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INTRODUCTION

In recent years slender buildings and slender building components have become
common making it necessary to consider stability problems and the deflections
produced by lateral loads. These deflections can be relatively large when the
building has a large height-to-width ratio. As the building deflects laterally,
gravity loads acting on the building produce additional moments and forces
in the structure. When these effects are taken into account in the structural
analysis of the building, the analysis is referred to as a **second-order analysis.”
Fig. 1 shows a column acted upon by lateral load H and vertical load P. From
this figure it is seen that when the structure has deflected laterally vertical
load P will also contribute to the lateral sway of the column. When the column
or frame has reached its final deflected position, A,, the axial load produces
a sway moment commonly referred to as the ‘‘PA moment."’

This paper examines procedures for carrying out second-order analyses, the
use of second-order analyses in the design of concrete structures, and presents
a procedure for the design of columns once such an analysis has been carried
out.

Seconp-Oroer ANatysis of ELasTic FRaMES

A rigorous stability analysis of reinforced concrete frames is a rather compli-
cated matter due to the nonlinear load-deformation relationships of concrete
members and the variable reinforcement ratios. For this reason, elastic frames
will be considered first to develop basic relationships.

In practical frames designed to satisfy practical A/h ratios, the effect of
axial loads on the member stiffness is very small and can be neglected (10,21).
The error due to neglecting this effect seldom, if ever, exceeds 8% in tall
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frames and is less than 1% for more than 90% of all building columns. In
the rest of this paper, therefore, only the PA component of the second-order
effects will be considered.

Effective Length Factor Method.—Traditionally the effect of frame action has
been accounted for in column design by means of effective length factors.
These are calculated using elastically derived equations or nomograms based
on highly idealized and quite impractical cases (11). The effective length procedure
has serious shortcomings in sway frames or partially braced frames where the
columns have widely varying effective length factors.

Az

FIG. 1.—Forces on Deflected Column

Some of the problems implicit in the use of this method are illustrated by
the frame shown in Fig. 2(a). The first-order moments and elastically computed
second-order moments in the columns are shown in Fig. 2(b). The shaded area
shows the design moment envelopes calculated using the American Concrete
Institute (ACI) moment magnifier procedure (4,14) using the rotational stiffnesses,
EI, used in the second-order analysis and the effective length factors for sway
frames from the Jackson and Moreland nomographs (11). It is obvious that
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there is very little relationship between the actual second-order moments and
those estimated using the effective length technique. This is largely due to
the effect of the beam moments on the first-order moments and if the magnification
were restricted to that portion of the moments resulting from lateral loads,
the agreement would be better. Problems also arise in the need to distinguish
between ‘‘braced’” and ‘‘sway’’ frames.

This and other evidence suggests that the traditional effective length factor
solution is inadequate for the design of columns in frames.

Approximate Solution for Critical Load of Tall Plane Frames.—Although exact
analyses of the critical or bifurication loads of frames exist, they are generally
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FIG. 2.—Comparison of Moments in Frame by Two Methods of Analysis

not suited for design office use. For this reason a number of authors have
proposed simplified approximate calculations of the critical loads of tall frames.
Based on simple second-order analyses Rosenblueth (17), Goldberg (9). and
Stevens (20) have shown that the critical load of the ith story in a sway frame
is approximately equal to
Klihi Hi hl'
P, =——=—7"—
Y YAy
in which v is a factor accounting for the deflected shape of the columns and
varies from 1.0 for stiff columns and flexible beams to 1.22 for flexible columns
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and stiff beams. In general,  approaches 1.0 in the lower story of a tall building
and will be taken equal to 1.0 in this paper.

Eq. 1 shows the strong relationship between critical load £P_ and lateral
stiffness K, or the first-order deflection index, A,/h, for a given lateral load,
H.

If the first-order deflections of a building are known from a structural analysis.
Eqg. 1 can be used to estimate the total load in all the columns in a story
at instability. This can be done story by story until the lowest critical load
s known.

A similar equation can be derived to estimate the torsional critical load of
a story:

Note that both the magnitude of vertical load =P and its spacial distribution,
r?, must be known before the torsional critical load. £(P_,r?), can be estimated.

Review of Procedures for Second-Order Analyses.—In a second-order analysis
the equilibrium equations are formulated for the deformed frame. Five separate
procedures for computing second-order moments and deflections are presented
in the following sections.

Moment Magnifier Solution for Second-Order Effects.—The method of analysis
described in this section is approximate and is primarily of use in preliminary
design. The basic assumption in this method of analysis is that the shapes
of the first and second-order deflections are similar. Bending moment M at
the base of the column shown by the dashed lines in Fig. 1 is

M=HR+SPA, . ... 3)

If the critical load for this column is P_ and Q' = ZP/P_, then:

!
A= ——— A . . 4
i <1—Q’> ‘ @

1
and M, = Hh+ ZPA, (]——Q—;_) ...................... 5

As shown earlier the critical load of a story or a column can be approximated
using Eq. 1. Thus, second-order moment M, can be approximated by Eq. 6.
in which Q' has been replaced by Q = ZPA,/Hh:

M, = Hh + Hh < = Hh :
, = Hh <1-—Q>- (1~Q> ................... (6)

Thus, for a given lateral loading pattern leading to first-order frame moments,
total second-order moment M, at any point in the frame is approximately

M,=M,3

in which &= = ®)
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A number of authors have shown that the same moment magnifier can be
applied to all sections of the story including beams, columns, and walls provided
the moments result only from lateral loads (9,13,14,18). Since the gravity load
moments must satisfy statics in any given span, they are not magnified.

Note that the lateral stiffness must correspond to the failure state being
considered including any significant inelastic action or foundation deformation
that develops before failure.

P-A Method

Iterative P-A Analyses.—For tall buildings designed for normal deflection
limitations. an acceptable estimate of the second-order shears, moments, and
forces in an elastic structure can be obtained by an iterative calculation including
the ‘*sway forces™' induced by the P-A moments (19.21,22). The computation
of sway forces for the combined loading case is relatively simple. The lateral
and vertical loads are applied to the structure and the relative first-order lateral
displacements, A, in each story are computed. The additional story shears
due to the vertical loads are computed as shown in Fig. 3. At a given floor
level. the sway force will be the algebraic sum of the story shears from the
columns above and below the floor as shown in Fig. 3. The sway forces are
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{a) Subassemblage (b) Forces on Column

FIG. 3.—Calculation of Sway Forces FIG. 4.—Sway Subassemblage

added to the applied lateral loads and the total forces and moments in the
structure can be computed. Generally, one or two cycles of iteration are adequate
for elastic structures of reasonable stiffness.

Note that all analyses which use sway forces to approximate the PA effect
lead to slightly incorrect column shears.

Direct P-A Analyses.—Although the iterative P-A analysis just described has
the advantage of being easily understood, several cycles of iteration may be
required for convergence in very slender structures. It is possible, however,
to derive an equation for the final second-order deflections. Let H and A,
represent the applied lateral load and the corresponding first-order deflection,
respectively. Also, let the axial load be TP, the deflection caused by a unit
lateral load be F,, and let H,(i = 1, 2, 3, ..., <) be the sum of the applied
and additional sway force in the ith cycle. Then, for first-order analysis:

A = FoH oo ©

for the first cycle of iteration:
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IPF,
A..,=FH, ,=FH{(1+ ) (10)
and for the ith cycle of iteration:

o=+ (5)+ (5 - (5]

This is a geometric series that converges if SPF,/h < 1.0, in which case the
sum of the infinite series is

FH

Hh

This equation combines Egs. 1 and 4 or 8 and is identical to equations previously
derived by Fey (6), Parme (16), and Goldberg (9).

Limitations on the Use of P-A Analysis.—The accuracy of the iterative P-A
procedure and Eq. 13 were studied by Hage (10) for 690 mathematically generated
reinforced concrete column-beam subassemblages similar to Fig. 4. This subas-
semblage represents a portion of a sway frame. The columns studied included
geometric slenderness ratios L/t from 5 to 40, end restraints ranging from
fully fixed to values representative of the lower floors of an unbraced flat
plate building, and tied and spiral cross sections. The subassemblage response
was obtained by numerical integration of moment-curvature diagrams for the
cross sections considered (S).

The response of two such subassemblages are compared in Fig. 5(a) and
5(b). In each case the axial load was held constant at 0.4 times the pure axial
load capacity, P_, of the column cross section while the end rotation of the
top of the column was increased. From the geometry and the moment curvature
relationships it was possible to calculate the corresponding lateral load, H.
Both columns were restrained by a beam having a stiffness representative of
a T-beam in a sway frame. The sloping line in each figure represents ultimate
moment capacity M, of the column cross section at P, = 0.4 P, minus the
PA moment for any given lateral deflection. The curved line in each figure
is the lateral load-deflection curve for the column. The column with L/t =
15 [Fig. 5(a)] failed when the moments at point A in the subassemblage in
Fig. 4 reached the capacity of the cross section. This is called a ‘‘material
failure.”” The longer column [L/t = 30, Fig. 6(b)] developed a ‘‘stability failure”’
prior to failure of the cross section. The sway deflection index, A/L, at which
the column became unstable was 0.012 or 1/80 of the story height.

If the EI used to calculate the deflections corresponded to the failure of
the column considered [i.e., corresponded to point A in Fig. S(a)], the iterative
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PA procedure and Eq. 13 were found to give accurate results provided the
columns developed material failures.

In Hage’s study, all the stability failures in frames similar to Fig. 4 developed
at sway deflections greater than A/L = 1/300 at working loads or A/L =
1/200 at ultimate as shown in Figs. 6 and 7. A more severe case would exist
if a cast-in-place frame braced a pin-jointed precast or steel frame as shown
in the inset in Fig. 8. Even for this severe case, there were no stability failures
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FIG. 5.—Moments at Point A in Subassemblage of Fig. 8

T T T T T T T
c
40| O |wwwmism oee o o we R
o
e
= SHE - - + .
B4
e =
30 + [weemmen vu o . . .
£
-L— - §‘mw -
2
f 20.-“§ B L .
- ‘>: -+ - —
1018 . .
- o =
z
o 1 ! 1 1 L 1 1
0 _é_ 0.010 0020 0030 0.040
3
A/l

FIG. 6.—Deflection Indices at Minimum Service Load Versus L/t for Stability Failures

detected at A/L values less than 0.00225 or 1/450 at ultimate as shown in
Fig. 8.

Thus, it may be concluded that the P-A method and Eq. 13 can be used
to analyze stability effects in continuous frames designed for sway deflections
of 1 in 300 or less at working loads, or for reinforced concrete frames bracing
pin-jointed structures with sway deformations limited to 1 in 500 at ultimate.
As shown by Fintel (9) most concrete buildings are considerably stiffer than
this. Other limits on sway deflections may be required for serviceability reasons.
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FIG. 8.—Deflection Indices at Ultimate for Leaned Frame

If the iteration process is considered to have converged when the deflection
in the ith cycle is within 5% of the final deflection (i defined in conjunction
with Egs. 10 and 11), Eq. 13 can be rearranged (10) to give the number of
iterations, i, required:

) -1.30
i+1= —_;PT—- ............................. (14)
log (——ﬁ—)
Alternatively, the check of the iteration process may also be based on the
convergence of the moments. For convergence of moments within 5%, Egs.

3. 11, and 13 can be used to show that convergence will occur in i cycles
if
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PA i~1 c

E——— = 0.0475 . . . e e e e e e e e e e e e e (15
Hh

in which i = 0 corresponds to a first-order analysis. Using Egs. 11, 13, and

14 it can be shown that for a convergence limit of 0.05, the deflection will
be within 5% of the second-order deflection if convergence is obtained in less
than six iterations.

Negative Bracing Member Method.—Nixon, et al. (15) have shown that a
direct solution of the second-order deflections and moments can be obtained
using a standard first-order structural analysis program by inserting a fictitious
diagonal brace of negative area in each story as shown by the dashed lines

Hy—> ———om 8
Hy— e — =82
H,—» P —= L—’A‘ ‘

FIG. 9.—Frame with Negative Bracing FIG. 10.—Deflected Column

Members

in Fig. 9. The area of this brace can be obtained from an examination of the
stiffness matrix for the column shown in Fig. 10. From statics

- M,+M, P@A,-A)
o L L

Substituting the slope deflection equations for M, and M, into Eq. 16 and
writing the equations in matrix form gives:

_ 4EI  2EI 6EI 6EI | _
w [ e .
! L L L? L?
2EI  4EI 6EI 6EI
W T T T ™ |
-t L an
6EI  6EI 12EI P 12EI P
F - - - - +— 1|l 4,
! L? L? L} L L? L
6EI 12EI P 12EI P
L. F 6EI - + - - L A b =
- L? L? L* L L* L
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This is a second-order stiffness matrix because equilibrium is based on the
deflected shape.

If a first-order program is used to analyze the frame shown in solid lines
in Fig. 9, the stiffness matrix for a column would contain all the terms in
Eq. 17 except the four involving P/ L. If the structure contained bracing members
of length L, as shown by the dashed lines in Fig. 9, the program would generate
a stiffness matrix corresponding to the degrees-of-freedom shown in Fig. 10,

i.e.
—cos®p ][An] ................ (18)
cos’B a,

l:Fl ] AE [ cos?B
F, L, [[—cos?B
and add these terms to the overall stiffness matrix in the same position that
the P/L terms would occupy in the second-order matrix. The required area

of fictitious bracing member for a given story is obtained by equating (AE/L
cos?B)and (—P/L):

P L

in which P = the sum of the axial loads in the columns in the story.

The area found by Eq. 19 is generally very small and is negative. Although
bracing members normally stiffen the structure, the artificial bracing members
make the structure more flexible. The increased flexibility is due to the PA
effect.

This analysis gives a direct calculation of the deflections and moments. Axial
loads and shears in the columns are slightly in error, however. because of
the horizontal and vertical components of the force in the bracing members,
but can be easily corrected using statics. The effect of the vertical component
can be reduced using long bracing members, as shown by the dashed lines
in Fig. 9, since the horizontal component, i.e., the ZPA/L term, is constant
for a given story.

Second-Order Finite Element Analysis.—Aas-Jakobsen (1) has proposed a finite
element approach to solve for second-order effects under linear-elastic conditions.
The stiffness matrix [ K] is assumed to be the sum of two stiffness matrices
[K,] and [K,]. in which [K,] is the first-order stiffness matrix and [K,]
is obtained through an iteration procedure. When unit displacements are applied
to the member the gxial load required to maintain equilibrium is unknown and
can only be obtained by trial and error. Aas-Jakobsen suggests that the axial
load be set equal to zero in the first cycle.

The first-order axial forces obtained in the first cycle are used in the second
cycle. The process is repeated until the axial load found in one cycle is close
to the value computed in the previous cycle. Since second-order effects will
not change the axial loads in the columns significantly the process will usually
converge rapidly so that two cycles are generally sufficient.

Procedures for Second-Order Analysis—Summary.—Five alternative proce-
dures for carrying out second-order analysis have been presented in the preceding
sections. The first is proposed primarily for preliminary design. The iterative
and direct PA methods and the Negative Bracing Method seem well suited
for office use in conjunction with standard computer analyses. The fifth method
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is promising but is not included in most computer programs available for design
office use. Its inclusion in such programs requires a relatively simple program
change.

DesiGN oF Reinrorcep Concrete BuiLbings ConsiDERING STaBILITY

Stability Index.—The term Q = ZPA /Hh will be referred to as the ‘‘stability
index.” This term, which appears frequently in the first part of this paper,
is a relatively good estimate of the ratio SP/XP_ for either a single story
or in many cases for the entire building depending on the definition of the
terms. This assumes that Eq. 1 can be used to estimate P_. In general, this
equation is a good estimate of the critical load of a story and, if the vertical
load per story, the lateral load per story, and sway angle A/h are relatively
constant over the height of the building, Q is a good measure of £P/ZP
for the entire building. If these things are not true, Q can be used story by
story to estimate the critical loads of each story. A ‘‘torsional stability index,”’
Q= Z(Prz)el/Tlh can also be expressed, based on Eq. 2.

Tests of Need for Second-Order Analyses.—Since a second-order analysis
requires additional analysis time and expenditures, it is desirable to have some
means of determining in advance whether such an analysis is required. Alterna-
tively, it may be desirable to control the stiffness of a building such that the
second-order effects are not too significant in the overall response of the building.

Eq. 15 can be used to derive tests of whether second-order effects can be
ignored. If it is assumed that first-order moments will be sufficiently accurate
for design if they are within 5% of the second-order moments, Eq. 15 shows
that a second-order analysis can be ignored if Q = 0.0475. If Q is between
0.0475 and 0.22 sufficiently accurate moments will be obtained if the second-order
moments are calculated directly from the first-order deflections.

Based on analyses of hinged frames braced by a shear wall acting as a vertical
cantilever, Beck and Konig (3) have defined a similar stability parameter «:

P

a=h e e e e e e e e e e e e e e e 20)
EI,

in which P and h refer to the total load and the total building height.

If « = 0.6, Beck and Konig suggest that a first-order analysis is sufficient
and if a > 0.9 a second-order analysis is necessary. These limits can be shown
to correspond to Q equal to about 0.0476 and 0.1, respectively.

Dicke (private communication) has shown that if foundation rotations occur,
the critical load tends to decrease making the stability test based on Eq. 20
unconservative. If foundation deformations have been considered in the
computation of the first-order deflections, A, however, the stability checks
based on Q (e.g., Eq. 15) do not need any further correction.

It is also important to set an upper limit on Q to ensure adequate safety
and stiffness. Dicke has shown that for large values of Q' = ZP/P_, the
factor 1/(1 — Q) is strongly affected by errors in calculating P, and Q'.
Such errors could result from using the wrong flexural rigidities, EI, or from
a mistake in determining the rotational rigidity of the foundation. Based on
assumed statistical distributions of loads and EI values, Dicke has shown that
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for Q' < 0.1 the probability of failure of a structure designed using a second—qrder
analysis is relatively constant while for Q' > 0.2 the probability of 'faflure
increases rapidly. For this reason he recommends an absolute upper limit of
0.2 for Q' which is equivalent to limiting £P/P,, for a story or frame to 0.2
or less. A similar limit should be imposed on Q.

To summarize, limitations based on stability index Q have been proposed
for determining whether second-order analyses are required. Second-order effects
can be ignored in design if Q < 0.0475 for instability about all three axes
of the building. For Q between 0.0475 and 0.22 the error in second-order moments
will be less than 5% if moments of PA moments are based on first-order deflections
A,. The value of Q should not be taken greater than about 0.2. }_:or copcrete
building frames Q will generally be less than 0.0475 if the sway index is less
than 1/500 at ultimate. .

This concept can be taken a step further. If a braced frame is defined as
a4 frame in which the PA moments are so small they can be neglected. the
factor Q can be used to define when a frame is braced or free to sway. Based

on the assumption that a magnification of less than 5% is negligible (14). a .

braced frame can be defined as one for which Q < 0.0475. ‘

Design Oriented Second-Order Analyses.—In each of the following analyses
the limitations on A/h and Q presented in preceding sections must be observed.
Thus, A/h must not exceed 1/200 at ultimate and 1/300 at service in fully
continuous frames, and 1 /500 at ultimate in frames bracing pin-jointed structures.
Generally, this is not a serious problem since it is often necessary to limit
A/h to 1/500 or so for serviceability reasons. In addition, Q must not exceed
0.2 as mentioned earlier.

P-A Analyses.—The basic iterative P-A procedure described in the first part
of this paper will always give a good estimate of the second-order moments
if the columns develop material failures rather than stability failures. »

Alternatively, Eq. 13 can be used to compute the second-order deflecnqns
from the first-order deflections. A second-order analysis suitable for design
would include: (1) A first-order analysis to determine A, in each story; (2)
computation of the second-order deflection in each story using Eq. 13; .(3)
evaluation of the sway forces as outlined previously but using story deflection
A,—note that the sway forces may be positive or negative; and (4) another
first-order frame analysis for the frame subjected to the applied vertical and
lateral loads plus the sway forces from step 3, gives the second-order moments
and forces.

Moment Magnifier Method.—For columns in sway frames the ACI Code (4)
requires the use of the moment magnifier given by Eq. 21 to magnify the moments
in a given story:

inwhich P, = w? EI/(KL)% In Eq. 21 the critical load of the story is approximated
by TP, based on the free to sway effective lengths of each column in the
story (2,14). A much simpler and equally accurate procedure results from taking
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IP/ZP_= Q as given in Eq. 8 (10). A second-order analysis suitable for design
would include:

1. A first-order analysis for lateral loads to determine A, in each story. This
can be carried out at service load levels as part of the serviceability check.
If the analysis is carried out at the service load level the first-order ultimate
wind moments will be X\ M, , in which A is the wind load factor and M,
is the first-order service load wind moment.

2. Compute Q = XP,A,/H h for each story, in which A, and H, are both
for the same load level, either service or ultimate; and ZP, is the sum of
the ultimate loads in the story.

3. The second-order moments at ultimate due to lateral ioads can be computed
as 3\ M, _, in which

8=1.0 when Q=00475 ... ... ... ... .. ... ... .. (22a)
1

4. The moments from step 3 must be added to those from a vertical load
analysis at the appropriate load factors.

Amplified Lateral Load Analysis.—An even simpler method of analysis
involves using Eq. 8 to amplify the lateral loads prior to carrying out the first-order
frame analysis. If this is done, the resulting moments will approximate the
second-order moments. The lateral loads to be used in analysis are taken as
1/(1 = Q,) times the actual lateral loads, in which Q, = (ZP,/H )A /h).
At this stage, Q, is based on assumed drift A /h. If the resulting value of
A,/ h exceeds the assumed value the structural framing should be adjusted to
reduce A /h to the desired value. The accuracy of this method of analysis
decreases if there are large differences in the lateral stiffness of various stories.

In this procedure the moments and deflections are being calculated at the
ultimate limit state. For serviceability reasons it is necessary to know the
second-order deflections at service loads. Studies of the effective flexural stiffness
values for partially cracked beams and columns and studies of a number of
typical frames suggest that the EI at service loads is roughly 1.7 times that
at ultimate loads (10), assuming the ACI value of E and the gross moment
of inertia are applicable at service loads. For the wind loading case, the ACI
load factors are 1.05 dead + 1.28 live + 1.28 wind. Thus, the first-order deflection
at ultimate is 1.28 x 1.7 = 2.2 times the first-order service load deflection.
However, the deflection causing uncomfort or damage is the total or second-order
deflection at service loads. From Eq. 13 the relationship between service load
and ultimate load deflections can be estimated:

AIS
4, _ h 23)
h A
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A lu

a,, h
and —=—"—
PuAlu

1
H,h

in which subscripts s and u refer to service and ultimate loads, respectively.
If we let (A,,/h) = C(4,,/h). H, = 1.28 H, and P, = (1.05-1.28) P then
from Egs. 23 and 24 we get:
1 1-
C=— Q) (25)
2.2 Q.

(1.05t01.28) x 1.7
If Q, is not allowed to exceed 0.2, C = 0.40 to 0.41 and thus the deflections
at service loads should be at least 40% of those at ultimate.

A design procedure based on the amplified lateral load analysis procedure
would entail:

1. Establish the maximum allowable A /h in a story at service loads for
serviceability and to limit nonstructural damage. In a multistory building it may
be assumed that the A /h for the entire building will be 85% or less of the
maximum story sway.

2. Compute the overall A /h at ultimate as 0.85/0.40 = 2.125 times the
maximum story sway at service loads. This should not exceed the limits given
earlier.

3. Compute Q, = (EP,/H XA, /h) and compute the amplified lateral load,
H,, = H,/(-Q,:Q, should not exceed 0.2.

4. Analyze the frame using amplified lateral load H,, and the factored vertical
loads.

5. If the resulting overall A /h exceeds that computed in step 2 or if the
A, /hin any story exceeds 1/0.85 times the computed value the structure should
be stiffened to reduce A/h.

Flexural Stiffnesses for Use in Second-Order Analyses.—The major problem
in any stability or second-order analysis of concrete structures is the choice
of a suitable mathematical model of flexural stiffness EI under various loading
conditions. Ideally the EI value should reflect the amount of reinforcement,
the extent of cracking, axial loads, creep, and the inelastic behavior of the
steel and concrete. Furthermore, the EI values should reflect the variation of
stiffness along the entire length of each member taking into account cracked
and uncracked regions and should not merely represent the most highly loaded
section. Clearly, however, when dealing with a 20-story building with more
than 1,500 members and more than 4,000 critical sections it is not economically
feasible for designers to go into this detail and simplified methods must be
used to compute EI.

If elastic second-order analyses are to be used in the design of columns
in a building it is important that the deflections be representative of those at
the factored design loads. Thus the EI values required for such an analysis
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should be those at the stage immediately prior to the onset of yielding at the
critical sections in the members.

Kordina (12) and Hage (10) have studied the variation of stiffness for various
types of frame members subjected to gravity Joad moments. wind load moments,
and combinations of the two. Based on these studies, a reasonable estimate
of EI for second-order analyses would be based on the ACI value of E and
1=0.41 forbeams and 0.8 I for columns. (These correspond to the assumptions
made in deriving Eq. 25.)

Tests and analyses of multistory steel buildings reported by Baker (2) showed
that sway tended to reduce the dead-load column moments by an average of
2% and up to 6%. Because of this and because lateral deflections due to dead
loads are generally small compared to the instantaneous deflections due to wind
or earthquake loads. E can be taken as the short time modulus of elasticity
of concrete. In the rare case where sustained lateral loads exist (buildings providing
reactions for arch roofs, etc.), or if the creep deflections of one side of a
building exceed those on the other side due to poor design (gravity drift). it

H+

PA  IM
R Th

(b) Sway Permitted

(a) Sway Prevented
FIG. 11.—Forces in Deflected Columns

FIG. 12.—Limits on Columns with Maxi-
mum Moment at End of Column

will be necessary to include the creep deflections in the second-order analysis.

Column Design Following Second-Order Analysis.—Fig. 11 shows columns with
and without lateral displacements of the ends. If translation is prevented, the
deflected shape is as shown in Fig. 11(a). Moments M, and M, are the applied
end moments while M, and M , are restraining moments caused by the rotations
of the end restraints as the column deflects. Horizontal forces H are present
if the end moments are unequal. At midheight there are secondary moments
equal to the axial load times the deflections shown shaded. To account for
restraining moments M, and M, in the design of this ‘‘braced” column an
effective length less than the real length is used to compute the lateral deflections.

If, however, the column is free to sway laterally as shown in Fig. 11(b),
moments M, and M, must equilibriate not only any horizontal load, H, but
also a moment PA. The secondary moments in this column can be divided
into two components, one due to the additional horizontal reaction or sway
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force, PA/h, necessary to resist the axial force in the deformed position gnd
the second equal to the axial load times the deflections from the chord hpe,
shown shaded. Traditionally these have been accounted for in design by using
the elastic effective length factors for the unbraced case in designing the co]urpn.

On the other hand, if a second-order structural analysis is carried out including
the effects of both the applied loads and the sway forces, the latter hav§ begn
accounted for in the analysis and need not be considered a second time in
evaluating the effective length. Since the maximum moment theoretically may
occur away from the ends of the column it may be necessary 10 use a moment
magnifier calculation to estimate this moment.

It is desirable to have a means of determining whether a given column can
be designed for the maximum end moment or whether the moments between
the ends of the column will exceed those at the ends. Galambos (8) has shown
that the maximum moment in an elastic beam column loaded with an axial
load and end moments M, and M, is

Mmax = Mﬂ8

inwhich &= -
sin a

If it is assumed that stability effects can be disregarded if M is not more
than 1.05 M, i.e., d = 1.05, as done in the ACI Code (14), Eq. 27 can be
solved to deatermine the combinations of M,/M_, and « corresponding to &
= 1.05. These are plotted with the solid line for 8 = 1.05in Fig. 12. Combinations
of M,/M_ and «? falling below this line can be designed for the second-order
end moments without a further stability calculation. This line and the corre-
sponding line for & = 1.0 can be approximated by the equations shown in
Fig. 12. Thus, if

y—’l< 1.1-P"L-) ............................. (28)
M 3EI

a

the maximum moment will always be less than 1.05 times that at the end of
the column.

If Eq. 28 shows that the maximum column moment occurs away from the
end of the column, column design should be based on amplified moments based
on the ACI moment magnifier with C, taken for the braced frame case using
the ratio of end moments obtained from the second-order analysis and with

= 1.0. This can be demonstrated by setting the moment nagnifier from Eq.
29 equal to the ACI moment magnifier and solving for k.

CONCLUSIONS

This paper reviews the current state-of-the-art of second-order analysis of
reinforced concrete frames and presents a series of design-oriented procedures
for carrying out such analyses.

A stability index, Q = ZPA,/Hh, is presented for determining whether
second-order analyses are required. It is concluded that if Q < 0.0475, second-
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order effects can be ignored and the structure can be designed as a braced
frame. For Q between 0.0475 and 0.2, second-order analyses are recommended.
Frames having Q > 0.2 are not recommended. The value of Q should be computed
at the ultimate load level using stiffnesses representative of this load level.

If a second-order analysis has been carried out, the column design should
be based on the second-order end moments. Eq. 28 can be used to check whether
the maximum moment occurs at the end of the column. If it occurs between
the ends of the column, the maximum moment can be computed using the
ACI moment magnifier procedure with C,_ based on the ratio of end moments
from the second-order analysis and with the effective length, k = 1.0.
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