibration (E=49.157 GPa), and the average value of the Mean E for columns 2 and 
3, i.e. (49.777+48.774)/2= 49.276 GPa, equals 0.2%. In Table 2, the relative mean deviation 
from E (C 469) decreased, and simultaneously column 2 and 4 changed the sign from negative to 
positive. The values of MAPE decreased (except column 2), and The P-values increased 
(columns 2, 3, 4) in comparison with corresponding data for longitudinal vibrations in Table 1. 
As a consequence of accepted assumptions ( ν=0.25), the mean values of predicted dynamic 
modulus of elasticity obtained for longitudinal vibrations (Table 2) and transverse vibrations 
(Table 1) are equal within the limits of errors of measurements and calculations. 
 
Conclusions 
 
The following conclusions are drawn, based on the results presented and analyzed in this report: 
 

o The dynamic and static modulus tests carried out at the University of Illinois laboratories 
confirm that Ed values vary, depending on method of measurement: ultrasonic pulse 
velocity (UPV – ASTM C597) gives the highest predictions of Ed, and longitudinal 
vibration the lowest. Of the vibration methods, longitudinal vibration of cylinders 
(L/D=2) give the least accurate prediction of Ed. A modified method (Love’s correction) 
was introduced for longitudinal resonances for cylinders, which gives more accurate Ed 
results that agree with those from the transverse method. The Love’s correction was 
applied to the CTLGroup data, providing a more accurate estimation of E from Ed, with 



 

an absolute mean error of estimate of 1.10 GPa. UPV may be able to provide accurate 
estimates of E, but only if excessively high values of Poisson’s ratio are assumed in the 
calculations. More study in this area is warranted. It was found that the longitudinal and 
transverse methods of ASTM C215 give different results from the same sample: 
transverse provides higher dynamic modulus (Ed) estimates.  
 

o As expected, Ed is always greater than E for concrete; however, this behavior may be 
caused by the composite nature of concrete, rather than non-linear behavior of concrete 
exposed by varying strain levels. Stress strain curvature analyses show that the expected 
non- linear behavior at higher strain levels associated with the static test is not clearly 
seen. Tests on specially prepared two-phase composite samples, however, do indicate the 
influence of composite nature on the E vs. Ed behavior.  
 

o Several existing relations between dynamic and static modulus (E) were evaluated for the 
data. The results show that the relation between Ed and E is affected by nature of Ed data: 
the best relation to apply depends on how Ed was obtained. In general, though, the 
relation between Ed and E appears to be linear, or nearly linear. For longitudinal 
vibration, the British Standard equation (BS8110, Part 2) gives the best prediction of E, 
with an average squared error of 1.36 GPa. For transverse vibration and Love’s 
correction of longitudinal vibration, the equation proposed by S. Popovics gives best 
predictions for E: 1.41 GPa and 1.10 GPa, respectively. 
 

o A thorough understanding of the various factors affecting Ed and E in concrete should 
enable improved prediction of Ed.  Once this is established, vibration measurements 
should offer an effective, non-destructive, inexpensive and rugged method to estimate E 
for concrete. 
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Figures 

Figure 1. Comparison of low-strain (initial tangent modulus) and high strain (conventional chord modulus) for static 
compressive tests carried out on concrete and paste samples. 
 
 
 

 
 
Figure 2. Testing configuration for standard vibrational  resonance tests (Naik et a. 2004) 
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Figure 3. Comparison of longitudinal and transverse Ed values obtained using ASTM C215 method on aluminum 
samples. The expected E value is 10.4x106 psi and ν is 0.33. 
 
 
 

 
 
Figure 4. Comparison of longitudinal and transverse Ed values obtained using ASTM C215 method on concrete 
cylinders. Test data provided by CTLGroup. 



 

Figure 5. Comparison of longitudinal and transverse Ed values. Longitudinal values obtained using Love’s 
correction (assumed v = 0.25) and transverse values obtained using ASTM C215 method on concrete cylinders. Test 
data provided by CTLGroup. 
 

 
 
Figure 6. Comparison of Ed values obtained by longitudinal resonance frequency (ASTM C215) and ultrasonic 
pulse velocity (ASTM C597) tests carried out on concrete and paste cylinders. Median values of Possion’s ratio 
were assumed for the predictions based on pulse velocity. 
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Figure 7. Comparison of Ed values obtained by longitudinal resonance frequency (ASTM C215) and ultrasonic 
pulse velocity (ASTM C597) tests carried out on concrete and paste cylinders. Unusually high values of Possion’s 
ratio were assumed for the predictions based on pulse velocity. 
 
 
 
 
 

 
 
Figure 8. Two-phase limestone and cement paste samples, with limestone content ranging from 0 to 75% by mass. 
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Figure 9. Variation of dynamic (left) and static (right) Young’s modulus as a function of aggregate content in the 
two-phase composite concrete specimens. Ed determined using longitudinal resonance following the ASTM C215 
procedure. 

 
 
 
Figure 10. Comparison of E (ASTM C469) vs. Ed (ASTM C215) data (points) using longitudinal resonance for 
concrete cylinders. Various relations between E and Ed are also shown as lines. The mean absolute error (in GPA) 
for each type of fit curve is shown in the table underneath. Data obtained from CTLGroup. 
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Figure 11. Comparison of E (ASTM C469) vs. Ed (ASTM C215 using transverse resonance) data (points) for 
concrete cylinders. Various relations between E and Ed are also shown as lines. The mean absolute error (in GPA) 
for each type of fit curve is shown in the table underneath. Data obtained from CTLGroup. 
 

 
Figure 12. Comparison of E (ASTM C469) vs. Ed (Love’s correction using longitudinal resonance) data (points) for 
concrete cylinders. Various relations between E and Ed are also shown as lines. The mean absolute error (in GPA) 
for each type of fit curve is shown in the table underneath. Data obtained from CTLGroup. 
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Tables 
 
 
Table 1.     Statistical comparison of E computed by the various relations and Ed (ASTM C215). The mean value of 
E obtained by ASTM C469 is 49.313 GPa, STDEV=8.39GPa and CV=0.17. 
 
                                       Longitudinal vibrations  
 

Data E= 0.83Ed, (MPa). 
E, GPa 

E=1.25 Ed - 19,  
 E, GPa 

E=0.00153 Ed1.4, (psi) 
E, GPa 

E= Ed-5864, (MPa). 
E, GPa 

 1 2 3 4 
Mean  E, GPa 44.815 48.492 47.484 48.129 
STDEV, GPa 5.653 8.513 8.070 6.811 

CV. 0.130 0.180 0.170 0.140 
Relative mean 
deviation from 

E (C469) 

 
-0.082 

 
-0.017 

 
-0.036 

 
-0.017 

MAPE 0.094 0.031 0.042 0.041 
P-value 0.000 0.282 0.014 0.086 

     
      Transverse  vibrations    
 1 2 3 4 

Mean  E, GPa 45.688 49.777 48.774 49.157 
STDEV, GPa 6.006 9.045 8.648 7.236 

CV. 0.130 0.180 0.180 0.150 
Relative mean 
deviation from 

E (C469) 

 
-0.065 

 
0.008 

 
-0.011 

 
0.003 

MAPE 0.079 0.033 0.030 0.033 
P-value 0.000 0.557 0.485 0.827 

 
 
 
 
Table 2. Statistical comparison of E computed by the various relations and Ed using Love’s correction (v=0.25). The 
mean value of E obtained by ASTM C469 is 49.313 GPa, STDEV=8.39GPa and CV=0.17. 
 
                                       Longitudinal vibrations  
 

Data E= 0.83Ed, (MPa). 
E, GPa 

E=1.25 Ed - 19,  
 E, GPa 

E=0.00153 Ed1.4, (psi) 
E, GPa 

E= Ed-5864, (MPa). 
E, GPa 

 1 2 3 4 
Mean  E, GPa 45.711 49.842 48.819 49.209 
STDEV, GPa 5.766 8.683 8.297 6.947 

CV. 0.126 0.174 0.170 0.141 
Relative mean 
deviation from 

E (C469) 

 
-0.063 

 
0.010 

 
-0.009 

 
0.005 

MAPE 0.080 0.031 0.028 0.036 
*P value 0.000 0.492 0.512 0.882 

 
 


