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1. INTRODUCTION

1.1 Object

The study presented here is concerned with the investigation of
methods for determining moments in reinforced concrete slabs by the analysis
of equivalent two-dimensional elastic frames. The study is based on the
quantitative comparison of moments in slabs as determined from analysis and
from tests.

Reinforced concrete as a material for the construction of slabs did
not come into widespread use until soon after the beginning of the twentieth
century. At this time, the only method available for determining the moments
in these structures was that of the theory of flexure for plates. Since it
was very difficult to obtain solutions to the plate problem by this method,
it was not practical for use as a design procedure.

After a large number of reinforced concrete slab structures had
been built and load-tested, an "empirical" method of determining moments was
developed. The use of this method was restricted to structures with dimen-
sions similar to those from which it was developed. It was soon recognized
that some method was needed for extending the empirical method to structures
with more extreme ranges of dimensions. For this reason, an equivalent frame
analysis was developed which would give approximately the same results as the
empirical design method.

Recently, the development of high speed digital computers has made
it possible to obtain more solutions based on the theory of flexure for
plates. In addition, more tests are available for use in correlating the
theoretical solutions with experimental results. With the additional theo-

retical solutions and test results it has become possible to reinvestigate

-1-
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the use of a two-dimensional frame analysis in order to determine its relia-
bility as & method of analysis for reinforced concrete slabs.

The object of this investigation is to make a gquantitative comparison
of moments determined by the analysis of equivalent two—dimeﬁsional elastic
frames with those determined from the theory of flexure for plates and from
tests on both elastic and reinforced concrete models. After these comparisons
are completed, recommendations are made for an equivalent two-dimensional
frame analysis which mey be used to obtain moments at the design sections in

reinforced concrete slabs.

1.2 Scope

The second chapter of this report gives a detailed historical summary
of the development of the analysis and design of reinforced concrete flat slabs.
This summary gives an insight into the background of the present practice.
Next, a number of éolutions based on the theory of flexure for plates are
presented. These solutions are then compared with moments obtained by the
present ACI Code frame analysis. These comparisons include:

1. A typical panel of an infinite array of uniformly loaded
square panels supported on circular column capitals.

2. A typical panel of an infinite array of uniformly loaded
square panels supported on square column capitals.

3. A typical panel of an infinite array of uniformly loaded
rectangular panels supported on square column capitals.

L. A loaded panel of an infinite array of square panels with
strip loading for maximum positive moments and supported on
square column capitals.

A nine-panel structure supported on infinitely rigid square
columns and having no edge beams.

1

6. A nine-panel structure supported on infinitely rigid square
columns and having deep edge beams on two adjacent sides
and shallow edge beams on the other two sides.
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In Chapter 6, a modified equivalent two-dimensional frame analysis
is presented. Moments obtained by this method are then compared with those
obtained from tests on both elastic and reinforced concrete models. The tests
were carried out on the following models:

1. A six-panel aluminum flat slab.

2. A nine-panel Lucite flat plate loaded to simulate an
an infinite array of panels.

5. A twenty-five panel Plexiglass flat slab.

4. A nine-panel reinforced concrete flat plate.

5. A nine-panel reinforced concrete flat slab.

Following the comparisons between measured moments and those
computed by the proposed frame analysis, a detailled numerical example of this
method is presented. For purposes of illustration, the numerical example is
presented for the center row of panels of the nine-panel reinforced concrete

flat slab model.
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1.4 Notation
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one-half the span length measured in the direction of
the x-axis

a constant to be determined

the distance from the center of a column, in the direction
of the span considered, to the intersection of the mid-depth
of the slab and a L45-degree line lying wholly within the
concrete

the distance from the centerline of a column, in the
direction of the span considered, to the intersection of
the bottom of the slab or drop panel and a 45-degree line
lying wholly within the concrete. Maximum of one-eighth
of the span length

a constant to be determined

one-half the span length measured in the direction of
the y-axis :

+he length (the larger dimension) of each rectangular
cross-sectional part of a beam

a constant which is a function of the cross section of a
beam

effective support size

effective support size in the direction of the span
considered

effective support size in the direction perpendicular
to that of the span considered

modulus of elasticity of the material of a particular
member
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1.15 - ¢/L but not less than 1.0

shearing modulus of elasticity of the material
of a particular member

distance between node points of a finite difference network

the height (the smaller dimension) of each rectangular
cross-sectional part of a beam

story height in feet of the column or support of a flat slab
& ratio of beam flexural stiffness to plate stiffness

moment of inertia of a cross section

moment of inertia of the cross section of a column

moment of inertia of the cross section of a slab
without an edge beam

moment of inertia of the cross section of a slab including
an edge beam

a ratio of beam torsional stiffness to plate stiffness
stiffness of a member defined as the moment required to
rotate the end considered through a unit angle without
translation of either end

stiffness of a column

stiffness of & slab panel

stiffness of a beam-column combination

length of panel, center to center of columns

length of panel in direction of the short span

length of panel in direction of the long span

length of panel in direction of the span considered

length of panel in direction perpendicular to that of
the span considered

an integer, 1, 2, 3, .....
a distributed torque applied along the axis of a beam
bending moment at the negative design section

sum of positive and negative moments in a panel
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e
L."JT: dadoe ST 4 -«nic
er 0% Thrases
B -

P R R



ta

t2

-6-

bending moment at the centerline of a panel

total static moment in & panel

bending moment per unit width of plate in the

direction of the x-axis

bending moment per unit width of plate in the

direction of the y-axis

twisting moment per unit width of plate
bending moment at centerline of supports
Poisson's ratio

an integer, 1, 2, 3, c-cvceonnn 0

Et®
12(1-1%)
angle of twist per unit of length

distributed load per unit of area
thickness of a plate

minimum thickness of a flat slab
thickness of a flat slab and drop panel

twisting moment

= a measure of the stiffness of the plate

total angle of rotation (caused by an arbitrary moment ) of
the end of a column without translation of either end

average angle of rotation (due to twisting) of a beam with

respect to a column

the reduced average angle of rotation of a beam with

respect to a column

uniformly distributed shear about the perimeter of a

column capital

total shear at the column centerline (as determined from

the equivalent frame analysis)
vertical shear per unit width of plate
vertical shear per unit width of plate

distributed load per unit of area
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final deflection of a plate, positive downward
total load on a panel

total dead load on a panel

total live load on a panel

coefficient of span length which gives the distance from
the center of column to the critical design section



2. THE HISTORICAL DEVELOPMENT OF FRAME ANALYSIS

) *
2.1 Historical Development of Plate Theory

The earliest studies of the flexure of plates weré in connection
with sound-producing vibrations. Euler appears to be the first to approach
the problem (2)**, After developing his theory of the flexure of beams, he
attempted to explain the tone producing vibrations of bells by assuming them
to be divided into narrow rings which would act as beams. This method did
not prove satisfactory. A few years later Jacques Bernouilli attempted to
treat a square plate as a system of crossing beams (3). This theory also
proved unsatisfactory when compared with experimental results. Both of these
early approaches to the problem inveolved two-dimensional systems of beams
which were used to replace the three-dimensional slab.

In the early part of the nineteenth century, the French Institute
offered a prize for a theoretical analysis of the tones of a vibratiﬁg plate.
After several unsuccessful attempts, Mlle. Sophie Germain won the prize in
1815 with a derivation of a fundamental equation for the flexural vibrations
(h). This equation had been suggested by Lagrange in some earlier private
correspondence; thus, it became known as Lagrange's equation for the flexure
and the vibrations of plates. It was essentially the same as Eq. 5 in
Chapter 3.

In the next few years, a great deal of work was done with Lagrange's
equation. Navier solved this for the case of a rectangular plate with simply
supported edges in a paper presented to the French Academy. A few years
later, Poisson offered a derivation based on the stresses and deformations at

* TFor a more detailed historical summary see pp. 417-423 of Ref. 1
*%¥ Numbers refer to entries in the List of References.
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all points of the plates (5). He also derived a set of general boundary
conditions and obtained solutions for circular plates for vibratigns and
for static flexure under a load symmetrical with respect to the center.
Contrary to the case of earlier solutions, Poisson's theoréfical results
agreed closely with experimental results.

In 1850, Kirchhoff published a paper in which he derived Lagrange's
equation and the corresponding boundary conditions by the use of energy
methods (6). Kirchhoff found one less boundary condition than had Poisson,
but it was later shown that two of Poisson's boundary conditions were inter-
related and both solutions were correct (7). At this point, investigators
turned to the question of the limitations of the plate theory. Boussinesqg's
investigations established that the plate theory is applicable to plates of
medium thickness (8). He found that when the ratio of thickness to span is
either very large or very small, the structure ceases to act as a plate and
the plate theory no longer applies.

During this same period, the interest was changing from the problem
of sound-producing vibrations to the problem of strength and stresses. This
led to the need for numerical results from application of the theory. Several
people worked on the problem of a plane boiler bottom supported by stay bolts.
Since this is essentially the same problem as that of a homogeneous flat slab
under uniform load, these solutions are of interest.

Lavoinne appears to be the first to arrive at a satisfactory
solution to the problem of the plane boiler bottom supported by stay bolts (9).
He approached the problem by means of a double-infinite Fouriler series and
solved Lagrange's equation for a uniformly loaded plate consisting of an
infinite array of rectangular panels. The supporting forces due to the stay

bolts were assumed to be uniformly distributed within small rectangular areas

e amm e mm e
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at the corners Qf the panels. In 1899, Maurice Levy solved the problem of
rectangular plates on various types of supports by means of a single-infinite
series depending on hyperbolic functions (10).

At about the same time, some investigators were approaching the
problem from a more practical point of view. The most important of these
investigations were those of Bach (11,12). 1In his experimental work, he
determined that the line of failure in a simply supported square plate is
along its diagonals. The average moment across a diagonal of a simply
supported square plate can be computed on the basis of statics. Bach
determined some empirical constants which he could multiply the average
moment by in order to determine the distribution of the moment along a
diagonal. He then approached the problem of the plane boiler bottom supported
by stay bolts in the same manner. Thus, Bach arrived at a semi-empirical
method of analysis based on the very simple assumptions of statics.

After the turn of the century, an increasing need for numerical
solutions to Lagrange's equation became apparent. Modern mathematical methods
have opened the way for a number of numerical solutioms. In 1909, Ritz
published an approximate method for solving the elastic plate problem (13).
In this method, a number of functions are chosen with unknown variable
coefficients. A finite number of these coefficients are then determined on
the basis of energy methods. This method is general and can be applied to
any elastic structure.

In 1920, Nielsen published a book in which he solved the elastic
plate problem by means of finite differences (14). In this method, differ-
entials of differential equations are replaced by finite differences and the
solution reduces to a series of linear algebraic equations. Although this

method is also approximate, very good results can be obtained if a sufficient
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number of points is chosen. Since Nielsen's book was published, several
others have presented solutions by means of finite differences (References 15,
16, and 17).

Yet another approach is that used by Nichols in é paper published
in 1914 (18). 1In this paper, Nichols used basically the same approach that
Bach had used earlier. On the basis of elementary statics, he determined
the total moment that must be carried in a single panel. This general
approach was later accepted by most practicing engineers and was incorporated
(in greatly modified form) into a number of building codes. Although Nichols
originally developed this for a particular set of conditions, the meﬁhod is
quite general and can be extended to cover all cases of various capital shapes
and sizes, various ratios of span length to span width, and various distribu-
tions of shear at the supports. An interesting discussion of this method was

given in a paper by C. P. Siess published in 1959 (19).

2.2 Construction of Early Slabs

The use of - reinforced concrete in the construction of floor slabs
dates back tc the middle of the nineteenth century. The earliest record of
its use ic that of a patent granted to William Boutland Wilkinson in
Great Britain in the year 185k (20). This patent called for flat bars or
wire rope to be used as reinforcement "where tension is expected in the
concrete.” In 1865, Wilkinson constructed a house made entirely of rein-
forced concrete. The first story walls were 12 in. thick and the second
story walls were 9 in. thick. The floor of the second story consisted of a
grid of beams 26 in. on center and 6.5 in. deep reinforced with 5/16 to 3/8-in.
twisted wire rope. Precast plaster panels were placed between the beams and
a 1-1/2-in. slab reinforced with 3/16 x 3/8-in. steel flats .was cast over

the entire area. The slab had a span of about 12 by 12 ft.
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The next evidence of the use of this type of construction is that

of a patent granted to a Lieutenant Colonel Scott of the British Army Engineers

'S af 2 i f=4 L4l

in the year 1867 (21). Sketches indicate that this slab was reinforced with
iron bars throughout the bottom with wire mesh embedded in:the concrete.

Between 1867 and the turn of the century, several other patents
were issued for various types of floor slabs constructed of concrete and
metal. These systems wére generally of two basic designs. In one system the
design was on the basis of a flat tied arch with the reinforcing bars acting
as tie rods. The other system was designed on somewhat the same basis as a
suspension bridge. The reinforcement was draped from one support to the next
in the shape of a catenary and the concrete was used as a filling material.
In both cases, the concrete was given only a minor role in the strength of
the structure. Neither the flat arch nor the suspension system proved to be
an economical basis for the design of reinforced concrete floor systems.
Consequently, there was little interest in this type of construction before
the development of what is now known as the flat slab.

The first use of flat slab construction can be attributed to
C. A. P. Turner. As early as 1903 he made up plans which were very similar to
his early type of "Mushroom Floor.® These plans were never used, however.
Turner's next attempt to incorporate this type of construction into a building
met with the disapproval of the Building Department and was also abandoned.
In 1905, Turner presented his mushroom system in a discussion to a paper
appearing in the Engineering News (22).

In 1905, the first modern flat slab was used in the C. A. Bovey-
Johnson building in Minneapolis. The Building Department refused to grant a
permit for this building except on the basis of an experimental structure.

It was therefore agreed that the floor would be required to stand a test
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load of 700 lbs per square foot with a maximum deflection of 5/8 in. at the
center of any panel. The entire five-story structure was completed before
the load test was performed. Upon completion of the structure, two adjacent
panels were loaded with wet sand to a load of 750 psf. Thé total deflection
at this load was only 1/4 in., thus, the first flat slab was a success.

A few years later, 1908, Robert Maillart, apparently unaware of
Turner's success, built a model of a modern flat slab and tested it to
failure (23). On the basis of this experiment, he gquickly saw the advantage
of this type of comstruction. In 1910, Maillart acted as consultant for the
Lagerhaus-Gesellschaft building in Zurich. This was the first use of modern
flat slab construction in Europe.

Here, for the first time, was a truly economical method of
constructing reinforced concrete floor systems. Not only were less materials
required, but the cost of formwork was also sharply reduced. The flat
slab also offered other advantages such as flat ceilings and reduced over-all
height in multi-story buildings. In view of these advantages, this type of
construction became popular very quickly. By 1913 over 1000 flat slabs had

been constructed.

2.3 Development of Empirical Analysis

Since flat slabs were considered a totally new type of comstruction
and at this time little was known about reinforced concrete as a construction
material, a load test was required of all early flat slab structures. However,
it was not until 1910 thgt the first detailed test of a flat slab was made
and reported in the literature. This was a load test of the Deere and Webber
Building in Minneapolis, Minnesota (24). In this test, nine panels of 60
were loaded and both deflections and strains were reported. After this, many

more tests were performed and reported in some detail.
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In 1921, Westergaard and Slater presented a paper in whichfthey
summarized the most important tests reported up to that time (1). Table 1
shows some of the important features of the tests and the test structures.
Steel strains, concrete strains, and deflections were reported for the loaded
panels in nearly all of these tests.

In the early load tests, an attempt was made to compute moments
from strains using the straight-line theory. On this basis, the flat slab
appeared to have an extremely high capacity. It was quickly recognized that
the straight-line theory did not properly consider the tension carried by the
concrete and should not be used without modification.* Since flat slabs
commonly have a very low percentage of steel, the amount of tension carried
by the concrete is quite large and cannot be disregarded. Slater approached
this problem by first determining relations between steel strain and moment
in simple beams and then using these relations to determine the moments in
test slabs (1). This procedure proved to be a great help in decreasing the
discrepancy between theoretical moments and measured moments. Recent tests
at the University of Illinois indicate that the moment carried by tension
in the concrete is extremely sensitive to the properties of the concrete (26).
Since Slater did not use beams cast of the same materials as those of the
test slabs, his adjustment of moments as measured from steel strains cannot
be considered rigorous. The tension in the concrete must, therefore, be con-
sidered as a major cause of differences between measured results and
theoretical results as reported in Reference 1.

There were at least two other sources of error in the interpretation

of the early flat slab tests which were not recognized and consequently not

*
See the discussions of Reference 25.



-15-

considered. These can be referred to generally as the neglect of moment
carried by adjacent panels and the neglect of the twisting moment around the
columns .

The amount of twisting moment carried by the concrete in the
vicinity of the columns depends upon the geometry of the supports, the
loading pattern, the amount of cracking, and the material properties. The
most important of these (for loads less than those which will cause general
yielding of the reinforcement) are the geometry of the supports and the load-
ing pattern. For slabs with circular capitals, the twisting moments are quite
small although they may still be important. For other shapes of capitals they
become more and more important until they reach a maximum for square or
rectangular columns. Results of solutions for the nine-panel slab in
Reference 17 indicate that, for the case of one strip of panels loaded,
twisting moments at the columns may be as much as 15 percent of the total
static moment in one panel. Although this large moment would exist only until
the concrete began to crack, there is no doubt that a portion of this moment
would exist unless the slab were cracked through completely. This accounts
for another portion of the discrepancy between the measured and computed
results but does not explain it completely.

Another source of error in interpretation is the neglect of moments
carried by the panels adjacent to those which were loaded. The error due to
neglecting these moments can be quite large. The analysis of the nine-panel
slab in Reference 17 indicates that this may be as much as 25 percent of the
total moment when only one strip of panels is loaded. Figure 1 shows the
computed moments at various sections with the center strip of panels loaded.
It can be seen that the sum of the positive and negative moment in the center

panel is only about 75 percent of the sum of the positive and negative moments
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across the entire width of the structure. Although this is a much more
severe case than those of the early slab tests, it indicates that neglecting
the effect of adjacent unloaded panels can have a rather large effect on the
total moment in a span. |

On the basis of the information presented above, it appears that
the lack of agreement between theory and the results of early tests is due
to an improper consideration of the amount of tension carried by the concrete,
neglect of twisting moment at the column capitals, and neglect of the effects
of unloaded spans adjacent to the loaded spans. The most important of these

appears to be the error in the amount of tension carried by the concrete.

2.4 Development of Empirical Design Method

Prior to the publication of the paper by Westergaard and Slater (1),
many engineers believed that flat slabs carried load in some mysterious way
and that statics might not apply. Although some engineers recognized that
the apparent discrepancy was due to the errors in interpretation cited above,
few people were willing to accept this explanation.

In 191k, Nichols derived a relation for the total moment in one
panel of a flat slab using simply the principles of statics (18). He then
suggested a simple approximate equation for this relation which gives results
within less than 1 percent of the static moment. The approximate relation

can be stated as:

M- -2872 (1)
where MO = sum of positive and negative moments in one panel
W = total load on one panel
L = length of panel, center to center of columns
¢ = diameter of column capital
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The early tests of flat slabs did not appear to verify this.
Moments computed from steel étrains on the basis of the straight-line
formula indicated that much lower moments were presented than Eg. 1 would
indicate. On this basis, the 1917 edition of the ACI Builéing Code permitted

an empirical method of design for a total moment given by the relation:
M = 0.09 WL (1 - 2 &) (2)
[¢] 5L

This equation gives moments of approximately 72 percent of the
static moment in & panel.

In Reference 1, Slater attempted to give some idea of the capacity
of slabs designed by the various methods used at that time. In order to
account for the temnsion carried by the concrete, he took the results of
several tests on simple beams and developed relations between measured steel
stresses and steel stresses which would exist if no tension were present in
the concrete. He then computed moments from the steel strains measured in
a number of test structures. These moments averaged about 90 percent of that
given by Eq. 1. The scatter of the moments computed for the various test
structures indicated that a considerable error was introduced by using beams
made of material properties differing from those of the slabs in order to
account for the tension in the concrete. Other sources of error are indicated
in Section 2.3.

In order to compute the safety factor of the test structures, Slater
first determined the average stress in the steel which would exist under the
test load if no tension were carried by the concrete. This was done by first
using the curves determined from beam tests to convert the measured steel
stresses to equivalent stresses with zero tension in the concrete and then
adding to this the dead load steel stresses computed by the straight-line

theory on the basis of the moment given by Eq. 1. Next, he extrapolated his
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beam test results to determine the apparent steel stress when the steel
reached its yield point. He.then took the ratio of the apparent yield
stress of the steel to the stress which was measured under the test load and
corrected for tension in the concrete. This gave him the rétio of ultimate
load to test load. Although his approach to the problem was correct, the
accuracy of the results was limited by the accuracy of the beam test results.
This resulted in rather high values of the ratio of ultimate load to test
load.

Once the ratio of ultimate load to test load had been determined,
factors of safety were determined on the basis of working loads computed by
the various design methods. In order to have a consistent comparison, the
steel was assumed to have an allowable stress of 16,000 psi at working loads
and a yield stress of 40,000 psi. On this basis, Slater arrived at apparent
factors of safety of 3 to 6 for structures designed for 100 percent of the
static moment and 2 to 4 for structures designed by the 1917 ACI Code (Eq. 2).

The results of this investigation appear to be the primary Jjusti-
fication for the empirical design method adopted by the ACI Building Code
earlier on & less theoretical basis. It is apparent that, even with a
working stress of 16,000 psi in the steel, the empirical method gave a rather
low minimux factor of safety. When allowable steel stresses were increased
to 20,000 rsi, the safety factors were reduced even more.

It should be noted, however, that the safety factors discussed
above do not reflect the true capacity of a structure when isolated panels
are loaded. It also neglects the fact that most reinforcing bars used in

structures will have a yield stress of more than the minimum 40,000 psi.

2.5 Development of Original Elastic Analysis

In early ACI Building Codes, no provision was made for design by
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restricted the use of the Empirical Method to cases similar to those slabs
from which it had been develéped, it soon became apparent that a method
was needed for extending this method.

One of the first attempts to treat a reinforced céncrete flat slab
structure as a system of equivalent two-dimensional frames was that presented
by Taylor, Thompson, and Smulski in Reference 27. In this method, the slab
in a typical bay was divided into component parts as determined by assumed
lines of contraflexure. Moments were then computed for these individual
parts considered as uniformly loaded simple structures. After the moments
had been determined they were multiplied by a factor of about two-thirds
and the result was taken as the design moment. This reduction was justified
because, to quote the text, "the static bending moments do not take into
account several factors [sic] which reduce tensile stresses in flat slab
construction.™

In 1929, a committee working on the California Building Code
carried on an investigation to determine the applicability of the Empirical
Method as well as to find a suitable method of extending it (28). From this
study, a procedure was developed for computing moments in flat slabs by means
of an elastic frame analysis. This method consisted of dividing the structure
into a system of bents one bay wide. Stiffnesses of the members were found
by taking into account all variations in moments of inertia of the members.
After moments were determined for alternate span loading, a forty percent
reduction in negative moment was allowed. This method was accepted in
1933 for inclusion in Uniform Building Code, California Edition.

At about the same time, an investigation was carried out under
the direction of R. L. Bertin to incorporate the frame analysis into the

ACI Building Code (29). This investigation was initiated to determine a
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method of frame analysis which would give the same results as the empirical
anglysis. In 1939, Peabody ?ublished a paper in which he used essentially
the same method later incorporated in the 194l ACI Code (30). In this
procedure, the structure was again broken down into a systeﬁ of bents, each
one bay wide, and consideration was made of increased moments of inertia in
the region of the colummn capitals and drop panels. The moments were then
determined and the negative moment was reduced to the value at a distance

xL. from the centerline of the column. As originally developed, the distance
xL. was to be determined such that the total moment in a panel was the same
as that of the empirical method. Studies indicated that this distance could

be found by the eguation:

*
A
x = 0.073 + 0.57 T (3)
where x = coefficient of span length which gives distance from the
center of column to the critical section
¥*

A = distance from centerline of column, in the direction of the
span considered, to the intersection of a 45-degree line,
lying wholly within the column and capital, and the bottom
of the slab or drop panel. Maximum of one-eighth of the
span length

L = span length of slab center to center of columns in direction
considered

This relation gave results which were very close to those found in the
empirical analysis. These were the basic requirements of the frame analysis

incorporated into the 1941 ACI Building Code.

2.6 Present Elastic Frame Analysis

The frame analysis which is specified in the 1956 ACI Building
Code (31) appears to be very much like that of the 1941 Code but the
apparently minor changes have a large effect in some cases. The procedure

is outlined in detail below.
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There are no limitations as to when the elastic frame analysis
can be used. In practice, héwever, it would normally be used for structures
shich do not T
Consequently, it is used if (a) the structure has less than three spans in
each direction, (b) the ratio of panel length to width is greater than 1.33,
(c) successive span lengths differ by more than 20 percent, (d) columns are
offset more than 10 percent of the span, (e) the structure is more than
125 ft. high, or (f) story height exceeds 12 ft. 6 in. In effect, the frame
analysis is used to extend the empirical method to cases that do not fall
within the limits of the structures from which the empirical method was
developed.

For the analysis, the Code specifies that the structure should be
divided into systems of bents in each direction consisting of columns or
supports and strips of supported slabs each one bay wide. These beams and
columns are assumed to be infinitely rigid within the confines of the column
capital where the dimensions of the capital are defined the same as A* in
Section 2.5. The stiffnesses of the various members are to be computed on
the basis of the gross concrete cross section. The structure is then to be
analyzed for the loads supported where they are definitely known. If the
live load is variable, but does not exceed three-quarters of the dead load
or if the live load will always be applied to all panels, the structure may
be analyzed for uniform live load on all panels. If neither of these condi-
tions are met, the structure must be analyzed for alternate panel loading.

Once the moments are determined, the negative moments are allowed
to be reduced to those at a distance A from the centerline of the column.
The distance A is defined in ACI 318-56 as the distance from the center of

the support to the intersection of the mid-depth of the slab and a 45-degree
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line lying wholly within the concrete. This distance replaces the 'distance
xL, used in the codes prior td 1956. In addition, both the negative and
positive moment can be reduced in each span so that they do not exceed MO
as given by Equation L:

2c\2

My = 0.09 WIF (1 - ¢ (&)
where Mo = numerical sum of positive and negative design moments
in one span
W = total load on one panel
L = span length of slab panel center to center of supports
F = 1.15 - ¢/L but not less than 1.0
c = effective support size

These assumptions do not represent the action of a flat slab
accurately and, in some case, lead to design moments which are considerably
in error on the unsafe side. It is shown in later chapters, that the
assumption of an infinitely stiff slab over the length of the capital 1is
much too severe. This assumption leads to positive moments which are too low
and negative moments which are unrealistically high before the reduction is
applied. This assumption also leads to unrealistic relative stiffnesses for
the members in a bent. In addition, it precludes the consideration of the
torsional resistance of marginal beams and, in effect, assumes that they are
infinitely rigid in torsion.

Under some conditions, the combination of assuming excessive
stiffness within the column and reducing the negative moments to the value
at a distance A from the centerline of the support can result in extremely
low desigﬁ moments. Zweig has shown that, for the case of low live load to
dead load ratios, negative moments can be as much as 70 percent less than

those found for the Empirical Method and positive moments can be as much as
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25 percent less (32). The total moment in the panel for this condition is
less than Mo' Sincé the Codé does not state that moments should be increased
if the total is less than MO, there is nothing to prevent a designer from
using these extremely low moments.

Although an elastic frame analysis should not be expected to give
an exact analysis of a flat slab, it should furnish a relatively simple and
reliable method of extending our experience to extreme conditions. It is
shown in the following chapters that a two-dimensional analysis can be

developed which will give consistent and reliable results.



3. SOLUTIONS FOR PLATES SUPPORTIED ON COLUMNS

3.1 Fundamental Equations and Assumptions

A11 the theory of

flexure for plates. The equations governing these solutions are given
below along with their limitations of applicability. Derivations of these
equations can be found in Reference 1 and ;n most testbooks on the theory
of plates.

The differential equation governing the deflection, w*, of a plate

can be stated as:

S, e A g (5)
3t xDye  ayt N

This equation is the same as the Lagrange equation with the term depending
on motion omitted.
The relations between bending moments, twisting moments, and

deflections can be represented by the following equations:

52 * 82 *
Mx=-N(——;—+u g) (6)
dx oy
2 * azw*
M o= - N g &) (1)
y ay2 3x°
3%
W
M}Q’= - N(l - ]-l) g)a—y (8)

The relations for shear can be stated as follows:

aMx BMXy
oM oM
v, = 53;51 + —axﬁ (10)

*
The Asterisk is used to prevent confusion with w, the unit load, used in

other chapters of this report. -
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The derivation of these equations is based on several basic
assumptions in addition to the ordinary assumptions about equilibrium and
geometry. These assumptions apply to all solutions presented here and may
be stated as follows:

(a) All forces are perpendicular to the plane of the plate.

(b) The plate is medium-thick; that is, an appreciable portion

of the energy of deformation is contributed neither by the
vertical stresses nor by the stretching or shortening of its

middle plane.

(c) The plate is of a homogeneous, linearly elastic, and
isotropic material.

(d) A straight line drawn through the plate before bending
remains straight after bending.

The natural boundary conditions which were originally derived by
Poisson (5) and later explained by Kirchhoff (6) must be satisfied for a
given solution to Equation 5. These may be stated as follows:

(1) The shearing forces must be equal to the corresponding
quantities furnished by the forces applied at an edge.

(2) The bending moments must be equal to the corresponding
quantities furnished by the forces applied at an edge.

In addition, the individual solutions given below require assumptions

regarding reactions, stiffnesses of the capitals and drop panels, and stiff-
nesses of the columns. These are stated in connection with the solutions to

which they appiy-

3.2 Soluticns vy Use of Fourier Series

&
X

Ir Reference 33, Lewe presents solutions for moments in flat slabs
which he found by means of a double infinite Fourier Series. In this study,
he considered a large number of cases commonly encountered in flat slab
construction. Tables are provided which give deflections and curvatures at

a finite number of points for each case considered. Although his solutions
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are for the case of Poisson's ratio, 4, equal to zero, these can be
converted to solutions for other values of this ratio by means of equations 6,
7, and 8. The total moment in a panel is unaffected by the value of u.

In order to arrive at solutions to Eguation 5, it was necessary for
Lewe to make seveal assumptions (in addition to the general assumptions
listed in Section 3.1) regarding the distribution of reactions, stiffness of
the plate in the vicinity of the supports, and type of load applied. The
results of all solutions listed below are based on the following assumptions:

(a) Reactions are distributed uniformly over the rectangular
areas of the supports.

(b) The plate is of infinite extent.

(¢c) The plate is of uniform thickness.

(d) Loads are uniform over the entire plate.

From the above assumptions, the boundary conditions can be
determined for the case of uniform load over the entire plate. The boundary
conditions. are that on lines of symmetry (centerlines of reactions and centerlines
of panels) +the shear is zero. and a tangent to the plate in a direction
perpendicular to the centerline has zero slope.

The problem is now reduced to that of selecting a Fourier Series
that will satisfy the boundary conditions and Equation 5. The expression
which represents the load as a function of the coordinates x and y can be

expressed as:

_ | WX g T
q = a  COS —= cos (11)

m=0 n=0

where, the origin for x and y is at the center of a reaction and

q = 1load as a function of x and ¥y
m = an integer, 1, 2; 3,cc00ce0v0- o
n = an integer, 1, 2, 3,.c.v...c.. ©



-27-

a . = & constant to be determined
a = one-half the span length in the x-direction
b = one-half the span length in the y-direction

*
In a similar manner the expression representing the deflection, w , can be

o« [><]
* E % iy
w o= A cos TX oo HY (12)
mn a b

deflection as & function of x and y

expressed as:

*
where W

1l

A
mn

a constant to be determined.
Other terms in Equation 12 are defined the same as in Equation 11.

lewe took these relations and determined the constants an and
Amn such that they satisfied Eguation 5, the loading conditions, and the
boundary conditions. He then had expressions for the deflections of the
plate and, by use of Equations 6 through 10, could determine expressions
for moments and shears. By evaluating a sufficient number of terms in these
expressions, Lewe arrived at numerical values for deflections and curvatures.

Solutions for plates with alternate strips loaded may be obtained
from lewe's solutions for uniform loading by superposing the results for
uniform loading with the results for panels with alternate striﬁs of positive
(downward) and negative (upward) uniform load (Fig. 2). Lewe's solutions
are for a plate with constant stiffness throughout; thus, the reactions
vanish for alternate positive and negative loading. The moments at any
point in the panel for this loading condition are the same as the simple
beam moment in a direction perpendicular to the loaded strips and are zero
in the direction parallel to the loaded strips.

The results of the solutions obtained by Lewe are shown in Figs. 3

to 12. Table 2 shows the dimensions, loading conditions, and other pertinent
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information for each of the solutions. The moments given in the figures
and in the tables are for Poisson's ratio, {4, equal to zero. Moments are
shown for the "design sections®™ in all cases, 1.e., the cen
panel for positive moment and a line following the edge of the reactions
at the reaction and the centerline of the reactions between them for the
negative moment.

The results based on Lewe's work may be divided into three

separate categories. These are:

1. Interior panel of infinite array of uniformly loaded square
panels (Figs. 3 to 7)

2. Interior panel of infinite array of uniformly loaded
rectangular panels (Figs. 8 and 9)

3, Interior panel of infinite array of square panels with
alternate strip losding (Figs. 10 to 12)

It can be seen that the scope of these solutions are quite limited.
In addition, the assumptions regarding the distribution of reactions and the
stiffness of the slab in the vicinity of the reactions are guite different
from those which exist in a real structure. For these reasons, Lewe's
solutions should not be taken as the moments to be expected in a real slab
but should be used only as an indication of what effects the distribution

of reaction and slab stiffness have on the moments in a flat slab.

%.3 Solutions by the Method of Finite Differences

Equations 5 through 10 are derived by considering infinitesimally
small differentials in setting up the problem. In general, the solutions to
these equations are continuous functions. If small finite lengths are
considered instead of the differentials, difference equations are obtained
which correspond to the differential equations. Solutions obtained by

difference equations theoretically approach the exact solutions of the partial
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differential equations as the finite length approaches zero. For this
reason, the degree of approximation will usually be improved by taking
smaller finite lengths.

In general, finite difference operators correspoﬁding to a
differential equation may be obtained by the direct substitution of the
appropirate difference expressions into the governing differential equations.
Boundary conditions are handled by including as many additional equations,
as determined from the boundary conditions, as are required to obtain the
same number of equations as unknowns.

In many situations, it is convenient to use a physical model of

the plate from which the difference equations can be derived directly.
N. M. Newmark developed such a model in Reference 34. This model consists
of a system of rigid bars connected by elastic hinges with torsion springs
connecting adjacent parallel bars (Fig. 14). The model has the following
characteristics:

1. The bars are weightless and undeformable.

2. The mass of the plate and the external loads are
concentrated at the elastic hinges.

3. The resultants of the direct stresses are bending moments
acting at the elastic hinges and at the ends of each bar.

4. The resultant of vertical shearing stresses are shearing
forces acting at the elastic hinges and at the ends of
each bar.

5. The resultant of the horizontal shearing stresses are
twisting moments concentrated in the torsion springs.

The difference equations necessary for the solutions presented
below are derived in References 14 and 17. The operator for a general
interior point of a plate is shown in Fig. 1k. By applying this operator
to each point of a network and by determining additional equations from the

boundary conditions, a set of simultaneous algebraic equations is obtained.
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The solution of these equations gives the deflection of each point of the
network. Once the deflection of each point is known, bending moments,
twisting moments, and shears may be obtained from the difference equations
which correspond to Equations 6 through 10. |

In Reference 1h, Nielsen has presented solutions to a number of
plate problems which he obtained by use of difference equations. The
results of these solutions are shown in Fig. 16 through 21. Dimensions and
properties of the panels analyzed are indicated in Table 3. In all cases
Poisson's ratio, {, is taken as zero.

All of the solutions presented below are for typical interior
panels of an infinite array of uniformly loaded panels. Reactions are
considered to be either point supports or square capitals with c/L ratios
as high as 0.40. The solution designated NS2 (Talbe 3) is for the case of
a slab which has & drop panel and is supported on point supports. The area
within the drop panel is assumed to have a stiffness of four times that of
the slab. The solution designated NSL. is for the condition of shear linearly
distributed around the perimeter of the capital. 1In all other solutions,
the shear is assumed to be uniformly distributed over the area of the capital.
Two of the solutions, NS4 and NS5, are for column capitals with varying
stiffnesses. In these cases; it is assumed that the stiffness varies from
the same as that of the slab at the edge of the capital to the value given
in Table 3 at the center of the column.

In general, the results of Nielsen's solutions which are reported
here appear to be accurate. In all cases, a sufficient number of points
were considered so that the errors due to approximation of the differential
equations by difference equations are small. Where direct comparisons are
possible, it can be seen that Nielsen's results are in good agreement with
those of Lewe. L e e
i ol oo L hane
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In Reference 15, Marcus presents the results of some solutions
obtained by means of finite differences. These results are summarized in
Table 4 and in Figs. éz through 24. All solutions are given for the case
of Poisson's ratio, 4, equal to zero.

The results of Marcus! work which are presented below are for a
typical interior panel of an infinite array of uniformly loaded panels. In
each case, the stiffness of the panel was assumed to be constant throughout.
The capitals were assumed to be non-deflecting at their edges and at their
centers. This resulted in a distribution of shear at each capital which was
very nearly linear around the perimeter. Square capitals were considered in
all cases.

When directly comparable, the results obtained by Marcus are
generally in good agreement with those of Lewe and Nielsen. The grid which
Marcus used in his solutions contained enough points that errors due to the
approximation of the differential equations by difference eguations should
be small. On this basis, Marcus' results appear to be reliable.

At the University'of Illinois, finite difference solutions have
been obtained for a number of conditions. Some of the results are reported
in References 16 and 17. The results of these investigations are summarized
below. In addition, the investigations in References 16 and 17 have been
extended to cover some additional cases and the results of this extension
are also presented.

In these investigations, the solutions of the simultaneous
equations were obtained by use of the ILLIAC (the University of Illinois
Digital Computer). Since the ILLIAC has the capacity for solving as many
as 143 simultaneous equations, it was possible to use a very fine network of
points for the solutions. This resulted in a corresponding reduction in the

error of approximation as compared with the results of Nielsen and Marcus.
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These investigations can be divided into two categories. The
first category is that of one pangl of an infinite array of square panels
with both uniform loading and alternate strip loading. The second category
considers the case of a plate consisting of nine square panels with both
uniform loading and strip loading. In all cases, the capitals are assumed
to be infinitely stiff. This required that the slope of a tangent to the
slab be zero at the intersection of the slab with the capital. When this
condition is used, the solution of the problem shows that most of the shear
around the supports is concentrated on the corners of the capitals. In
cases where non-uniform loads are considered, the columns are again assumed
to be infinitely stiff. Where marginal beams are considered to be present
in the nine-panel structure, their resistances are assumed to be concentrated
along the centerlines - of the exterior columns.

Table 5 and Figs. 24 through 28 show the dimensions of the panels
analyzed and the moments obtained from the analysis of the interior square
panels. For these solutions, c/L ratios vary from 0.10 to 0.25. Moments
given in Tatle 5 are the average moments across the section considered. The
negative mozents include the twisting moment which exists at the intersection
of the coliumn capital and the plate. These twisting moments are on the
order of Z ypercent of the total moment in panel. They were included here
due to the fact that the assumption of infinitely stiff column capitals
increases tne.r value enough that they must be considered in order to check
statics. In the cases considered previously, twisting moments around the
columns were much smaller and could be neglected. Figures 24 through 28
show the variation of moment across the sections indicated.

Table 6 and Figs. 29 through 32 show the results of the investiga-

tion of nine-panel slabs. In Table 6, properties of the slabs and loading
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arrangements are listed. The first three cases (UI91 through UI93) refer
to a structure with no marginal beams and the last case (UI9L) reférs to a
structure with a shallow beam on two sides and a deep beam on the remaining
two sides. The ratio of the beam flexural stiffness to the plate stiffness
is designated as Hf and the ratio of the beam torsional stiffness to the plate
stiffness is designated as J. In the structure analyzed, the deep beam has
a flexural stiffness equal to the stiffness of the slab while the torsional
stiffness of the shallow beam is one-fourth the stiffness of the slab.
In Figs. 29 through 32, the average moments at the design sections of each
panel are indicated. These moments are in a direction perpendicular to the
loaded strips for all cases of partial loading. Twisting moments around the
capitals are not included. For convenience, the average moments across the
entire structure are also shown. In all cases moments are given for Poisson's
ratio, p, equal to zero.

Since it was possible to use a large number of unknowns in each of
the cases investigated at the University of Illinois, errors due to approxi-
mating partial differential equations by the corresponding difference

equations are quite small.

3.4 Modified Difference Solutions

In Reference 1, Westergasard presents computed moments for an
interior panel of an infinite array of panels with circular column capitals.
This analysis is based on the application of ring loads to Nielsen's solutions
which were obtained from difference equations (14). Westergaard started with
Nielsen's solution for an interior panel supported by point reactions. To
this, he applied a linearly distributed upward load on a circle, concentric
about the point support, having a diameter of c. At the center of this

circle, he applied a load of equal magnitude but opposite in direction. The
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nagnitude of this couple was chosen such that a line drawn tangent to the
plate at the circle and passing through the center of the reaction would
have zero slope. Moments were then determined for the slab under uﬁiform
load and acted upon by the ring moments. These were then pfesented
graphically in Reference 1.

The method of analysis used by Westergeard automatically specifies
the distribution of reactions and stiffness of column capitals. By the use
of ring loads, the shear was required to be linearly distributed about the
perimeter of the column capital. In a similar manner, the requirement that
the slope of a line tangent to the slab at the ring and passing through the
center of reaction be equal to zero can be met, in the practical case, only
if the column capital is infinitely rigid.

The results of Westergaard's analysis by modified difference
solutions are shown in Table 7 and in Figs. 33 to 36. Moments given in the
table are the average across the design sections. The distribution of the
moments across these sections are shown in the figures. As in all previous

results, solutions are for Poisson's ratio, H, equal to zero.

3.5 Analysis for Total Static Moment

In 1914, Nichols presented a paper in which he applied the
principles of elementary statics to a flat slab in order to determine the
total moment in one panel (18). In his original paper, Nichols determined
an expression for the total static moment in a panel with circular column
capitals. Only three assumptions were made in the development of this
expression. These assumptions were:

1. The panel is one of an infinite array of identicel panels.

2. All panels are uniformly loaded.
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5. The shear is uniformly distributed around the perimeter of

the column capital.

On the basis of these assumptions, there is no shear along the
centerlines of the columns and panels. A free body diagram of one-half of a
square panel can be drawn as illustrated in Fig. 37. The external forces
acting on this panel are represented by the total load acting on the slab,
wL2/2, and the total reaction, wL2/2, acting at the centerline of the column.

WC27T

The reaction around the capital has a total magnitude of wL2/2 -8 and

acts at a distance of ¢/m from the center of the column capital. The remaining
portion of the reaction wc®m/8, has a center of action at a distance 2c/3T
from the center of the column capital. Resisting these couples are the

positive moment at the centerline of the panel, bp, and the negati

at the design section Mnc Taking moments about the line AA,

wLZ L wlZ  wciqr ¢ weqr ¢
NS S RIE Rk SRR - (1)
WL Le e\
or M= T - S ] (14)
where MS = total static moment in the panel considered.
W = the total load on the panel considered.

In Referecne 19, it was pointed out that this procedure can be
extended to cases of rectangular panels, square or rectangular column capitals,
and different assumed distributions of shear around the column capital. The
expressions for a number of cases were presented in that paper and are repeated
below along with those for other possible cases. These expressions cover
nearly every practical combination of dimensions and shear distributions that
may be encountered in flat slab structures.

For rectangular panels, and circular capitals with the shear

uniformly distributed about the perimeter, the expression becomes:
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For square panels and square capitals with the shear uniformly

distributed about the perimeter:
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For rectangular panels and square capitals with the shear

uniformly distributed about the perimeter:
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For rectangular panels and rectangular capitals with the shear

uniformly distributed about the perimeter:
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For square panels and square capitals with the shear concentrated

at the corners of the capital:
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For rectangular panels and square capitals with shear concentrated

at the corners of the capital:
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For rectangular panels and rectangular capitals with the shear

concentrated at the corners of the capitals:
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The subscripts 1 and 2 in the gbove equations refer to dimensions which are
respectively parallel and perpendicular to the direction in which moments
are considered.

It.can be seen that Equations 15, 18, and 21 are general and the
others are merely special cases of these three. In Section 2.4 it was noted
the Nichols sugested an approximate expression . (Eq. 1) for Equation 1k.
Figure 38 gives a comparison of equations 1 and 14. In addition to these
two, HFguation 16 is also shown in Fig. 38. From this comparison, it can be
seen that, within the ordinary ranges of values for c¢/L, Equation 1 gives
a good approximation of the expression for moment in a slab with circular
capitals (Eg. 14) but does not work as well for slabs with square capitals
(Bq. 16).

The above equations are correct for the conditions for which they
were developed. The conditiqns»assumed for the derivation of these equations
may be slightly different in a real structure. The most important of these
differences, assuming a large number of panels are loaded uniformly, will be
the distribution of shear around the capital. In a real structure, the
distribution of shear will be somewhere between the conditions of uniformly
distributed about the perimeter of the cépital and concentrated at the
corners. Since the assumption of uniform shear is conservative, this assump-
tion is to be preferred over the assumption of concentrated shear. The
method of approach is theoretically sound and very simple. Although it does
not give the distribution of moments, the method presents a simple means of

determining the total moment in a panel.



4. COMPARISONS OF COMPUTED MOMENTS

4.1 Typical Panel of Infinite Array of Square Panels with Uniform Load

BEach of the investigations mentioned in Chapter 3 has included the
case of a typical panel of an infinite array of uniformly loaded square panels.
In Sections 3.4 and 3.5, computed moments are presented for the case of
circular column capitals. Sections 3.2, 3.3, and 5.5 give moments for the
case of square capitals.

Figure 39 shows a comparison of total moment versus c/L for a
structure with circular column capitals and no drop panels. The solid line
shows the moments that Westergaard obtained by modifying Nielsen's finite dif-
ference solutions. By including Nielsen's solution for a plate wiﬁh‘point
supports (Table 3), it was possible to show the variation of moments for
values of c/L ranging from O to 0.3. This covers the range of c¢/L ratios
commonly used in flat slab structures.

Since Westergaard's solutions are based on the gssumption that
shear is uniformly distributed around the perimeter of the capital, Equation 15
was used to compare his moments with the total static moment in the panel.

The slight difference between the static moment and that for Westergaard can
be attributed to a slight error in the assumed distribution of moment about
the column capital in summing up the moments shown graphically by Westergaard.

In addition to the static moment and the moments obtained by
Westergaard, design total moments obtained by the ACI Code are included in
Figure 39. Moments obtained by the equivalent frame analysis are reduced
to the value at a distance A from the centerline of the column. In computing

the distance A, the slab was assumed to have the minimum allowable thickness

~38-
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of L/36. The design moments are not, however, reduced to Mo' In accordance
with the requirements of the ACI Code (318-56), the total moment which must
be provided for is the smaller of the moments$ obtained by the two methods.
Consequently, 'if only uniform loading is considered, the empirical moment
would govern up to a ¢/L ratio of 0.3 and the moments obtained by frame
analysis would govern for larger values of c/L.

Figure 40O shows the moments at the design sections of the panel
considered. The solid line represents moments obtained by Westergaard's
modified finite difference solutions (Tabie 7), The two remaining lines
represent moments obtained by use of the ACI Code frame analysis and empirical
method. In Figure 40, the negative moments obtained by frame analysis are
again reduced to the value at a distance A from the column centerline.
According to the ACI Code, the totél moment can again be reduced to Mo for
values of c¢/L up to 0.5. ©Since the Code does not specify how the reduction
shall be made, the entire reduction can be applied to either the negative or
the positive moment or a proportionate amount can be applied to each. For
values of c/L larger than 0.3, the moments obtained by frame analysis can be
used without further adjustment.

Figure 41 shows a comparison of total moments in a typical panel of
an infinite array of uniformly loaded square panels with square column capitals.
The solid line represents all solutions by Lewe, Nielsen, and Marcus for which
the shear was assumed to be uniformly distributed over the area of the capital.
In addition, NK.elsen's solution for a capital with a variable stiffness (NS&)
and Marcus' solution for the assumption of shear uniformly distributed about
the perimeter of the column capital (MS2) are shown. In order to compare
these results with the static moment, a line representing Equation 16 is also
shown. This line falls below the one representing the case of shear uniformly

distributed over the area of the capital.
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The results obtained by Lewe, Nielsen, and Marcus are in good
agreement with the static moment as given by Equation 16. Since the assump-
tion of shear wniformly distributed over the area of the capital puts the
center of reaction closer to the center of the capital than in the case of
shear uniformly distributed about the perimeter of capital, Equation 16
should give moments less than those obtained on the basis of the first
assumption. Marcus' solution (MS2), which is based on the same assumption as
Equation 16, gives a total moment equal to the static moment. As expected,
Nielsen's solution for & plate with a capital of variable stiffness falls
between the lines representing the other two assumed shear distributions.

Lines representing Egquation 19 and moments obtained by finite
differences at the University of Illinois are also shown in Figure 4l. It
can be seen that the moments found in the University of Illinois investiga-
tions are slightly higher than those given by Equation 19. This is again in
the proper relation to the other moment if the distribution of shear is
considered.

For purposes of comparison, design moments found by the ACI Code
are also given. Since the Code makes no explicit distinction between
circular capitals and square capitals, these moments are identical to those
shown in Fig. 39.
| Figure L2 shows the moments at the positive and negative design
sections. This illustration indicates that the negative moment is not greaply
influenced by the distribution of shear in the vicinity of the reaction but
there is a large effect on the positive moment. Although Fig. 41 indicated
that the rigidity of the column capital does not greatly change the sum of
the moments in a pamel, Fig. 42 shows that there is an increase in negative
moment and a decrease in positive mqment as the rigidity of the capital

increases. However, these changes in distribution of moment are not large.
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The comparisons shown in Figs. 39 through 42 show the affects of
the size, shape, and stiffness of the column capital and the distribution of
shear around the capital. They also indicate that the solut%ons give consistent
and reliable results for the assumed éonditionso There is still a gquestion;
however, as to how well the assumed conditions represent those present in a
reinforced concrete flat slab. yThe size and shape of the capitals are known
guantities and require no further discussion. The stiffness of the capital
and the distribution of shear in the vicinity of the capital are not, however,
always known. Since cracks are likely to form around the capitals, there may
be very large differences in the relative stiffness of the capital and the
slab from those assumed in the analysis. This will influence the amount of
moment carried at the negative design section and the positive design section
but will not change the total moments in the panel so long as the distribution
of shear is not changed. For this reason, the most important assumption is
that of the distribution of shear around the capital.

When the slab is supported:by ¢circular capitals, the shear should
be very nearly uniformly distributed about the perimeter. Any variation from
this distribution will be small and will not change significantly the total
moment in the span. If square capitals are used to support the slab, the
centroid of the shear forces at the design section (perimeter of one-half the
capital) should be between those corresponding to shear distributed uniformly
along the perimeter and shear concentrated at the corners. Test. results
presented in Reference 26 indicated that the assumption of shear uniformly
distributed about the perimeter may be close to reality in the case of flat
slabs. This assumption is conservative and appears to agree with test. results.

If the uniform distribution of shear is assumed to be correct,

comparisons can be made between design moments and theoretical moments in flat
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slabs. Figures 39 and 4O show that design moments are considerably smallgr
than theoretical moments in all cases of slabs supported on circular column
capitals. The primary reason for this is the misinterpretation of the results
of early tests on flat slabs as explained in Chapter 2. It is significant,
however, that the ACI frame analysis predicts the proper trend in the moments.
For slabs supported on square column capitals the positive and total design
moments computed by frame analysis are considerably lower than the theoretical
moments. The negative moments computed by the equivalent frame analysis are
in good agreement with the theoretical moments. The empirical method gives
design moments which are too low for small values of c/L but are larger than
the theoretical moments for extremely high values of c/L. Again, the moments

obtained by frame analysis show the proper trend.

4.2 Typical Panel of Infinite Array of Rectangular Panels with Uniform Load

In this section, moments in an interior panel of an infinite array of
rectangular panels are compared. In Sectiomns 3.2, 3.3, and 5.5, solutions
for this case were cited. Although available solutions based on the theory of
flexure for plates are quite limited, the equations presented in Section 3.5
present a means of extrapolating the results to determine the effects of
changes in the ratio of the lengths of sides.

Figure 43 shows a comparison of total moment versus the ratio of
span lengths for the solutions presented in Tables 2, 3, and . The solid
lines represent the total static moment in terms of WL, as computed by
Equation 17. The moments given by Equation 17 are in good agreement with
those obtained by Lewe, Nielsen, and Marcus. Where differences doexist, they
can be attributed to the slight errors in determining the average theoretical
moment across the design sections of the plates from the values given at s

finite number of points.
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The average moments at the design sections are shown in Fiés. Ll

through 46. Figure 44 shows moments in the long span for c/L, = 1/8.

Figures 45 and 46 show comﬁarisons of moments in the short span for ratios

of c/La equal to 1/6 and 1/4, respectively. In addition to solutions obtained
by Lewe and Marcus, these three figures include design moments based cn the
provisions of the ACI Code. It can be seen that there is very little change
in the average moment at the design sections as the ratio of length of panel
to width of panel increases. In all cases, the ACI positive design moment

is considerably less than that obtained by the theory of flexure for plates.
The negative design moments are also low but not as far below the theoretical
moment as in the case of positive moments. The reasons for this were cited
in the discussion of square panels. The ACI frame analysis again predicts
the proper trend in the positive moments but indicates that negative moments
in the short span decrease as the ratio of length to width increases. This
is & result of the unrealistic method of reducing the negative moment. In
proportioning a slab, thickness is governed by the longer span of the slab.
For this reason, the distance A is proportionately larger in the direction of
the short span and an incorrect trend is obtained in the negative design
moments.

In order to determine the influence of more extreme values of the
ratio of span length to span width on the moments in rectangular panels, the
results of Equation 17 for various ratios of Lb/La are shown in Fig. 47. The
moments and the c/Ll ratios in this figure are given in terms of the length
of span considered. The line marked Lb/La = 1 indicates the total static
moment in either span of a square panel. Lines above this, show moments in
the long span and lines below show moments in the short span of rectangular

panels with various Lb/La ratios. Since only square column capitals are
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considered, geometry places limitations on the size capital that can exist
for a given ratio of Lb/La' When the ratio of La/Lb becomes equal to the
ratio of c/La, the physical structure becomes a slab supported on a wall
and the moment in the short span is zero.

The above comparisons indicate that the total moments and average
moments at the design sections are practically unaffected by the ratio of
span length to span width. However, the distribution of moment along the
design section does not remain the same. Comparisons of the distributions
shown in Figs. 8, 9, 20,and 23 with those for square panels indicates how
the distribution of moment is changed. In general, moment in the long span
tends to become uniformly distributed along the design section as the ratio
of the two span lengths increases, while the moment in the short span tends
to increase in the column strip and decrease in the middle strip of the

panel.

L.3 Typical Panel of Infinite Array of Square Panels with Strip Loading for
Maximum Positive Moment '

In Sections 3.2 and 3.5, moments were presented for slabs with

alternate strips loaded in order to produce maximum positive moment along
the centerline of the panel. The moments computed by Lewe (Section 3.2)
represent the case of columns with no flexural stiffness. The investigations
carried out at the University of Illinois consider the case of a slab supported
on columns with infinite flexural stiffness.

| Figure LB8a shows a comparison between moments based on the theory
of flexure for plates and design moments computed by the ACI Code frame
analysis. In computing fhese moments, the columns were assumed to have zero
flexural stiffness. The solutions based on plate theory include the assumption

that the reaction is uniformly distributed over the area of the capital. Iﬁ
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addition, the plate is assumed to have the same stiffness over the reaction
as it has at points outside the reaction. As was indicated in Section k4.1,

these assumptions tend to give computed positi hi

s which are gher
than those found on the basis of other assumptions. Since the ACI Code allows
the sum of the maximum positive and negative moments to be reduced to Mo’ the
moments based on the frame analysis are higher than what would be generally
used in design.

No solutions based on the theory of flexure for plates are available
for a slab supported on columns with a finite flexural stiffness and having
alternate strips loaded for maximum positive moment. In order to obtain some
idea of the effects of column stiffness, one solution was obtained for a slab
supported on columns with infinite flexural stiffness (Table 5). This solution
was for a flat plate without drop panels and with square capitals having a c/L
ratio of 0.2. As mentioned in Section 3.3, the assumption of infinitely stiff
columns and capitals results in most of the shear being concentrated at the
corners of the capitals. It was shown in Fig. 42 that this also results in
positive moments which are slightly lower than those obtained on the basis of
other assumptions.

Figure 48b shows a comparison of this solution with moments obtained
by the ACI frame analysis. It can be seen that, for a c¢/L ratic of 0.2, the
frame analysis predicts a maximum positive ﬁoment which is smaller than that
‘computed by plate theory. This discrepancy can be ascribed to the fact that
the ACI frame analysis assigns too much stiffness to the slab in the vicinity
of the column capital. It was previously shown that, even for uniform loads,

the ACI frame analysis predicts positive moments which are considerably below

those obtained by plate theory.
The values plotted in Fig. 48 should not be interpreted as giving

the moments in an actual reinforced concrete flat slab lcaded to produce,.
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maximum positive moment. Instead they should serve only to indicate the
possible extremes in the values of these moments and show how the moments
change as column stiffness changes. In genergl, it appears that the frame
analysis predicts the correct trend in the moments in flat slabs loaded for

maximum positive moment as it does in slabs under uniform load.

k.4 Nine-Panel Slab

The comparisons given in Sections 4.1 and 4.2 have all been
concerned with one panel of an infinite array of identical panels. In order
to approach this case in a real structure, the panel in question would need
to be at least the third panel from the edge in any direction. This would
require a structure of a minimum of twenty-five panels. This means that the
majority of panels in most‘structures fall into the category of an edge panel,
corner panel, or "first interior" panel. A nine-panel structure foers an
excellent means of investigating the moments in edge panels and "first
interior" panels. The eight panels around the perimeter of this type of
structure are edge and corner panels and the center panel is similar to a
®first intericr®™ panel in a larger structure. Under all comparaBle loading
conditions, the moments in any panel of a nine-panel structure will be larger
than those in the corresponding panel of a larger structure.

In Section 3.3, computed moments were presented for two nine-panel
structures. These structures were identical in every respect except that one
structure had edge beams. In both structures, all columns were assumed to
have a ¢/L ratio of 0.1 and to be infinitely stiff in flexure. As previously
mentioned, this results in the shear being concentrated at the corners of the
capital. This assumption results in slightly lower positive moments than
would be expected in an actual structure. For the same reason, the negative

moments in the edge panels are higher than those in an actual structure. In
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the structure with edge beams, the deep beams were assumed to be on two
adjacent edges and the shaliow beams on the other two edges. This resulted
in the structure being symmetrical about one diagonal.

Table 8 shows a comparison of moments due to uniférm load in the
nine-panel structure without edge beams. In this table, moments based on
the theory of flexure for plates are compared with design moments computed on
the basis of the provisions of the ACI Code. The empirical moments are based
on the assﬁmption that the slab has no drop panels. In order to apply the
ACI Code frame analysis, it was necessary to assume that the columns were so
short that they were infinitely stiff as compared with the slab. The distance
A was computed on the assumption that the thickness of the slab was equal
to L/56. On the basis of these assumptions, the positive design moment is
the same as that in a uniformly loaded beam fixed at both ends and having
an infinite moment of inertia for a distance L/20 from each end.

Table 8 indicates that the design moments based on the empirical
method are the same in the exterior rows of panels as in the interior row of
panels. At the exterior column, the empirical design moments are larger than
those computed on the basis of plate theory. If the twisting moments were
included in the moments obtained by plate theory, this difference would not
be as large but the empirical design moments would still be greater. At all
other design sections, the moments based on plate theory are larger than the
empirical design moments. At the exterior columm, the design moments based
on the ACI Code frame analysis are-larger than either empirical moments or
the moments based on plate theory. The frame analysis moments fall between
the plate theory moments and empirical design moments at the interior column
and at the positive moment section of the center panel. The frame analysis

gives moments at the center of the edge panels which are considerably lower
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than either the empirical design moments or the moments obtained by the
theory of flexure for plates.

Table O shows moments for the same structure with.strip loading.
In the first case, the structure is loaded for maximum positive moment in
the edge panel and maximum negative negative moment at the exterior columm.
It can be seen that the frame analysis gives positive moments which are too
small and negative moments which are too large. In the second case the
structure is loaded for maximum positive moment in the center panel. Again,
the frame analysis gives positive moments which are lower than those computed
by plate theory. The third case considers loading for maximum negative
moment over the first interior column. In this case, the frame analysis again
gives moments which are lower than those obtained by plate theory.

The ACI frame analysis gives moments which do not agree with plate
theory due to the fact that the frame analysis does not consider properly
the manner in which moments are carried in the vicinity of the column capital.
The slab on each side of the celumn will exhibit curvature e&en if the column
capital is infinitely stiff. Neglecting this fact gives negative moments at
the edge columns which are too high. At interior columns, the negative
moments are still high at the column centerlines. Consequently, the positive
moments are lower than indicated by plate theory. Reducing the negative
moments to the value at a distance A from the column centerline makes moments
at interior columns smaller than indicated by plate theory. At the exterior
columns, the moments are so large initially that a reduction to the value at
the distance A gives negative moments which are stii; considerably in excess
of those obtained from the theory of flexure for plates.

In Table 10, theoretical moments and design moments are compared

for a uniformly loaded nine-panel structure with edge beams. Moments based
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on the theory of flexure for plates are not changed greatly except at the
exterior columns. At this.section, negative moments are increased considera-
bly and are closer to those computed by frame analysis. Sigce the empirical
method requires that the édge béams be designed to carry a specified per-
centage of the load on the adjacent panel, the required design moment in the
exterior panels is increased. Table 10 indicates that, in some cases, this
requlrement increaées the combined design moments of the slab and beam to an
amount equal to or greaﬁer than the static moment. For the structure con-
sidered in Table 10, the static moment given by Equation 16 is 0.106 WL. It
can be seen that, in each of the edge strips, the design moment required by
the empirical method is equal to or greater than the static moment.

The above comparisons indicate that, in a nine-panel structure
without edge beams, design moments obtained by either the ACI Code' empirical
method or frame analysis will be lower than the static moment in the panel.
Design moments at the edge columns are generally higher than those obtained
from plate theory. At all other sections, design moments are generally lower
than theoretical moments. The only exception to this is in exterior panels
which contain edge beams. In these panels the design moments in the edge
beams plus those in the panel are greater than the theoretical moments.

In the nine-panel structures considered, the frame analysis does
not predict the trend in the moments properly. In the edge panels, it does
not even fulfill its original purpose of giving approximately the same design
moments as the empirical method. Although the structures considered included
unusually stiff columns, this was not the major cause of the differences in
the moments. In the following chapters, methods of reducing these differences

will be discussed.
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5. DISCUSSION OF THE ASSUMPTIONS OF
THE ACI FRAME ANALYSIS

5.1 General Remarks

The treatment of a flat slab as an equivalent two—dimensional
elastic frame is at best only & good approximation. It is apparent that
variations of the slab stiffness, loading arrangement, and support conditions
in the third dimension will influence the moments in the direction considered.
The influence of  these variations can be studied by the use of the theory of
flexure for plates, but no rigorous method is available for determining their
effects by a two-dimensional analysis.

In the preceding chapters, it has been shown that in most cases the
present ACI Code frame analysis predicts the correct trends in the values of
moments. This suggests that the frame analysis can be modified to give results
which agree with those obtained from both plate theory and test results.

In this chapter, the effects of different assumptions for the
stiffness of the slab and columns are investigated to determine which assump-
tions give the most reasonable results. In addition, possible ranges in
stiffness of the various members are investigated in order to determine how

different assumptions influence the computed moments.

5.2 Flat Slab with Uniform Load

A flat slab panel differs from a beam in that the curvature in the
transverse direction is significant. Although the double curvature has no
effect on the total moment in a panel, it does change the distribution of
moment between the positive and negative design sections and at the design

sections.
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Figure 49 shows the deflected shape of one-half of a wniformly loaded
flat slab panel. Curvatures exist in the direction of the x-axis as well as in
the direction of the y-axis. In Fig. 49b, the deflected shapg of one-half of
a uniformly loaded flat slab with properties similar to those required by the
assumptions of the ACI Code frame analysis is shown. It was pointed out in
Chapter 2 that Code frame analysis assumes the slab to be infinitely rigid
within the limits of the column capital. In order to meet this reguirement
the slab must have zero deflection and zero curvature between the supports. As
a consequence of this requirement, a uniformly loaded slab will exhibit zero
curvature along the x-axis.

Lewe, Nielsen, and Marcus have presented moments for an interior
panel of a slab on point supports with all panels loaded (Tables 2, 3, and L.
The average moments at the panel cénterline and column centerline for this
case can be compared with the moments at the centerline and support of an
equivalent uniformly loaded beam fixed at both ends. The values of the moments
in the beam would be 0.0833 WL at the support and 0.417 WL at midspan. It can
be seen in the tables that, for u = O, the moments determined by plate theory
are not significantly different from these values. If Poisson's ratio has a
finite velue, Equations 6 and 7 show that the distribution of moment between
the two sections is changed. Specifically, the positive moment 1s increased
and the negative moment decreased. For a slab on point supports and p.= 0,
the average moments on the slab are very close to those in an equivalent beam.
Consequently, neglecting deflections and double curvature does not influence
greatly the ratio of the positive and negative moments .

The moments presented in Table 5 are for a uniformly loaded slab
supported on infinitely rigid columns. The positive moments for this case

can be compared with positive moments in beams which are fixed at each end
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and are infinitely rigid within the limits of the capital. For p = O and c/L
equal to 0.1 and 0.2, Table 5 gives positive moments of 0.0386 WL and 0.0316 WL
respectively. The equivalent beams give positive moments of50.0557 WL and
0.0267 WL for the same c/L ratios. For finite values of Poisson's ratio, the
positive moments based on plate theory are larger and the differences are even
greater. This comparison shows that for slabs supported on real columns the
influence of deflections between the supports and curvature in the transverse
direction is quite significant. Even for the case of infinitely rigid supports,
the equivalent beam gives much lower positive moments than those obtained from
plate theory.

The assumption of infinitely rigid column capitals is unrealistic
even if double curvature and deflection between supports are accounted for.
In the case of a flat slab with column capitals, there will always be
significant deflections at the edge of the capital. For flat plates where no
capital is used, the deflections at the support are quite small but nevertheless,
are present.

The solutions designated NS3 and NS4 in Table 3 along with solution
UI% in Table 5 provide a means of comparing the effects of variations in
capital stiffness. All three of these solutions are for equal capitals with
a ¢/L of 0.2 and for p = 0. The solution designated UI3 is for an infinitely
rigid column capital; NS4 is for a capital varying inlstiffness from that of
the slab at the edge of the support to infinity at the center of the support;
and NS3 is for a capital with a stiffness equal to that of the slab throughout.
Positive moments determined by these solutions vary as follows:

NS3 0.0L01 WL
NSk 0.0358 WL
UI3 0.0316 WL
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Since the solutions include three different assumptions for the distribution
of shear at the support, negative moment and total moment cannot be compared
directly. In general, increased stiffness of the capital appears to concentrate
the shear farther from the center of the reaction thereby reducing the_total
moment in the span. This comparison indicates that the ACI Code assumption
of infinitely stiff column capitals will result in positive design moments
which are lower than those that may be expected in a real structure. If a
finite value of Poisson's ratio is considered, the differences become even
greater.

The ACI Code makes no specific recommendation for consideration of
the torsional stiffness of edge beams. Indirectly, the Code assumptions assign
infinite torsional resistance to the edge beams. This is the result of

assuming the equivalent beam to be infinitely rigid within the limits of the
column capital. Figure 50a shows the deformed shape of a beam over an
infinitely rigid column with a uniform twisting moment applied to it. The
ends of the beam rotate with respect to the column. Figure 50b shows a beam
which has infinite torsional stiffness and has a uniform twisting moment
applied to it. This illustration represents the stiffness assumptions for

| edge beams as g:ven by the ACI Code. Since the stiffness of a member is
defined as the roment per unit of rotation, it is obvious that the beam column
combination :.lustrated in Figure 50a is much less stiff than the one shown in
Figure 50t.

The moments for the two nine-panel structures tabulated in Figs. 31
and 32 give an indication of the effects of edge beams. Figure 31 shows that
with no edge beams, the moments at the edge of the uniformly loaded nine-panel
slab average 0.050 WL (neglecting twisting moment at the columns) over the
width of the structure. When edge beams with the torsional and flexural
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stiffnesses shown in Table 6 are added, the moment at the exterior columns

is increased to an average of 0.O48WL on the shallow beam side and 0.0L9WL

on the deep beam side. The stiffness of the edge beams can have a large
effect on the moments at the exterior design section of a slab. The ACI Code
assumption of infinite torsional stiffness assigns more moment to this section

than the section carries in the real structure.

5.5 Flat Slab with Strip Loading for Maximum Positive Moments

If all panels are loaded, the relative stiffnesses of the slab
panels and columns are important only in the exterior spans of a structure as
long as the span lengths are approximately equal. When adjacent span lengths
are considerably different or when strip loading is considered, the relative
stiffnesses of the members become important in all spans.

The relative stiffnesses of two adjacent slab panels are not very
sensitive to the assumed variation of stiffness within the panels. As long
as consistent assumptions are made about the variation in the moment of inertia
within each panel, the computed relative stiffnesses of adjacent panels are
not affected. To a lesser degree this is also true for determining the
relative stiffnesses between the slab panels and the columns. The problem
is in determining what assumptions must be made in order to be consistent.

In order to determine the variation in moment of inertia along the
axis of a column, the ACI Code requires that the column be considered in-
finitely rigid within the column capital and that the gross concrete section
be used at other points. Wﬁere a flat slab with column capitals is used,
this assumption is reasonable. It makes little difference in the computed
stiffness of the column whether the capital is considered to have an infinite
moment of inertia or whether the actual variation in moment of inertia within

the capital is considered. For a flat plate where nc enlargement is present
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at the top of the column, this assumption does not appear to be reasonable.*
For this case it would be realistic to base the computed stiffness on the
actual moment of inertia of the colwm. In any case, use of the gross
section of the column is reasonable since the columns are usﬁally uncracked
at working loads.

The ACI Code also requires that the stiffnesses of the slab panels
be based on the gross section of the concrete and that the slab be assumed
to have an infinite moment of inertis within the confines of the column
capital. Although the use of an uncracked section for the slab may be
unrealistic at working loads, any other assumption would require a great deal
of guesswork as to what sections should be assumed cracked or uncracked. In
addition, it would greatly complicate the computations. Since the relative
stiffnesses of the columns with respect to the slabs are not greatly changed
by the formation of a few crécks, moments of inertia based on the gross
concrete section appear to be the most desirable.

The assumption of an infinite moment of inertia within the limits
of the column capital does not appear reasonable. The moment of inertia
directly over the column may be infinite, but the moment of inertia of the
slab on either side of the column is a finite value. Although the average
moment of inertia of the slab may be quite large within the confines of the
capital, the effective stiffness of this portion of the equivalent beam should
be based on a finite moment of inertia in order to take the curvature of the
slab into account. The assumptions necessary for determining the proper
equivalent stiffness can be determined from theoretical studies and test

results.

*
The capital is defined to include the largest right circular cone with 90-

degree vertex angle that can be included within the outlines of the column.
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Figure 51 shows the effect of the relative column stiffness on the
positive moment in a flat slab with alternate strip loading. The solid line
in this’figure\represents moments for strip loading based on the theory of
flexure for plates. It was obtained by extrapolating the results shown in
Fig. 48. The moment for a relative column stiffness of zero was taken from
Fig. 48a and the moment for a relative column stiffness of 1.0 was taken from
Fig. 48b. It was then assumed that the moment was a linear function of the
relative column stiffness and the two points were connected by a straight line.
The broken line in Fig. 51 shows the maximum positive moment in a flat slab
as determined from the ACI Code frame analysis. It can be seen that the frame
analysis and plate theory both predict the same trend in the maximum positive
moment with the frame analysis predicting consistently lower values. As
stated before, the difference is due primarily to the assumption of infinite
stiffness within the limits of the column capital.

It should be noted that the 1956 ACI Code attempts to limit the
relative stiffness of colums used in flat slab construction. This is done
by requiring a minimum moment of inertia for the columns as given by the

following equation:

3
I - B , (22)
c W
D
05 + W-—
L
where Ic = moment of inertia of the column in in.
H = story height in feet
t = minimum slab thickness
WD = total dead load on panel
WL = total live load on panel

For a WD/WL ratio of 1.0 or less, it can be shown that this

limitation provides relative column stiffnesses ranging from 0.5 to 1.0
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with common values of 0.6 to 0.9. Figure 51 shows that, within theéé
limitations, maximum positive moments do not vary greatly. In addition, it
can be seen that an error in the assumed stiffnesses of either the slabs or

columns will not appreciably change the computed moments.



6. PROPOSED FRAME ANALYSIS

6.1 Assumptions and Procedure

The comparisons in the preceding chapters have indicated that an
equivalent two—dimensional frame analysis can be used to determine moments
in flat slabs. It was also shown that several modifications should be made
in the procedure presently allowed by the ACI Code. In this chapter, a
method is presented for the determination of moments at the critical design
sections. Moments obtained by the proposed method are then compared with
the results of tests on both elastic models and reinforced concrete models.

In Chapter 5, it was shown that the ACI Code assumption of infinite
stiffness of the slab within the limits of the column capital results in
unrealistic slab stiffness and fixed end moments. In order to overcome this
difficulty, it is necessary to assume an effective depth for the slab over
the area of the column capital. When this is done, the moment of inertia of
the fictitious section remains finite yet the increased stiffness in the
vicinity of the columns 1s accounted for. Studies have shown that, for
square capitals, an assumed thickness over the column capital of twice the
thickness of the slab will give positive moments which agree with those found
by plate theory.

Figure 52 illustrates the assumptions necessary for determining
stifinesses, carry-over factors, and fixed~end moments for slabs with square
column capitals. The moments of inertia at the various sections along the
slab are determined on the basis of the dimensions shown for sections AA,

BB, and CC. The 1/EI diagram for the equivalent two-dimensional beam is
shown at the bottom of Fig. 52. Moment distribution constants can be obtained

from this disgram by nermal procedures.

-58-
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For a slab supported on circular column capitals, the above
assumption results in an equivalent beam with a variable moment of inertia
over the column capitals. In order to simplify the calculations, an equivalent
moment of inertia which is constant over the column capital can be used. The
errors in relative stiffness which are introduced by this assumption are quite
small and will not greatly influence the final moments. For a flat slab
supported on circular column capitals, good results can be obtained by using
the same equivalent two-dimensional beam as in the case of square capitals but
assuming an effective depth of 1.75 ti over the capital. Section CC in Fig. 52
would then have a moment of inertia, ICC’ based cn the dimensions shown except
that the effective depth over the column would be 1.75 ti. The moments of
inertia at all other sectioms and the 1/EI diagram would remain as shown.

Figure 53 shows comparisons of positive moments in an interior
panel of a flat plate as determined by the theory of flexure for plates and
by both the proposed frame analysis and the ACI Code frame analysis. In
Fig. 5%a, the solid line represents moments found by means of difference
equations (Table 5). These solutions were obtained for a slab supported on
infinitely rigid square capitals. For this reason the positive moments
obtained in these solutions may be considered a lower bound to those that
would be found in a real structure. It can be seen that the positive moments
obtained by the proposed frame analysis are in good agreement with those
obtained by plate theory. Moments computed by the ACI Code frame analysis
are considerably lower for c¢/L ratios in the common range used in flat slab
construction.

In Fig. 53b positive moments obtained by the proposed frame
analysis for a slab supported on circular capitals are compared with those

obtained from the ACI Code frame analysis and those obtained by Westergaard



-60-

(Table 7). Since Westergaardfs moments are for infinitely stiff column
capitals, they may also be taken as a lower bound to the moments in a real
structure. It can be seen that the proposed f:ame analysis gives positive
moments which are in good agreement with those obtained by plate thecry while
the ACI Code frame analysis gives moments which are considerably lower.

In general, the proposed frame analysis appears to give good results
for the positive moment in a panel of an infinite array of uniformly loaded
panels supported on either square or circular column capitals. It should be
noted that the above comparisons were based on Poisson's ratio equal to zero.
As previously noted, finite values of p would result in slightly higher valﬁes
of positive moments. Since reinforced concrete flat slabs may be cracked
even at working loadé, it appears impractical to attempt to consider the
quantitative effects of Poisson’s ratio. In addition, the use of an equiva-
lent two-dimensional structure is only approximate so that the introduction
of u would only complicate the problem and add very little to the accuracy
of the method.

For interior columns, stiffnesses can be based on the moment of
inertia of <he gross concrete section. In flat plate structures without
column capitals, the column will have a constant moment of inertia up to the
bottom of the slab. From the bottom of the slab to the mid-depth, the
moment of ineriia can be considered to be infinite. Figure 54a shows a
quantitative . 'EI diagram for an interior column of a flat plate. Once this

disgram has beern obtained, the column stiffness can be computed by ordinary

If a column capital is present at the top of an interior column,
the computation of stiffness becomes somewhat more complicated. It is

apparent that the moment of inertia, within the enlargement of the capital,
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varies along the column. Where the capital intersects the bottom of the
slab or the drop panel, if one is present, the/moment of inertia becomes
infinite. In order to simplify computations, it is sufficiently accurate to
assdme that the 1/EI diagram varies linearly from that of tﬁe column at the
base of the enlargement to zero at the intersection of the capital with the
bottom of the drop panel or slab. This is shown qualitatively in Fig. 54b.
In this figure, the distance H refers to the story height and the distance
t1/2 + tp refers to either the half depth of the slab or the half depth of
the slab plus the depth of the drop panel. Again, after the 1/EI diagram
has been obtained, the stiffness of the column can be computed by ordinary
methods .

Computation of stiffnesses for exterior columns is a somewhat more
involved problem than is the one for interior columns. In order to approach
the question of the stiffness of an exterior column, it is first necessary
to consider how 'the moment is transferred into the column from the slab. At
the face of the column, the moment is transferred directly from the slab fo
the column. In addition, a large portion of the moment is first transferred
from the slab to the edge beams and then from the edge beams to the.columns.
It should be noted that the portion of the slab which connects the exterior
columns serves the same function as an edge beam if no deepening of the slab
is provided.

If the edge beams exhibited an infinite torsional resistance so
that there was no rotation of the beam between the columns, thé stiffnesses
of the exterior columns could be computed in the same manner as those of the
interior columns. Since this is not the case, the reduction in relative
stiffness of the column due to twisting of the beam must be taken into account.
This may be done by considering the exterior beam-column combination as a

single element and computing the average stiffness of this member.
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For use in the Cross distribution procedure, the stiffness of a
member may be defined as the moment required to rotate the end considered
through a unit angle without translation of either end (35). For a beam-

column combination, this can be represented by the following equation:

oo~ (2
where Kbc = gtiffness of the beam-column combination
my = a distributed torque applied along the axis of the beam
Gf = total rotation of the end of the column due to bending
in the column
Gt = average rotation, due to twisting, of the beam with

respect to the column

Thus the stiffness of an exterior column can be evaluated by
Equation 23 if my, Gf, and Qt are known.

The value of 6. can be found on the basis of the same assumptions

f
used to obtain the stiffness of interior columms. Its value is independent
of the distribution of the torgue along the beaﬁ and the torsional stiffness
of the beam. No further explanation of this gquantity is necessary.

The computation of Gt requires several simplifying assumptions:
(1) The twisting moment (moment applied by the slab) is assumed to be
linearly distributed along the axis of the beam. Although this assumption
is considerably in error in a corner panel where beams frame into the column
from two directions, this situation can be considered by modifying the
resulting rotation as described later. In other panels, the assumption
appears to give good results. (2) When no edge beams are present, it appears
reasonable to consider the portion of the slab equal to the widfh of the column

capital as offering torsional resistance. If edge beams are provided, an

L-shaped section including this same portion of the slab in combination with
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the beam should be considered. (3) For slabs supported on circular capitals
the torsional resistance of capital is infinite. This is consistent with the
assumptions for the flexural stiffness of the column at this point. For
square column capitals, the infinitely stiff portion can be'considered to
extend from the centerline of the capital to the intersection of the center-
line of the edge beam with a 45-degree line extended outward from the corner
of the capital. This accounts for the increased torsional resistance of the
beam caused by the stiffening effect of square capitals. (4) The restraint
agsainst warping at the midspan of the beam does not affect significantly the
torsional rotation of the beam. In Reference 36, Tiﬁoshenko and Goodier have
shown that this is true so long as the beam is shallow with respect to its
length. This approximation is sufficiently accurate for nearly all flat slabs.
The method for obtaining the value of Gt is illustrated in Fig. 55.
Figure 55a shows the combined beam-column member for which the stiffness is
to be obtained. The length, L, is taken as the distance between column
centerlines. It is assumed the unit torque shown in Fig. 55b is applied
uniformly along the centerline of the beam. This results in a twisting
moment diagram (Fig. 55c¢) with the ordinates as shown. Once the twisting
moment at each section is known, the unit rotation diagram (Fig. 55d) can be
obtained by the ordinary procedures for non-circular cross sections (57).

The expression for the curvature at any point is given by the following

expression:
¢ =—o2 T (k)
Y Bbih G
where ® = angle of twist per unit of length
T = +twisting moment
B = a constant which is a function of the cross section
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by = the length (the larger dimension) of each rectangular
cross section of the beam

hy = the height (the smaller dimension) of each rectangular
cross section of the beam

sumnation of all rectangular sections

P

For the system shown in Fig. 55, the average angle of rotation is
one-half the area of one of the triangles shown in Fig. 55d. This angle can

be obtained from the following expression:

o _ _L(L - ¢/L)®

= (25)
Y 16658 by by

where G = shearing modulus of elasticity

The problem now remains of evaluating the shearing modulus of
3
elasticity, G, and the section constant,E:B by by . For an ideal elastic

material, the shearing modulus is given by the expression:

- AT (26)

This expression may be used for reinforced concrete with
satisfactory accuracy. In view of the variation that may be expected in the
modulus of elasticity of concrete in a real structure; it is permissible to
let p = O in Equation 26. Thus, the shearing modulus becomes equal to one-
half of the "elastic" modulus.

For an L-shaped cross section, the section constant}ijﬁ by hi 3
may be obtained by dividing the cross section into two rectangular parts,
evaluating B by hi for each part, and adding the results. Although there

is a small amount of error in this procedure, the results will be suf-
ficiently accurate for use in an equivalent two-dimensional frame analysis.

The values of B as a function of by/hy are shown for convenience in Fig. 56.
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If a panel contains a beam parallel to the direction in which the
moments are being considered, the assumption of uniformly applied twisting
moment will lead to stiffnesses which are too low. It would be possible to
assume a different distribution of applied torque but this would complicate
the problem considerably. A simpler approach to the problem is to reduce
the value of Qt by the ratio of stiffness of the slab without the beam to that

of the slab including the beam. This can be expressed by the following

equation:
v IS
6, =06, v (26)
sb
where 9; = +the reduced average angle of rotation of a beam
Is = moment of inertia of the slab without the edge beam
Isb = moment of inertia of the slab including the edge beam

Once the values of Gf and Qt have been determined, the stiffnesses
of the edge beam-columns can be calculated. This completes the determination
of all distribution constants and fixed-end moments. The moments of the
column centerlines can now be determined by moment distribution. Moments at
the panel centerlines and shears at the columns can be then determined by
ordinary methods.

At this stage of the analysis it becomes necessary to reduce the nega-
tive moments to the value at the design sections. It is first necessary to make
an assumption with regard to the distribution of shear along the design
sections. For interior columns, the assumption that the shear is uniformly
distributed about the perimeter of the column capital appears to be both
simple and, in most cases, conservative. For exterior columns, this assump-

tion may be extended to a uniform distribution across the entire design section.
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Once this assumption has been made, the negative moments can be reduce@ by
the moment of the shear taken about the column centerline.

The meﬁhod of obtaining the negative moment reduction for a square
column ig illustrated in Fig. 57. The quantities MQ_and Mn represent the
moments at the column centerline and the design section respectively. The
symbol, V, represents the total shear at the column centerline (as determined
from the equivalent frame analysis), vy represents the uniform shear around
the perimenter of the half column, and all other terms are as defined
previously. Taking méments about the axis AA, the following expression is

obtained for the particular case shown:
M =M _'[BVC _ c3w] (27)
n ¢ 8 T 16
Similar expressions can be obtained for interior circular capitals, exterior
capitals with and without edge beams, or any other support condition.
The moment Mn is the total moment at the negative moment design

section. The distribution of the positive and negative moments along the

design section can be made according to the coefficients in the ACI Code.

6.2 Comparison with Test Results of Elastic Models

In Reference 38 Huggins and Lin reported the results of tests on
an aluminum model of a flat slab. The model contained six 17-in. square
panels supported on 4-in. diameter circular column capitals. The columns had
an over-all height of 10 in. as measured from the base of the column to the
surface of the slab. The columns were bolted to a 1/2-in. aluminum plate at
their bases. Loads were applied by means of pneumatic pressure applied
through a specially constructed locad cell.

Strains were measured on both the top and the bottom of the plate

by means of SR-4 electrical resistance strain gages. At each point, strains

etz Reference 1-'t1c>on:L _
of Illino
University of 1.
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were measured in directions both parallel and perpendicular to the three-bay
direction of the structure. The strain gages were placed along the column
centerlines, panel centerlines, and lines midway between these. A maximum of
seven gages was used on each line with several lines having only five gages.
As a result of using the limited number of gages, it was necessary in some
caées to extrapolate the test results in order to obtain moments at the design
sections.

Table 11 gives a comparison of measured moments with those obtained
by the proposed frame analysis and by the ACI frame analysis. The values
given in the table are the average moments across the entire structure. It
can be seen that the total moment measured in each span is in good agreement
with the total moment obtained by the proposed frame analysis and is consider-
ably higher than that obtained by the ACI analysis. The positive mouwents
obtained by the proposed analysis, although low, are in better agreement with
the measured moments than are those obtained by the ACI frame analysis. At
the interior column design sections, the proposed method gives coefficients
which are higher than the measured values while the ACI analysis gives moments
which are higher than measured in the exterior span and about the same as
measured irn the interior span. At the exterior row of columns, the ACI
analysis predicts only about half of the measured moment. Although still low,
the proposei method gives a coefficient which is much closer to the measureda
value.

In Reference 39, Chinn pointed out that Poisson's ratio will cause
an aluminum slat to have considerably different distribution of moment than
that in a reinforced concrete slab. Since the test model had a p = 0.33
while a reinforced concrete slab has a p of between O and 0.15, the aluminum

slab should exhibit higher positive moments and lower negative moments.
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This correction would make the measured moments agree even more closely with
those obtained by the proposed method. Since the total moment in each span
would be unchanged, the moments obtained by the ACI Code frame analysis would
still not agree with the measured moments.

Bowen and Shaffer have reported the results of a test on a flat plate
model made of Lucite (40). The model was constructed to simulate a typical
panel of an infinite array of uniformly loaded square panels. In order to
approximate this condition, a nine-panel structure was constructed with an
overhang beyond the exterior columns which extended approximately to the
theoretical point of contfaflexure of the adjacent panels. During load tests,
a load was applied to this overhang in order to reproduce the shear at this
section of an interior panel. Each panel was 5.568 in. square and was sup-
ported on 0.348-in. diameter circular columns with no column capitals. The
slab was 0.157 in. thick and had no drop panels.

Curvatures of the leoaded model were determined by means of a
photographic process. Shears and moments were then obtained from the curva-
tures by means of relations developed from the theory of flexure for plates.

Table 12 gives & comparison of measured moments with those computed
by both the proposed frame analysis and the ACI frame analysiéo ‘This table
shows that the total moment measured in the panel is in good agreement with
that computed by the proposed frame analysis but, as expected, is consider-
ably higher than that computed by the Code frame analysis. At both the posi-
tive and negative design sections, the proposed method again gives good
agreement with the measured moment while the ACI analysis is low.

The measured moments are based on a value of Poisson's ratio of
0.18. Since this is approximately the same value as that normally assumed
for concrete, it would be expected that the measured moments would be very

nearly the same as might be expected at the design sections of a reinforced
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concrete flat plate before cracking. As previously mentioned, the total
moment in a panel is unaffected by the value of k.

Tests of a 25-panel Plexiglass (p = 0.37) model of»a flat slab were
reported in Reference 41. Themodel was unusual in that no columns were
provided at the edge of the exterior row of panels. This resulted in a struc-
ture consisting of nine panels supported on columms with the remaining panels
acting as a continuous cantilever around the edge. The panels were 26 cm
square, 0.8 cm thick, and were supported on circular column capitals 10.4 cm
in diameter giving & c¢/L ratio of O.4. The columns were 1.73 cm.-in diameter
and had a length, from base of the column to the mid-depth of the slab, of
15.6 cm.

During the tests, the columns were supported on a rigid base. Loads
were cbtained by epplying hydrostatic pressure to specially constructed load
cells which reacted against a rigid frame. Several types of loading arrange-
ments were inveétigated and, for each type of loading, measured moments were
reported for the center panel, an edge panel, and a corner panel. No moments
were reported for the first interior panel.

Tatle 13 shows a comparison of measured moments (for p = 1/6) with
those computed by both the proposed frame analysis and the ACI frame analysis.
Both uniform loading over the entire structure and strip loading for maximum
positive moment in the center panel are considered.

For uniform loading over the entire structure, measured moments
are in good agreement with those computed by the proposed frame analysis.

The agreement is good at both the positive and negative design sections. As
in the model tests cited previously, the total measured moment is in good

agreement with the static moment in the span. As expected moments based on
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*
the ACI frame analysis are considerably lower than the measured moments.

For the case of strip loading, the total moment measured in the
center panel is again in good agreement with that computed by the proposed
frame analysis. Measured and computed moments at the design sections do not
agree as well as in the case of uniform load. Again the ACI frame analysis
gives moments which are considerably less than those measured. At the posi-
tive design section, the maximum moment computed by the ACI frame analysis is
even less than that measured under uniform load.

In general, the proposed method gives good results for this model.
Where differences exist, they can be attributed to the unusual layout of the

model and to the effects of Poisson's ratio as discussed previously.

6.3 Comparison with Test Results of Reinforced Concrete Models

Several tests on Quarter-scale models of reinforced concrete slabs
have been carried out at the University of I1linois. The properties and
dimensions of two of these models (a flat plate and a flat slab) and the
test setup are described in References 42 and 43. A portion of the test
results for these two models is reported in Reference 26.

The quarter-scale flat plate model was a nine-panel structure
supported on square columns which were hinged at the base. The structure had
neither column capitals nor drop panels. The nominal c¢/L ratio was 0.1 and
the panels were 5 ft square. Deep edge beams were provided along two adjacent
sides and shallow edge beams were provided along the other two. The structure
was designed in such a way that the torsional and flexural resistances pro-

vided by the edge beams were nearly the same a&s in the slab analyzed by finite

* The measured and computed moments are given for capitals with a ¢/L of O.k4.
Since the capitals used in the model have curved rather than straight sides,
the ¢/L ratio would be about 0.3 according to the ACI Code definition. Since
moments at this section of the capital were not reported, all comparisons were
based on the larger capitals.
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difference methods and reported in Table 6 (UI9L). For convenieuce, the
layout and dimensions of the test slab are shown in Fig. 58.

The structure was loaded by means of nine hydraulic jacks. One
jack was provided for each panel of the structure. Loads were transmitted to
the panels through a system of statically determinate H-frames. Moments at
the design sections of each panel were determined by measuring strains in the
reinforcing steel and converting these strains to moments on the basis of
relations determined on separate tests on beams {44}. In addition, column
reactions were measured and moments across the entire structure were computed
from these.

In Table 14 measured moments across the entire structure and in
the center row of panels are compared with computed moments. The measured
moments are those obtained with the full design lcad on the structure.

Comparing the moments across the entire structure shows that the
moments obtained by finite difference solutions (UIOL) compare favorably with
measured moments in the center bay of panels. The difference at the negative
moment section can be ascribed to the slight difference in the stiffness of
the columms assumed in the analysis and that in the test structure. In the
exterior bays, the finite difference sclution gives mements at the exterior
columns which are larger tban measured. At the positive and interior negative
moment sections, the computed moments are less than measured. These dif-
ferences are due to the fact that, in the analysis the edge columns were
assumed to have infinite flexural rigidity while in the tesi model,; the edge
columns were flexible. Moments computed by the proposed frame analysis are
generally in agreement Qith the measured moments. Although differences exist
at individual sections, the over-all agreement is the best of eny of the

computed moments. Moments obtained by the two methods permitted by the ACT
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Code are lower than the measured moments at all sections except the exterior
columns. The differences at these sections are due to the fact that these
methods do not recognize the reduction in relative stiffness of the edge
columns caused by torsional rotation of the edge beams. Although the ACI
emplrical moment coefficients do not appear to be extremely low, it should
be pointed out that a large portion of this moment is assigned to the edgé
beams. A more realistic comparison for the empirical method can be obtained
in an interior strip which does not contain edge beams.

For the interior row of panels, the finite difference solution
gives moments which again agree with the measured moments in the center bay.
In the exterior panels; the differences in computed and measured moments
are slightly greater than they were when the entire structure was considered.
Again, these discrepancies are caused by assuming the edge columns to be
infinitely stiff in flexure. In this row of panels, the proposed frame
analysis gives negative moments which are slightly higher than those measured.
This is due to a difference between the assumed distribution of shear around
the columns and that which actually existed in the structure. In all cases,
these differences are on the safe side. As expected, the ACI empirical
moments for the interior row of panels are considerably lower than the
measured moments at all sections except the exterior columns. In the center
panel, the difference is more than 20 percent. The reasons for these
differences were discussed previously.

Table 15 compares measured and computed moments for the exterior
strips of columns. These comparisons indicate that moments computed by finite
differences and by the proposed frame analysis are in about the same relation"
to the measured moments as they were in the comparisons of Table 1k. Moments

determined by the ACI empirical method are generally higher than the moments
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measured in the exterior strips° This is due to the fact that, in the
empirical method, the edge beams are considered separately and are designed
to carry a certain fraction of the panel load. This results in an unduly
large amount of the moment being assigned to the edge beams; As would be
expected, the moments measured in the edge beams were much lower than would
be determined by the empirical method.

The quarter-scale flat slab model contained nine 5-ft square panels.
Both drop panels and column capitals were provided. The nominal ¢/L ratio
was 0.2. All columns were 1 ft 10-1/4 in. long and were hinged at their
bases. Deep edge beame were provided along two adjacent sides and shallow
edge beams were provided along the other two. The layout and dimensions of
the slab model are shown in Fig. 59.

Loads were applied by means of the same system used to load the
nine-panel flat plate. Moments for the individual panels were again determined
from measured steel strains. In additicn, reactions were measured and moments
across the entire structure were computed from these.

Measured moments across the entire structure and in the center row
of panels are compared with computed moments in Table 16. All measured
moment coefficients are those obtained with the full design load on the
structure.

Over the entire structure, moments obtained by the proposed frame

analysis compare well with the measured moments. In the center bay, the

[h]
ot

positive computed moment is lower than that measured. This gives'a total
moment in the center bay which is somewhat smaller than measured. The dif-
ference is not large, however. The ACI Code frame analysis predicts moments

which are smaller than the measured moments at all sections. In this model,

the effect of the torsional resistance of the edge beams is not large:
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Since the columns are already.relatively flexible; the reduction in stiffness
‘caused by the rotation of the edge beams bas little influence on the over-all
stiffness. Although the empirical moment coefficients again appear to be in

agreement with the measured values, the comparison is not valid becsuse a

In the interior strip of panels, the proposed frame analysis again
gives moments which compare well with the measured values. As expected,
moments computed by the ACI frame analysis'fall below thoée measured. The
empirical moments for the center strip are considerably less than measured
moments at all sections except the exterior colummns. Since the empirical
method does not consider the stiffness of the exterior colums, it:provides
for moments which are higher than those developed at the section.

Table 17 shows & compafison of measured and computed moments in the
exterior rows of panels. In this comparison, the proposed frame analysis
gives moments which are lower than those measured. This difference is due
in part to the stiffening effect of the edge beams. Since the edge rcﬁs of
panels are st.ffer than the interior, someg&bgar is transferred scross the
column lines thus increasing the moments in the exterior panels. Further
evidence c¢f <his can be seen in the fact that measured moments in the center
row of panels were slightly lower than those computed. The ACI empirical
moments for ihe exterior rows of panels are nearly as large as the measured
moments. Again, this is due to designing the beams as separate structural
elements. f only the moment assigned to the slab were considered; the
comparison for the exterior panels would he about the same as it was for the
interior row of panels.

The above comparisons show that}the ACI Code frame gnalysis and

empirical'method predict moments in the slab which are lower than those
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measured. In the exterior pgnelsy the empirical method increases the
moments by considering the béams separately and designiﬁg them for a certain
percentage of the panel load. At working loads, the moments in the beams
are much lower than the empirical moments would indicate while the moments
in the slab are correspondingly higher. In general, the proposed frame
analysis predicts moments which are in good agreement with those measured.
The comparisons show that, in all cases, the proposed method is in better
agreement with the test results than are the other methods of computation.
At the exterior fow of panels, the proposed method consistently predicts
moments which agree with the tests while the ACI méthods predict values which

agree with the tests in only a few cases.

MeTZ HeIerence Koom
University of Illinois
B106 NCEL
208 N. Romine Street
Urbana, Illinecls 61801



7. NUMERICAL EXAMPLE

7.1 Description of Structure

This chapter presents a numerical example of thé proposed frame
analysis described in Section 6.1. The method is used to determine the moments
in the interior row of panels of the nine-panel flat slab model illustrated in
Fig. 59.

In order to analyze the center row of panels, it is assumed that the
structure is divided into three rows of panels. The boundaries of the center
strip are assumed to be the centerlines of the interior rows of colums. This
strip is dimensionally identical to & strip containing an interior row of
columns and bounded by the panel centerlines. For simplicity, the illustrations
show the entire column at the center of the panel rather than balf of it at
each side.

Figure 60 shows the layout of the row of panels considered. The
cross sections give the dimensions of the structure at the places necessary for
the determination of the stiffnesses of the eguivalent two-dimensional frame.
For purposes of illustration, the Cross moment distribution procedure (35) is
considered in this example. However, other methods can be used to determine
the final moments in the equivalent two-dimensional frame using the stiffnesses

of the individual members determined as shown here.

7.2 Determination of Distribution Constants for the Slab

The center panel of the slab is symmetrical about its centerline and
‘has the cross-sectional dimensions shown by sections AA, BB, and CC in Fig. 60.
Section AA gives the dimensions of the slab between drop the panels, Section BB

gives the dimensions within the drop panels,and Section CC gives the dimensions
over the column capital.

-76-
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Since the exterior cqlumn capitals are not identical to those of the
interior columns, the éxterior panels are not symmetrical. The dimensions over
‘the exterior column capitals are shown in Section DD. The dimensions at other
sections are identical to those of the center panel.

The stiffnesses of the panels aré determined from the moments of
inertia of the gross cross-sectional areas. For the center row of panels, the 1

numerical values of the moments of inertia for the sections shown in Fig. 60

are:

* b

IAA = 26.80 in.
IBB = U48.00 inou
I

I, = 91.29 in.
L

Inpp = 66.78 in.

After thesevmoments of inertis have been determined, the 1/EI
diagrams can be constructed for the equivalent two-dimensional beams.

Figure 6la shows the 1/EI diagram for the exterior spans and Fig. 61b for the
center span. For simplicity, the diagrams are shown in terms of the moment
of inertia at the center of the panels.

Once the 1/EI diagrams have been determined, the stiffnesses,
carry-over factors, and fixed-end moments can be determined by ordinary methods.
The constants for the equivalent two-dimensional beams are given in Table 18.
The fixed-end moments are given in terms of M/WL and stiffnesses in terms of

the ratio of the stiffness, K, to the modulus of elasticity, E.

7.3 Determination of Distribution Constants of the Columns

The cross-sectional dimensions of the exterior and interior columns

are represented by sections EE and FF respectively in Fig. 60. The numerical

* Subscripts refer to the corresponding cross section in Fig. 60.
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values of the moments of inertia of these cross sections are:
Iee *

In this example, it is assumed that the moment of inertia of the

17.86 in.
L
16.48 in.

columns varies linearly from that of the column at the base of the capital to
infinity ét the point where the column reaches its full width. The 1/EI
diagrams for the interior and exterior columns are shown in Figs. 6lc and 614
:espectively.

The stiffness of the interiof”columns can be computed on the basis
of the 1/EI diagram by ordinary methods. Table 18 gives the numerical value
of the stiffness of the interior columms.

For the exterior columns, it is necessary to compute the stiffnesses
of the beam-column combinations at each end of the row of panels. From the
‘,l/EI diagram in Fig. 61d, the numerical value of the rotation of the -end of

the column, Gf, due to a unit moment spplied at the top of the column is:

In order to find the total rotation of the beam column combinations
at each edge column, it is necessary to add the average rotation, Gt, of the
beams to Gf. The cross-sectional dimensions of the deep and shallow beams are
shown in Fig. 62,_ On the basis of these cross sections, the rotation for each
beam can be obtained by means of Equation 25.

For the deep beam (Fig. 62a) it is convenient to consider the two
parts labeled I and II. The gquantities nécessary for Equation 25 ar
follows:

G = E/2 L = 60 ¢/L = 0.283
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3

“Part b/h B Pbihy
I 3.00 0.26L 12.67
II 3.28 0.270 8.32
20.99

Substituting these values into Equation 25, the average rotation of

the beam becomes:

Substituting the quantities Gf and Gt into Equation 23, the stiffness

for the combined deep beam and edge column becomes:
Kb = 2.U48E
c

The shallow beam can also be divided into two parts (Fig. 62b). The

quantities necessary to find the rotation of the shallow beam are:

G = E/2 L = 60 c/L = 0.283
3
Part b/h p Bbaihy
I 1.80 0.218 15.33
II 1.86 0.221 3.85
19.18

Substituting into Equation 25, the average rotation of the beam

becomes:

0.200

6, = ——=—

t

=47 00

The stiffness of the combined shallow beam and edge column is then

found to be:
Koo = 2.38E

This completes the computation of the distribution constants

necessary for the moment distribution procedure. From the constants shown in
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Table 18, the moments at the column centerlines and panel centerlines are
found to be: )
M/WL
-0.046 +0.043 -0.121 -0.101 +0.02%  -0.101 -0.122 +0.043 -0.0k2

[ o
SHALLOW BEAM , ? DEEP B

It is now necessary to reduce the negative moments to the values at

the design sections.

7.4 Determination of Moments at Design Sections

The first step in determining the negative moment reductions is to
find the reactions at the ends of the spans. For the center row of panels,

the reactions are found to be:

I} 0.k25 0.57541}0.500 0.50041} 0.580 0. 420!
SHALLOW BEAM | DEEP BEAM

The reduced negative moments at the interior design sections can be
found by means of Equation 27. At each edge column, the homent redﬁcfion may
be found by assuming the reaction linearly distributed along the face of the
béam and the column and then summing up the moments about the design section.
This is done in the same way as illustrated in Fig. 57 for an interior
coluﬁn. After these reductions have been made, the moments at the design
sections of the center row of columns are:

W/WL
-0.025 +0.042  -0.078 -0.06Lk +0.02L  -0.064 -0.078 +0.043 -0.036

I | | |

SHALLOW BEAM DEEP BEAM

This completes the determination of the moments at the design

sections of the center strip of columns.



8. SUMMARY

This study involves the guantitative cowmparison of moments in
reinforced concrete slabs as determined by the analysis of eduivalent two-
dimensional elastic frames, by analysis based . on the theory of flexure for
plates, and by tests'on both elastic and reinforced concrete models. In the
first portion of the investigation, moments determined from the analysis of
equivalent frames are compared with the moments based on plate theory. Moments
determined from plate theory included solutions by the use of finite difference
methods and by the use of a double~infinite Fourier Series. These solutions
included the following conditions: |

1. A typical panel of an infinite array of uniformly loaded
square panels supported on circular column capitals.

2. A typical panel of an infinite srray of uniformly loaded
square panels supported on sguare column capitals.

3. A typical'panel of an infinite array of uniformly loaded
rectangular panels supported on square column capitals.

L. A loaded panel of an infinite array of square panels with
strip loading for maximum positive moments and supported
on square column capitals.

\un

A nipe-panel structure supported on infinitely rigid square
columns and having no edge beams. '

rine-panel structure supported on infinitely rigid square

A
supports and having deep edge beams on two adjacent sides
and shallow edge beams on the other two sides.

*
These studies indicated that the ACI equivalent frame analysis
predicted moments which were lower than those obtained by plate theory.
However, the comparisons showed that the frame analysis predicted the correct

trend of the changes in the moments with the critical variables. On the basis

of these comparisons, the properties of the hypothetical equivalent frame used

* ACI 318-56, Section 1003, "Design by Elastic Analysis,” Reference 31.

=81~
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in the two-dimensional analysis were modified to yield moments in good
agreement with those cbtained by plate theory.

In Chapter 6, moments obtained hy the proposed frame analysis are
compared with those measured in tests on elastic and reinforced concrete models
of slabs. These tests include:

1. A six-paspel aluminum flat slab.

2. A nine-panel Lucite flat plate loaded to simulate an
infinite array of panels.

3. A twenty-five-panel Plexiglass flat slab.
k. A nine-panel reinforced concrete flat plate.

5. A nine-panel reinforced concrete flat slab.

Although a two-dimensicnal framé analysis should not be expected to
give the exact moments in slabs, it coes give values which are sufficiently
accurate for design purposes. The comparisons shov that even though the
moments obtained by the proposed frame analysis differ from measured moments at
some sections, the agreement 1s generally geod. In nearly every case, moments
obtained by the proposed frame analysis are in better agreement with the
measured moments than are those computed by the methods of the 1956 ACI Code.

On the basis of this investigation, the following general conclusions
are reached:

1. The present ACI Code frame analysis gives moments which are

lower than either those obtained on the basis of plate theory

or those measured in tests on models.

2. In the present frame analysis, the assumptions for stiffness
over the supports are uarealistic.

3. An equivalent frame analysis can be used to calculate the
moments at the design sections of a reinforced concrete slab
with rectilinear panels.

4. The equivalent two-dimensicnal frame proposed in this report
gives moments which compare well with the moments measured in
tests on models.
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In Chapter T, a numerical example is given in which the interior
strip of the reinforced concrete flat slab model is analyzed. This example
illustrates how the proposed frame analysis can be applied to a typical strip

of panels.

metz Rererence Room
University of Illinois
B106 NCEL
208 N. Romine Street
Urbans, Illioeig B18Q%
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TABLE 12. COMPARISON OF MEASURED MOMENTS WITH
MOMENTS COMPUTED FOR LUCITE FLAT PLATE MODEL

l . Uniform Load

m“T I ] ] ] —1 i{ ] - i il ] -%; b

U v U

Moment Coefficients of WL

Section U v Sum
Measured Moments 0.072k4 0.0426 0.1150
Proposed Frame Analysis 0.07L41 0.0410 0.1151

¥*
ACI Code Frame Analysis 0.0667 0.0366 0.1033

* Moments obtained by ACI Code frame analysis are not reduced to Mb
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TABLE 13. COMPARISON OF MEASURED MOMENTS WITH MOMENTS COMFUTED FOR
CENTER PANEL OF 25-PANEL PLEXIGLASS FLAT SLAB MODEL

Uniform Load

. l;ﬂ | Y

\

UV

Moment Coefficients of WL

Section U A Sum
Measured Moments 0.0%3 0.030 0.063
Proposed Frame Analysis 0.031 0.033 0.064
ACI Code Frame Analysis 0.023 0.018 0.041

Strip Loading
I —— — P I T ]
vV u

Section U v Sum
Measured Moments 0.012 0.051 0.063
Proposed Frame Analysis 0.021 0.0L3 0.064

*
ACI Code Frame Analysis 0.018 0.023 - 0.041

* Moments obtained by ACI Code frame analysis are not reduced to MQ
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