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How Safe Are Our Large

Reinforced Concrete Beams?

By G. N. J. KANI
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To answer this question, four series of test
beams, with depths of 6, 12, 24, and 48 in., were
tested at the University of Toronto and the re-
sults compared. Considerable influence of the ab-
solute depth became apparent to such an extent
that the safety factor for the largest beams was
approximately 40 percent lower than the otherwise
similar small beams. This trend indicates that, with
a further increase in depth, a correspondingly
further decrease in the safety factor can be ex-
pected.

Keywords: beams (structural); cracking (frac-
turing); deep beams; depth; diagonal tension;
reinforced concrete; research; safety factor; shear
strength.

B To paTE (1966), the majority of reinforced con-
crete beams which have been tested to failure
range in depth from 10 to 15 in. Essentially, these
are the beams on which all our design practices
and safety factors are based. The immediate aim of
the test program described in this paper was to
answer the question: How representative are
the test results derived from such relatively small
beams for the safety factors of large beams?
In Eq. (17-2) of the ACI Code:?

v, = 0.85 (1.9vf+ 2500 p ZMQ> (1)

no parameter has been included which takes into
account the influence of the effective depth d of
the beam, thereby suggesting that beams of dif-
ferent depths will have the same safety factor if
the concrete strength f., the percentage of main
reinforcement p, and the shear arm ratio, a/d
= M/Vd, are equal. Yet, as we shall see later, this
particular influence is even greater than the
term, 2500 p Vd/M, in Eq. (1). A comparison of
this formula and the test results which illustrate
the influence of p and a/d is shown in Fig. 1 and is
discussed more extensively in Reference 2.
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The author’s attempt? to provide a rational the-
ory of diagonal failure was based essentially on
consideration of equilibrium and resulted in some
predictions, in particular the following three,
which were contrary to general expectations:

1. The influence of concrete strength on the so-
called shear strength of rectangular reinforced

concrete beams without web reinforcement is
negligible and can be omitted in strength analysis.

2. Provided that the reinforcing bars obtain
effective anchorage, beams without bond have a
higher load-carrying capacity than beams with
good bond.

3. All other factors being equal, the safety fac-
tor decreases as the depth of the beam increases.
Statement 1 has been substantiated in Reference

2. As for Statement 2, concerning the negative in-
fluence of bond, two independent test reports can
be quoted:

(a) Leonhardt and Walthert state: “Now, the
beams with smooth bars produced considerably

higher load-carrying capacities than the corre-
sponding beams with deformed bars.”*

(b) Lorentsen?® reports “. . . beam 7 (grouted)
carried less than beam 21 (ungrouted) ...”
The substantiation of Statement 3 is the chief
purpose of this paper.

Many investigators assume, contrary to the
prediction of the rational theory advanced in
Reference 3, that the influence of the effective
depth d on the relative strength of reinforced
concrete beams exists only for depths smaller than
15 in. In the chapter on influence of the beam size
of their report,® Riisch, Haugli, and Mayer state:
“It seems that for beams tested under uniformly
distributed load, a change of depth beyond a criti-
cal value does not have any influence on the load-
carrying capacity. This critical beam depth is
15 to 20 em (6 to 8 in.). This concept of a critical
beam depth has also been confirmed by the tests
of Forsell.” According to his investigation, the
critical effective depth for beams tested under
point loading lies within the range of 30 to 40
cm (12 to 16 in.).” However, in the University
of Toronto tests, no such critical depth could be
found.

Due to this contradiction with the prediction of
the rational theory? it was decided to provide
experimental evidence to substantiate one or the
other of the above-mentioned assertions. To ac-
complish this, four series of test beams of different
depths were designed. Each series comprised
beams of one depth only (6, 12, 24, and 48 in.).

*See also the author's discussion of these tests in Reference 3,
pp. 464-465 under ‘“‘Influence of Bond” and the discussion of
Refelxéezréczea:i in the December 1964 issue of the ACI JOURNAL,
Pp. -28.

+For notation see p. 141.
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All series had the same nominal percentage of
main reinforcement (p — 2.80 percent) and the
same grade of concrete (f = 3800 psi). Within
each series, the a/d ratio was varied over the
entire range of the “valley of diagonal failure,”
i.e., from a/d = 1.0 to the transition point T, at
which full flexural failure was attained.

THEORETICAL CONSIDERATIONS?!

The expectation that beams, different only in
depth, should have different relative strengths
was derived from the principal formula of the
rational theory of diagonal failure developed in
Reference 3:

Ax a
Mu—Mo'T'E‘ (2)

where M, denotes ultimate moment, Ax/s is the
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Fig. |—Shear stress at failure versus a/d
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Fig. 2—Differences in crack patterns among beams of different depths
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Fig. 3—Typical loading arrangement and cross sections of the four beam series
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crack factor, i.e., the ratio of the spacing of cracks
to the average length of concrete teeth, and:

, jbd?

= 4 —

0o —

where f, is the modulus of rupture of the concrete.
By dividing Eq. (2) by the flexural failure
moment:

Mﬂ = Tjd = pbdf,jd

we obtain the following expression for the relative
beam strength:

_ M. ¥ A a
T = Mﬂ _'6pf‘,, S d (3)

For a given grade of concrete and steel and a
given percentage of main reinforcement, the fac-
tor f// (6pf,) is a constant. Therefore, the relative
beam strength M,/M, depends, except for a/d.
only on the crack factor Ax/s.

However, the spacing of cracks Ax is almost
constant, virtually independent of the beam depth,
whereas the crack length s is greatly influenced
by a change in depth. In all the tests, the crack
spacing was approximately 4 in. and did not vary
appreciably with the beam depth. On the other
hand, the length s of the fully developed cracks
was found to be proportional to the depth d. Thus,
the first impression derived from Eq. (3) is that
the relative beam strength M,/M;, should decrease
rather quickly with increasing beam depth.

Fortunately, the concrete teeth of large beams
are not merely “longer” but are geometrically
quite different from those of smaller beams. Fig.
2 illustrates the typical crack configurations of
12, 24, and 48 in. beams. The development of
shorter secondary cracks between fully developed
primary cracks has been extensively discussed
by Broms.?

The initial meaning of Ax as introduced in Ref-
erence 3 was the crack spacing and s, the effective

u
psi | P P
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a 1 '
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Fig. 4—Shear stress at failure v, versus a/d for beams of various depths
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length of a concrete tooth. But, due to the differ-
ences in crack patterns among beams of different
depths, the crack factor Ax/s requires a more gen-
eral definition than used for the 12-in. beams.
However, the basic expectation, that beams of
greater depth have a smaller crack factor, is
nevertheless true. Ignoring this fact necessitates
the acceptance of lower safety factors for large
beams, as became clear from the test results.

TEST PROGRAM

For beams without web reinforcement, the re-
duction in strength caused by premature diagonal
failure, increases with p = A,/bd as was discussed
in Reference 2. Therefore, for the determination
of the influence of depth on shear failure, a rela-
tively high percentage of reinforcement was
chosen, corresponding to a nearly balanced cross
section. For the chosen grade of concrete, f,” = 3800
psi, this corresponds approximately to p = 2.80
percent, the value selected for all four series.
The cross sections of the four test series designed
according to the above specifications are shown in
Fig. 3b-e. Fig. 3a illustrates the loading arrange-
ment.

Using the same designation for the test series as
in Reference 2, the four series were designated:

3.8-2.80-6.0P
3.8-2.80-12.0P
3.8-2.80-24.0P
3.8-2.80-48.0P

The particulars for each beam are given in
Tables 1 through 4.

Since anchorage failures were considered to be
a special type of failure and outside the scope
of this program, precautions were taken to elimi-
nate this factor by welding anchor plates to the
ends of bars in the same way as described in
Reference 2.

Because the longer 48-in. beams with only a
6-in. width, approach a laterally unstable case, all
48-in. beams had four lateral supports in the form
of roller bearings just below the top surface, 5 ft
from the center line of the beam.

The reinforcement consisted of ASTM A16 de-
formed bars with a specified minimum yield
strength of 50 ksi. However, differences in the
properties among bars of different diameters re-
sulted in variations in the yield strength from
48.6 to 60.4 ksi (see Tables 1'to 5). Because of

r=M_“
UMg
1IN A
90 + -
A\ P e
NN
70 +
60 1 \\g\/\ﬂ% =12
50 + w =24
l/ M
40 + g
30 +
fc'=3800 psi
20 7T p=280%
0 7 b= 6.0in.
§ I 1 i i ! 1 ! } g
O T T T T T tb.d
o | 2 3 4 5 6 7 8 9

Fig. 5—Relative strength r, versus a/d for reinforced concrete beams of various depths
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Fig. 6—Longest 48 in. beam (a/d = 8.0)

this variation, and for reasons explained in Refer-
ence 2, pp. 681, the comparative flexural strength
M|, based on f, = 50 ksi, was used in the analysis
of all four beam series. The grade of concrete was
maintained at 3800 psi, with a maximum aggre-
gate size of % in. and no admixtures, for all of
the test series.

TEST RESULTS

The conventional presentation of the shear stress
at failure v, versus a/d for the four test series is
shown in Fig. 4, illustrating the fact that beams,
equal in all parameters except depth, exhibit a
decreasing shear strength v, with increasing depth
d. Moreover, the strong variation of v, with re-
spect to a/d exists in large beams, as was known
to be the case for small beams.

As extensively discussed in References 2 and
3, the variation of the test results is much smaller
if we choose the ultimate moment M, or the non-
dimensional relative strength, 7« = M,/Mj, in-
stead of v, as the indicator of beam strength. With
r, known, the ultimate moment of a beam failing
in shear appears simply as:

Mu = T Mﬂ (4)

Since Mﬂ is not only easy to determine, but in

general is calculated anyway, the analysis of shear
safety is reduced to the determination of the fac-
tor 7.

Using the relative beam strength r, as the indi-
cator of failure, the test results are presented in
Fig. 5 as derived from Tables 1 to 4.

From Fig. 5, several conclusions may be de-
duced:

1. Since no conventional code formula considers
the influence of the absolute value of the beam

ACI JOURNAL / MARCH 1967

depth, the safety factor of large beams can be
considerably smaller than for small beams. Fig.
5 indicates that the 48-in. beams, when compared
to the corresponding 6-in. beams, have a reduction
in the safety factor of up to 40 percent. Therefore,
if the safety factor obtained from testing 6-in.
beams is designated by ms, then we can expect a
reduced factor of safety for the 48-in. beams
which may be as low as:

Ngg — 0.60 ng

This means that design based on data derived
from 6 in. test beams, which renders an apparently
conservative safety factor of 2.5, would actually
result in an equivalent 48-in. beam with a danger-
ously low safety factor of 1.5.

9. No similarity of behavior exists for beams of
different depths, even if they are otherwise equal,
i.e., having the same f/, a/d, p, and b. The 6-in.
beams, with a/d = 6.0, fail in flexure, attaining
100 percent of the load-carrying capacity of the
cross section, whereas an otherwise equal 48-in.
beam fails in shear, attaining only some 75 per-
cent of the flexural load-carrying capacity of the
cross section. The transition point T, which also
varies with the beam depth, moved from a/d = 6.0

d
r(d)
r,(6")
¢ b) 960
q-€
100% - ;,/.:Iﬁv_ﬁ
5.0
90 {-—1-
80
f. = 3800 psi
= 2,80% 74%
70 +—|° 8 - o N
b = 6.0 in. % 68%
0 65%
60
\ \Tss%
50 + + } b d
d=5,35" d=10.7" d=214" d=428"

Fig. 7—Variation of relative beam strength (r, versus

depth)
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TABLE 6—DECREASE IN RELATIVE BEAM STRENGTH
DUE TO INCREASING DEPTH

Beam depth t, in. 6 | 12 | au | 4

Relative beam strength rv | 0650 | 057 | 0419 | o035

Loss due to doubling
of depth, percent

r 114 l 186 ) 222

for the 6-in. beams to a/d = 9.0 for the 48-in.
beams. The main reason for the loss of similarity
in behavior can be found in the obvious differences
in the crack pattern (Fig. 2), which dictates the
shape of concrete teeth.

The largest 48-in. beam that the laboratory space
allowed (see Fig. 6) had a/d = 8.0 and a length
of 66 ft. The relative beam strength at failure
was 92.3 percent, thus not quite reaching the
transition point T. However, the curve in Fig. 5
produces by extrapolation a transition point at
about a/d = 9.0.

3. Beyond the transition points, i.e., where full
flexural strength of the cross section is attained,
no significant reduction was observed in the rela-
tive beam strength due to increased beam depth.
Thus, only within the valley of diagonal failure
must a reduction of strength due to greater beam
depth be considered.

4. There is no indication that the reduction
in the safety factor approaches a limiting value
with increase in beam depth. Within the test
range d = 535 to 42.8 in. an almost constant
amount of reduction was observed whenever the
beam depth was doubled. The amount of reduc-
tion is dependent on the a/d ratio, with the
greatest strength loss occurring at a/d = 3.0. The

a) P P

48-in. beam produced a relative beam strength r,,
which was 40.7 percent lower than the correspond-
ing value of the 6-in. beam.

5. A critical beam depth as reported by Riisch,
Haugli, and Mayer® could not be observed in the
tests. Taking the lowest test values for the beams
with a/d = 3.0, the values for the relative beam
strength are given in Table 6.

Not only is there an absence of a critical beam
depth, but the percentage loss in strength in-
creases each time the depth is doubled. At that
rate, zero strength is reached in approximately
3.8 such steps. Therefore, it appears that a beam
with a/d = 3.0 and a depth of 20 ft would fail un-
der its own weight. For higher a/d ratios, this
critical maximum depth is much lower. Fig. 7(a)
demonstrates the relationship of the relative beam
strength versus beam depth, using a logarithmic
scale along the depth axis for convenience. Each
line in the diagram was obtained by joining the
test values for beams of different depths, but
having the same a/d ratios.

In Fig. 7(b) the test values of the 6-in. beams,
which had d = 5.35 in., are taken as a standard.
The results of all other beams indicate the pro-
portion of the relative strength which they have
with respect to a 6-in. beam of corresponding a/d.
The greatest loss of 41 percent was obtained for
a/d = 3.0.

Influence of beam width

For the previously described four series of
beams of varying depths (Fig. 3), the width b of
the beams was maintained at 6 in. Thus, the ratio
of a/d was different for each series. The question

ja——— PN | D
ls——— D |

.
o

bo bo bO ) bo

o) |||

b=4b,

Fig. 8—Influence of beam width

136

ACI JOURNAL / MARCH 1967



of the influence of width must therefore be con-
sidered.

Let us assume that we have four equal beams
of 6 in. width and we have decided to test them
together (see Fig. 8a and 8b). Since all four beams
undergo the same deformations, little interference
from beam to beam can be expected. Therefore,
the resulting performance of the beams should
be the same as if each beam was tested individual-
ly. If the four beams were glued or cast together
(Fig. 8c) there would be little reason to expect
the one-piece beam to behave differently from
the group of four narrower beams (Fig 8b), since
the depth, over-all width, percentage of reinforce-
ment, etc., would be the same in both test arrange-
ments. On the other hand, the four single beams,
having a free surface every 6 in,, might contribute
less lateral restraint in the inner part of the
compressive zone than the one-piece beam, thus
producing a small difference in results.

To verify the above considerations experimen-
tally, a series of four beams (a/d = 3, 4 5, and
6) was cast and tested (Fig. 9). These beams had
the same characteristics as the previously de-
seribed series (Series 3.8 - 2.80 - 12P) with one
difference, that of b = 24 in. (Fig. 10a) instead
of 6 in., thus being four times as wide as the
standard beam cross section (Fig. 10b).

100% //

90

80

Fig. 9—Test series of beams with a width of b = 24 in.

The load arrangement (Fig. 10c) used for test-
ing was the same as for the 3.8 - 2.80 - 12P series.
The results are presented in Fig. 10d, which, for
comparison, also show the relative beam strength
r, of Series 3.8 - 2.80 - 12P, b = 6 in. The details of
the test data are presented in Table 5.

The wide beam (b = 24 in.) tests produced re-
sults which were both above and below the results
of the corresponding values for the four times
narrower beams (b = 6 in.). The difference, how-
ever, never exceeded 10 percent, a scatter which
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Fig. 10—Comparison of tested beams of different width
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is to be expected even in laboratory controlled
specimens. Thus, as expected, no significant in-
fluence of the beam width b on the relative beam
strength 7, could be detected, in spite of the
increased width. It appears, therefore, that the
omission of the width b from any formulas ex-
pressing the relative beam strength of rectangular
reinforced concrete beams is justified.

DISCUSSION OF TEST RESULTS

The tests confirmed the expectation that the
influence of the absolute depth of beams is sig-
nificant. By increasing the beam depth from 6
to 48 in., a decrease in relative beam strength r,
in the order of up to 40 percent has been observed
(see Fig. Tb). This is more than the maximum
influence, over the entire range of all practically
important beams, of both, p and M/Vd = a/d of
the ACI Code Eq. (17-2) [see Eq. (1)].

Without the application of any appropriate
correction for the absolute depth of the beam,
the safety factors derived from tests on small
beams produce dangerously low values.

Fig. 4 and 5 indicate that no simple “size factor”
can be added to Eq. (1) to consider this influence.
A size factor would not only depend on the depth
d, but also on the region to which the beam be-
longs. If we consider the limited range of beams
represented by Fig. 5, the largest beams being
4 ft deep, at least four regions of unrelated size
factors appear:

1. The region to the left of the minimum point,
ie., between a/d = 1.0 and about 2.5.

2. The region between a/d = 2.5 and approxi-
mately 6.0, i.e., to the transition point of the small
beams.

3. The region between approximately a/d = 6.0
and 9.0, where the influence of size gradually dis-
appears.

4. The region beyond a/d = 9.0, where no size
correction for the 4-ft beams is necessary.

The limit a/d = 9.0 is, of course, only valid for
the 4 ft deep beams. For any other size of beam a
different number would apply, adding to the com-
plexity of such a size factor. However, if, instead
of v,, we choose as indicator of failure the rela-
tive beam strength r,, a rather simple expression
for the size factor can be developed. This, then,
is valid for all regions to the right of the minimum
point of 7, (see Fig. 5).

As previously suggested*® and expressed by
Eq. (4), the failure moment M, can be computed
from:

Mu == ru Igll (4)

where the reduction factor r, is defined by Eq. (3).
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The average or effective crack length s can be
expressed as:

S = ﬁsmcw

where s,,., denotes the theoretical length of the
longest cracks in the region of maximum moments,
equaling the distance from the reinforcement to
the neutral axis:

Swar = d —kd = d(l —_ k)

If the average compressive stress in the com-
pressive zone at failure is expressed by of/, (at
failure o is about 0.75) and the equilibrium
condition T = C is used, we obtain:

pfy, = aflk (5)
(3) then becomes: _
N Ax o a
"= 6af; Bdk(—k a4 ©®

If over-reinforced cross sections are excluded,
then k is always less than one-half. Therefore
k(1 —k) can be replaced with good approxima-

tion by %YV k/2, as can be seen from Fig. 11. For
k = 0 and k = %, both functions provide the same
value. Between these limits, the differences are
negligible. If the modulus of rupture f¢ is replaced

by 10V f/ (psi), we obtain: *

_ 10 ar e 2 (psi) (7)
3Va pd d pf,

Since the term f,’ has dropped out, this theoret-
ical approach produces the same result as our
tests,” i.e, that r, does not depend on the concrete
strength f’. The quantities o, p, and Ax, have
clearly defined physical meanings. Designating
their combination, as appearing in Eq. (7) by:

Ax 200

R=357 "4 3¢

(8)

*It is convenient and mathematically more exact if the
dimension (psi) is present in the equation; otherwise, odd
dimensions are obtained. For example, if the last factor in
Eq. (7) did not contain the unit (psi), then the expression, with
D = 0.604 and fy = 50,000 psi, would appear to have the value
1/10V (psi). In reality, this quantity is nondimensional. The
mathematically correct form has also the advantage that the
formulas are independent of the dimensions used. For instance,
if fo’ is given in cgs units as f.’ = 257 kg/cm2 = 3600 psi, then the
equation:

ft' = 10V f.’ (psi)
would still produce the right answer:
ft’ = 10V 257 kg/cm? (psi)

= 10V257 X 14(psi) (psi)
= 600 psi
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and by substituting this resistance factor R in
Eq. (7), we obtain:

T R Rl (7a)

Vi, ¢

Because the crack pattern of large beams is
not geometrically similar to that of small beams,
we cannot expect p to be independent of d, but
otherwise, according to Eq. (8), R must be a
constant since neither o nor Ax depend on d, p
or f. .

For any transition point, 7, = 100 percent = 1.0
and we obtain from Eq. (7a):

R — Vo
(a/d) TR

Since (a/d)rr is experimentally easy to deter-
mine, this is the simplest way to determine R. For
the 12 in. beam series 3.8 - 2.80 - 12P, we have:
d = 10.7 in., p = 2.80 percent and (a/d)rr = 6.5
(see Fig. 5). Thus, for f, = f = 50,000 psi,

R = \ 33.2(psi). The formula for all beams with
d = 10.7 in. is therefore:

= /332 (psh) . 2 (10)
' /‘/ pjy d

The validity of Eq. (10) can be checked against
the results of the eleven 12 in. beam series de-
scribed in Reference 2. By determining the transi-
tion points for varying amounts of main rein-
forcement, with r, = 1.0 for the transition point
(a/d)rr, Eq. (10) is used to obtain the values
shown in Table 7. The agreement between test
and calculated values is more than satisfactory.

f(k)

0.25 —

0.20 ¢ .~

0.107 4

/
,/' \
0.05+//

/ f(k)=k(1-k)

(0] t t t {
(0] 0. 0.2 0.3 o4 05

Fig. | l—Comparison of functions k(I — k) and /Y k/2
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TABLE 7—COMPARISON OF THEORETICAL AND
EXPERIMENTAL VALUES OBTAINED FOR THE
TRANSITION POINTS

Test series \3.8-2.80-12P\ 3.8-1.88-12P \3.8-0.80-12P 3.8-0.50-12P
Reinforcement
p, percent 2.80 ‘ 1.88 . 0.80 0.50
|Ea. 10)| 65 | 5.3 ' 35 2.7
7)
(_ Test
a7 72| yaues 6.5 ‘ 54 ‘ 3.0 2.5

To develop a more general formula for any
depth d, two simple means are possible: to add
to Eq. (10) an additive term or include a factor
which will account for the influence of depth.
From Fig. 5, it appears that all four lines have
about the same slope of approximately 1:9. This
would suggest a formula of the first type, ie.

re = y(d) + 1/__10%;) '%

where, for the slope 1:9, the constant ¢ is 0.035.
The disadvantage of this solution is that for re-
liable determination of the transition point T
rather accurate values of the function y(d) must
be known. Since at present only four 7, lines are
known, and these only for p = 2.80 and only for
rectangular cross sections, more experimental
data are necessary before a reliable function of
y(d) can be suggested.

The other possibility of including a factor pro-
duces a simpler expression, especially if a con-
venient basic depth, e.g., d, = 10 in., is introduced.
From Fig. 5, where the transition points can be
seen for four different depths, we obtain for
d = 10 in., by interpolation: (a/d)rz = 6.4. For
d = 10 in., the same calculation as previously used
with f, = 50 ksi produces the expression:

(10a)

0.068 . @

10b
100p d (100)

Tu =

Fig. 7 indicates that the loss of relative strength
depends not only on d but, to an extent of =75
percent, also on a/d. Since this amount hardly
justifies a more complicated formula, the follow-
ing expression is, therefore, recommended for
the determination of the reduction factor, which
considers the amount of reinforcement p, the ab-
solute depth d, and the shear arm ratio a/d:

2
Tu = 0.215 'a" (11)

Of course, 1, cannot exceed 100 percent since
this would indicate a flexural failure rather than
a diagonal failure. If a value greater than 1.0
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TABLE 8—COMPARISON OF THEORETICAL AND
EXPERIMENTAL VALUES OBTAINED FOR THE
TRANSITION POINTS FOR BEAMS OF
VARIOUS DEPTHS

Effective depth d, in. 10.0 10.7 214 4238
Eq. (11) 64 6.5 78 9.2
()
“d Test
a7 | Salves 6.4 65 8.1 8.9

were obtained, unity has to be used instead. In
Table 8, the calculated transition points, (a/d) rp,
[Eq. (11)] are compared with the values of the
four test series shown in Fig. 5:

In Fig. 12, the calculated lines of relative beam
strength, as obtained by Eq. ( 11), have been added
to the lines of Fig. 5 representing the test values.
The space between two corresponding lines has
been hatched to indicate the differences. With the
exception of one point, where the test value was
3 percent below the calculated value, the for-
mula gives conservative values for the relative
strengths. In all cases, the theoretical values are
zero to 10 percent lower than the test values. For
beams with small a/d ratios, ie., which in Fig. 12
fall to the left of their respective minimum valye
for r,, the line r, = d/a, as suggested in previous
papers, seems to be satisfactory as long as the

concrete above the supports is not overstressed.
Such a case belongs to bearing design and there-
fore is not a shear failure.

All beams of the four series were tested under
point loadings, i.e., the investigation of the be-
havior under uniformly distributed loading has
not been included in this program. The behavior
of rectangular reinforced concrete beams under
uniformly distributed load, as compared to point
loading, has been discussed in Reference 2.

CONCLUSION

On the basis of the rational theory developed
in Reference 3, increasing the beam depth must
result in considerable reduction of the relative
beam strength. The tests described in this paper
have confirmed this conclusion.

By choosing the relative strength r, rather than
the shear stress v, as the indicator of failure we
obtain the analytical Eq. (11), which produces re-
sults within =10 percent of the test values.

Eq. (11) includes the three major variables on
beam strength: p, a/d, and the absolute beam
depth d. With the reduction factor r, known, the
ultimate bending moment M, can be calculated
from Eq. (4).

Mu
h= o
u Mg
I
100% } N ”
90 k\\ /
80 T \ \\\ /+/ ]
70 | \ \f/ J d=535"
60 1 \ | d=j107"
50 + = ; d=21.4"
d ) d=42.8"
40 1+ —|p -9 XY
u-a gy / .
A f=50ksi
0 1 XA Formul .
ot e ormufa fo= 3800psi
20 e el p= 2.80%
2 7L”
10 [ —Z5F d b= 6.0 in.
e a
27 , L 4 } } ——
0 L ' ' ' ’ ' d
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Fig. 12—Comparison of calculated and test values of the relative beam strength r,
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Since 1, gives the percentage reduction in beam
strength due to a prematurely developed diagonal
crack it is an extremely useful indicator of failure.
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APPENDIX
NOTATION

b = width of cross section

t = over-all depth of beam

d = depth of cross section to level of main rein-
forcement

f¢ = concrete strength as determined on 6 x 12-in.
cylinders

As — cross-sectional area of main reinforcement
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k = ratio of depth of compressive zone to effective
depth d

p = percentage of main reinforcement in cross sec-
tion = As/bd

fy = yield strength of main reinforcement

a/d = shear arm ratio

9P, — total applied load at beam failure

M. = ultimate moment in midspan cross section at
failure

Mpu = calculated flexural moment capacity of midspan
cross section

Msu = comparative flexural moment capacity of mid-

- span cross section calculated using fy = 50 ksi
(see Reference 2)

ro = relative beam strength ru = Mu/Mn

vu = shear stress at failure vu = Pu/bd

This paper was received by the Institute Aug. 5, 1966.

Sinopsis—Résumé—Zusammenfassung

éQué seguridad Presentan Nuestras Vigas Granles
de Concreto Reforzado?

Para responder a esta pregunta se ensayaron en la
Universidad de Toronto cuatro series de vigas con
peraltes de 6, 12, 24 y 48 pulgadas y se compararon
los resultados. Se noté una influencia considerable del
peralte efectivo a tal extremo que el factor de seguridad
para las vigas mas grandes fue aproximadamente 40
por ciento menor que el de las otras vigas similares
més pequefas. Esta tendencia indico que con un aumento
adicional en el peralte se puede esperar una disminucién
correspondiente adicional en el factor de seguridad.

Quelle est la sécurité réelle des poutres en
béton armé de grandes dimensions?

Pour répondre a cette question, quatre séries de
poutres d’essai, ayant pour hauteurs 6, 12, 24 et 48 in.
(15, 30, 60 et 120 cm) ont été essayées a l'Université
de Toronto et les résultats ont été comparés. Il a été
trouvé que la valeur de la hauteur absolue avait une
grande influence, le coefficient de sécurite réel de la
poutre la plus grande étant 40% plus faible que celui
des poutres plus petites identiques par ailleurs. Ceci
laisse 3 penser qu’une plus grande augmentation de
la hauteur pourrait étre susceptible de conduire & une
diminution encore plus forte du coefficient de sécurité.

Wie sicher sind unsere grossen Stahlbetonbalken?

Um diese Frage zu beantworten, wurden an der
Universitit von Toronto vier Versuchsreihen von
Stahlbetonbalkengepriift, deren Héhe 6, 12, 24 bzw. 48
in. betrug. Die Ergebnisse dieser Untersuchungen
wurden miteinander verglichen. Ein merklicher Einfluss
der absoluten Balkenhohe wurde deutlich, und zwar zu
einem solchen Ausmass, dass der Sicherheitsfaktor fir
den grossten Balken um anndhernd 40 Prozent
niedriger als fiir die sonst gleichartigen kleineren
Balken war. Diese Tendenz zeigt, dass bei einer
weiteren Vergrosserung der Balkenhohe auch mit einem
weiteren Abfall des Sicherheitsfaktoren zu rechnen ist.
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