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This paper presents the results of extensive numerical and
experimental work performed to establish a behavioral model that
provides the basis for developing design provisions for anchorages
to concrete using adhesive bonded anchors. These types of anchorage
systems are used extensively, yet they are currently excluded from
the design provisions of ACI 318. The behavioral model is compared
with a worldwide database containing 415 tests on adhesive
anchor groups, 133 tests of adhesive anchors located near a free
edge, and accompanying baseline single anchor tests used to
establish the relationship between the results of the group and edge
tests and the behavior of isolated single anchors.
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INTRODUCTION
Anchorages to concrete include cast-in-place and post-

installed anchors. Post-installed anchors are either mechanical
or bonded anchors. Figure 1 shows the typical types of
anchors. The design of anchorages using cast-in-place and
post-installed mechanical anchors is discussed in ACI 318-05,
Appendix D.1 Bonded anchors are used extensively in practice
but have not yet been incorporated into the design provisions
of ACI 318, Appendix D.

The purpose of this paper is to introduce a behavioral
model to predict the failure load of anchorage systems with
adhesive bonded anchors loaded in tension. It is based on
extensive numerical and experimental work that provides a
foundation for incorporating design provisions for these
types of anchorage systems into ACI 318, Appendix D. The
behavioral model is compared to the results of experimental
investigations contained in a worldwide database, summarized
in Table 1.

DESCRIPTION OF BONDED ANCHORS
Bonded anchors include both adhesive anchors and

grouted anchors (Fig. 1). An adhesive anchor is a steel
element (threaded rod or deformed bar) inserted into a
drilled hole in hardened concrete with a structural adhesive
acting as a bonding agent between the concrete and the steel.
For adhesive anchors, the diameter of the drilled hole is typically
not larger than 1.5 times the diameter of the steel element.
Adhesive anchors are available in glass or foil capsule
systems using organic compounds and in injection systems
using organic or inorganic compounds or a mixture of the
two in either pre-packaged cartridge systems or bulk injection
systems. A grouted anchor may be a threaded rod, deformed
bar, headed bolt, or threaded rod with a nut at the embedded
end installed in a large drilled hole with a commercially
available pre-mixed grout. Typically, the hole size for
grouted anchors is approximately twice the diameter of the
anchor and the hole is drilled using a core drill. Because of
the large hole diameter, grouted anchors are typically limited
to vertical installations. Grout products may be inorganic,
organic, or a mixture of the two.

The behavior and design recommendations for single
grouted anchors are addressed in Zamora et al.2 Information
regarding group testing is provided in Cook et al.3 The
behavior of grouted anchors arranged in groups or near
edges is quite similar to the behavior of adhesive anchors
described in this paper; however, the effects of a bond failure
at the outer bond area between the grout and the concrete
require a separate strength evaluation.

RESEARCH SIGNIFICANCE
The information provided in this paper represents the

results of several years of numerical and experimental work
performed in order to understand the behavior of adhesive
bonded anchors when located in groups and/or near edges. As a
result of this work, a behavioral model has been developed that
can provide the basis for the design of these types of anchorages.

BACKGROUND
The design strength of anchorages to concrete is either

controlled by the strength of the anchor steel or by the
strength associated with the embedment of the anchors into
the concrete. The design provisions regarding failure of the
anchor steel in both tension and shear are provided in ACI
318-05, Appendix D,1 and are applicable to adhesive and
grouted anchors. The behavior of cast-in-place and post-
installed mechanical anchors associated with embedment
failure has been extensively studied4,5 and embedment
design provisions for these types of anchors are incorporated
into ACI 318-05, Appendix D. Product approval standards
for post-installed mechanical anchors are provided in ACI
355.2-04.6 The embedment shear strength provisions of ACI
318-05, Appendix D, appear to be applicable to adhesive and
grouted anchors; this will be addressed in a future paper.
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Fig. 1—Types of anchors.
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This paper is concerned with the behavior of adhesive
bonded anchors loaded in tension and arranged in groups
and/or with free edges near the anchors where the strength is
limited by embedment failure.

The nominal bond strength of adhesive bonded anchors to
be used in the design is dependent on the mean bond strength
of anchors installed in accordance with manufacture guidelines,
adjusted for scatter of the product test results, and for the
product sensitivity to installation and in-service conditions. As
discussed in Cook et al.7 and Meszaros,8 the bond strength of
properly installed bonded anchor products varies quite
considerably. Based on tests of 20 adhesive anchor products,
Cook et al.7 found that the mean bond strength at the adhesive/
anchor interface for individual products ranged from 330 to
2830 psi (2.3 to 19.5 MPa).   Results of tests performed by
Meszaros8 using three products indicated that the mean bond
strength decreases as the anchor diameter increases.

In addition to the large variations in the mean bond
strength for bonded anchors installed according to manufacture
recommendations, each bonded anchor product is influenced
differently by other conditions. These conditions include
sensitivity to the hole cleaning procedure, hole drilling
method (for example, hammer drilling or diamond core
drilling), moisture presence in the concrete at installation,
temperature effects, and creep under sustained loads. The
implementation of the behavioral model presented in this
paper is dependent on the acceptance of a comprehensive
product evaluation standard that establishes a product
nominal bond strength. ICC-ES AC-3089 is a product
evaluation standard accepted by the ICC Evaluation Service.

Currently, ACI Committee 355 is developing a product
evaluation standard that will be based on ICC-ES AC-308.9 

The following provides the current information regarding the
behavior of adhesive anchors loaded in tension in uncracked
concrete. The effects of concrete cracks on the strength of cast-
in-place and post-installed mechanical anchors is addressed in
ACI 318-05, Appendix D. Information on the effects of
concrete cracks on the strength of adhesive bonded anchors is
provided in Eligehausen and Balogh5 and Meszaros.8 The
information presented indicates that, on average, the bond
strength is reduced by normal width cracks to approximately
50% of the value determined in uncracked concrete.

Cast-in-place and post-installed
mechanical anchors

Fuchs et al.4 proposed the behavioral model for concrete
breakout failure currently incorporated into ACI 318-05,
Appendix D. This model was created to predict the failure
loads of cast-in-place headed anchors and post-installed
mechanical anchors loaded in tension or in shear that exhibit
concrete breakout failure. According to Fuchs et al.,4 the
mean concrete breakout capacity for single cast-in-place
anchors and post-installed mechanical anchors in uncracked
concrete is given by the following equations

Cast-in-place anchors

 (N) (1a)

Post-installed mechanical anchors

  (N) (1b)

It should be noted that the nominal concrete breakout
strengths provided in ACI 318-05, Appendix D, are based on
the 5% fractile using a coefficient of variation (COV) of
0.15 for cast-in-place anchors and 0.20 for post-installed
mechanical anchors.

The concrete breakout capacity of anchor groups and
anchors located near free edges with a tension load applied

Nb 40 fchef
1.5 lb( )= Nb 16.8 fchef

1.5=

Nb 35 fchef
1.5 lb( )= Nb 14.7 fchef

1.5=
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Table 1(a)—Main parameters of tests in worldwide database: tests with anchor groups

Type
Number 
of tests n

Concrete compressive 
strength fc′ Diameter d

Embedment 
depth hef Spacing s hef /d s/hef s/d τ

min. max. min. max. min. max. min. max.

min. max. min. max. min. max.

min. max.

psi
(MPa)

psi
(MPa)

in. 
(mm)

in. 
(mm)

in. 
(mm)

in. 
(mm)

in. 
(mm)

in. 
(mm)

psi
(MPa)

psi
(MPa)

Group 
tests* 415 2320

(16.0)
7590
(52.3)

0.3
(8.0)

1.0
(24.0)

1.9
(48.0)

11.3
(288.0)

1.5
(38.1)

15.2
(384.0) 4.0 16.0 0.3 3.0 3.8 20.0 870

(6.0)
3050
(21.0)

*Groups with two and four anchors.

Table 1(b)—Main parameters of tests in worldwide database: tests with single anchors near edge

Type
Number 
of tests n

Concrete compressive 
strength fc′ Diameter d

Embedment 
depth hef Edge distance c hef /d c/hef c/d τ

min. max. min. max. min. max. min. max.

min. max. min. max. min. max.

min. max.

psi
(MPa)

psi
(MPa)

in. 
(mm)

in. 
(mm)

in. 
(mm)

in. 
(mm)

in. 
(mm)

in. 
(mm)

psi
(MPa)

psi
(MPa)

Edge 
tests* 133 3160

(21.8)
3860
(26.6)

0.3
(8.0)

1.0
(24.0)

3.0
(80.0)

12.3
(320.0)

1.2
(30.0)

9.5
(240.0) 7.8 20.0 0.3 1.5 3.0 20.0 1250

(8.6)
2600
(17.9)

*Single anchors.
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concentrically to the anchors is given by Eq. (2) where Nb is
taken from Eq. (1)

(2a)

where

(2b)

Figure 2 provides information on how ANco and ANc are
determined. According to ACI 318-05, Appendix D, for
cast-in-place and post-installed mechanical anchors, the
critical spacing scr is 3.0hef and the critical edge distance ccr
is 1.5hef. Additional figures related to the evaluation of ANc
are provided in ACI 318-05, Appendix D, as well as information
if the anchors are not concentrically loaded in tension.

Single adhesive anchors
Figure 3 presents the embedment failure modes observed

for single adhesive anchors. In Fig. 4, the transfer of load at
the steel/mortar and mortar/concrete bond interfaces is
shown. The mortar adhesive is the bonding agent used to
connect the anchor with the concrete, either adhesive or
grout. As shown in Fig. 4, a tension load is transferred by
mechanical interlock from the threaded rod into the mortar
and by adhesion and/or micro interlock (due to the roughness
of the drilled hole) from the mortar into the concrete.

Experimental studies discussed in Eligehausen et al.,10

indicate that the actual bond stress distribution along the
embedment length at peak load is nonlinear with lower bond
stresses at the concrete surface and higher bond stresses at
the embedded end of the anchor. In Cook et al.,11 however,

Ncb
ANc

ANco

----------- ψed ,N Nb lb or N( )=

ψed ,N 0.7 0.3+
ca1

ccr

------- if ca1 ccr<=

a comparison of suggested behavioral models to a worldwide
database for single adhesive anchors indicates that their
failure load is best described by a uniform bond stress model
incorporating the nominal anchor diameter d with the mean
bond stress τ associated with each product. This is confirmed
by experimental and numerical studies of Meszaros8 and
McVay et al.12 The uniform bond stress model for adhesive
anchors is given by Eq. (3). This equation is valid for 4 ≤ hef /d
≤ 20, d ≤ 2 in. [50 mm], and a bond area πdhef ≤ 90 in.2

[58,000 mm2].

Nτ = τπdhef  (lb or N) (3)

According to Eligehausen et al.,10 Zamora et al.,2 and
based on information presented in Cook et al.,11 the failure
load of single bonded anchors is limited by the concrete
breakout failure load given by Eq. (1). This is shown in
Fig. 5. In this figure, failure loads and failure modes of
adhesive anchors with constant embedment depth but
varying diameter are given. According to these test results,
the failure load of adhesive anchors is limited to the concrete
breakout failure load of post-installed mechanical anchors,
as given by Eq. (1b). By equating Eq. (1b) with Eq. (3), the
upper limit on the bond strength that can be used for single
anchors can be determined (refer to Eq. (4))

(4a)

(4b)

τmax
11.1fc

0.5hef
0.5

d
--------------------------- psi( )=

τmax
4.7fc

0.5hef
0.5

d
------------------------ MPa( )=

Fig. 2—Calculation of effective areas ANco and ANc.

Fig. 3—Potential embedment failure modes of bonded
anchors. 11

Fig. 4—Mechanism of load transfer of bonded anchor.10

Fig. 5—Failure loads of single adhesive anchors as function
of anchor diameter.10
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NUMERICAL INVESTIGATION
To understand the behavior of adhesive anchors under

tension loading, three-dimensional nonlinear finite element
analyses were performed with the program developed by
Ožbolt.13 In this program, the concrete behavior is simulated by
the microplane model described in detail in Ozbolt et al.14

To assure objectivity of the results with respect to the size
and orientation of the finite elements, the modified crack
band method14 was employed as a localization limiter. To
avoid steel failure, elastic behavior of the anchor steel was
assumed. The bond behavior of the mortar was modeled in
different ways. In Meszaros8 and Li et al.,15,16 an interface
model was used that only transfers shear stress. The shear
strength is influenced by compression and tension stresses in
the concrete perpendicular to the anchor. In recent studies
performed at the University of Stuttgart,17 the threads of the
threaded rod were modeled and the mortar behavior was
simulated using the microplane model with a proper calibration
of the model parameters to represent the measured macroscopic
mortar properties. The loading on the anchors was introduced
under deformation control by applying incremental
displacements to the anchor at the concrete surface.

Simulated single adhesive anchors were close to and far
away from an edge as were quadruple anchor groups. Param-
eters varied for single anchors were anchor diameter, embed-
ment depth, bond strength of the mortar, and edge distance.
For anchor groups, the spacing of the anchors was also
varied. In all numerical simulations, the concrete strength
was 4300 psi (30 MPa) and the member thickness was large
enough to avoid splitting failure. The chosen distance
between anchors and the supports allowed the unrestricted
formation of a concrete breakout cone.

Figure 6 shows the numerically obtained principal strains
in concrete after passing peak load for a single anchor with a
diameter d = 0.95 in. (24 mm) and a bond strength τ =
1350 psi (9.3 MPa) as well as photographs of the anchors
after tension tests. Figure 6(a1) and (b2) are for an anchor
with hef /d = 5, while Fig. 6(a2) and (b2) are for hef /d = 10.
Dark areas in Fig. 6(a1) and (a2) characterize crack formation.

With an embedment length of 5d, before reaching the peak
load, short cracks begin to form along the embedment depth.
Just prior to peak load, a crack forms at the base of the
anchor, which grows with increasing imposed displacement
resulting in a concrete breakout failure. For the case of the
deeper embedment length shown in Fig. 6(a2) and (b2), a
shallow cone is formed at the concrete surface and bond
failure occurs along the remaining length of the anchor.

Figure 7 shows the principal tensile strains for a group of
four adhesive anchors with d = 0.47 in. (12 mm), hef = 10d,
and τ = 1350 psi (9.3 MPa) after passing peak load. With a
small spacing of s = 4d, a common concrete breakout cone
starting at the base of the anchors is formed (Fig. 7(a)). With
a larger spacing (s = 8d), the common concrete cone does not
start at the base of the anchors but closer to the concrete
surface. For a large spacing (s = 16d), the individual anchors
of the group fail in the same way as single anchors with a
pullout failure similar to that shown in Fig. 6(a2) and (b2). In
Li et al.,15 another potential failure mode (false pullout
failure) is described, which is initiated by a horizontal crack
at the base of the anchors followed by pullout of the individual
anchors (Fig. 7(b1) and (b2)). This failure mode may occur at
small to intermediate anchor spacings.

Figure 8 shows the numerically obtained failure loads of
quadruple anchor groups with adhesive anchors (d = 0.47 in.

[12 mm], hef = 10d) normalized by the failure load of single
anchors as a function of the anchor spacing related to the
anchor diameter (s/d). As with cast-in-place headed and post-
installed mechanical anchors, the failure load of adhesive
anchor groups increases with increasing spacing until they
reach a limit of n times the single anchor strength at a critical
spacing scr. Similarly, the failure load of anchorages with
adhesive anchors located near edges decreases when the
edge distance is smaller than a critical value ccr. The failure
load of anchorages with adhesive anchors can be modeled by
Eq. (2); however, certain modifications are needed. They
relate to the critical spacing, the critical edge distance, and
the basic single anchor strength.

Fig. 7—(a) Failure mode of quadruple anchor group with
adhesive anchors, d = 0.47 in. (12 mm), hef = 10d, s = 4d
indicated by numerical modeling (dark areas characterize
crack formation);18 (b1) deformed mesh at peak load
(false pullout failure); and (b2) principal strains at peak
load indicating failure mode.15

Fig. 6—(a) Failure modes of adhesive anchors, d = 0.95 in.
(24 mm) indicated by numerical modeling (dark areas
characterize crack formation); and (b) test results. (a1) and
(b1): hef = 5d; (a2) and (b2): hef = 10d.
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As indicated by Eq. (3), the bond strength τ, the anchor
diameter d, and the anchor embedment length hef represent
the parameters that could influence the critical spacing and
critical edge distance. As a result of the numerical study by
Li et al.,15 it was determined that the critical spacing is not
significantly influenced by the embedment depth hef of the
anchors. This is shown in Fig. 9 where the ratios between the
numerically obtained failure loads for anchor groups to the
failure load of single anchors with the same embedment
depth are plotted as a function of the anchor spacing. The
only parameter varied in Fig. 9 is the embedment depth hef.
If the critical spacing were influenced by the embedment
depth, groups with smaller embedment depths would reach
the capacity of four single anchors at smaller spacings than
those with larger embedment depths. For a given spacing,
however, the related failure load is nearly independent of the
embedment depth. This behavior can be explained by
Fig. 10, which shows that the width of the principal
compression stress field of single anchors with significantly
different embedment lengths is nearly identical. The width
of the compression stress field is directly related to the
critical spacing.

Li et al.15 found that the critical spacing is dependent on
anchor diameter d. This can be seen in Fig. 11, which shows
related failure loads of groups of anchors with different
diameters as a function of the spacing related to the anchor
diameter (s/d). The related group failure load is almost

independent of the anchor diameter for a constant ratio of s/d and
reaches the full capacity of four individual anchors at
approximately the same value of s/d.

Studies by Li and Eligehausen16 indicated that the critical
spacing is also influenced by bond strength τ. In Fig. 12, the
ratio of the anchor group strength to the single anchor
strength is plotted as a function of the anchor spacing. In the
numerical calculations, the anchor diameter and embedment
depth were held constant and the bond strength was varied.
For anchorages with the highest bond strength, failure
occurred by concrete breakout. Therefore, and as a result,
the assumed bond strength was not fully used. The
conclusion that the critical spacing is influenced by bond
strength is confirmed by Fig. 13, which shows that the
width of the principal compression stress field of a single
anchor with constant embedment depth increases with
increased bond strength.

To determine the critical spacing scr , a large numerical
parametric study with anchor groups was performed at the
University of Stuttgart.18 The parameters varied included
anchor diameter, embedment depth, concrete strength, bond
strength, and anchor spacing. In each individual numerical
test series, the anchor diameter, embedment depth, and bond
strength were kept constant and the anchor spacing was

Fig. 8—Numerically obtained failure loads of quadruple groups
related to failure load of single anchor as function of ratio of
spacing to anchor diameter.18

Fig. 9—Numerically obtained failure loads of quadruple groups
with adhesive anchors related to failure load of single anchor as
function of anchor spacing. Parameter is embedment depth.15

Fig. 10—Principal compression stresses in concrete.
Single adhesive anchors d = 0.47 in. (12 mm).18

Fig. 11—Numerically obtained failure loads of quadruple
groups with adhesive anchors related to failure load of single
anchor as function of ratio anchor spacing to diameter.
Parameter is anchor diameter.15
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varied. For each individual numerical test series, the critical
spacing was evaluated, as shown in Fig. 8. The relationship
between the numerically obtained group failure loads and the
spacing was approximated by an exponential function,
which was found by regression analysis. The critical spacing
was determined by extrapolating this function to the value of
Nu,group/Nu,single = 4. Figure 14 provides a summary of the
results. The values of the critical spacing found from each
test series divided by the diameter (scr/d) are plotted as a
function of the bond strength. The critical spacing scr
resulting from the numerical analysis is best described by
Eq. (5). The critical edge distance ccr may be taken as one
half of the critical spacing.

(5a)

(5b)

Based on the aforementioned considerations, the failure
load of adhesive anchor groups and/or anchorages located

scr 2ccr 14.7d τ
1450
------------⎝ ⎠

⎛ ⎞ in.( )= =

scr 2ccr 14.7d τ
10
------⎝ ⎠

⎛ ⎞ mm( )= =

near edges can be calculated by Eq. (2) with Nb replaced by
N τ from Eq. (3) and using scr and ccr determined from Eq. (5).
However, a further aspect related to anchorages with
adhesive anchors should be accounted for.

In the case of concrete cone failure, the failure load of a
group of anchors with a theoretical spacing of s = 0 is equal
to the value valid for a single anchor (refer to Eq. (2)). When
extrapolating the regression lines that describe the failure
loads for bonded anchor groups to a spacing of s = 0,
however, the group failure load is larger than that of a single
anchor (refer to Fig. 8, 9, 11, and 12). This increase is
denoted by the factor ψg,No in Fig. 8. It is explained in Fig. 15. If
the bond strength is low, the failure of two adjacent anchors
is caused by bond failure resulting in anchor pullout. The
bond failure area of the two adjacent anchors is approximately
equal to  times the effective bond area of a single anchor.
Therefore, the failure load of the group is  times the
failure load of a single anchor (ψg,No = ). In contrast, the
failure load of a group of adjacent anchors is not increased
over that of a single anchor when failure is controlled by
concrete breakout (ψg,No = 1). The value of ψg,No should be
related to the bond strength. If the bond strength is equal to
τmax according to Eq. (4), then a single anchor will fail by
concrete breakout and ψg,No = 1.0. If the bond strength is
very small (for example, τ < 0.3τmax), then failure of the
group will be caused by anchor pullout resulting in ψg,No ≈

. Values for ψg,No between these limiting cases were

n
n

n

n

Fig. 12—Numerically obtained failure loads of quadruple
groups related to failure load of single anchor as function of
anchor spacing. Parameter is mean bond strength of single
anchors.16

Fig. 13—Principal compression stresses in concrete. Single
adhesive anchor, d = 0.95 in. (24 mm), hef = 20d.18

Fig. 14—Related critical spacing scr /d as a function of mean
bond strength τ.

Fig. 15—Increase of failure area and failure load for: (a)
pullout failure; and (b) concrete cone failure.17
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determined from the results of the individual numerical test
series of quadruple anchor groups as shown in Fig. 8. They
are plotted in Fig. 16 as a function of the ratio τ/τmax and can
be approximated by Eq. (6).

(6)

The influence of the increase in bond area on the failure
load decreases with increasing spacing. This effect is taken
into account by a factor ψg,N. It is assumed that this factor
linearly decreases between s = 0 where ψg,N = ψg,No and s =
scr where ψg,N = 1.0. This leads to Eq. (7).

(7)

Taking the aforementioned considerations into account,
the mean failure load of anchorages using adhesive anchors
may be calculated as follows

(8)

In Eq. (8), ANc and ANo are determined according to Fig. (2),
ψed,N is given by Eq. (2b), ψg,N is given by Eq. (7), and N τ

ψg ,No n n 1–( ) τ
τmax

----------⎝ ⎠
⎛ ⎞ 1.5

1.0≥–=

ψg,No ψg ,No
s

scr

------ ψg ,No 1–( )–=

NT
ANc

ANco

-----------ψed,Nψg ,NN
τ

Ncb≤ lb or N( )=

is determined from Eq. (3). The critical spacing scr and critical
edge distance ccr provided by Eq. (5) should be used when
calculating ANc and ANo, ψed,N and ψg,N. In all numerical
simulations, the calculated failure load of anchorages with
adhesive anchors was smaller than the numerically obtained
failure load of the same anchorages with headed anchors.
Therefore, in Eq. (8), the mean bond failure load Ncb is
limited to the mean concrete breakout failure load Nb, given
by Eq. (2) using Nb according to Eq. (1b) for post-installed
mechanical anchors.

EXPERIMENTAL INVESTIGATION
A worldwide database was compiled based on experimental

investigations with adhesive anchors arranged in groups or
located near free edges. It is based on that presented by
Lehr;19 however, tests by Appl17 were added that were
performed after Lehr’s work was completed. The database
used for this study includes the results of 353 group tests
with four anchors, 62 group tests with two anchors, and 133
tests with single anchors located near a free edge. For
comparison to the group and edge tests, the database also
includes baseline single anchor tests that were performed
away from free edges with the same size anchors, adhesive
anchor product, and concrete as used in the anchor group or
edge tests. In all tests in the database, the distance between
the reaction frame and the anchors was large enough to allow
the formations of an unrestricted concrete breakout cone.
Failure occurred in all tests by bond failure or breakout of a
concrete cone. Table 1 provides a summary of the critical
parameters that were included in these 548 group and edge tests.

Figure 17 shows the types of failures observed during the
testing of quadruple groups of adhesive anchors. In the two
figures shown on the left side of Fig. 17, the embedment
depth was kept constant and the anchor spacing was
increased. The failure mode changed from a concrete breakout
starting at the base of the anchors to a pullout failure with a
shallow cone at a large spacing. The three figures shown on
the right side of Fig. 17 are valid for anchor groups with a
ratio s/hef = 1, but increasing embedment depth. The failure
mode changes from a concrete breakout starting at the base
of the anchors over a common partial concrete cone to an
individual anchor pullout with shallow cones at the surface.
The change in failure mode occurs because the load that can
be introduced by bond into the concrete increases linearly
with hef while the concrete breakout strength increases in
proportion to hef

1.5 . Note that the numerically obtained
failure modes agree with those observed in the experiments.

Figure 18 depicts the results of an example test series of
anchor groups where the anchor spacing s was varied while
the anchor diameter d, bond strength τu, and embedment
depth hef were held constant. The failure load of the anchor
group increases with increased spacing but is much lower
than the concrete breakout failure load given by Eq. (2).
From the results of test series in which only the anchor
spacing was varied, the critical spacing scr and the factor
ψg,No were determined, as shown in Fig. 8. The experimentally
obtained values for ψg,No agree sufficiently well with those
obtained from the results of the numerical analysis (refer to
Fig. 16). However, the critical spacings scr evaluated from
the experimental results differ from those obtained numerically
(refer to Fig. 14). Based on the experimental results, the critical
spacing scr can be approximated by Eq. (9).

Fig. 16—Factor ψg,N0 as function of mean bond strength τ
related to maximum value τmax according to Eq. (4).17

Fig. 17—Failure modes of groups of adhesive anchors observed
in tests.19
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(9a)

(9b)

BEHAVIORAL MODEL
As a result of numerical and experimental work, a behavioral

model was developed that best describes the failure loads of
anchorages with adhesive anchors where the effects of
anchor groups and/or edges needs to be accounted for. The
behavioral model incorporates both the potential concrete
breakout failure mode and potential pullout failure mode.

The behavioral model is provided by Eq. (8); however, the
critical spacing scr and critical edge distance ccr provided by
Eq. (9) should be used when calculating ANc and ANo
according to Fig. 2, ψed,N according to Eq. (2b), and ψg,N
according to Eq. (7).

For design, appropriate capacity reduction factors and
nominal strengths must be addressed in developing code
provisions to implement the findings of this research. It is
suggested that the 5% fractile of the bond strength be used
for the design of bonded anchors, which should be adjusted to
consider several influencing factors on anchor performance
such as sensitivity to hole cleaning procedures and increased
temperature as well as long term behavior.

COMPARISON OF BEHAVIORAL MODEL
WITH EXPERIMENTAL RESULTS

In Fig. 19 and 20, the ratios of the measured failure loads
divided by the strengths predicted by the behavioral model
(Ntest/Npred) are plotted as a function of several parameters
varied in the tests. Figure 19 and 20 also show the best fit trend
lines. If these lines are horizontal and are located at Ntest/Npred
= 1.0, then the influence of the varied parameter on the failure
load is well taken into account by the behavioral model. Table
2 provides a statistical evaluation of the ratios Ntest/Npred.

As indicated by Fig. 19, the behavioral model provides an
excellent fit to the experimental results with groups. For the
415 tests, the mean value of Ntest/Npred is 0.99 with a COV
of 15.4%. An equally good prediction is obtained when the
data are separated into tests where the calculated pullout
failure or concrete breakout failure controls the calculated
resistance (Table 2). In summary, the proposed behavior
model for groups with adhesive anchors is as accurate as the
behavior model for headed anchors. An equally good fit is
provided to the individual group test series, as shown by the
example in Fig. 18. As shown in Fig. 20 and Table 2,
however, the predicted failure loads are conservative for
anchorages located very near to a free edge.

The proposed behavioral model for adhesive anchors
(Eq. (8)) is very similar to the behavioral model for headed
anchors (Eq. (2)) except for the ψg,N factor in Eq. (8). Therefore,
for reasons of simplification, it might be tempting to neglect

scr 2ccr 20d τ
1450
------------⎝ ⎠

⎛ ⎞ 0.5
in.( )= =

scr 2ccr 20d τ
10
------⎝ ⎠

⎛ ⎞ 0.5
mm( )= =

this factor. Figure 21 provides the same type of information
as Fig. 19; however, the ψg,N factor is not incorporated in the
behavioral model. As shown in Fig. 21, the behavioral model
neglecting ψg,N does not provide the excellent fit exhibited
when this factor is included and is rather conservative for
groups with a small spacing.

SUMMARY AND CONCLUSIONS
Based on the results of both numerical and experimental

investigations, a behavioral model to predict the average
failure load of anchorages using adhesive bonded anchors is
proposed. The model is similar to the behavioral model that
predicts the concrete breakout failure load of cast-in-place and
post-installed mechanical anchors incorporated in ACI 318-05,
Appendix D, but with the following modifications.

The basic strength of a single adhesive anchor predicts the
pullout capacity and not the concrete breakout capacity. It is
based on the uniform bond stress model, as given by Eq. (3).
The critical spacing and critical edge distance of adhesive
anchorages depend on the anchor diameter and the bond
strength and not on the anchor embedment depth. Furthermore,
an additional factor ψg,N is used that takes into account the
larger bond area of closely spaced adhesive anchors in
comparison to a single anchor. The failure load of anchorages
with adhesive anchors is limited to the concrete cone failure
load of post-installed mechanical anchors.

The proposed behavioral model agrees very well with the
results of 415 group tests contained in a worldwide database.
Based on a comparison to 133 tests with single anchors close
to an edge, the behavioral model is conservative for anchorages
located very near to an edge.

ACKNOWLEDGMENTS
The authors wish to express their gratitude and sincere appreciation to the

manufacturers and individuals contributing to the extensive numerical and
experimental work presented in this paper. Sponsoring manufacturers were
fischerwerke, Hilti AG, and Würth KG. P. Pusill-Wachtsmuth of Hilti AG
and R. Mallée of fischerwerke deserve special recognition for their contributions
over the years. B. Lehr, J. Meszaros, and H. Spieth all deserve credit for their
results presented in this paper.

Table 2—Comparison of measured failure loads with predicted values

Type

Pullout failure predicted Concrete breakout failure predicted Pullout and concrete breakout failure

No. of tests Mean Ntest/Npred COV, % No. of tests Mean Ntest/Npred COV, % No. of tests Mean Ntest /Npred COV, %

Group tests with two and four anchors 377 0.98 15.1 38 1.05 16.3 415 0.99 15.4

Group tests with two and four anchors 
but without ψg,N

392 1.21 18.3 23 1.04 16.9 415 1.20 18.5

Single anchor edge tests 133 1.30 19.6 — — — 133 1.30 19.6

Fig. 18—Comparison of measured and predicted failure
loads of groups of adhesive anchors as function of spacing.
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NOTATION
ANc = projected concrete failure area of single anchor or group of

anchors for calculation of strength in tension, in.2 (mm2)
ANco = projected concrete failure area of single anchor for calculation

of strength in tension if not limited by edge distance or spacing,
in.2 (mm2)

ccr = edge distance where strength of anchor is not influenced by free
edge, in. (mm)

d = diameter of anchor, in. (mm)
do = diameter of hole, in. (mm)
fc = compressive strength of concrete, psi (MPa)
hef = effective embedment depth of anchor, in. (mm)
Nb = mean basic concrete breakout strength in tension of single

anchor in uncracked concrete, lb (N)
Ncb = mean concrete breakout strength in tension of single anchor at

edge or of group of anchors in uncracked concrete, lb (N)
NT = mean bond pullout strength in tension of single adhesive anchor

at edge or of group of adhesive anchors in uncracked concrete,
lb (N)

N
τ

= mean bond pullout strength in tension of single adhesive anchor
in uncracked concrete, lb (N)

= ratio of actual test results to predicted results

scr = anchor spacing where anchor strength is not influenced by other
anchors, in. (mm) 

τ = mean uniform bond strength at steel/mortar interface, psi (MPa)
τmax = maximum mean uniform bond strength at steel/mortar ψed,N =

factor used to modify tensile strength of anchors based on
proximity to edges of concrete member

ψg,N = factor used to modify tensile strength of adhesive anchors based on
number and spacing of anchors in group and mean bond strength

ψg,No= factor used with ψg,N to modify tensile strength of adhesive
anchors based on number of anchors in group and mean
bond strength

Ntest

Npred

-----------

Fig. 19—Measured failure loads of anchor groups compared with predicted results plotted
against hef, s/d, d, fc, s, and τ.

Fig. 20—Measured failure loads of single anchors near to
edge compared with predicted results plotted against edge
distance c and ratio c/d.
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DISCUSSION

The authors have presented an interesting concept on shear
strength of slender beams without web reinforcement. The
discusser would like to offer the following:

1. There are some inconsistencies involved in the σ value.
Based on the Kato study,55 the average ratio of σ/fc′  equals
0.142, which is consistent in Mphone29 beams (a lower fc′  value
resulted in a higher ratio σ/fc′ , whereas a higher fc′  value resulted
in a lower ratio σ/fc′) . The condition does not exist in the Ahmad
and Lue30 and Leonhardt and Walther7 beams.

For example, the Mphonde29 Beam A0-33-C versus the
Leonhardt and Walther7 Beam 5r: alhough the Leonhardt
and Walther7 beams have a low reinforcement ratio,
approximately 50% of the Mphonde beam, the σ  value is
much higher than the Mphonde beams. Also, when a ratio of
σ/fc′  was compared for Beam 5r versus Beam A0-33-C, a
significant inconsistency was noted between these two beams.

To further thoroughly review all three Ahmad and Lue30

beams, the following inconsistencies were noted.
In Beam A8, fc′  = 9.6 ksi and ρ = 1.45% with σ /fc′  = 0.202,

whereas in Beam A2, fc′  = 9.6 ksi and ρ = 3.14% with σ/fc′  =
0.175, that is, a 15% lower value of σ /fc′  than Beam A8, even
though ρ is 216% greater than that of Beam A8.

Beam C2 has fc′  = 10.1 ksi and ρ = 4.81 with σ /fc′  =
0.1802, which is a 4% higher value of σ /fc′  than Beam A2
but a 12% lower value of σ/fc′  than Beam A8. It was also
noted in the Ahmad and Lue Beam A8 versus Leonhardt and
Walther Beam 5r.

2. It was noted in Fig. 10 that the authors’ proposed
method (Fig. 10(a)) does not significantly depart from
Okamura and Higai11 (Fig. 10(c)) and Kim and Park23

(Fig. 10(g)). The Okamura and Higai11 equation, however,
has some limitation such as the a/d ratio and the longitudinal
reinforcement ratio ρ. Also, Kim and Park23 have certain
limitations such as a power of compressive strength ([(fc′ )α]α
cited in the original paper), the a/d ratio, and depth of beam
d. Based on these limitations in both equations, numerous
beams out of 400 beams specified in Table 3, as well as
approximately 50% of the beams as specified in Table 2,
would not qualify for the Okamura and Higai11 and/or Kim and
Park23 equations, depending upon their limitations.

Because the Kim and Park23 equation is similar to the
Kennedy56 equation, and because the Okamura and Hagai11

equation is similar to the Hedman-Losberg57 equation, the
authors should have considered these two equations in their
Fig. 10 and possibly eliminated Zararis and Papadakis,15 Bažant
and Sun,13 and/or CSA.24

The Kennedy equation56 (based on over 500 test specimens) is

vc = 0.312fc′
0.426d–0.282[1 +({M/Vd}/0.25ρ)]

The Hedman-Losberg equation57(based on over 1000
test specimens) is

vc = 0.09(1.75 – 1.25d)(1 + 50ρ)

where 1.75 – 1.25d ≥ 1.0 and ρ ≤ 0.02.
3. The Cx1 or Ca value varies from 0.25d to 0.5d, depending

upon the amount of longitudinal reinforcement and the plasticity
of concrete. Based on the authors’ stress-strain diagrams, no
consideration was given to the plasticity in the concrete.58 The
plasticity has a significant impact on the ratio of depth of
compression force to the effective depth of the beams.

Tanaka and Kishi59 have proposed the following
simplified expression. From Fig. 6, the depth of compression
zone is

where tanθ = jd/a and x and z equal the longitudinal and
vertical axes, respectively.

Based on the test data, Cx1 = kCa; k = β1(eβ2
x
0

 – e–β
2
x
0);

β1 = 0.103fc′
–0.08 ⋅ ρ0.28; β2 = 2.31fc′

0.03 ⋅ ρ–0.09; and x0 =
1.0 – 0.11a/d when a/d ≤ 2.7 and 0.7 when a/d ≥ 2.7

4. Because the Ahmad and Lue30 and Leonhardt and
Walther7 beams depart from the Mphonde29 beams in Table 2,
the discusser has revisited and re-evaluated those beams.
The results are shown in Table A. The analytical values of σ
are very consistent with Kato,55 and the vpred is in very good
agreement with test results.

5. The discusser has not analyzed all the beams as outlined
in Table 3 due to the unavailability of some of test
specimens41 and the brevity of the discussion. Based on
Table A and some of the observations made by the discusser
(flexural strength of concrete, σ or σu, [Eq. (14), (15), and
(18)], and the neutral axis of the beams) and Fig. 10(a) through
(h), the discusser believes that the authors’ proposed method
needs significant further improvement/refinement.

fc′

cx1 ca tan

x
0

a

∫ θ x z,( )dx–=
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Table A—Dimensions and properties of Ahmad
and Lue’s30 and Leonhardt and Walther’s7 
specimens, and strength predictions

Specimens fc′ , ksi σ vexp , ksi vpred , ksi

Ahmad and 
Lue30

A8 9.6 1.36 0.27 0.28

A2 9.6 1.50 0.39 0.37

C2 10.1 1.58 0.47 0.47

Leonhardt and 
Walther7

5r 4.1 0.64 0.22 0.22

6r 4.1 0.64 0.20 0.21

7-2 4.3 0.67 0.19 0.20

8-2 4.3 0.67 0.19 0.19

9-1 4.4 0.69 0.17 0.18

10-2 4.2 0.66 0.16 0.16

Note: 1 ksi = 6.89 MPa.



ACI Structural Journal/September-October 2007 639

ACKNOWLEDGMENTS
The author would like to thank S. Unjoh, Leader, Earthquake Engineering

Team, Public Works Research Institute, Tokyo, Japan, for providing the
Japanese publications.

REFERENCES
55. Kato, K., Concrete Engineering Data Book, Nihon University, Japan,

2000.
56. Kennedy, R. P., “A Statistical Analysis of Shear Strength of Reinforced

Concrete Beams,” PhD thesis, Department of Civil Engineering, Stanford
University, Stanford, Calif., 1967.

57. Hedman and Losberg, A., “Design of Concrete Structures with
Regards to Shear Forces,” Shear and Torsion, Comité Euro-International
du Béton (CEB), Bulletin, No. 126, Nov. 1978, pp. 184-209.

58. Kar, J. N., “Shear Strength of Prestressed Concrete Beams without
Web Reinforcement,” Magazine of Concrete Research, V. 21, No. 68, Sept.
1969, pp. 159-170.

59. Tanaka, Y., and Kishi, T., “Estimation Method of Shear Strength of
RC Members Containing Artificial Crack or Unbonded Area,” Seisan Kenkyu,
V. 57, No. 2, 2005, pp. 107-110. (in Japanese)

AUTHORS’ CLOSURE
The authors thank the discusser for his interest in this

paper and for providing us with an opportunity to further
clarify the concept of the proposed model. Each question and
comment presented by the discusser is discussed separately
as follows.

1. In the proposed method, the average compressive stress of
the compression zone σ corresponding to beam shear failure
shows a complicated trend. This is attributed to the fact that
σ[σ = αx1εoEc/2] (Eq. (12)) is affected by various parameters
(ρ, fc′ , d, and h). Further, it should be noted that σ is affected by
the shear demand as well as the shear capacity because it is
determined at the intersection of the two curves (refer to Fig. 4).
Therefore, the trend of σ cannot be directly evaluated by
considering only a single design parameter.

For example, in the specimens of Ahmad and Lue30 that the
discusser mentioned, both the effective beam depth and tension
reinforcement ratio of Beam C2 are different from those of
Beams A2 and A8; Beam C2 has the least effective depth among
the three specimens while having the highest tension
reinforcement ratio. In such a case, the combined effect of the
two parameters needs to be considered in the evaluation of σ.
The higher tension reinforcement ratio increases the (flexural)
stiffness of the shear demand curve. Therefore, the shear failure
of Beam C2 with the higher tension reinforcement ratio can
occur with a less normal stress σ(= αx1εoEc/2) (refer to Fig. 4 in
the original paper). On the other hand, the shallow beam depth
decreases the stiffness of the shear demand curve, which
increases the normal stress σ corresponding to shear failure. In
the authors’ opinion, regarding the adverse effects of the two
design parameters, the σ value of Beam C2 having the least
effective beam depth and greatest tension reinforcement ratio
between those of A2 and A8 is not unusual.

Also, it should be noted that the trend of σ is not always
consistent with that of the shear strength of beam. Higher fc′
increases both the σ value and the shear strength of the beam by
increasing the tensile strength of concrete. On the other hand, a
higher tension reinforcement ratio tends to decrease the σ value
as previously mentioned, whereas it increases the beam shear
strength by increasing the depth of the compression zone. 

2. According to the suggestion by the discusser, the
authors compared the predictions by the proposed model
with the Hedman-Losberg model.57 As the discusser indicated,
the Hedman-Losberg model57 is based on the results of the test
specimens with broader ranges of design parameters.
Figure A shows the shear strengths predicted by the Hedman-

Losberg57 model and the proposed strength model. As shown
in the figure, the proposed method showed better predictions
than the Hedman-Losberg model57 did.

As the discusser indicates, the predictions by the Okamura
and Higai model11 (Fig. 10(c)) and Kim and Park model23

(Fig. 10(g)) are as good as the predictions by the proposed
model. The proposed strength model, however, not only
shows good predictions, but also is based on a theoretical
background. This is the advantage of the proposed model
distinguished from other empirical models.

In this paper, the proposed model was verified for the test
specimens with the ranges of 0.26 ≤ ρ ≤ 6.64 (percent),
2.6 ≤ a/d ≤ 9.0, 10.5 ≤ fc′  ≤ 104.2 MPa (1.5 ≤ fc′  ≤ 15.1 ksi),
and 69 ≤ d ≤ 1200 mm (2.7 ≤ d ≤ 47.2 in.). The authors
suggest that readers use the proposed model within the
verification range.

3., 4., and 5. In the calculation of the depth of the compression
zone at the critical section and loading point (cx1 and ca), the
nonlinearity of concrete stress was already considered. The
parabolic distribution of compressive stress in the compression
zone used in Eq. (6) represents approximately the nonlinearity
and compression softening of concrete. Nevertheless, the
authors agree that the equations proposed by the discusser may
more accurately calculate the depth of compression zone and
improve the predictability of the proposed strength model.

Fig. A—(a) Strength predictions by Hedman-Losberg
model57; and (b) proposed strength model.
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The authors have presented an interesting concept on one-way
shear strength of thick slabs and wide beams with transverse
reinforcement. The discusser would like to offer the following:

1. The authors have outlined nine test specimens in two
test series in this paper. Out of nine test specimens, one specimen
(AT-2/3000) has multiple loading conditions, whereas other
specimens have a single concentrated load with a loading
plate width either the full width of the beams or a partially-
loaded width of the beams, that is, test Specimen AT-2/250A
has a plate width of 152 x 152 mm (6 x 6 in.) that will not cover
the full bw, whereas test Specimen AT-2/250B will cover the full
bw. All nine specimens fall into three categories:

1. Specimens AT-2/250B, AT-2/1000A, and all specimens of
test series three (AT3) could function as a one-way shear action;

2. Specimen AT-2/250A and AT-2/1000B could function as
a partially two-way shear action; and

3. Specimen AT-2/3000 could function as a two-way shear
action. In these specimens, the transverse (temperature and
shrinkage) reinforcement was considered, but the amount of
transverse reinforcement was not designed to ensure the
sufficient load spreading action or action envisaged.

The authors have concluded from only two test specimens
(AT-3C and AT-3D) that the transverse reinforcement in the
slab does not alter the one-way shear stress at failure. Based
on the authors’ AT3 test series, test Specimens AT-3A and
AT-3B show an influence (increase in shear stress capacity)
due to transverse reinforcement. Test Specimens AT-3C and
AT-3D have some unusual results even though the longitudinal
reinforcement ratio and concrete compressive strength are
identical. Therefore, the discusser believes that these two
specimens are inconclusive. Regan and Rezai-Jorabi18

and the Hillerborg19 test series show that the transverse
reinforcement would have a positive influence if it were
properly designed for adequate load spreading action (test
Specimens AT-2/250A, AT-2/1000B, and AT-2/3000).

The authors’ Eq. (2) and supplementary Eq. (3) are based
on the influence of crack spacing se and aggregate size ag.
Because the paper does not address the maximum aggregate
size, it is very difficult to validate these equations. Also, these
equations are contrary to some those of some researchers,
such as Hillerborg19 and Muttoni,20 who have considered the
crack width instead of crack spacing.

They have correlated the one-way shear strength of beam
without shear reinforcement by considering the opening of a
critical crack, and the failure of the beam was considered
to be caused by the opening of a critical crack under
increasing deformations.

Muttoni20 has proposed the following equation based on
the 269 test specimens

where εdkdg equals the nominal opening of a critical crack,
in which ε is the longitudinal strain with respect to overall
deflection and critical crack (based on Bernoulli’s hypothesis
for a cracked section); d equals the effective depth (mm); and
kdg = 48/(Dmax + 16) where Dmax is the maximum aggregate size
(mm).

Based on the previous equation, the approximate εdkdg = 0.4
value corresponds with the ACI code equation (Eq. (1)),
and approximately 15% of the beams fall beyond the
εdkdg = 0.4 value. If the mean value is considered from
0.0εdkdg to 0.4εdkdg values, the approximate shear stress
would become 0.2 , which is approximately 20%
higher shear stress than the ACI code formula. The
0.2  value also corresponds if the authors’ se value in
Eq. (2) is considered a zero value (that is, se = 0).

The discusser has evaluated test results of Regan and
Rezai-Jorabi,18 Hillerborg,19 and Aster and Koch21 and has
compared the results with the 0.2  value and found that
the 0.2  value is consistent with the test results. In all
previous test series, the concrete compressive strength fc′
varied from 27.6 to 44.9 MPa, which is also consistent with the
authors’ fc′  value.

It was noted that there are printing errors in Fig. 5 and 6.
For example, the bottom last figures should be at the failure
load of beams rather than intermediate applied load.
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AUTHORS’ CLOSURE
The discusser is thanked for his interest in this paper.
1. The experiments reported in this paper were designed to

examine the one-way shear strength of reinforced concrete
members. Rather than simply testing all specimens with full-
width supports, it was decided to investigate the influence of
different-width supports as well. This would simulate the
effect of column supports rather than wall supports and
increase the generality of any conclusions based on the test
results. As noted in the paper, the ACI 318 code requires the
determination of shear strengths against both beam action
shear failures (one-way) and punching shear failures (two-
way). The former failure mode was predicted by the ACI
code to control all specimens, and the failure surface in Fig. 7
shows that this was correct for the widest specimen. Indeed,
this was also true for all other specimens reported in the
paper. Because all the AT-2 series specimens failed within
±5% of the average observed shear stress independently of the
member or support width, it can be concluded that the
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Evan C. Bentz, and Michael P. Collins

Discussion by Himat Solanki
PE, Building Department, Sarasota County Government, Sarasota, Fla.
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support width and member width had no significant effect
on the shear strength in these tests. The ACI code implies
that the clearly slab-like 10 ft (3.1 m) wide specimen should
have a reliable shear strength approximately twice that of the
beam-like 10 in. (254 mm) wide specimens. This was not
observed and suggests that the code language distinction
between a beam and a slab may be more of a terminological
convenience than something based on physical behavior.

The discusser notes that the temperature and shrinkage
steel was not designed for two-way action. This is correct
and, as the strains in these bars were observed to be small,
similar to those shown in Fig. 9, it can be concluded that the
addition of more reinforcement in the transverse direction
would not have resulted in different shear behavior.
Shrinkage and temperature reinforcement were provided in
five of the nine specimens reported in this paper and the shear
behavior of these specimens did not consistently or significantly
differ from those that did not contain this reinforcement.

2. The discusser is correct that this paper does not attempt to
validate the influence of depth or aggregate size on shear

strength and he is directed to References 4 and 22 for this
discussion. The discusser states that a shear stress at shear
failure of 0.2  is consistent with the test results that he has
examined. With regard to this, it is worth noting that the
average shear strengths of the AT-3, AT-2, and AT-1 series4

of specimens failed at shear stresses of 0.19 , 0.17 ,
and 0.09 , respectively. The effective depths of these series
were 307, 439, and 925 mm (12, 17, and 36 in.), respectively,
indicating that deeper members fail at lower shear stresses
whether they are called beams or slabs.

3. Figures 5 and 6 are correct and show that the final crack
pattern in a reinforced concrete member occurs after the peak
load has already been attained and the member is in the post-
peak domain.

REFERENCES
22. Sherwood, E. G.; Bentz, E. C.; and Collins, M. P., “The Effect of

Aggregate Size on the Beam-Shear Strength of Thick Slabs,” ACI Structural
Journal, V. 104, No. 2, Mar.-Apr. 2007, pp. 180-190.
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On the Stress in Unbonded Tendons at Ultimate: Critical Assessment and Proposed Changes. Paper by
Mohamed H. Harajli

Discussion by Jinsheng Du and Pinyin Lu
Associate Professor, School of Civil Engineering, Beijing Jiao Tong University, Beijing, China; and Senior Engineer, First Highway Survey and Design Institute of China, Xi, China

The paper is interesting, as it again pointed out and verified
that the equivalent plastic hinge length Lp is the most important
parameter influencing stress fps in unbonded tendons at
ultimate. Concerning the equivalent plastic hinge length and
the stress increase in unbonded tendons at ultimate, the
following points deserve discussion:

1. When the load type effect is included in the prediction
equation for Lp or fps, it may cause confusion in the use of the
equation because, in the ultimate limit state of a highway bridge,
it is difficult for designers to judge (a) if one-point, 2/3-point, or
uniform loading should be chosen; and (b) the loading
arrangements in continuous beams. In addition, tests indicated
that the stress increase in unbonded tendons at ultimate was not
consistently higher for beams loaded with 2/3-point loading
compared with beams with a single midspan point loading.9

The discussers advocate the treatment of Lp according to Tam
and Pannell’s method, namely, Lp/c is taken as approximately
10. The method has been proven simple and reasonable30;

2. The discussers believe the differences in techniques and
methods of measurement, variation of material properties, and
failure criteria of the specimens adopted by different investi-
gators may cause the spread of the test results. These differences
may also make most proposed equations, which are mainly
based on data regression analysis, encounter significant scatter
in the prediction of stress increase in unbonded tendons at
ultimate. There is, however, a common phenomenon that exists
in almost all test data performed by different investigators: the
value of Lp/c tends to be constant in a specific series of tests.
Therefore, Lp/c is a convenient parameter to judge how
conservative the prediction equation is; and

3. Regarding Eq. (12), which was proposed by Lee et al.,13

it should point out that in most cases, As′  is less than As, the
third term on the right-hand side of the equation would be
minus. In some cases, the second term together with the
other terms on the right-hand side of the equation may result

in the stress fps in unbonded tendons at ultimate being
smaller than their corresponding effective prestress fpe. This
is not correct in practice.

REFERENCES
30. Au, F. T. K., and Du, J. S., “Prediction of Ultimate Stress in Unbonded

Prestressed Tendons,” Magazine of Concrete Research, V. 56, No. 1, Feb. 2004,
pp. 1-11.

AUTHOR’S CLOSURE
The author would like to thank the discussers for their interest

in the paper and for their constructive comments.
As clearly stated in the paper, the purpose of the study was to

conduct an objective assessment of the main parameters that
influence the increase in stress Δfps in unbonded tendons at
ultimate and to explain the reasons behind the scatter of the test
data. In fact, because of this scatter, it would be hard to draw
accurate conclusions about the effect of load application or any
other parameter before a large body of test data is analyzed as
undertaken in the subject study. Based on the results of this
analysis, in accordance with the trend of test data shown in
Fig. 5 to 7 and the derived Eq. (23) of the paper, there is a clear
evidence to suggest that the type of load application influences
the equivalent plastic hinge length and consequently influences
Δfps. It should be noted that it is not only the equivalent plastic
hinge length Lp that influences the stress results; but also the
number np of the plastic hinges that develop in the process of
forming a collapse mechanism and, most importantly, the ratio
of the total equivalent plastic hinge length to the total length of
the tendons between anchorages npLp/La. Consequently, under
a given type of load application (single concentrated or
uniform), the value of npLp/La when one span is loaded to form
a collapse mechanism in multi-span (continuous) members is
generally less when compared with simply supported members.
The corresponding difference grows larger as the number of
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spans increases. Therefore, unnecessarily neglecting the member
continuity would produce unconservative Δfps results.

On the other hand, the author agrees with the discussers that
it would be easier for design purposes to consider one common
and conservative type of load application. In this regard, it is
worth mentioning that the author has already recommended that
Joint ACI-ASCE Committee 423 adopt Eq. (27) of the paper for
replacing Eq. (18-4) and (18-5) of the ACI Building Code
(recommendation is currently under evaluation by Joint
ACI-ASCE Committee 423). In adopting this equation, it is
suggested that the number of plastic hinges np appearing in
Eq. (28) of the paper be defined as np = 1 + Ns/2, where Ns
is the number of support hinges required to form a collapse
mechanism crossed by the tendon, which is similar to the
definition adopted by the current AASHTO LRFD. In

accounting for the effect of loading type, however, the
author has further suggested that Joint ACI-ASCE
Committee 423 consider the use of either f = ∞, which corre-
sponds to the most conservative single concentrated load
application, or f = 6, which corresponds to the more reasonable
uniform load application. 

Regarding Eq. (12) by Lee et al., the discusser agrees that
the equation may lead to values less than the effective
prestress fpe, which is unrealistic. This inconsistency,
however, may arise for all design expressions presented and
compared in the paper, particularly when the area of the
prestressing steel and/or the tension reinforcing steel are
significantly high to produce a neutral axis depth c at ultimate
exceeding the depth dp of the tendons. This problem can easily
be solved by imposing a minimum value on fps = fpe.

Disc. 103-S82/From the Nov.-Dec. 2006 ACI Structural Journal, p. 813

Minimum Transverse Reinforcement for Bottle-Shaped Struts. Paper by Michael D. Brown and Oguzhan Bayrak

Discussion by Dipak Kumar Sahoo, Bhupinder Singh, and Pradeep Bhargava
Research Scholar, Assistant Professor, and Professor, Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, India.

The authors are to be complimented for their thorough and
meticulous investigation of the necessity and the amount of
transverse reinforcement in bottle-shaped struts.

The discussers would like to draw attention to two important
issues related to the strut-and-tie modeling of bottle-shaped
struts, namely, the location of the ties and the angle of dispersion
of compression. The former issue is particularly relevant given
the fact that in the ACI 318-05 specified dispersion model,
the location of the ties in the strut-and-tie model for a bottle-
shaped strut is not specified.

On the basis of isolated strut tests, Brown et al.36 have
reported that the first sign of distress in their square panels
was in the form of a vertical crack that formed at the center
at the midheight of the panels. As the load increased, the
vertical crack propagated toward the top and bottom loaded
edges of the panels. This implies that, during the initial
stages of loading, the maximum transverse tensile strains
occurred at the midheight of the panels. Therefore, the strut-
and-tie model of Fig. 5(a) is a better representation of the
force system within the bottle-shaped strut during the initial
stages of loading. On the basis of the stress distribution
proposed by Guyon,1 the authors have suggested that the
strut-and-tie model of Fig. 5(b) is the best representation of
the force system within a bottle-shaped strut. It may be
pointed out that for the full development of Guyon’s stress
trajectories, the length of the bottle-shaped strut has to be at
least twice the maximum width available for the strut (Fig. 2).
This, however, may not be obtained in practice all the time.
Considering the fact that the location of the ties within the
bottle-shaped strut is influenced by factors such as the length
and width of the strut, the size of the bearing plates, and the
stage of loading, the strut-and-tie model of Fig. 5(b) may not
always be the best representation of the force system within
a bottle-shaped strut.

It is suggested herein that the location of the tie in the strut-
and-tie model for a bottle-shaped strut may not be that
significant. This is because, irrespective of the location(s) of
the tie(s) in any of the models of Fig. 5, the total tensile force
in the ties works out to be 1/2 of the axial force in the strut,
Fstrut. At the same time, the nonstationary location of the tie

at different stages of loading further diminishes the need for
specifying tie location within a bottle-shaped strut.

The m:1 dispersion of compression within the bottle-
shaped strut gives a transverse tensile force of Fstrut /m in the
tie. ACI 318-05 recommends 2:1 (m = 2) dispersion that will
yield a transverse tensile force of Fstrut /2 for which sufficient
reinforcement has to be provided so as to maintain equilibrium
in the strut. Given this relatively high reinforcement requirement
based on equilibrium considerations, one wonders as to how
ACI 318-05 can allow unreinforced bottle-shaped struts in
the first place.

The authors may like to verify the consistency of their
Eq. (1) and (2) derived from the model proposed by Schlaich
and Weischede.3 For example, when l/3 = bmin, bef = l/3 as
per Eq. (1) and l/2 as per Eq. (2). This contradiction needs to
be resolved.

For the square panels of Brown et al.,36 in which bmin = l/3,
the value of m estimated using Eq. (2) and (3) works out to
be 6. It is thus obvious that for a length of the bearing plates equal
to or less than 1/3 the axial length of the bottle-shaped strut, m
has a minimum value of 6. In other words, for any length of the
bearing plate up to 1/3 of the strut length, the magnitude of the
transverse tensile force is equal to 1/6 of the axial force Fstrut. On
the basis of Eq. (2) and (3), it can be verified that, as the length
of the bearing plate increases beyond 1/3 of the strut length, the
transverse tensile force reduces. On the basis of the dispersion
proposed by Guyon,1 however, it is observed that the transverse
tensile force reduces from a maximum magnitude of 3/10 of the
axial force Fstrut to zero as the length of the bearing plate bmin
increases from zero to the full width of the isolated strut panel.
The authors may like to comment on this disparity in the
estimation of the transverse tensile force, and hence m, in a
bottle-shaped strut.

The authors have made a graphical comparison in Fig. 10
of the provisions in A.3.3 and A.3.3.1 of ACI 318-05,
Appendix A. In this figure, on the basis of Eq. (7), the rein-
forcement ratio  is plotted against the slope of the angle
of dispersion m. By rearranging the terms and considering

ρ⊥
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the ACI 318-05 allowable maximum value for v = 0.85 ×
0.75 = 0.64, Eq. (7) can be rewritten as

(10)

In the previous equation, by substituting appropriate values
for fc′  and fy, the required reinforcement  can be

expressed as a function of m and can be plotted for various
(Ac /bl) ratios. The authors may wish to consider the option
of using (Ac /bl) instead of (Ac /bl) in Fig. 10.
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Minimum Transverse Reinforcement for Bottle-Shaped Struts. Paper by Michael D. Brown and Oguzhan Bayrak

Discussion by Mikael W. Braestrup
Senior Engineer, MSc, PhD, RAMBOLL, Copenhagen, Denmark

The discusser agrees with the authors’ observation that
reinforcement is necessary transverse to the axis of bottle-
shaped struts to control cracks widths under service loads,
but must take issue with the way in which they determine
such reinforcement.

The reinforcement ratio  perpendicular to a crack at the
inclination is evaluated by Eq. (4) as  = ρVcosθ + ρHsinθ,
with ρV and ρH being the reinforcement ratio in the vertical
and the horizontal direction, respectively. As correctly stated
in the preceding text, in accordance with the coordinate
transformation described by Mohr’s circle, the trigonometric
functions should be squared. In the discusser’s opinion, this
has nothing to do with shear slip along the crack but is a
simple consequence of equilibrium. Indeed, for Eq. (4), with
the first power trigonometric functions to be valid, the
reinforcement should be kinked perpendicular to the crack,
which is totally unrealistic. As a consequence of Eq. (4), the
contribution of skew reinforcement is seriously overestimated
(by 41% for θ = 45 degrees).

This is precisely the case for the described beam tests.
The assumed value of θ is not stated; but judging from the
numbers, it would be 45 degrees, with ρV = ρs = 0.0022 for
Specimen I-UL-17-0 and ρV = ρs = 0.0043 for Specimen

I-UL-8.5-0b. (The authors should state the cross-sectional
area of used reinforcement, or at least provide an identification
more revealing than “No. 3 bar.”) The discusser has calculated
the corresponding reinforcement ratios across the crack to be

 = 0.0011 and  = 0.0022, and not  = 0.0015 and  =
0.003, respectively. 

The required reinforcement ratio is then evaluated by
Eq. (8) as  = Pu/(fyblcotφ) where b is the width of the
beam, l is the total length of the strut, and φ is the angle of
dispersion of the strut compression. The force Pu is not
defined, but presumably it is the design axial load on the
strut. Equation (8) would seem to be at variance with the
preceding discussion, where St. Venant’s principle is
invoked to demonstrate that transverse reinforcement is only
needed for a distance of one member depth from the application
of the strut force, and not over the entire length of the strut. That
would not matter if Eq. (8) was used to determine the required
reinforcement ratio, which then was placed over the dispersion
length only, but that does not seem to be the case.

The aforementioned considerations cast some doubt on the
validity of the conclusions of the paper, but apparently the over-
estimation of the reinforcement strength would exacerbate the
claimed inconsistency of the ACI 318-05 recommendations.

ρ⊥

ρ⊥

ρ⊥ ρ⊥ ρ⊥ ρ⊥
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Minimum Transverse Reinforcement for Bottle-Shaped Struts. Paper by Michael D. Brown and Oguzhan Bayrak

Discussion by Sung-Chul Chun, Taehun Ha, Sung-Gul Hong, and Bohwan Oh
Principal Researcher, Daewoo Institute of Construction Technology, Suwon, Korea; Senior Researcher, Daewoo Institute of Construction Technology; Associate Professor,
Department of Architecture, Seoul National University, Seoul, Korea; and Chief Researcher, Daewoo Institute of Construction Technology

The authors have presented an interesting and valuable
concept on the minimum transverse reinforcement for bottle-
shaped struts. The discussers would like to offer the
following comments:

1. As the authors pointed out, the equivalent resisting force
perpendicular to the crack  in Fig. 8 is related to the
equivalent reinforcement ratio perpendicular to the expected
splitting crack  by Eq. (5). Substituting Eq. (4) into Eq. (5),
however, does not yield the equation for  in Fig. 8. The
reason for this inconsistency is that the resisting force  in
Fig. 8 was defined as a sum of forces from one vertical and
one horizontal shear reinforcement. The resisting force 
should be defined as total resisting force along the entire
length of expected crack to resist the total tensile force T as

shown in Fig. 7. The correct resisting force  can be
expressed as Eq. (11) including the numbers of reinforcing bars
in two orthogonal directions along expected splitting crack.

(11)

where nV = (lcosθ)/sV and nH = (lcosθ)/sH are the numbers of
vertical and horizontal reinforcing bars along expected
splitting crack, respectively. Now the correct equivalent ratio
can be obtained from Eq. (5) and (11).
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(12)

A similar equation may also be found from Reference 37,
which was derived using the usual transformation formulas
for plane stress fields.

2. Based on a similar speculation, it is found that the
formula in the commentary for Section A.3.3.1 in ACI 318-05
has an error in the power of the trigonometric function sinαi.
It should be expressed as

(13)

Consequently, Eq. (A-4) of ACI 318-05 (Eq. (9) in the
paper) may be amended as

(14)
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The value of 0.003 was not clearly explained in the paper
and the code commentary.

3. The SRSS (square root of the sum of the squares)
method was used to compare the minimum reinforcement
ratios of the four provisions, that is, Section A.3.3.1 and
Chapter 11 of ACI 318-05, CSA A23.3, and AASHTO
LRFD. The discussers calculated the equivalent reinforcement
ratios using the SRSS method, Eq. (4), and Eq. (12) with
varying angles between expected splitting cracks and
longitudinal reinforcement. Figure A shows that the SRSS
method provides upper bound values. Especially, compared with
the values calculated by the correct equivalent reinforcement
ratio (Eq. (12)), the SRSS greatly overestimates the minimum
reinforcement ratios. It is not reasonable to use the SRSS
method to calculate the equivalent reinforcement ratios in
the perpendicular direction to possible splitting cracks in
orthogonally reinforced concrete members.

REFERENCES
37. Nielsen, M. P., Limit Analysis and Concrete Plasticity, CRC Press,

Boca Raton, Fla., 1999, pp. 93-98.

AUTHOR’S CLOSURE
The authors thank the discussers for their interest in the

paper and critical evaluation of the work presented therein.
The authors agree with the discussers that the use of bottle-
shaped struts without transverse reinforcement as allowed by
Appendix A of ACI 318-05 is not recommended, as stated in
the first conclusion of the paper. Additional closures to each
of the three discussions are presented as follows.

Closure to discussion by Sahoo, Singh,
and Bhargava 

Strut-and-tie modeling is based on, and requires, plastic
redistribution in the members being modeled. When a member
is undergoing plastic redistributions, load is distributed
according to strength as opposed to elastic deformations where
load is distributed according to stiffness. As the concrete panels
presented in Reference 36 cracked, the reinforcing bars in them
became the stronger elements and began to attract load.
Thus, if reinforcement is placed within the panels, plastic
redistribution will cause a cracking pattern and force
distribution to take advantage of those bars. The presence or
absence of bars at midheight will not significantly affect the
formation of the vertical cracks that occurred in the panels
reported in Reference 36. Hence, the authors agree with the
idea that the transverse ties in a bottle-shaped strut should
not be fixed at a single location. Doing so would limit the
adaptability of strut-and-tie modeling. Adaptability is one of
the primary advantages of the method. The centroid of the
reinforcement placed in a member, however, should coincide
with the assumed tie location.

The discussers are correct that there is a discontinuity
present in Eq. (1) and (2). Discontinuities of this nature,
however, occur whenever a complex continuous phenomenon
is modeled with a simple step function. The authors did not
conduct an in-depth examination of the dispersion of the
compression in a bottle-shaped strut, but rather adopted a
sufficiently simple, existing model.3 Equation (8) is
presented with the value m as an input parameter so that
practitioners can apply any value of slope they deem appro-
priate. That value of slope need not be determined using
either the model presented by Schlaich and Weischede,3

Guyon,1 or the value of 2 suggested by ACI 318-05.2 In fact,

Fig. A—Comparisons of ,min, , and ,correct.ρ⊥ ρ⊥ ρ⊥
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Closure to discussion by Chun, Ha, Hong, and Oh
Quoting from the our paper: “When [the forces on the

bars] are considered and their interaction is examined using
Mohr’s Circle for stress, the trigonometric functions shown
in Fig. 8 should be raised to the second power rather than to
the first power as shown.” To be consistent with the current
ACI 318 design provisions, the authors chose not to square
the trigonometric functions.

FINAL WORDS
As described in the original paper and recognized by the

discussers, minimum transverse reinforcement requirements
of Appendix A of ACI 318-05 provisions can be improved. The
first conclusion of the paper highlights the most serious short-
coming of the Appendix A provisions: unreinforced bottle-
shaped struts. As can be inferred from Fig. 9 and 11, the
actual amount of reinforcement required to keep a bottle-
shaped strut in equilibrium is sufficiently small for most of
the test specimens examined in the paper, regardless of the fact
that the trigonometric functions are squared or not. In
conclusion, we would like to reiterate parts of the two
conclusions of our paper:
• “…The use of a variable angle of dispersion often requires

a reinforcement ratio less than 0.003. However, consid-
erations for serviceability must also be made…”  and

• “…Additional research regarding the serviceability of
structures designed using strut-and-tie provisions is
needed…”

REFERENCES
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Consistent Design of Structural Concrete,” PCI Journal, V. 32, No. 3,
pp. 74-150.

Schlaich et al.38 recommend that the value of m be determined
from an elastic finite element analysis.

The requested alterations to Fig. 10 have been made and
are incorporated into Fig. B. The authors see no significant
difference between Fig. 10 and B.

Closure to discussion by Braestrup
It is the authors’ understanding that the development of the

minimum reinforcement for a bottle-shaped strut as presented in
Section A.3.3.1 of ACI 318-05 begins by assuming that there is
a single reinforcing bar that is perpendicular to the splitting
crack in a strut. If that crack opens without any shear slip, that
reinforcing bar will be in a state of pure tension. Inclined shear
reinforcement, however, is rarely used in North American
practice. To address the common use of an orthogonal grid,
Eq. (A-4) of ACI 318-05 (Eq. (9) of the paper) was developed.
This equation takes the components of the bars comprising
the orthogonal grid that are perpendicular to the crack. When
using an orthogonal grid of bars, however, the bars must kink
as the crack opens regardless of the no shear-slip assumption.
The discusser is correct that if the squares of the sine terms
are used, the values reported for Specimens I-UL-8.5-0b and
I-UL-17-0 change from 0.0015 and 0.003 (as reported in the
paper) to 0.0011 and 0.0022 (as presented by the discusser).
The discusser is right that to be technically correct, the
trigonometric terms shown in Eq. (9) should be squared, as
stated in our paper and quoted by the discusser:

When these forces are considered and their interaction is
examined using Mohr’s Circle for stress, the trigonometric
functions shown in Fig. 8 should be raised to the second
power rather than to the first power as shown.
The authors have chosen, however, not to square those

terms to be consistent with the procedures and equations
presented in ACI 318-05.

The database of specimens presented in this paper was
assembled only from tests of beams with shear span-to-depth
ratios of 2 or less. All inclined struts are located entirely
within D-regions because the St. Venant’s principle would
apply to the local disturbance at the reaction and at the
applied load. If those two disturbances are separated by a
distance less than or equal to twice the member depth, the
entire strut is located in a zone that is subject to St. Venant’s
principle. If one chooses to apply strut-and-tie modeling to a
beam member with a shear span-to-depth ratio greater than 2,
there would be a B-region between the D-regions associated
with the applied load and reaction. The reinforcement
requirements presented in the paper are intended to apply
only to D-regions. The reinforcement specified in Chapter 11 of
ACI 318-05 should be used for a B-region.

Fig. B—Variations in required reinforcement for various
Ac / bl values.
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Behavior and Design of Adhesive Bonded Anchors. Paper by Rolf Eligenhausen, Ronald A. Cook, and Jörg Appl

Discussion by Shiming Chen
Professor, School of Civil Engineering, Tongji University, Shanghai, China

The discusser appreciates the authors’ comprehensive work
to simulate the behavior of adhesive bonded anchors based on a
broad range of test data. Some findings are interesting to the
discusser; however, they were not well clarified. Discussions
are as follows.

Influence of bond strength of adhesive
It is not well evaluated how the bond strength of the

adhesive influences the failure mode. As the mean bond
strength at the adhesive/anchor interface for individual
products ranges from 330 to 2830 psi (2.3 to 19.5 MPa), this
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should have great influence on the breakout failure of the
anchors as expressed in Eq. (1b) for post-installed mechanical
anchors. Equations (4a) and (4b) are derived from equilibrium
of a bonded anchor using a uniform bond stress model. As
far as the bond strength of the adhesive is greater than the
maximum bonded stress (expressed as Eq. (4a) or (4b)), the
concrete breakout capacity is determined for a single anchor.

Figure 5 illustrates that when the diameter is larger than
16 mm (0.6 in.), the failure load is governed by the breakout
failure of concrete and agrees well with the predicted values
(Eq. (1b)). A comparison of the shear bond stress derived
from Eq. (4b) and from the test values (given in Fig. 5) is
given in Fig. A. Accordingly, the failure loads of the tested
anchors are all limited to the breakout failure of concrete, but
the mean bonded shear stress varies with the diameter of the
anchors. As the same mortar and the same embedment depth
were adopted, it is likely that the shear bond strength at the
adhesive/anchor interface required to secure a concrete breakout
failure drops as the diameter of the anchors increases. It fails
to reach the expected the failure load expressed by Eq. (1b) (a
decrease by 20%), however, when the diameter of the anchors
is 12 mm (0.47 in.), and the shear bond stress is 2500 psi
(17.2 MPa), as illustrated in Fig. 5. In designs using post-
installed adhesive anchors, it is understood that the embedment
depth of an adhesive anchor, in terms of a multiple of the
anchor diameter, is a key factor in governing of the breakout
failure of the anchors. The greater the embedment depth

Fig. A—Comparison of shear bond stress against diameter
of anchor.

is, the failure load will be, as far as concrete breakout failure
occurs; and it would be beyond practical understanding that
the failure load of the anchors of 12 mm (0.47 in.) in diameter,
with a ratio of embedment depth to diameter of 8.33,
would be smaller than that of 24 mm (0.9 in.), with a ratio
of embedment depth to diameter of 4.17. Can the authors
clarify whether it is owing to the mean bond strength
decrease as the anchor diameter increases, or the shear bond
stress distributed more sharply at the adhesive/anchor interface,
leading to a lower failure load?

A variation curve of shear bond stress against the diameter
of the anchor based on Eq. (4) together with the test values
derived from Fig. 5 is drawn in Fig. A. From Fig. A, it is
expected if the bond strength at the adhesive/anchor interface is
lower than the maximum stress, the pullout or the bond failure
would occur, and this may govern the failure of the anchors.

Numerical model
A numerical study was carried out based on the three-

dimensional nonlinear finite element analysis. It is indicated
that the microplane model integrated the threads, and mortar
behavior was adopted in the study. As the cited reference is
written in German, can the authors further highlight its main
features of the model so the reader can follow the mechanism
and the failure criterion at the adhesive/anchor interface in
the numerical study?

The failure loads based on the numerical study should
correspond to different failure patterns, as graphically
demonstrated in Fig. 6 and 7. It is not clear what role the
variations in the spacing, the embedment, and the adhesive
of anchors play in the governing failure patterns.

Figure 18 demonstrates a comparison of failure loads of
anchor groups based on the test results, the numerical study,
and Eq. (2a). It appears that the failure load of the anchor
group increases with the increased spacing but is much lower
than the concrete breakout failure load given by Eq. (2), even
if the spacing is greater than the critical spacing s determined
by either Eq. (5) or (9). Does it imply that it is unsafe to
predict the failure load of adhesive anchors by Eq. (1) and
(2), which are only valid for the post-installed mechanical
anchors? If this is true, how is it explained in Fig. 5, when
single adhesive anchors are used, that the failure loads agree
well with the predicted values when the diameter of the
anchors is greater than 16 mm (0.6 in.)?

Note: see also “Errata” on p. 647 of this issue.
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ERRATA

p. 823.
Table 1(a) and (b): Change all instances of “max.” to “min.” and “min.” to

“max.”

Please make the following correction to the paper that appeared in the ACI Structural Journal, V. 103, No. 6, November-December 2006.

103-S83, “Behavior and Design of Adhesive Bonded Anchors” by Rolf Eligehausen, Ronald A. Cook, and Jörg Appl


