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The Modified Compression-Field Theory for Reinforced
Concrete Elements Subjected to Shear

by Frank J. Vecchio and Michael P. Collins

An analytical model is presented that is capable of predicting the
load-deformation response of reinforced concrete elements subjected
to in-plane shear and normal stresses. In the model, cracked concrete
is treated as a new material with its own stress-strain characteristics.
Equilibrium, compatibility, and stress-strain relationships are for-
mulated in terms of average stresses and average strains. Considera-
tion Is also given to local stress conditions at crack locations.

The stress-strain relationships for the cracked concrete were deter-
mined by testing 30 reinforced concrete panels under a variety of well-
defined uniform biaxial stresses including pure shear. It was found
that cracked concrete subjected to high tensile strains in the direction
normal to the compression is softer and weaker in compression than
concrete in a standard cylinder test. Additionally, significant tensile
stresses were found in the concrete between the cracks even at very
high values of average tensile strain.

Keywords: aggregate interlock; axial loads; biaxial loads; cracking (fracturing):
crack width and spacing; finile elemen1 meihod; offshore struciures; rein-
forced concrete; shear strength: stiffness; stresses; stress-strain relationships:
structural analysis; 1ension; tests.

The safety of large-scale, complex civil engineering
structures such as offshore oil platforms, containment
structures for nuclear power plants, high-rise buildings,
and long-span bridges depends on the designer’s ability
to predict how such structures will respond under ex-
treme environmental and man-made hazards. In mak-
ing this prediction, the designer typically conceptual-
izes the actual structure as an assemblage of simpler
elements. Predicting the structural response then in-
volves the two interrelated tasks of determining how the
load is shared among the elements of the structure
(global analysis) and how each element responds to its
applied loads (element analysis).

During the last 25 years, techniques have been devel-
oped for global analysis which are truly impressive in
their power and elegance.® Unfortunately, the models
available for reinforced concrete element analysis*’
match neither the sophistication of the global struc-
tural analysis procedures nor the computational power
now available to the structural engineer.
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Fig. 1 — Structures idealized as an assemblage of
membrane elements

This paper will focus on the response of rectangular
reinforced concrete elements subjected to in-plane shear
and axial stresses (i.e., membrane stresses). Such a
membrane element may be used in modeling the re-
sponse of such structures as those shown in Fig. 1,
where the load is primarily carried through the action
of in-plane stresses.

Predicting the response of the simple reinforced con-
crete element shown in Fig. | is not as straightforward
a task as it would first appear. Under a particular set
of loads, new cracks may form, pre-existing cracks may
propagate or close, and the forces will be resisted by a
structural system consisting of concrete bodies joined
by reinforcing bars. The stresses in the reinforcing bars
will vary along the lengths of the bars, and will be
highest at the crack locations. The concrete bodies will
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be bounded by rough crack surfaces capable of trans-
mitting shear and compression at the contact locations,
but not capable of transmitting tension. However, ten-
sile stresses will exist in the concrete lying between the
cracks. To date, there is no accepted theory capable of
predicting the full load-deformation response of such
an element. This was made evident in a recent interna-
tional competition® in which 43 leading researchers
from 13 different countries attempted to predict the
load-deformation response of 4 of the reinforced con-
crete panels which were tested in this investigation. For
one of the elements (PV25 in Table 1), the ratio of the
highest to lowest prediction of strength was six to one.
Not even the best entry was capable of predicting
strengths to within 15 percent for each of the four

panels. It should be emphasized that 1n choosing the
four elements for the competition, elements whose be-
havior would be difficult to predict were deliberately
chosen; thus, in none of the elements was the load ca-
pacity governed by overall yielding of the reinforce-
ment. The predictions were strongly dependent on the
assumed stress-strain characteristics of the concrete.
While such heavily reinforced elements subjected to
high shear are unusual in typical buildings, they often
occur in offshore platforms and nuclear containment
structures.

The modified compression-field theory presented
here has been developed from the compression-field
theory®!® for reinforced concrete in torsion and shear.
In both models, the cracked concrete is treated as a new
material with its own stress-strain characteristics. Equi-
librium, compatibility, and stress-strain relationships
are formulated in terms of average stresses and average
strains. While the original compression-field theory
ignored tension in the cracked concrete, this model
takes into account tensile stresses in the concrete be-
tween the cracks, and employs experimentally verified
average stress-average strain relationships for the
cracked concrete.

DEFINITION OF THE PROBLEM
The membrane element shown in Fig. 2 represents a
portion of a reinforced concrete structure. It is taken to
be of uniform thickness and relatively small size, and

Table 1 — Summary of experimental program

Longl;ﬁ;nal Transverse steel Concrete Experimental observations
Loading Failure strains
ratios Sros Seer Vers v,
Panel vifif. 0. MPa o, MPa e MPa MPa MPa e/e, | e/e, |&/€. Comments
PVl 1:0:0 0.0179 483 0.0168| 483 —-0.00221 -34.5 2.21 >8.02 0.91 1.04| 0.48 | Edge failure
PV2 1:0:0 0.0018 428 0.0018 428 -0.0023| —-23.5 1.10 1.16 0.38! 0.43] 0.10 | Precracked — warped
PV3 1:0:0 0.0048 662 0.0048 662 -0.0023| -26.6 1.66 3.07 0.67| 0.73] 0.21 | Steel brittle fracture
PV4 1:0:0 0.0106 242 0.0106| 242 -0.0025| —26.6 1.79 2.89 4.91 5.471 0.18
PVs 1:0:0 0.0074 621 0.0074} 621 —0.0025| —28.3 1.73 >4.24 0.80| 0.83 0.30 | Edge failure
PVé6 1:0:0 0.0179 266 0.0179 266 —-0.0025| —29.8 2.00 4.55 5.36 5.481 0.23
PV?7 1:0:0 0.0179 453 0.0179 453 -0.0025{ -31.0 1.93 >6.81 0.84 0.85| 0.35 | Edge failure
PV§ 1:0:0 0.0262 462 0.0262 462 -0.0025] —29.8 1.73 >6.67 0.56 0.59]| 0.38 | Edge failure
PV9 1:0:0 0.0179 455 0.0179 455 -0.0028 —~11.6 1.38 >3.74 0.59 0.471 1.05 | Poorly cast — voids
PV10 1:0:0 0.0179 276 0.0100 276 -0.0027| —-14.5 1.86 3.97 0.64 4,47 1.48
PVi1 1:0:0 0.0179 235 0.0131 235 ~0.0026| —15.6 1.66 3.56 1.28( 2.37! 0.61
PVI2 1:0:0 0.0179 469 0.0045 269 —0.0025| -16.0 1.73 3.13 0.40| 4.34| 0.93
PV13 1:0:0 0.0179 248 0 — -0.0027| —18.2 1.73 2.01 0.61 8.56| 0.37
PV14 1:0:0 0.0179 455 0.0179 455 —0.0022| -20.4 1.93 >5.24 0.55| 0.56]| 0.27 | Edge failure
PVIs 0:-1:0 0.0074 255 0.0074| 255 —0.0020| -21.7 — >(-19.6)'| —0.93| 0.14]| 0.58 |{ Loading stopped
PV16 1:0:0 0.0074 2558 0.0074 255 ~0.0020| -21.7 2.07 2.14 4.12 4.33| 0.16
PV17 0:-1:0 0.0074 255 0.0074 255 ~0.0020| ~18.6 —_ (—-21.3)y | -1.97 0.48| 1.26 | Explosive failure
PV18 1:0:0 0.0179 431 0.0032 412 ~0.0022} -19.5 2.00 >3.04 0.46 3.36| 0.36 | Edge failure
PVI19 1:0:0 0.0179 458 0.0071 299 -0.0022| —-19.0 2.07 3.95 0.50 5.771 0.72
PV20 1:0:0 0.0179 460 0.0089 297 -0.0018| —19.6 2.21 4.26 0.52 5.751 1.06
PV2l 1:0:0 0.0179 458 0.0130] 302 —0.0018] —19.5 2.35 5.03 0.59| 3.59]0.81
PV22 1:0:0 0.0179 458 0.0152 420 —0.0020( -19.6 2.42 6.07 0.60| 0.91] 0.53
PV231:-0.39:-0.39(0.0179 518 0.0179f 518 -0.0020| —20.5 3.73 8.87 0.36| 0.44| 1.33
PV241:-0.83:-0.83(0.0179 492 0.0179| 492 —0.0019( —23.8 4.97 >7.94 | -0.05|-0.03|0.37 |Poorly cast — voids
PV25|1:-0.69:-0.69|0.0179 466 0.0179| 466 —-0.0018] —19.2 4.14 9.12 0.13| 0.17| 1.47
PV26 1:0:0* 0.0179 456 0.0101 463 —-0.0019 .3 2.00 5.41 0.58 1.161 0.53
PV27 1:0:0 0.0179 442 0.0179 442 -0.0019 .5 2.04 6.35 0.52 0.531 0.59
PV28 1:0.32:0.32 [0.0179 483 0.0179 483 ~0.0019 .0 1.66 5.80 0.92 0.85] 1.28
PV29 | Changing |0.0179 441 0.0089 324 -0.0018 7 2.21 5.87 0.38 1.801 0.71
PV30 + 1:0:0* 0.0179 437 0.0101 472 -0.0019 .1 1.55 >5.13 0.51 0.951 0.59 | Edge failure

*Precracked in biaxial tension.
'Values of f,.
Noie: ! MPa = 145 psi.
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Fig. 2 — Membrane element

contains an orthogonal grid of reinforcement with the
longitudinal (x) and transverse (¥) axes chosen to coin-
cide with the reinforcement directions. Loads acting on
the element’s edge planes are assumed to consist of the
uniform axial stresses f, and f, and the uniform shear
stress v,,. Deformation of the element is assumed to oc-
cur such that the edges remain straight and parallel.
The deformed shape is defined by the two normal
strains ¢, and ¢, and the shear strain, v,,.

The problem at hand is to determine how the three
in-plane stresses f,, f,, and v,, are related to the three in-
plane strains ¢,, ¢,, and v,,. In solving this problem, the
following additional assumptions will be made:

1. For each strain state there exists only one corre-
sponding stress state; situations in which the influence
of loading history is significant will not be treated.

2. Stresses and strains can be considered in terms of
average values when taken over areas or distances large
enough to include several cracks.

3. The concrete and the reinforcing bars are per-
fectly bonded together at the boundaries of the element
(i.e., no overall slip).

4. The longitudinal and transverse reinforcing bars
are uniformly distributed over the element.

Tensile stresses and tensile strains will be treated as
positive quantities while compressive stresses and
strains will be taken as negative.

COMPATIBILITY CONDITIONS

Having assumed that the reinforcement is anchored
to the concrete, compatibility requires that any defor-
mation experienced by the concrete must be matched by
an identical deformation of the reinforcement. Any
change in concrete strain will be accompanied by an
equal change in steel strain.

Nonprestressed reinforcement has the same initial
strain as the surrounding concrete. Hence

€ = €y = € (N
and

€ = €y = € (2
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(b) Mohr’s Circle for Average Strains
Fig. 3 — Compatibility conditions for cracked element

If the three strain components e,, €, and v,, are
known, then the strain in any other direction can be
found from geometry. The Mohr’s circle of strain
shown in Fig. 3 elegantly summarizes the transforma-
tions involved. Useful relationships which can be de-
rived from its geometry include

2( —€)
T tand 3)
&+ € =¢ + 6 )
and
€ — €& € — € -€ € —

tag = *—= =2 =2 825 & T8 (g

€ — € €6 —€ € —€6 € — €
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where ¢, is the principal tensile strain and e, is the prin-
cipal compressive strain. ‘

EQUILIBRIUM CONDITIONS

1 T i i r_, The forces applied to the reinforced concrete element
< J L5 e are resisted by stresses in the concrete and stresses in the
H ” ” “ '_> reinforcement. For the free-body diagram shown in
S P S RS A M Fig. 4, the requirement that the forces sum to zero in
f ‘ I I I Il F’ the x-direction can be written as
X ] I 1 I -
s
AT [raa = {feaa + [ 1. a4 (6)
- Il Il I Il y A, A
E = == = == - == = = b e
Il I 1l Il F >
.__.l.ll.__!.!____.ll.ll___!.L Ignoring the small reduction in concrete cross-sectional
- “_ﬁ_“ﬁ'_—ﬂ'_‘ﬂ‘ ) > fsx area due to the presence of reinforcing bars, Eq. (6)
-~ -~ ~— ‘ fox becomes
l 1 1 { o= fut o Lo ™
I In a similar fashion, the following equilibrium condi-
tions can be derived
Fig. 4 — Free-body diagram of part of element f=fy + oy 1, ®)
va = vCX + pSX : vSX (9)
e
\ and
\ chy vxy = vry + psy . vxy (10)
f;—l r_’ Assuming that
\i\ Voo = Vo = Vg
‘ the stress conditions in the concrete are fully defined if
o fo foy» and v, are known.
(@ gverage Concrete (b) Principal Stresses The Mohr’s circle for the concrete stresses shown in
tresses in Concrete . . . . .
Fig. 5 yields the following useful relationships
v f;x = frl - vcxy/tanor (ll)
fcy
fcy = fcl - Vcr,v : taner (12)
y
—~fe and
vcxy
2 l Jo = fa = Vo, * (tanf. + 1/tanb) (13)
24, 1 f
STRESS-STRAIN RELATIONSHIPS
Constitutive relationships are required to link aver-
x age stresses to average strains for both the reinforce-
—fex ment and the concrete. These average stress-average
strain relations may differ significantly from the usual
for local stress-local strain relations determined from stan-
dard material tests. Furthermore, the average stress-av-
(c) Mohr’s Circle for Average Concrete Stresses erage strain relationships for the reinforcement and for
the concrete will not be completely independent of each
other, although this will be assumed to maintain the
Fig. 5 — Stresses in cracked concrete simplicity of the model.
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The axial stress in the reinforcement will be assumed
to depend on only one strain parameter, the axial strain
in the reinforcement. It will be assumed further that the
average shear stress on the plane normal to the rein-
forcement resisted by the reinforcement is zero. In re-
lating axial stress to axial strain, the usual bilinear uni-
axial stress-strain relationship shown in Fig. 6 will be
adopted. Thus

f:u = Es € < ¥y (14)
Jo=E e <[, (15)
Ve = Vv, =0 16)

In regard to the concrete, it will be assumed that the
principal stress axes and principal strain axes coincide

0. =0 a7

To complete the model, relationships between the prin-
cipal compressive stress and the principal compressive
strain and between the principal tensile stress and the
principal tensile strain are required.

EXPERIMENTAL PROGRAM

To obtain the necessary information, 30 reinforced
concrete elements were subjected to simple well-defined
loading conditions (see Table 1). While the majority of
the tests were conducted in monotonic pure shear, some
elements were subjected to uniaxial compression, com-
bined biaxial compression and shear, combined biaxial
tension and shear, reversed cyclic shear, and changing
load ratios. In addition to loading conditions, the prime
variables included percentage of transverse reinforce-
ment, percentage of longitudinal reinforcement, and
concrete strength.

The test specimens were 890 mm square x 70 mm
thick (35 x 35 x 2.75 in.). They were reinforced with
two layers of welded wire mesh with the wires running
parallel to the edges of the element. The smooth wire
meshes typically had a 50 mm (2 in.) grid spacing, were
heat-treated, and showed a ductile response. A clear
cover of 6 mm (0.25 in.) was provided over the longi-
tudinal bars. Maximum aggregate size was 6 mm (0.25
in.).

Five steel ‘‘shear keys’’ were cast into each of the
four edges of the test specimen and were anchored to
the concrete by shear studs. The specimens were loaded
by forces applied to the shear keys using 37 double-act-
ing hydraulic jacks and a network of links as shown in
Fig. 7. To house the jack-and-link assembly, a steel
box-section reaction frame was built (see Fig. 8). A lat-
eral support frame was provided to resist any out-of-
plane displacements of the specimens. Any combina-
tion of shear and tension or compression could be ap-
plied to the test specimens by varying the magnitude
and direction of the forces in various groups of links.

ACI JOURNAL / March-April 1986
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Fig. 7 — Jack-and-link assembly used to apply shear
and normal stresses

Fig. 8 — The membrane element tester
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Fig. 9 — Experimentally determined strain and stress
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Fig. 10 — Comparison of principal compressive stress
direction with principal compressive strain direction

In the tests, known values of stress were applied to
the reinforced concrete (f,, f,, and v,,), and the result-
ing specimen strains were measured (e, €,, and v,,).
Reference 11 gives full details of the experimental pro-
gram.

Average stresses in the reinforcement were deter-
mined from the measured strains in the longitudinal
and transverse directions and from the measured stress-
strain characteristics of the reinforcement. Using these
reinforcement stresses together with the known exter-
nally applied normal stresses, the average concrete
stresses in the longitudinal and transverse directions
were calculated from equilibrium Eq. (7) and (8).
Knowing the applied shear stress acting on the element,
the remaining concrete stress parameters could be de-
termined. Thus, for each specimen at each load stage,
it was possible to draw a concrete strain circle and a
concrete stress circle (see Fig. 9). It then remained to
determine relationships linking the concrete stress cir-
cles to the concrete strain circles.

224

AVERAGE STRESS-AVERAGE STRAIN
RESPONSE OF CONCRETE

The directions of principal strains in the concrete de-
viated somewhat from the directions of principal
stresses in the concrete (see Fig. 10). However, it re-
mains a reasonable simplification to assume that the
principal strain axes and the principal stress axes for the
concrete coincide.

The principal compressive stress in the concrete f,,
was found to be a function not only of the principal
compressive strain ¢, but also of the co-existing princi-
pal tensile strain ¢,. Thus, cracked concrete subjected to
high tensile strains in the direction normal to the
compression is softer and weaker than concrete in a
standard cylinder test (see Fig. 11). The relationship

suggested is
€, 6\
.ch = f:‘.‘Zmux <12 ) T AT (l8a)
(S €./

.fczmur 1
S = < 1.0 18b
S 0.8 — 0.34 ¢ /€ (18b)

where

Note that as ¢/ is a negative quantity (usually —0.002),
increasing e, will reduce f,,,,.../ f. .

The relationship between the average principal ten-
sile stress in the concrete and the average principal ten-
sile strain is nearly linear prior to cracking and then
shows decreasing values of f,, with increasing values of
€, (see Fig. 11). The relationship suggested prior to
cracking (i.e., ¢, < ¢,) is

Jo=E "¢ (19)

where E, is the modulus of elasticity of the concrete
which can be taken as 2 f! /e/ . The relationship sug-
gested after cracking (i.e., ¢, > ¢,) is

S

Jo= 173 J200 €,

(20)

TRANSMITTING LOADS ACROSS CRACKS

The stress and strain formulations described deal
with average values and do not give information re-
garding local variations. At a crack, the tensile stresses
in the reinforcement will be higher than average, while
midway between cracks they will be lower than aver-
age. The concrete tensile stresses, on the other hand,
will be zero at a crack and higher than average midway
between cracks. These local variations are important
because the ultimate capacity of a biaxially stressed ele-
ment may be governed by the reinforcement’s ability to
transmit tension across the cracks.

Fig. 12 compares the calculated average stresses
(Plane 1) with the actual local stresses that occur at a
crack (Plane 2). The critical crack direction is assumed
normal to the principal tensile strain direction. While
the calculated average shear stress on Plane 1 is zero (in

ACl JOURNAL / March-April 1986



(a) Stress-Strain Relationahip for Cracked Concrete
in Compression

fea/ feamax

0N /A TS N NSO N NS S

€,le;

(c) Correlation of Test Qata tor Cracked Concrate
in Compression

[N t

(e) Average Stress~Strain Ralationship for
Cracked Concreta in Tension

terms of average stresses it is a principal plane), there
may be local shear stresses on Plane 2. These shear
stresses v,;, may be accompanied by small local com-
pressive stresses f;, across the crack.

As the applied external stresses f,, f,, and v,, are
fixed, the two sets of stresses shown in Fig. 12 must be
statically equivalent. Assuming a unit area for both
Plane 1 and Plane 2, the requirement that the two sets
of stresses produce the same force in the x-direction is

0. fo SINO + f; sing
= poSoeSing — fusinf — v.cosf (21)

The requirement that the two sets of stresses on Plane
1 produce the same force in the y-direction is

05 fyc0s8 + f.cosd
= pySfoer€OSd — ficos0 + v,sind (22)

Eq. (22) can be rearranged as

psy(.fxycr‘ - .fsv) = .fcl + .fci - vcitano (23)
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(d) Thrae-Dimensionai Representation of Compressive
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Fig. 11 — Stress-strain relationships for cracked concrete

While Eq. (21) can be rearranged as

Py (f;xvr - .fsr) = ﬂ'l + ﬂi + vrl/[ana (24)

Equilibrium Eq. (23) and (24) can be satisfied with no
shear stress on the crack and no compressive stresses on
the crack only if

psy (.fsycr - .fsy) = p,sx (.fsxrr - .f;'x) = .f('l (25)

However, the stress in the reinforcement at a crack
cannot exceed the yield strength, that is

Joo € Jfix (26)

and
Joo S Sy 27)

Hence, if the calculated average stress in either rein-
forcement is high, it may not be possible to satisfy Eq.
(25). In this case, equilibrium will require shear stresses
on the crack.
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For the vast majority of concretes, cracking will oc-
cur along the interface between the cement paste and
the aggregate particles. The resulting rough cracks can
transfer shear by aggregate interlock (see Fig. 13). The

(c) Local Stresses
at a Crack

(b) Calculated Average
Stresses

Fig. 12 — Comparison of local stresses at a crack with
calculated average stresses

Fig. 13 — Transmitting shear stresses across crack by
aggregate interlock
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relationships between the shear across the crack v, the
crack width w, and the required compressive stress on
the crack f,, have been experimentally studied by a
number of investigators, including Walraven.'? Based
on Walraven’s work, the following relationship was
derived (see Fig. 14)

Vo = 0.18 vpy + 1.64 £, — 0820 (28) |

cimax

where

_ v=I
cimax 0.31 + 24 W/(a + 16)

% (29)

and where ¢ is the maximum aggregate size in milli-
meters and the stresses are in MPa. If inch and psi units
are being used, the numerator of Eq. (29) should be
multiplied by 12, and 16 in the denominator should be
replaced by 0.63.

The crack width w to be used in Eq. (29) should be
the average crack width over the crack surface. It can
be taken as the product of the principal tensile strain
and the crack spacing s,; that is

w=¢€ "% 30)
where
! G1)
Sp = ————————
* 7 sind  coso
Smx Sm_v
1.2
L]
1.0
0.8
x
]
€ o6l
2
>‘5
0.4
H "0: "7 walraven's
,_/. experimental points
0.2 r'f
I
L]
o | | | |
0 0.2 0.4 0.6 0.8 1.0
fcil"ci max

Fig. 14 — Relationship between shear transmitted
across crack and compressive stress on crack
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Experimental points

Calculated response

Fig. 15 — Comparison of calculated and observed re-
sponse of Specimen PV20 (1 MPa = 145 psi)

and where s, and s, are the indicators of the crack
control characteristics of the x-reinforcement and the y-
reinforcement, respectively.

Thus, in checking stress conditions at the crack sur-
faces, a combination of the shear and compressive
stresses v,; and f,; must be determined to satisfy Eq. (23)
through (29). If, because of steel yielding at the crack,
a solution is not possible, then the calculated average
principal tensile stress f,, must be reduced until a solu-
tion is possible.

SOLUTION TECHNIQUE

Given the strains in a reinforced concrete element, it
is a reasonably direct procedure to calculate the stresses
which cause these strains. The only iteration that may
be required is that involved in determining f,, if the re-
inforcement is not capable of transmitting the tension
in the concrete across the cracks.

To find the element’s strains, given the stresses, is a
more difficult problem that requires a trial and error
solution. The Appendix presents a suitable computa-
tional procedure to determine the response of a biaxi-
ally loaded element.

EXAMPLE OF PREDICTION RESPONSE

Specimen PV20 was loaded in pure shear (see Table
1). For this specimen, the crack control parameters
were estimated to be s,, = 47 mm (1.9 in.) and s, =
44 mm (1.7 in.), and the cracking strength of the con-
crete was taken to be 0.33 /—f/ = 1.47 MPa (210 psi).
‘Using the solution procedure outlined in the Appendix,
the element’s response was calculated as described in
Table 2 and Fig. 15. Note that at failure, the principal
compressive stress in the concrete was only about 45
percent of the cylinder strength, and that even for ten-
sile strains as high as 0.0075 the average tensile stress in
the cracked concrete is predicted to be 0.66 MPa (95
psi). Fig. 16 shows the appearance of the specimen af-
ter failure. The failure can be described as a concrete
shear failure.
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Fig. 16 — Specimen PV20 after failure

Table 2 — Predicted response of PV20
0,1 S | Sen Vv [ o | S | 0 | Soer [ foreer | a0

€ s
x 10*{ deg | MPa |MPa|MPa }—T MPa |MPa| MPa|MPa}| x 10°

Remarks

0.067 |44.9| 1.6(1.31]1.33(0.06| 1.5
0.50 (42.8| 46 [1.11}1.65{0.10( 37
1.00 142.0| 97 |[1.01}2.11]0.16{ 73
1.50 [41.6/148 [0.94|2.5610.21(107
2.00 |41.4/198 |0.89{3.0310.26|140 |0 296.9{ 189 | 2.29 | for = S,
3.00 [41.3|1293 |0.82(3.95(0.37(203 |0.90(297 [ 305| 3.50 | f,, = [,
5.00 [37.9|297 |0.73|4.37(0.42|269 |0.94{297 | 376 | 5.70
7.00 (3631297 |0.67|4.55]|0.45{305 [0.91(297 | 410 | 8.06 |Peak load

147 74 | 0.12 | Cracking
169 98 | 0.60
209 | 129 115
252 | 159} 1.71

0
0
0
0

Concrete

7.50 [36.31297 |0.66|4.53|0.45{304 [0.89(297 | 407 | 8.80 crushing

Note: | MPa = 145 pst.

SHEAR STRENGTH-AXIAL STRENGTH
INTERACTION DIAGRAMS

In the test program previously described, four speci-
mens (PV23, PV25, PV27, and PV28) with nearly
identical properties were loaded at different ratios of
shear stress to axial stress. In each case, f, = f,. The
average material properties of the four specimens were
S = —19.8 MPa (2870 psi) and f,, = f,, = 477
MPa (69 ksi).

Fig. 17 shows the predicted cracking loads and the
predicted failure loads for elements containing 1.79
percent of both x- and y-reinforcement and having the
average material properties. Also shown in Fig. 17 are
the observed cracking loads and the observed failure
loads for the four specimens tested.

Note that there are three rather distinct regions in the
shear strength-axial strength interaction diagrams
shown in Fig. 17: (1) at high biaxial tensions, yielding
of the reinforcement at the cracks controls failure; (2)
concrete shear failures govern in the middle regions,

227




\
\
N

F‘ Steel yielding

Cracking
\ at crack
" O 4|—
Failure )
f =t \
c2” ¢ \
2%
WO
N
L | | L I ] \__| | I
-28 -24 -20 -16 -12 -8 -4 o] 4 8 12

fa=f,=f, (MPa)

Fig. 17 — Shear strength-axial strength interaction dia-
gram (1 MPa = 145 psi)
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Fig. 18 — Shear strength variation as both longitudinal
and transverse reinforcement are increased

with concrete failing at compressive stresses consider-
ably less than f/, and (3) at high biaxial compression
levels, failure is controlled by f,, reaching f. .

INFLUENCE OF REINFORCEMENT RATIOS ON
SHEAR STRENGTH

Approximately two-thirds of the specimens described
in Table 1 were loaded in pure shear and had x- and y-
reinforcement consisting of wires near each face at 50
mm (2 in.) centers. A study of two series of these panels
will be made to learn more about how the reinforce-
ment ratios influence shear strength.

In the first series of five tests (PV2, PV3, PV4, PV6,
and PV27), the amount of transverse reinforcement was
always equal to the amount of longitudinal reinforce-
ment, but this amount varied from 0.18 to 1.79 per-
cent. The predicted strengths were based on the follow-
ing average material properties: f, = -—25.4 MPa
(—3680 psi) and f,, = f,, = 442 MPa (64 ksi).

Fig. 18 shows the predicted strengths together with
the observed failure loads. For very small amounts of
reinforcement (o, < f./f,), the cracking load will be
the maximum load which can be carried by the ele-
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Fig. 19 — Shear strength variation as transverse rein-
forcement only is increased

ments. Beyond that, for a wide range of reinforcement
ratios, steel yielding will govern the failure, i.e., v, =
o5 * [, For very large amounts of reinforcement, con-
crete shear failures will govern. Note that for these ele-
ments the ACI Code® approach of determining the ul-
timate shear capacity by adding the steel contribution
to the cracking load would be unconservative.

In the second series of seven tests (PV13, PV12,
PV19, PV20, PV21, PV22, and PV27), the longitudi-
nal reinforcement was kept constant at 1.79 percent
while the amount of transverse reinforcement was var-
ied. The predicted strengths were based on the follow-
ing material properties: f! = —18.9 MPa (- 2740 psi)
and f,, = f,, = 430 MPa (62 ksi).

Fig. 19 compares the observed and predicted ulti-
mate shear strengths. Note that now even very small
amounts of transverse reinforcement are beneficial in
increasing shear strength. Yielding of the longitudinal
reinforcement at the cracks limits f,, and hence con-
trols the strength for small amounts of transverse rein-
forcement, while concrete shear failures control the
strength for larger amounts of transverse reinforce-
ment.

CONCLUDING REMARKS

The modified compression-field theory is capable of
predicting the response of reinforced concrete elements
to in-plane shear and axial stresses by considering equi-
librium conditions, compatibility requirements, and
stress-strain relationships, all expressed in terms of av-
erage stresses and average strains. Consideration is also
given to local stress conditions at crack locations. Fur-
ther, newly formulated and experimentally verified
constitutive relationships for cracked concrete are in-
corporated for principal compressive stress-principal
compressive strain response, and for principal tensile
stress-principal tensile strain response. The theory is
schematically summarized in Fig. 20.
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The modified compression-field theory is a powerful
analytical tool, but is simple enough to be programmed
with a handheld calculator. Not only is it capable of
predicting the test results reported in this paper, but it
has been used by other researchers to successfully pre-
dict their test results.”*!* In addition, it has proved suit-
able for predicting the response of beams loaded in
shear, flexure, and axial loads, and as a basis for non-
linear finite element analysis programs.

A large-scale test program is now underway to ex-
tend the theory to elements subjected to combined
membrane stresses, bending stresses, and out-of-plane
shear (see Fig. 21).
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NOTATION
a = maximum aggregate size
E, = modulus of elasticity of concrete (initial tangent stiffness)
E, = modulus of elasticity of reinforcement
f! = maximum compressive stress observed in a cylinder test
(negative quantity)
fa = principal tensile stress in concrete
fa = principal compressive stress in concrete (negative quantity)
Sa = compressive stress on crack surface (positive quantity)
/. = stress in concrete at cracking
fo = stress in congcrete in x-direction
/o = stress in concrete in y-direction
f = normal stress applied to element
[ = average stress in x-reinforcement
Soer = stress in x-reinforcement at crack location
s = average stress in y-reinforcement
Sfow = stress in y-reinforcement at crack location
= stress applied to element in x-direction
f = stress applied to element in y-direction
S = yield stress of x-reinforcement
[y = yield stress of y-reinforcement
S = spacing of cracks inclined at 8
e = average spacing of cracks perpendicular to the x-reinforce-
ment
Sy = average spacing of cracks perpendicular to the y-reinforce-
ment

= shear stress on crack surfaces

= maximum shear stress a crack of given width can resist
shear stress on x-face of concrete

shear stress on concrete relative to x, y axes

shear stress on y-face of concrete

shear stress on x-reinforcement

shear stress on y-reinforcement

= maximum shear stress element can resist

= shear stress on element relative to x, y axes

= crack width

= principal tensile strain in concrete (positive quantity)
= principal compressive strain in concrete (negative quantity)
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Fig. 20 — The modified compression-field theory for
membrane elements

Fig. 21 — The shell element tester
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strain in concrete cylinder at peak stress f! (negative quan-

tity)

= strain in concrete at cracking

= strain in concrete in x-direction

= strain in concrete in y-direction

strain in reinforcing steel in x-direction

= strain in reinforcing steel in y-direction

= strain in x-direction

strain in y-direction

yield strain of x-reinforcement

yield strain of y-reinforcement

shear strain relative to x, y axes

angle of inclination of principal strains 10 x-axis

= angle of inclination of principal stresses in concrete to x-
axis

= reinforcement ratio for reinforcing steel in x-direction

P = reinforcement ratio for reinforcing steel in y-direction
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APPENDIX — SOLUTION TECHNIQUE FOR
DETERMINING RESPONSE OF BIAXIALLY
STRESSED ELEMENTS

It will be assumed that f, and f, are constant and that it is desired
to find the relationship between shear stress v, and the resulting shear
strain v,,. For simplicity, assume no prestressed reinforcement.

Step | — Determine the crack control characteristics of the x-rein-
forcement and the y reinforcement. Use more refined empirical
equations, or s,, = 1.5 X maximum distance from x-bars and s,, =
1.5 X maximum distance from y-bars.

Step 2 — Choose a value of ¢, at which to perform the calcula-
tions.

Step 3 — Estimate principal compresssive stress direction 8.

Step 4 — Calculate average crack width w using Eq. (31) and (30).

Step 5 — Estimate average stress in weaker reinforcement; assume
that this is the y-reinforcement. Hence, estimate f,,.

Step 6 — Calculate average tension in the concrete £, using Eq. (19)
and (20), subject to the condition that

S € Voo (018 + 0.3K%) tanb + p, (f, — f.)

where k& = 1.64 — 1/tang, but & > 0; and where v,,,, is given by Eq.
(29).
Step 7 — Calculate shear stress v, from equilibrium

Jo =1 — p.t
V. = ([, = f.)/1anf

Step 8 — Calculate £, from equilibrium using Eq. (13).

Step 9 — Calculate f,,,, for given ¢, using Eq. (18).

Step 10 — Check that f,/f,,.. < 1.0. If greater than 1.0, then so-
lution is not possible; return to Step 3 and choose 6 closer to 45 deg
or return to Step 2 and choose a lower «,.

Step 11 — Calculate ¢, using Eq. (18b)

& =€ (1 = V1 = [/ fismu)

Step 12 — Calculate ¢, from geometry using Eq. (5);

€ + € tan’d

T+ tan'

Step 13 — Calculate f,, using Eq. (15).

Step 14 — Check if £, calculated agrees with estimated /.. If not,
return to Step 5 with new estimate of f, .

Step |5 — Calculate ¢, from geometry using Eq. (4).

Step 16 — Calculate f,, using Eq. (14).

Step 17 — Calculate f, from equilibrium

Joo = fu — v, /tanb
Jo =T+ ol

Step 18 — Check if f, calculated agrees with given f. If not, return
to Step 3 and make new estimate of 8. Increasing 8 increases f..
Step 19 — Calculate stresses on crack v, and f,,

Afo =S -0, = 1)

If Af, < 0, then v, = 0and f, = 0. Go to Step 20.
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Af.
If Af., > 0, then C = —-[l — 0.18 v, pae
tanf

IfC <0, then f, = Oand v, = Af./tanb

1
A = 0.82/v,,,,and B = — — 1.64
tanf

Jo=(=b- JB - 44C)/2A

v, = (fu + A f.,)/tanf

20 — Calculate reinforcement stresses at crack f,, and £,
Joow =S + U + [ = vatand)/p,

Joo = S + U + [, + v./tanb/p,,
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Step 21 — Check that reinforcement can carry stresses at crack.
Because of the way in which v, and £, were calculated, f,., will not
exceed f,. However, the calculated value of f,, may exceed f.. If it
does, the reinforcement is not capable of transmitting the loads across
the crack; assume a lower f, and return to Step 7.

Step 22 — Calculate shear strain v, from geometry

Y. = 2 (e, — €)/tand

To obtain the complete response of the element, these calculations
are repeated for a range of values of ¢, starting from ¢, less than
cracking (¢, = 0.05 X 10 *) and increasing ¢, until the maximum
shear is obtained.

It at failure:

i. £, is limited by the condition in Step 6, then slipping on the
crack governs the failure.

it. f, is limited by f,,,., then crushing or shear failure of the
concrete governs.

iii. f,, is limited by the requirement that f,,. < f,,, then vielding
of the x-reinforcement at the crack governs.
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