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REDISTRIBUTION OF MOMENTS AT CRACKING—
THE KEY TO SIMPLER TORSION DESIGN?

By MICHAEL P. COLLINS and PAUL LAMPERT

When a reinforced concrete structure cracks the ratio of torsional
to flexural stiffness of its members will drop. The resulting redistri-
bution of torsion and bending moments is the subject of this paper.

Six full scale tests, illustrating this effect fur a two beam structure
(floor beam-spandrel beam), T-shaped in plan are described. The ob-
served redistribution for different values of such parameters as
spandrel beam stiffness, percentage of reinforcement and span length
is shown to be well predicted by using the cracked stiffness values.

Further it is shown that specimens designed by assuming zero tor-
sional stiffness for the spandrel beam behaved as satisfactorily as
specimens designed by following the conventional procedure of using
the uncracked stiffness values.

Keywords: beams (supports); bending moments; compatibility
methods; cracking (fracturing); flexural strength; frames; reinforced
concrete; reinforcing steels; stiffness; structural analysis; torsion.

O In discussing the design ot reinforced concrete to resist torsional loads it is help-
ful to distinguish between two different types of torsion, one arising from equi-
librium requirements and the other needed to satisfy compatibility. We will define
these two types in the following manner:

Equilibrium torsion: A torsion is required to maintain equilibrium in the struc-
ture.

Compatibility torsion: A twist is required to maintain compatibility in the
structure.

In statically determinate structures, only equilibrium torsion exists, while in in-
determinate structures both types are possible. A given load produces compati-
bility torsion in an indeterminate structure if the torsion can be eliminated by
releasing redundant restraints. Fig. 11-1 gives examples of both types of torque
for a number of typical structures.

In designing a member subjected to equilibrium torsion, it is necessary to pro-
vide enough reinforcement to ensure that the member is capable of resisting the
full torsion required by statics. Adeclluate design rules, based on a large amount
of recent research, are now available' which enable the engineer to proportion
his reinforcement for this case.

The method of design for members subjected to compatibility torsion is not
so obvious. As what is required from the members is a twist not a torque, the
magnitude of the torsion will depend on the value of the torsional stiffness. If
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the conventional approach of assuming gross stiffness values in the analysis is used
unrealistically large torsions will result. If under load the member does not crack
the torsional reinforcement provided will be virtually unstressed. If, on the other
hand, the member cracks, its torsional stiffness will be substantially reduced? and
the resulting redistribution of loads will reduce the torsion in the member and
hence the need for torsional reinforcement.

If instead of using gross torsional stiffness values it was assumed that the tor-
sional stiffness was zero very simple design procedures, for the case of compati-
bility torsion, would result. This assumption would lead to zero values for the
torsion and hence only minimum torsional steel (needed to ensure ductility and
limit cracks) would have to be provided.

The feasibility of such a procedure for the case of a simple structure, is exam-
ined in this paper.

ANALYSIS OF THE STRUCTURE TESTED
The two beam structure (floor beam-spandrel beam) shown in Fig. 11-2, was
chosen for study. In this structure the spandrel beam is subjected to compati-

bility torsion. This torsion will restrain the floor beam, resulting in the distribu-
tion of moments labelled “Method A” in Fig. 11-3.

Analysis of the structure reveals that the magnitude of the restraining moment

(X) is given by
3
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where EIp and Elg are the flexural stiffnesses of the floor and the spandrel,
and GKg is the torsional stiffness of the spandrel.

It can be seen that if the spandrel is infinitely stiff (Elg = =, GKg = )
the restraining moment is 3PLg/16, the value for a propped cantilever. On the
other hand, if the spandrel beam has zero torsional stiffness, the restraining mo-
ment is zero. The distribution in this case is labelled “Method B” in Fig. 11-3.

DESIGN AND TESTING OF THE SPECIMENS

Specimen SI (see Table 11-1) was the basic test specimen. It had a 15 ft floor
beam and a 9 ft 6 in. spandrel beam, both 10.2 x 17 in. in cross-section, and was
designed for a load of about 40 kips in the midspan of the floor beam. The rein-
forcement was proportioned in the conventional manner, here called method A.
That is gross stiffness values were used to determine the moments and torques
which1 in turn determined the amount of reinforcement required to satisfy the
code.

Specimen S2 had the same external dimensions as S1 and was designed to re-
sist approximately the same load. However, S2 was designed by assuming zero
torsional stiffness (method B) and providing only a minimum amount of torsion-
al steel. This resulted in S2 having slightly more steel in the floor beam (174 1b-
152 Ib) but considerably less steel in the spandrel beam (68 1b-137 1b). Speci-
mens S3 and S4 both had stiffer spandrel beams (17 x 17 in.) and hence different
values of the ratios EIp/Elg and EIR/GKg. Specimen S3 was designed by
method A for a load of 52 kips, while S4 was designed for a load of 43 kips by
method B.

Specimen S6 also had a design load near 40 kips but had a different value for
the length ratio (Lg/Lg). Specimen S5 had identical reinforcement to S6 but
its length ratio was the same as for S1 - $4.

Fig. 11-4 indicates, diagrammatically, the loading system and the instrumen-
tation used in the tests. The ends of the spandrel beam were “torsionally re-
strained” by means of hydraulic jacks pulling on outrigger arms. Load cells on
the pull rods enabled the torsion, which was needed to keep the ends of the
spandrel level, to be measured accurately. The twist of the spandrel, deflection
of the spandrel and the floor beam, steel strains, concrete strains and crack
widths were all measured and are given in detail elsewhere.3 An overall view of
a specimen under test is shown in Fig. 11-5.

GENERAL BEHAVIOR OF THE SPECIMENS

The general behavior of the specimens is best described by referring to the
load-deflection diagrams (Fig. 11-6, 11-7, and 11-8). It will be seen that as far
as deflections are concerned, the behavior of specimens S1 and S2 is remarkably
similar (Fig. 11-6). For the specimen designed on the assumption of zero torsion
(82) first yielding occurs at a higher load than for S1 while failure occurs at a
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slightly lower load. In both cases the final failure was due to crushing of the con-
crete compression zone under the load.

Specimens S3 (conventional design) and $4 (zero torsion), having different
design loads, did not exhibit such similar behavior (Fig. 11-7). After yielding of
the longitudinal steel in the floor beam, the load on S3 rose considerably. This ;
load finally resulted in a failure of the joint. Specimen S4, on the other hand, L
showed only a small increase in load after first yielding and experienced no diffi-
culties with either the shear capacity of the floor beam or the integrity of the
joint.

The behavior of S5 (Fig. 11-8) was similar to S2 except that yielding and fail-
ure occurred at lower loads, while because of excessive longitudinal spandrel
steel, yielding of this steel occurred at a late stage. Specimen S6 exhibited the
usual sequence of steel yielding but failed by a loss of shear capacity at the joint.

The load-deflection curves of Fig. 11-8 also indicate the effect of the ratio of
spandrel beam length, Lg, to floor beam length, LE, on the behavior of the
specimens. The deflection under the load, 4;, is much greater than the deflec-
tion under the joint, A,, for specimen S5 (Lg/Lf = 0.63), but for S6
(Lg/Lg = 1.58) these two deflections are almost equal. As the twist of the
spandrel will be a function of the difference between these deflections, this in-
dicates that the torsion in S6 will be very small.

An overall view of four of the specimens (S1-S4) after failure is given in Fig.
11-9. The similarity in appearance of S1 and S2 (the lower two specimens) will
be noted. Evidence of the shear failure and the joint failure in specimen S3 and
of the concrete crushing in the other three specimens can be seen.

BEHAVIOR OF THE JOINT

The joint between the floor beam and the spandrel beam was the cause of
final failure in two of the six specimens (S3 and S6). Great care had been taken
in detailing these joints. In accordance with recommendations for indirect sup-
port,4 closely spaced spandrel stirrups were provided through the joint to “hang-
up” 100 percent of the arriving load. Further, the bottom longitudinal bars of
the floor beam (the load-bringer) were placed on top of the bottom longitudina
bars of the spandrel beam (the load-carrier). In spite of this care, some joints
failed, as the photos taken before and after spalling of S3 vividly show (Fig.
11-10).

At the joint, the floor beam is subjected to a negative moment as well as a
shear in the manner analogous to the support region of a continuous beam.
Flexure-shear cracks penetrate far into the compression zone of the beam (see |
Fig. 11-10). The compression diagonals between these cracks push strongly upon |
the bottom longitudinal steel of the floor beam. Unlike the support of a contif ||
uous beam, there are here no vertical compressive stresses to help the bar resi
the push. In fact, as the spandrel is in positive bending, there are lateral tensi
stresses that further weaken the joint. While provisions had been made for |
“hanging-up” the load in the spandrel only the usual shear reinforcement had'
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been provided in the floor beam. That this proved inadequate to resist the push
on the longitudinal steel can be seen clearly from the post-spalling photo in Fig.
11-10. It might be added that failure to place the floor beam steel on top of the
spandrel beam would have enabled the bars to push-out at a much lower load.

It would appear to be sound practice to provide the floor beam with closely
spaced stirrups in the region close to the joint capable of “hanging-up” 100 per-
cent of the load. Because the location of the critical compression diagonals is
largely a matter of chance, it would still be wise to provide spandrel stirrups
capable of “hanging-up” 100 percent of the load.

CRACKING BEHAVIOR

As well as providing adequate strength, the reinforcement must control the
crack widths at working loads. It might thus be suspected that providing less
torsional steel will lead to wider torsional cracks.

The photos in Fig. 11-11 show specimens S1 and S2, at a load corresponding
to the maximum feasible working load and at ultimate load. It will be observed
that there is no significant difference in the crack patterns at working load, but
that at ultimate the cracks in S1 are more closely spaced.

A plot of the maximum crack widths confirms this trend (Fig. 11-12). Up till
aload of about 30 kips both specimens have similar crack widths, whereas beyond
this load S2 (the specimen with less steel) has wider cracks. A similar behavior is
also shown by S3 and $4 except that in this case, the deviation between the two
specimens is much smaller.

TORSION MEASURED IN THE SPANDREL BEAMS

Of prime interest in our investigation is the magnitude of the “compatibility
torsion” caused by the twist of the spandrel beams.

The measured twists of the spandrel for specimens S1 and S2, plotted as a
function of the applied load, are given in Fig. 11-13. Once again the remarkably
similar behavior of these two specimens will be noted. Apparently the additional
spandrel steel in S1 has very little effect on the magnitude of the twist. The same
trend is apparent in Fig. 11-14 where it can be seen that the specimen designed
for zero torsion (84) in general suffers less twist than the conventionally de-
signed specimen.

While the twists in S1 and S2 are similar, the torques are not. The torque-
twist curves show (Fig. 11-15) that as expected the spandrel with more steel
(S1) has a higher torque for the same twist.

The torsion in the spandrel can also be studied in terms of the restraining mo-
ment, X, on the floor beam. Fig. 11-16 shows the measured values of this mo-
ment for S1 and S2 as a function of the applied load. If the stiffness values are
known, X can be predicted from Eq. (1). The prediction obtained by using
gross stiffness values is labelled “Gross” in Fig. 11-16 (see Table 1 1-2). It can be
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seen that after cracking the restraining moments are considerably less than those
predicted by the gross analysis, with the moments in S2 (zero torsion design)
being even less than those in S1. Rather than rising linearly with the load the
restraining moment, and hence the torque, can be seen to remain almost constant
between cracking load and first yielding.

The same pattern of behavior is exhibited by specimens S3 and S4 (Fig. 11-
17). This time the conventionally designed specimen, S3, has much higher values
of X than the “zero torsion” specimen, S4. These values, however, are still con-
siderably smaller than those predicted by the gross analysis.

The effect of spandrel length on the magnitude of the torsion (torque = X/2)
can be seen in Fig. 11-18. Asindicated in the discussion of deflections, the long
spandrel beam of S6 means the torque will be very low. It will be noted that for
this specimen torsion cracks did not form until just before failure.

PREDICTED POSTCRACKING STIFFNESS

The A.C.I. Code! offers the following guidelines in chosing appropriate design
values for stiffness: “Any reasonable assumptions may be adopted for computing
the relative flexural and torsional stiffnesses. . . . The assumptions made shall be
consistent throughout the analysis.” We have seen above that the use of gross
stiffness values led to unrealistically high predictions of the postcracking torsion.
Perhaps a more “reasonable” approach would be to use the postcracking stiffness
values. Methods for calculating the cracked flexural stiffness are well established
with the “transformed section” approach being the most widely known. A com-
panion paper in this volume?2 presents a theoretical derivation and experimental
confirmation of an expression for the postcracking torsional stiffness. This ex-
pression is:

2
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Where Ay = cross-sectional area of the hoop bar

bo’ho = dimensions between the longitudinal corner bars

s = spacing of the hoops

m = ratio of the volume of longitudinal steel to the volume of hoop
steel

and E; = Young’s modulus of the steel.

The stiffness values predicted by Eq. (2) are plotted on the torque-twist curves
given in Fig. 11-15. The stiffness, being a function of the amount of hoop steel,
is naturally greater for S1 (conventional design) than for S2 (zero torsion). It has
been shown# that for a beam in pure torsion Eq. (2) gives a very accurate predic-
tion of the stiffness at first yielding. For the case of the spandrels, the expression
under-estimated this torsional stiffness (see Fig. 11-15). The spandrels, being
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subjected to torsion, bending and shear, were not uniformly cracked. The regions
of low tensile stress remained virtually uncracked, accounting for the additional
stiffness of the spandrels.

PREDICTED REDISTRIBUTION AFTER CRACKING

Use of cracked stiffness values will lead to different stiffness ratios and hence
to a different prediction of the moment distribution. If Table 11-2 is examined
it will be seen that while the flexural stiffness ratio (EIg/Elg) is not greatly af-
fected by the change from the “gross” to the “cracked” analysis the ratio of
flexural to torsional stiffness (EIp/GKg) increases tremendously. This increase
means a substantial drop in the predicted magnitude of the torque.

This “drop” can be seen if the “gross” and the “cracked” predictions for the
value of the restraining moment (X) are compared (see Fig. 11-16). As might
be expected, a larger drop is predicted for specimens with less torsional steel, a
prediction verified by the experimental results.

It will be observed (Fig. 11-16, 11-17, and 11-18) that the measured values of
X lie between the gross and the cracked predictions. After cracking the experi-
mental curves veer away from the “gross” prediction and head towards the
“cracked” prediction. Yielding of the steel again changes the stiffness ratios and
may reverse this trend.

To illustrate the predicted and observed moment distributions in a more con-
ventional manner Fig. 11-19 was prepared. In this figure the moments predicted
by gross analysis, the moments predicted by cracked analysis, and the measured
moments at a load of 40 kips, are compared for specimen S4. (The same com-
parison could be made in Fig. 11-17). It can be seen from Fig. 11-19 that the
analysis using cracked stiffness values leads to a more accurate prediction of the
moment distribution than that based on gross stiffness values.

PREDICTED TWIST OF THE SPANDREL—AN INDICATION
OF CRACKING BEHAVIOR

One objection to relaxing and simplifying current torsional design procedures
would be the suspicion that providing less torsional reinforcement would lead to
less satisfactory crack control. Though it was shown above that the crack pattern
of specimens designed by the two methods (“conventional” and “zero torsion”’)
did not differ at working loads it might be argued that for other percentages of
reinforcement or other frame configurations this would not be the case.

The amount of torsional cracking that will occur in a member will be a func-
tion of the amount of twist which the member must undergo. In Fig. 11-20 the
measured amount of cracking (expressed as the sum of the crack widths per unit
length) is glotted as a function of twist for a number of beams reported in the
literature.>>® The beams in this plot were tested in pure torsion, were square in
cross-section, had about the same size, and all but one (T4) were hollow. Each
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beam had a different distribution or a different amount of reinforcement. It can
be seen (Fig. 11-20) that in each case the amount of cracking is nearly a linear
function of the twist. It will further be observed that this behavior is not af-
fected by yielding of the reinforcement. It can thus be concluded that the
amount of cracking is governed by the twist and is not influenced by the force
induced in the reinforcement.

Though the amount of cracking is not influenced by the distribution of the
reinforcement the maximum crack width obviously will be. Closely spaced steel
will assure a large number of small cracks while wide spacing of the hoops will
produce a small number of large cracks (compare S1 and S2 in Fig. 11-11 and
11-12).

The twist of the spandrel, and hence the amount of cracking, can be pre-
dicted if the stiffness values are known. Values of the twist obtained by using
gross and cracked stiffness values are compared to the experimental values in
Fig. 11-13. As might be expected the observed twist before yielding lies between
the gross and the cracked predictions. What may be surprising is the fact that
the cracked analysis predicts a smaller twist for the beam with less torsional steel
(S2). The explanation for this is that the rotation of the joint is predominantly
controlled by the flexural behavior of the floor beam. Thus the loss of torsional
stiffness incurred by providing less torsional steel is more than compensated for
by the additional flexural stiffness generated by providing additional floor beam
steel.

To investigate whether other specimens designed by Method B (zero torsion)
will also have smaller predicted values of twist (and hence have less cracking),
Fig. 11-21 and 11-22 were prepared.

The effect of the percentages of reinforcement on the angle of twist of the
spandrel at the design load may be seen in Fig. 11-21. The figure shows that if
the assumed frame is designed for a larger load, and hence contains a higher per-
centage of reinforcement, the predicted angle of twist at the design load will be
greater. The figure also predicts that over the whole range of feasible reinforce-
ment, for the section properties assumed, a frame designed by Method B will
twist less than one designed for the same load by Method A. (A sample design
and calculation is given in detail in Appendix A.) The general trend of the theo-
retical predictions is confirmed by the three experimental points plotted.

The effect of the ratio of floor beam length to spandrel beam length (Lg/Lg)
on the angle of twist of the spandrel is shown in Fig. 11-22. In constructing this
figure it was assumed that Lg + Lg = 24 ft 6 in. and that the reinforcement
in the floor beam for Method B consisted of two #8 bars. These assumptions
enabled the results of specimens S5 and S6 to be plotted in the figure. It can be
seen that the predicted angle of twist per unit length increases rapidly as the
spandrel is shortened, this prediction being confirmed by the experimental points.
The figure also shows that over a wide range of length ratios the cracked analysis
predicts a smaller angle of twist for the frames designed by Method B than for
those designed by Method A. The large values of twist for the very short span-
drels (when Lp/Lg = 4 the spandrel is only 4.9 ft long, that is only about 25 in.
protrudes from each side of the floor beam) indicate that for these frames crack
widths may be a problem with either design method.
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CONSEQUENCES FOR DESIGN

We have seen that the use of cracked stiffness values in design would be a
“reasonable assumption” and would lead to accurate predictions of the torque.
However, before the cracked stiffness can be determined, the reinforcement
must be designed and to design the reinforcement we must know the magnitude
of the torque. The use of cracked stiffness values would thus lead to a cumber-
some trial and error design procedure.

The assumption of zero torsional stiffness, on the other hand, would lead to
very simple design procedures (compare method A and method B in the ap-
pendix). The question then is whether this qualifies as a “reasonable assump-
tion.” The behavior of the specimens designed on the basis of this assumption
certainly indicates that for these frames the assumption was reasonable. Further,
it was shown above that for a wide range of variables, the predicted cracking be-
havior of specimens designed using this assumption was not significantly differ-
ent from that of conventionally designed specimens.

A question might be raised about the rotational capacity of the beams. The
ability to twist will be exhausted when the limiting shear strain, vy, is reached
on one face of the beam. Experiments® have shown that the value of vy, lies
between 0.01 and 0.02. Using the lower values for the shear strain we can de-
rive a conservative expression for the twist capacity from Eq. (23) of Reference
2):

b, + hy

¢ = 001 3)
L bOhO

It will be found that this twist capacity is large enough not to be critical. For
example, for the specimens investigated in Fig. 11-21 and 11-22, Eq. (3) gives a
value of {} of 19.4 x 104 rad./in., while the largest twist at design load is
4 x 104 Ttad./in.

It thus appears that for the simple type of frame investigated the assumption
of zero torsional stiffness is reasonable. In effect this means that for the case of
compatibility torsion we reinforce the spandrel for a twist rather than a torque.
Thus not the amount but the distribution of the steel is important. A “mini-
mum amount” of closely spaced longitudinal and web steel will ensure that the
member can sustain the twist in a ductile manner without displaying excessive
crack widths.

In the case of a very short spandrel beam, we have seen above that crack
widths may be a problem with either design method. In such a case it is prob-
ably wise to dimension the beam so that under service loads it remains torsion-
ally uncracked.

For structures more complex than the simple frames investigated secondary
effects, such as the restraints imposed on the torsional member by adjacent
columns and slabs, may affect the validity of the assumption of zero torsional
stiffness. Such structures are presently being investigated, in a continuation of
this work, at the University of Toronto.
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SUMMARY AND CONCLUSION

It was found necessary to draw a distinction between “equilibrium torsion,”
in which a torsion is required to maintain equilibrium, and “compatibility tor-
sion,” in which a twist is required to maintain compatibility. The test results of
six floor beam-spandrel beam structures, in which the spandrel was subjected to
compatibility torsion, are reported. These results are explained and generalized
in a companion theoretical study. The conclusions to be drawn from this work
are: »

1. In designing for compatibility torsion the magnitude of the torsion at the
design load is overestimated if gross stiffness values are used in the analysis.

2. At cracking the ratio of torsional to flexural stiffness will drop causing re-
distribution of the torsion and the bending moment.

3. The observed redistributions for different values of spandrel beam stiffness,
percentage of reinforcement and span length are well predicted by using the
cracked stiffness values.

4. Specimens designed by assuming that the members had zero torsional stiff-
ness behaved as satisfactorily as specimens designed by following the conventional
procedure of using the uncracked stiffness values.

5. It appears that for the case of compatibility torsion we should design for a
twist not a torque. Thus the main function of the “torsional” reinforcement is
to distribute the cracks caused by the twist. Additional torsional steel merely in-
creases the torque in the member while having little effect on the twist.

6. Very simple design procedures for compatibility torsion will be feasible
when it is demonstrated that for most structures assigning a value of zero to the
torsional stiffness is a “‘reasonable assumption.”

For the structure studied experimental and theoretical results show that a
substantial redistribution of moments occurred at cracking leading to a signifi-
cant reduction of the torque. This reduction makes feasible the assumption of
zero torsional stiffness and could thus be considered as the key to simpler tor-
sional design.
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APPENDIX A

EXAMPLE OF DESIGN AND ANALYSIS CALCULATIONS

For the member properties given in Fig. 11-21 we will design specimens by the
two different methods (A and B) to resist a design load of 40 kips. As we wish
to compare the analysis with results from specimens of known dimensions and
material properties we will use a capacity reduction factor (¢) of 1.0.

DESIGN BY METHOD A

Step 1. Determine gross stiffness values:
Flexural stiffness of floor and spandrel beam

bh3

102 x 173
bh~ < 102 x 177
c 12

Elp = Elg = E =36 x 10° = 15 x 10° kip. in.?

Torsional stiffness of the spandrel
GKg=G,Bb3h=0.5x3.6x 103 x0.21 x 10.23 x 17= 6.8 x 10° kip. in.?

where {3 is the St. Venant stiffness factor.

Step 2. Use stiffness values to determine moments and torques:
From Eq. (1) the restraining moment X equals:

X 2\ Lg) Eg
PLp 3
F LS EIF LS EIF
16+ —)] — +12 — —
LF EIS LF GKS

In our case Elp/Elg = 1.0, ElL/GKg = 15/6.8 = 2.2, LS/LF = 9.5/15
= 0.633

X
which gives —— = 0.0868.
PLg

From Fig. 11-3 maximum positive moment in the floor beam

PLp x Plg
= -5~ (05-0.0868)= 37.2Pkip.in. = 1490 kip. in

Negative moment in the floor beam = X = 15.6P = 626 kip. in.
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Maximum moment in the spandrel

PL
= vy (0.5 + 0.0868) = 16.8P = 672 kip in.

Torque in the spandrel

= -§= 7.8P = 313 kip in.

Shear in the spandrel
P

X
=—+ — = 293P = 11.7 kips.
PRTI 293 11.7 kips

Step 3. Design floor beam flexural steel:

Positive moment = 1490 kipin. bd?f;=10.2 x 162 x 3.5=9,130 kip in.

M
—— =162 = q(1 - 0.59q) .. q = 0.182
bd?f;
fe
Lp=q—=.182"—"7-=0. ; Ag = 1.73sq in.
p qf 1260 0.0106; Ag = 1.73sq in
g M
Negative moment = 626 kip.in. ——— = .0688
bd?f,
5oq' = .072 Sop'= 0.0042 A'S = 0.68sq in.

Step 4. Design spandrel beam flexural steel.

Moment = 672kipin.  bd’f; = 9,130 kip in.

M
— = .0735 Lq=0077 . p=00045
bd?f;
Ag = 0.73 sqin.
Step 5. Design spandrel beam web steel:
T = 313 kip in. V = 11.7 kips
3T 3 x 313 \% 11.7
T, = — = ——— = 532 psi v, = > = ———— = 72 psi
x2y 10.22 x 17 u bd 10.2 x 16
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24 ff:
T.= = 140 psi

R VAR (1.2v,/1,)?

2VE
v, = = 19 psi

Vi + (r,/12v,)?

(ry - 7)) = 392 psi and (vy - Vo) = 53 psi
Area of web steel for torsion

Ah (Tu - TC) X2y
- S —— where £2 = 0.66 + 0.33 (y;/x) = 1.25
s 39 x,y, fy 1

392 x 1022 x 17
3x125x 9 x 16 x 40

= 0.032 sq in.fin.

Area of web steel for shear

Ap  (y - b 953 x 102

= 0.0068 sq in.

] 2fy 2 x 40

Step 6. Longitudinal steel for torsion:

N

A,
h
A=2 ( >(x1 ty)=2x0032(9 +16) = 1.6sqin.

Step 7. Summarize design:

Floor beam: Ag = 1.73sqin. Ag = 0.68sqin.
Spandrel beam: Ag = 0.73 + 0.8 = 1.53sqin. Ag = 0.8sq in.
An

— = 0.032 + 0.0068 = 0.0388 sq in./in.
s

DESIGN BY METHOD B
Step 1. Determine moments:

PLr 40 x 180

= 1800 kip in.
2 7 00 kip in

Positive moment in floor beam =
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Moment in spandrel = — = ———— = 570 kip in.

Shear in spandrel =

Step 2. Design floor beam flexural steel:

Positive moment = 1800 kip in. bdzf(; = 9130 kip in.
M )
— =.197 .. q=.228 ~p = 0.0133 S Ag = 2.17sqin.
ba?f

Nominal top steel needed 2 - #3  Ag = 0.22

Note: In actual design it may be better practice to place more top steel in the
beam to limit flexural cracking.

Step 3. Design spandrel beam flexural steel.

M
Moment = 570 kip in. —— = .0624 q = 0.065
bd?f;
S p = .0038 Ag = 0.62sqin.

Need nominal top steel 2 - #3 Ag = 0.22sqin.

Step 4. Design spandrel beam web steel:

10
V=10kjpS Vu=m=6lp51

Ve = 2\/€= 118 psi

Use minimum web steel for ductility and crack control.

é:—l = 2—fj,E = 254(;(’—0(1)82 = 0.0064 sq in./in.
Step 5. Summarize design:
Floor beam: Ag = 2.17sqin. Ag = 0.22sqin.
Spandrel beam: Ag = 0.62sq in. Ag = 0.22sqin.

Ap
i 0.0064 sq in./in.
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CALCULATION OF THE ANGLE OF TWIST

Now that we have designed the specimens we can predict their angles of twist
at a load of 40 kips.

The angle of twist per unit length of the spandrel ({) can be found by divid-
ing the torque in the spandrel by the torsional stiffness.

_ X2
GKg

The torque at the design load (X/2) can be estimated from Eq. (1) using the
cracked values for the stiffnesses. The stiffness values can be found from the
section properties by “transformed sections” and Eq. (2). These calculations are
summarized in Table 11-A-1 below, where it can be seen that the twist at the de-
sign load of the specimen designed by the two methods is about the same

(146 x 104 and 1.37 x 104 rad./in.).

TABLE 11-A-1-TWIST AT DESIGN LOAD

Cracked Stiffness Values

Torque Twist

Specimen Elg Elg GKg kip in. rad/in.

kip in.2 kip in.2 kip in.2

Method A 7.7 x 10° 6.8 x 10° 0.760x10® 111  146x10*

Method B 8.9 x 10° 34x10° 0.175 x 108 24 137x10%

The calculations above enable two points in Fig. 11-21 to be plotted. A large
number of similar calculations were made in the preparation of Fig. 11-21 and
11-22.
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NOTATION

Ay, = area of one leg of a hoop
A = area of positive flexural steel
A_ = area of negative flexural steel

b = width of member

b0 = width between longitudinal corner bars

d = distance from extreme compression fiber to centroid of tension
reinforcement

E. = modulus of elasticity of concrete

E, = modulus of elasticity of steel

Elg = flexural stiffness of the floor beam
Elg = flexural stiffness of the spandrel beam
= compressive strength of the concrete

fy = yield strength of the reinforcement
GKg = torsional stiffness of the spandrel beam
G, = shear modulus of the concrete

h = overall height of the member

h, = height between longitudinal corner bars

= span of the floor beam

Lp
Lg = span of the spandrel beam
M = bending moment

- ,

= ratio of the volume of longitudinal steel to the volume of hoop
steel

P = ]load applied to the floor beam
p = Ag/bd

qa =p

s = spacing of the hoops
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torsion

shear

nominal shear stress carried by concrete
nominal design shear stress

crack width

restraining moment of the floor beam
shorter overall dimension of the cross-section
shorter dimension of the hoop

longer overall dimension of the cross-section
longer dimension of the hoop

St. Venant stiffness factor

limiting shear strain

deflection under the load

deflection under the joint

twist per unit length of the spandrel

twist capacity of the spandrel

nominal torsional stress carried by concrete
nominal design torsional stress

0.66 + 0.33 (yl/xl)
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Fig. 11-1-Equilibrium torsion—compatibility torsion
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Fig. 11-2—Structural frame investigated
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Fig. 11-4—Instrumentation of the specimen
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Fig. 11-5—Test set-up
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Fig. 11-9—Specimens S1, S2, S3, $4 after failure




MOMENT REDISTRIBUTION

After Spalling

Fig. 11-10—Failure of the joint, specimen S3
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Fig. 11-11—Specimens S1 and S2 at service and ultimate load
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Fig. 11-12—Maximum crack widths at midheight of the spandrel beam




ANALYSIS FOR TORSION

372

TS Pue I suowoads 10§ 1stmi—peoT—¢[-11 814

()

y-0l - £ 9 S

-
L
o~

~ T T T

2 814 205 @O OO

ZS vauwidedg — v —
1S Udwidoedg — @
*aAN3Iv37

(sdin) 4




373

MOMENT REDISTRIBUTION

¥S PU® ¢ suourroods 10§ ISIMI—peOT—H1-11 ‘S

(5)

y-01L - ¥ €

9 814 205 ‘DO OO
bS ud3w1d9dg —m0 g —

€S uawrdadsg

*ON3D37

(sdy) d




ANALYSIS FOR TORSION

374

7S pue [§ suowioads 103 3stmi—~onbrog —g1-11 “Sig

you
(er

y-OL-8 Y3 9 s

A

zs "1 kioayy

1s "1 kioay)

ainjiey

Buiydes) |euvoisio] @

7S uawidadg v —
1§ vawid29dg —— ¢ ——
9 613 eeg ® ‘©®

aN3D31

(19

ool

oSt

007

0sT

(4our-dix) 1

00¢

0s€




375

TS pue [§ suswroads 10§ peo—anbioy—9-11 ‘814

(sd) d

-
-]

(sdiy)

TS ueswideds —_—

‘s | ¢ uswidadg —_—- 4
Buixdes) |euoisio] @
9 'Bi14 ‘pusba eeg @@@@ Buiydes)d |eanxe|4 @
PeieN T TECER

MOMENT REDISTRIBUTION




ANALYSIS FOR TORSION

376

09

$S pue ¢§ susuroads 10J peoj—anbiol—/ -1 1 814

0s

or

(sd1%) d

1 4°]

€S

€S

9 614 ‘puabeq a0g -

(ONGRGNO)

pS uvawidadg

—— ] —

€S uswidadg

Buiyoesd Jeuolisio] @
Buixoean (esnxajy @

!GN3ID3IT

X

(sdm)




377

MOMENT REDISTRIBUTION

9S pue ¢ suawidads 10J peoj—anbio]—81-171 814

09 0¢ oy o¢ 0z oL [

ag3ixOovyd

-
2N
N
=
T
»
€ ~/
9 ‘614 ‘puabaq asag AU ]
9S8 uaswidedg —_— -
1
S S uswioedg —_— —
Buixdoesn |euUOISIO]) AU
Buiydoely |esnxa)4 AU
S

-ON3D3T




Bending

ANALYSIS FOR TORSION

.

Beam of S4
40 kips

Moment in Floor

at Load P =

o

378
-0.5 |
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\
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M —_—
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Torsion in
Beam
=Xx/2.
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Fig. 11-19—Redistribution in specimen S4
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A€ (rad. /inch)

1w-10"4L

T7

TEST IN PURE TORSION
==Ow=e Toronto [5]
=—O==—= Zurich Ce]

® Onset of Yielding

Il
0 0.2 0.4 0.6 -10-2

2w (inch / inch)

Fig. 11-20—Relationship between twist and the sum of crack widths®-®
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