SHEAR FLOW ZONE IN TORSION
OF REINFORCED CONCRETE

By Thomas T. C. Hsu,' Fellow, ASCE

ABSTRACT: Rausch’s classical formula overestimates the torsional strength of
reinforced concrete members to an unacceptable degree. The error is traced to the
incorrect determination of the centerline of the circulating shear flow. The position
of the centerline of shear flow is directly related to the thickness of the shear flow
zone (t;). The determination of ¢, in torsion is analogous to the determination of
the depth of the compression zone in bending. This paper presents a simple the-
oretical method to calculate 1, based on the softened truss model theory. The method
utilizes the equilibrium and compatibility conditions. as well as a softened stress-
strain relationship for concrete struts. Since ¢, is calculated by a rigorous proce-
dure, an accurate torsional strength can be predicted. The prediction of the tor-
sional strengths of 61 beams found in the literature compares extremely well with
the test values. In addition, a very simple formula for ¢, is also proposed for the
practical design of members subjected to torsion.

INTRODUCTION

The basic formula for calculating the torsional strength of reinforced con-
crete members was developed by Rausch (1929) using the space truss con-
cept. Unfortunately, Rausch’s equation may be unconservative by more than
30% for under-reinforced beams (Hsu 1968a, 1968b). The error is traced to
the incorrect determination of the centerline of the circulating shear flow,
resulting in the overestimation of the lever arm area A,. The correct deter-
mination of the centerline of shear flow depends on a logical way to find
the thickness of the shear flow zone, ¢,.

Since the late 1960s. the truss model theory for shear and torsion has
undergone four major developments. First, the introduction of the variable-
angle truss model and the discovery of the bending phenomenon in the di-
agonal concrete struts were made by Lampert and Thurlimann (1968, 1969).
Second, compatibility equation was derived by Collins (1973) to determine
the angle of the diagonal concrete struts. Third, the softening phenomenon
in the concrete struts was discovered by Robinson and Demorieux (1972),
and this behavior was quantified by Vecchio and Collins (1981), using a
softening coefficient. Fourth, combining the equilibrium, compatibility and
softened stress-strain relationships, a softened truss model theory was de-
veloped (Hsu 1988), which was able to analyze the shear and torsional be-
havior of reinforced concrete members throughout the post-cracking loading
history. .

Using the softened truss model theory, the thickness of the shear flow
zone t, can expeditiously be calculated for the torsional strength of reinforced
concrete members. This method is presented in this study. In addition, a
simple expression for ¢, is proposed for practical design.
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ANALOGY BETWEEN TORSION AND BENDING

A prismatic member of arbitrary cross section subjected to torsion is shown
in Fig. 1(a). The circulating shear stresses are restricted to an outer ring area
with a thickness of ¢, Within this thickness a shear flow g acts along a
certain centerline, s. Taking equilibrium about the center of twist O, the
external torque T is resisted by the internal moment:

where a = the lever arm of shear flow ¢ measured from the center of twist,
O. The product ads is represented graphically by twice the shaded triangular
area shown. Therefore, $ads is twice the area within the centerline of shear
flow, and will be denoted as 24,. A, will be called the lever arm area and
is proportional to the square of the level arm a. Substituting 24, into Eq. 1
gives

Eq. 2 is Bredt’s thin-tube theory (1896), but it should also be applical?le to
a thick tube, if the position of the centerline of shear flow can be determined.

In a reinforced concrete member, after cracking, as shown in Fig. 2(a),
an element isolated from the tube defined by the shear flow zone with a
thickness t,, Fig. 2(c), can be represented by a truss model in Fig. 2(<d).
The element has a vertical length as well as a horizontal length of unity.
The diagonal lines representing the cracks are inclined at an aAngl'g a. Taking
equilibrium of forces on the horizontal face and assuming yielding of steel
gives:
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FIG. 2. Reinforced Concrete Members Subjected to Torsion

Inserting g from Eq. 3 into Eq. 2:

A, fn cota

T, (2AG) oot (4)

N

Eq. 4 is the fundamental equation for torsion in the variable-angle truss model.
It reduces to the well-known Rausch’s equation (1929) when « is taken as
45°. When equilibrium of forces is taken on the vertical face of the truss
model element in Fig. 2(d), q and T, can be expressed in terms of the lon-
gitudinal steel, i.e., ¢ = (A,fy/py) tan ¢ and T, = [(A,f./Po) tan a](2A).

The analysis of torsion shown is analogous to the analysis of bending in
a prismatic members shown in Fig. 1(b). Taking the moment about the cen-
troid of the tension steel, the external moment, M, is resisted by the internal
moment

M= f(ob)adc = C(jd) ... ..o (5)

where C = the resultant of stresses o in the compression zone and jd = the
lever arm of the resultant. Comparing Eq. 5 to Eq. 2, the term of twice the
lever arm area 24, in Eq. 2 is equivalent to the resultant lever arm jd in Eg.
5, and the shear flow g is similar to the resultant of compressive stresses C.

After cracking of the flexural member, the truss model concept in bending

is reduced to the so-called internal couple concept. Assuming the yielding
of steel gives

C = A oyt ot s 6)
Substituting C from Eq. 6 into Eq. 5:
M, = A f(Jd) o @)

Eq.. 7 shows that the bending moment capacity, M,, is equal to the longi-
tudinal steel force, A, f,,, times the resultant lever arm, jd. Similarly, in Eq.
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4 the torsional moment capacity, 7,, is equal to a certain stirrup force per
unit length, (A,f,/s) cot «, times twice the lever arm area, 2A,.

In bending, an increase of the nominal bending strength M, due to in-
creasing reinforcement results in an increase of the depth of the compression
zone ¢, and a reduction of the resultant lever arm jd. The relationships among
M,, ¢ and jd can be derived from the stress and strain diagrams. Similarly,
in torsion, an increase of the nominal torsional strength 7, due to increasing
reinforcement results in an increase of the thickness of shear flow zone 1,
and a reduction of the lever arm area A,. The relationships among 7,, ¢, and
A, can also be derived from the stress and strain diagrams. The understand-
ing of these relationships is a purpose of this study. The crucial problem in
torsion of reinforced concrete is to find the thickness of the shear flow zone

t;, which is analogous to finding the depth of the compression zone ¢ in
bending.

Various DEeFINITIONS OF LEVER ARM AREA A,

When Rausch derived Eq. 4 (with a = 45°) in 1929, a reinforced concrete
member after cracking was idealized as a space truss. The longitudinal and
hoop bars are assumed to take tension and the diagonal concrete struts are
in compression. Each diagonal concrete strut is idealized as a straight line
lying in the center surface of the hoop bars. Hence, the lever arm area, Ay,
is defined by the area within the center surface of the hoop bars. This area
is commonly denoted as A,. It has been adopted since 1958 by the German
Code, and others. Using the bending analogy, this definition is equivalent
to assuming that the resultant lever arm, jd, is defined as the distance be-
tween the centroid of the tension bars and the centerline of the stirrups in
the compression zone. In terms of torsional strength this assumption is ac-
ceptable near the lower limit of the total steel percentage of about 1%, but
becomes increasingly unconservative with an increasing amount of steel (Fig.
3). For a large steel percentage of 2.5-3% near the upper limit of under
reinforcement (both the longitudinal steel and stirrups reach yielding). the
over prediction of torsional strength by Rausch’s equation using A, exceeds
30%. This large error is caused by two conditions. First, the thickness of
the shear flow zone t, may be very large, in the order of 1/4 of the outer
cross-sectional dimension, due to the softening of concrete (to be explained
in the next section). Second, in contrast to the bending strength M,, which
is linearly proportional to the resultant lever arm jd, the torsional strength
T, is proportional to the lever arm area A,, which, in turn, is proportional
to the square of the lever arm, a, [Fig. 1(a)].

In order to reduce the unconservatism of using A, in Rausch’s equation,
Lampert and Thurlimann (1969) have proposed that A, be defined as the
area within the polygon connecting the centers of the corner longitudinal
bars. This area is commonly denoted as A, and has been adopted by the
CEB-FIP Code (“Model Code” 1978). In terms of the bending analogy, this
definition is equivalent to assuming that the resultant lever arm, jd, is de-
fined as the distance between the centroid of the tension bars and the centroid
of the longitudinal compression bars. The introduction of A, has reduced the
unconservatism of Rausch’s equation for high steel percentages. However,
the assumption of a constant lever arm area (not a function of the thickness
of shear flow zone) remains unsatisfactory.
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FIG. 3. Comparison of "Rausch’s Formula and ACI Code Formula with Tests (1
in. = 25.4 mm; 1 in.-kip = 113 N-m)

Another way of modifying Rausch’s equation has been suggested by the
writer (Hsu 1968a, 1968b) and adopted by the ACI Building Code (“Build-
ing Code” 1971).

Afo
T,=T.+ '—f" (QUAL) -« e v et e (8)
s

where o, = 0.66 + 0.33 y,/x, = 1.5; x, = shorter center-to-center dimension
of a rectangular closed stirrup; y, = longer center-to-center dimension of a
rectangular closed stirrup; T = nominal torsional strength contributed by
concrete = 0.8x°y\V/f. where x and y = the shorter and longer sides, re-
spectively, of a rectangular section.

Two modifications of Rausch’s equation are made in Eq. 8 based on tests.
First, a smaller lever arm area (o, /2)A, is specified, where «, varies from 1
to 1.5. Second, a new term T, is added. This term represents the vertical
intercept of a straight line in the T, versus (A, f,/s)(A,) diagram (Fig. 3).
Although the addition of T allows the test curve to be closely approximated
by a straight line in the under-reinforced region, the complexity that is gen-
erated by T, is certainly undesirable.

The definitions of the lever arm areas, A;, A; Or (a,/2)A,, all have a com-
mon weakness. They are not related to the thickness of the shear flow zone
or the applied torque. A logical way to define A, must start with the deter-
mination of the thickness of shear flow zone.

ANALYSIS OF THICKNESS OF SHEAR FLOW ZONE, 1,

The determination of z, requires three equations, derived from compati-
bility, equilibrium, and material law. The derivations are shown.
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Compatibility Equations

. When a hollow reinforced concrete member is subjected to torsion as shown
in Fig. 2, each cross section will rotate, producing an angle of twist, 8, in
the member and a shear strain <, in the shear flow tube. According to Bredt's

theory for circulatory torsion (see Chapter 1 in Hsu 1984) 6 and v, are related
by the compatibility condition:

where p, = the perimeter of the centerline of shear flow.

After diagonal cracking and the formation of the truss action, the shear
strain <y, in the shear flow tube will cause tensile strains in the longitudinal
and transverse reinforcement ¢, and €, in the /-t direction and the principal
compressive strains €, and e, in the d-r direction. The angle between the !/
axis and the d axis is denoted as o, Fig. 2(b). The shear strain vy, can be
expressed in terms of €,, €, and a (Hsu 1988) as follows:

Vi = 2(€ = €) SN G COS Qv vvee i et e (10)

In addition to the strain €, in the d-direction, a diagonal concrete strut will
also be subjected to a bending action resulting from the angle of twist 6,
(Fig. 4). The plane OABC lying in the shear flow tube through the centerline
of the shear flow is isolated in Fig. 4(b). After twisting, this plane becomes
a hyperbolic paraboloid surface OADC. The diagonal line OB, which rep-
resents a concrete strut with an angle of inclination «, becomes a curve OD.
The curvature of the concrete struts, ¥, can be related by geometry to the
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angle of twist, 8, (Lampert and Thurlimann 1968; Hsu 1984) by:
W= 0 SIN 20 L o e e e (1)

It should be noted that Eq. 1i is applicable not only to a rectangular section,
but also to arbitrary bulky sections. In Fig. 4 a rectangular section is selected
to demonstrate the bending curvature in a diagonal concrete strut due to
twisting. This is because the imposed curvature is easier visualized in a plane
than in a curved surface.

Due to the bending of the diagonal concrete struts the tension area in the
inner portion of the cross section will be neglected, Figs. 4 and 5. The
compression area will be considered as effective. The depth of the compres-
sion zone is denoted r,, which is identical to the thickness of the shear flow
zone. Within the thickness 1, the strain distribution is assumed to be linear.
Therefore, ¢, can be related to the maximum strain at the surface €, and the
curvature ¢ by

Moreover, because of the linear strain distribution, the maximum strain
at the surface €, should be related to the average strain €, by

The thickness of the shear flow zone ¢, in Eq. 12 can be expressed in
terms of €,, €, and «a by a series of substitution: (1) Substitute vy, from Eq.
10 into Eq. 9; (2) substitute 8 from Eq. 9 into Eq. 11; (3) substitute ¢ from
Eq. 11 into Eq. 12; and (4) substitute €, from Eq. 13 into Eq. 12. The
resulting expression is:

A €
fy=—— 2 ( 4 ) ...................................... (14)
Do Sin"“a cos o \€; — €,

Notice that A, and p, in Eq. 14 are also functions of ¢,
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FIG. 6. Stress-Strain Curve for Softened Concrete

where A, = area bounded by the outer perimeter of concrete cross section;
p. = outer perimeter of concrete cross section; £ = coefficient equal to 1
for rectangular section and /4 for circular section. £ can be taken as unity
for all shapes of cross sections with only negligible loss of accuracy for A,
and p,.

Ay and p, have been expressed in Eqs. 15 and 16 by assuming that the
centerline of the shear flow lies midway in the thickness of the shear flow
zone f,. This assumption provides two advantages: First, it simplifies the
expressions of A, and p,. Second, it is slightly on the conservative side and
is desirable to compensate for the slight unconservatism inherent in using
the term A,f,/s in Eq. 4 to express the stirrup force per unit length. The
effect of the stirrup spacing, s, on the shear strength has been carefully ex-
plained in Section 4.4.3.1 of Hsu (1984). It should also be pointed out that
A, and p, in Eqs. 15 and 16 are applicable to a thick tube even when £ is
taken as unity.

Material Law

Being subjected to axial stress and bending, the distribution of the com-
pressive stresses in a diagonal concrete strut within the thickness ¢, is shown
by the solid curve in Fig. 5. This stress-strain relationship is based on a
softened stress-strain curve, Fig. 6, proposed by Vecchio and Collins (1981).
Their concrete test panels were reinforced in both the longitudinal and trans-
verse directions and were subjected to pure shear at the edges. Their tests
clearly show that after diagonal cracking the stress and the strain in the con-
crete struts, o, and €., are softened by the tensile strain in the perpendicular
direction, €,. The softened coefficient { is a function of the ratio €,/¢€,

(= \/ S a7
€; — €,

The softening coefficient {, which is less than unity, is the reciprocal of the
coefficient N given by Vecchio and Collins (1981). In their paper, ¢, in the
denominator is multiplied by a constant (1 — p), where p is Poisson’s ratio
for concrete. The omission of w produces negligible difference (Hsu 1984).
Note also that e, is negative and €, = € + € — €, is positive.

Based on the softened stress-strain relationship in Fig. 6, the peak stress
is {f. and the average compressive stress, o, can be defined as
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where &, = the ratio of the average stress to peak stress in the stress block.
The k,-ratio can be obtained by integrating the stress-strain curve in Fig. 6
and has been tabulated in Table 7.4 of Hsu (1984) as a function of the
maximum strain €, and the softening coefficient {. For under-reinforced
members, the maximum torque occurs when the maximum concrete strain
€, varies from 0.0015 to 0.0030, and { varies from 0.35 to 0.50. Within
those ranges, the table shows that k, varies in a narrow range from 0.85 to
0.77. Taking an average value of k, = 0.80, and treating f as positive, then
o, becomes

Substituting the softening coefficient { from Eq. 17 into Eq. 14, #, can be
expressed in terms of { and a:

ty = ""‘% .............................................. (20)
Po sin“o Cos

It is interesting to note that t, in Eq. 20 is no longer a function of the strains
€, or €,. Physically, this means that 1, is independent of the loading history.

The substitution of the softening coefficient { from Eq. 17 into Eq. 14
involves an assumption. Since Eq. 17 is obtained from tests of reinforced
concrete panels subjected to pure shear alone, the strains €, and €, in this
equation represent the uniform in-plane strains of an element without bend-
ing. By contrast, Eq. 14 is derived from an element in a concrete strut sub-
jected to in-plane strains as well as bending, so that €, and €, represent the
average strains in the mid depth of the thickness t,. Therefore, Eq. 20 is
obtained by assuming that the softening of a concrete strut subjected to
compression and bending is identical to the softening of a concrete strut
subjected to the average compression strain without bending. This assump-
tion has yet to be proven by tests, but it should provide a very good ap-
proximation.

The thickness of shear flow zone, t,, can be solved by Eq. 20 in con-
junction with two equilibrium equations.

Equilibrium Equations

From the truss model of a reinforced concrete element shown in Fig. 2(d)
it can be demonstrated that the stresses in the concrete satisfy Mohr’s stress
circle (Hsu 1984). Assuming that the steel will yield at failure (for under-
reinforced members) and the concrete cannot resist tension in the direction
perpendicular to the cracks, i.e., g, = 0, then the superposition of the con-
crete stresses and steel stresses gives the following three equilibrium equa-
tions:

G = G COS O F P fye e o v ettt e e e e e 2))
Oy = O SN0 T P fly e ettt (22)
T = OGS G COS O . o vttt ettt et e e (23)

where o), 0, = normal stress in the [ and ¢ directions, respectively (positive
for tension); 7, = shear stresses in the /-f coordinate (negative, as shown in

3214

Fig; 2); pi P = reinforqement ratio in the / and ¢ directions, respectively.
p= A,/pots, Where A, is the total area of longitudinal steel in the cross
section; and p, = A,/st,, where 4, is the area of one leg of a hoop bar and

s is the spacing of the hoop bars; f,, f,, = yield strength of the longitudinal
and transverse steel, respectively.

. For' the case of pure torsion, o, = ¢, = 0. Adding Egs. 21 and 22 and
inserting o, = —0.80f f. result in:

(8-
Po K
L= OB s e (24)

Substituting o, = —0.80(f, from Eq. 19 into Eq. 21 and utilizing Eq.

24 give:
(50)
Po

cos’q = ——— (25)

< A ﬁ\) A,f,v) ........................................
+ .
Po s

Solution Method
The compatibility Eq. 20 and the two equilibrium Eqs. 24 and 25 provide
three equations involving three unknown variables, #,, {, and a. The solution

of these three simultaneous equations can be obtained by a simple trial-and-
error procedure as follows:

1. Assume an initial value of #, and calculate Ay and p, by Eqgs. 15 and 16.

2. Compute { and a from Eqs. 24 and 25, respectively.

3. Substituting { and « into Eq. 20 gives ¢,. If the resulting ¢, is close enough
to the initial value, then a solution with a set of ¢,, {, and o values are obtained.

If the resulting ¢, is not close enough to the initial value, assume another ¢,, and
repeat the cycle.

Once a solution is obtained, the ultimate shear stress 7, can be calculated
from Egs. 23 and 19, the torsional strength 7, can be obtained from Eq. 4.

An example problem showing the solution procedures is given in Appen-
dix I. :

Comparison with Tests

This method of calculating the thickness of shear flow zone and the tor-
sional strength has been applied to analyze the 61 test beams available in
literature (McMullen and Warwaruk 1967; Hsu 1968a; Lampert and Thur-
limann 1968, 1969; Bradburn 1968; Leonhardt and Schelling 1974; Mitchell
and Collins 1974; McMullen and Rangan 1978). The calculated ¢,.,. and
T, .uc are recorded in Table 1. The T, .. values are also compared to the test
values T, .. The average T, .q/Tpcac is 1.010 and the standard deviation is
0.051.

The 61 beams available in literature satisfy the following four criteria (Hsu
and Mo 1985a, 1985b): (1) The member should have sufficient reinforce-
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TABLE 1.
TABLE 1. Comparison of Test Strengths to Calculated Strengths Using r, From E 1. (Continued)

;
Eq. 20 o @ | ® ] ) ®
i in.-ki Tries/ T, (d) Lampert and Thurlimann (1968)
Specimen ta.cake (i) Trcale (in.-kip) Tniest (in.-Kip) st/ Tncale To Tor .
™) 2 3) @ (5) - 1.861.2 1.830.0 0.983
n 3.225 11474 1,145.0 0.998
(a) Hsu (1968a) 2 3.225 1,147.4 1,162.0 1.013
Bl 1.452 200.2 197.0 0.984 T4 3.225 1.147.4 1,145.0 0.998
B3 2.341% 366.4* 332.0 0.906 (e) Mitchell and Collins (1974)
B4 2.493* 428.9* 419.0 0.977 T4 l
B7 1.979* 2523 236.0 0.935 2.980 l 589.3 ] 620.0 ] 1.052
B8 2.206* 275.3* 288.0 1.046 (/) Bradbum (1968)
B9 1.887* 265.07 2640 0.9% RI I 1.323* I 101.2* |
BIO 2,253+ 276.2% 304.0 l.l(7)l : .2 93.6 I 0.925
DI 1.510 203.5 198.0 0.973 (8) McMullen and Warwaruk (1967)
D3 2.345* 371.7* 346.0 0.931 .
D4 2.4947 429,47 424.0 0.987 21 l 1.665 [ 189.5° | 181.0 ] 0.955
M1 1.678 252.7 269.0 1.064 *Since actual steel stresses in these specimens are slightly less than yield stresses, calculated values are used in computing
M2 2.101 340.1 359.0 1.055 these values. ! in. = 25.4 mm: 1 in.-kip = 113 N-m.
M3 2.770 3942 388.0 0.984
M 2275 1813 190.0 1.048
G2 1.636 339.1 357.0 1.053
ppess a7 439.0 0.987 . o . .
?.i 2 gt 740 1.056 ment so that the beam will not fail brittlely at cracking, i.e. T, > T,,. T.,
o 1669 w70 336.0 1.027 for a hollow beam can be taken as 24,7(2.5V/f]). where ¢ is the actual wall
. N 999 4 H
G 2005 4(;:: 4:82 ?ov* thickness. For solid beams, ¢ can be taken as A./p.; (2) the member should
N 1058 - R R . . . .
214 ose o o 1 0ss be under-reinforced so that both the longitudinal bars and the stirrups will
w LaT3 119.1 1280 1.075 yield at failure. To achieve this purpose, a should be greater than 12° +
N .9 <} ’
N2a Lifz 1“1)‘:; :(‘);3 ?oi'l; 33. [T,,/f((O..27 — 45€,)] but less than 78° — 33°[1,/f/(0.27 — 45¢,)]; (3)
:? :'ﬂs o 360 1035 stirrup spacing should not be excessive to cause significant drop of torsional
K |56 2079 2100 1.010 strength, i.e., s should be less than p,/8 or 12 in. (30 cm); (4) concrete
K3 1831 23700 ﬁ;g (1)-0932 cover should not be too thick to cause spalling before the maximum torque
120, 39, ! . . >
;i :;(2); ;«23 o 0941 is reached. In other words, the distance ¢ measured from the concrete surface
" 5147 5293 514.0 0.971 to the inner face of the transverse hoop bars should be less than 0.751,.
15 2,424 611.7* 626.0 1.023

The theory presented here has been rigorously derived. The only major

(b) Leonhardt and Schelling (1974) inaccuracy introduced is the approximation of k, = 0.80. This approximation

VOl 1.723 183.8 187.0 1018 should be quite good after the maximum fiber strain €, reaches well into
vQ3 1.691 1%0.8 177.0 0.983 the descending branch of the softened stress-strain curve, i.e. e, > 1.58e,
, * Ngs vx 5 062 . 3 ; . X
Vo4 2.41(7) ;;2.; IZ:B iox* where ¢, is taken as 0.002. Therefore, the theory is very suitable for finding
/ 1.42 3 . 2 ¢
:/3‘1) L o 1590 L o3 the torsional strength. At the low load stages when e, < le,, however, &,
M1 1169 1149 123.0 1.071 = 0.80 would not be sufficiently accurate, and a more general method of
VM2 1.606 3267 347.0 1.062 solution (Hsu 1988) should be used.

VM3 2113 838.3 893.0 1.065
VM4 3.014 28917 2.472.0 0.954
VS2 1.692 184.0 173.0 0.940
Vs 2202 2539 253.0 0.996 THICKNESS OF SHEAR FLOW ZONE FOR DESIGN
VSso 1.958* 203.7% 191.0 0.938
VB3 1.866 426.5 411.0 0.964 . . . i i .
B 1590 47 430.0 0.967 The thickness of the shear flow zone given in Eq. 20 is suitable for the
VUl 1.883* 205.6* 212:0 :gz; analysis of torsional strength. It is, however, not convenient for the design
* * . . . .
MY . ool o 1l of torsional members. In design, the thickness of shear flow zone r, should
— o be expressed in terms of the torsional strength, T,. This approach will now
Mch Ri .
| (¢) McMullen and Rangan ( ) be introduced.
2 072 . . .
" e S o bors The stress in the diagonal concrete struts, o,, can be related to the thick-
A , 252, 246. . . o
Ad 2.242 3279 305.0 0.930 ness ¢, and the shear flow ¢ using the equilibrium Eq. 23:
B2* 1.260 169.3 184.0 1.087
B3* 1.661 231.0 2240 0.970 q 5
B4* 2.067 295.6 281.0 0.950 O S o e (26)
tysin o cos a
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At failure, o, in Eq. 26 reaches the maximum Oumax, V_Vhile the t?rfSi'?E?;
moment reaches the nominal capacity T,. Substituting ¢ = T./2A, at fai
into Eq. 26 gives:

L @n

1= -
2A(0 4. max SiN @ COS &

Assuming t, to be thin, the last term g.ti iq Eq. 15 is neglected, and A,
can be expressed by the thin-tube approximation:

AO:AC—EPC .................................................

Substituting A, from Eq. 28 into Eq. 27 and multiplying all the terms by
2p./A? results in:

: ‘ T.p. 1
Py} -2 &td)‘F——’:“ : S0 (29)
A, A, A7 Oymax SIN QL COS O
Define:
oty = AJp. .
¢ T'Y = Tan‘/A(.‘

* Timax — Ogmax SIN O Ccos o

Eq. 29 becomes

(i“—)h - 2(—"1) o O (30)
tdO td() Tn.max

When 1/t is plotted against T,,/T,,‘max. in Fig. 7, Eq. 30 represents a para-
bolic curve. Solving t, from Eq. 30 gives:

K DR 31
= 1‘40[1 - \/1 - T"'m“] .......................

1 ini i flow zone, first pro-
This approach of determining the thickness of the shear I
posed pg)y Collins and Mitchell (1980) and later adopted by the Canadian
Code (“Design” 1984), gives:

1
t=‘il 1 - 1——Z£l—;(tanoz+ )] .................... 32)
¢ D1 0.7b.f Ay tan a

In Eq. 32 A, and p, are replaced by A, and p,, respectively, since tlhe‘concr’et;a1
cover is considered ineffective. o'y ma, 1S assumed to be 0.7d.f., in whic
the material reduction factor &, can be taken as 0.6. ‘ . ) .

Egs. 32 and 31 clearly show that the thickness‘ ratio, td/t.do, is primarily
a function of the shear stress ratio, 7,/f.. The thickness ratio ti/ Lo 18 also
a function of the crack angle «, but is not sensitive when o varies in the
vicinity of 45°. ‘ .

Eq. 31, 7, < T,.ma Tepresents the case of under-remfor.cemem, while 1, >
T,max Means over-reinforcement. The case of over-reinforcement canr}ot
be expressed by Eq. 31, because it gives a complex number (V—1). Fig.
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FIG. 7. Graphical Presentation of Egs. 30 or 31

7 shows that Eq. 31 is applicable when 7, is less than about 0.9 7, ... How-
ever, when 7, exceeds 0.9 7, ..., !, is increasing unreasonably fast. This
problem reflects the difficulty in using the thin-tube approximation for A,
(Eq. 28) to find 7,. When ¢, exceeds about 0.7 t,,, the tube becomes so thick
that the term & cannot be neglected.

To avoid this weakness, the writer has adopted a different approach. Using
the softened truss model theory, a computer program was written to analyze
the torsional behavior of reinforced concrete members throughout the loading
history (Hsu and Mo 1985a). This computer program was used to analyze
the 61 eligible torsional members (satisfying the four criteria previously cited)
available in literature. The thicknesses of the shear flow zones in the test
beams are calculated from the computer program and a linear regression
analysis of the thickness ratios #,/t, is made as a function of 7,/f.. This
analysis provides the following expression (Hsu and Mo 1985b):

A, Ta
ty=— (0.082 + 3.405 —,) T e (33)
De fe

Eq. 33 is plotted in Fig. 8 for the cases of @ = 45° and o = tan™'(5/3) or
tan"'(3/5), which are the limits adopted by CEB-FIP Code (“Model Code”
1978). The 61 test points are also included and the correlation is shown to
be excellent. The ¢,/t,, values calculated from Eq. 33 for the writer series
B are recorded in Table 2. When compared to the #,/t,, values obtained from
the computer program, the correlation is again excellent. The 10 beams in
Series B were chosen because they have total reinforcement ratios varying
from a low of 1.07% to a high of 5.28%, and a volume ratio of longitudinal
steel to stirrups varying from 0.205 to 4.97. The wide range of application
of Eq. 33 is evident. It is not only applicable to under-reinforced members,
but also to over-reinforced members.

Although Eq. 33 is found to be excellent, it is considered somewhat un-
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TABLE 2. Comparison of Thickness Ratios 1,/tx

Eq. Eq.
Computer Program (Hsu 1985a) a3 36
Beam 1 (%) pr (%) T, (in.-Kip) a(?) { 1y (in.) taftao taf a0 ta/tao
(1) (2) 3 (4) (5) (6) (7) 8 (9) (10)
Bl 0.534 0.537 202 46.5 0.372 1.41 0.470 0.464 0.449
B2 0.827 0.823 287 4.8 0.340 1.78 0.593 0.606 0.615
B3 1.77 1.17 370 44.6 0.510 2.32 0.770 0.770 0.808
B4 1.60 1.61 431 44.6 0.531 2.46 0.820 0.818 0.865
BS 2.1 2.13 446 4.5 0.560 2.65 0.883 0.884 0.942
B6 2.67 2.61 466 445 0.579 2.7 0.923 0.926 0.991
B7 0.534 1.17 253 53.8 0.433 1.96 0.653 0.619 0.597
B3 0.534 2.61 278 56.7 0.440 2.12 0.707 0.681 0.637
B9 1.17 0.537 269 36.3 0.416 1.82 0.607 0.596 0.572
BI10 2.67 0.537 280 33.2 0.444 2.16 0.720 0.691 0.648

Note: p; and p, are the reinforced ratios of longitudinal steel and transverse hoop steel. respectively, based on total cross-
sectional area A.. Cross section 10 in. X 15 in. fy = 47.000 psi; f¢ =~ 4,000 psi; L in. = 25.4 mm: | psi = 6.89 kPa.

125 n o =

2 a=tan 5 of ten 3

= Lempert 8 Thurhimann 3

"G‘F « Leonhardt 3 Scheiing
{ = McMuiien 8 Rangen

| o |
|~ McMullen 8 Warwaruk - //,,/ I
! = Bradburn 8 Zia L e . 4
W T LI v3a05) L |
2 yi . -t; =oos2 fo sin2a i
1 i
do : Ea(33)
osg— 'i‘
i L] Tn !
— = 4 (Eq. 36)
025~ Ydo fe “l
| a
0 \____;___L__—_,x..,,‘_x_____g___*b__.-t———J_,_J
0075 Ol 0125 Q15 0175 02 0225 025 0275 03
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T
<

FIG. 8. Thickness Ratio 1,/t,, as Straight Line Functions of Shear Stress Ratio,

T/f¢

wieldy for practical design. In the next section a simplified expression for
t, is proposed. The simplicity is obtained with a small sacrifice in accuracy.

PROPOSED !, FOR DESIGN

A simple expression for the thickness of shear flow zone, t,, can be ob-
tained directly from Eq. 2, noting that g = Tu% and T = T,

Assuming that A, = mA, and T, = m,f; where m, and m, are non-dimen-
sional coefficients, substituting them into Eq. 34 gives

T,
Acfe

,=C
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e
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FIG. 9. Comparison of Test Strengths with Calculated Strengths Using Pro-
posed 1, (Eq. 36)

where C = 1/2m,m,. For under-reinforced members, m, varies from 0.55
to 0.85, while m, varies from 0.13 to 0.22. These values are obtained from
the Appendix of Hsu and Mo’s report (1983). The low values of m; are due
to the softening of concrete. For an increasing amount of reinforcement, m,
increases while m, decreases. Therefore, the product m,m, can be taken ap-
proximately as a constant, 0.125, making C a constant of 4. Then

700
T T T T T T A
o
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°
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- .
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e
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-
@
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x Bradburn (1968)
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FIG. 10. Comparison of Test Strengths with Caiculated Strengths Using Pro-
posed 1, (Eq. 36)—Expended Scale for Lower Portion of Fig. 9
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Eq. 36 is plotted in Fig. 8. Comparison with Eq. 33 shows the difference
to be small. Actually, Eq. 36 can be considered a simplification of Eq. 33
by neglecting the small first term with constant 0.082 and increasing the
constant in the second term from 3.405 to 4. The small effect of « is also
neglected by taking sin 2a = 1, which is the exact value when o = 45°
The t,/t, ratios calculated from Eq. 36 for the writer's B series are also
recorded in Table 2. A comparison with the computer values also shows the
correlation to be reasonable.
Inserting Eq. 36 into the thin-tube expression of A, in Eq. 28 gives:

2T,p.
Ay =A, — D (37)

Acfi

A, in Eq. 37 is used in conjunction with Eq. 4 to calculate the torsional
strength, T,, for the 61 beams available in literature. The calculated values
are compared to the test values in Figs. 9 and 10. The average T oo/ Tcate
value is 1.013 and the standard deviation is 0.055.

An example problem is given in Appendix II showing the procedures for
designing reinforced concrete members subjected to torsion.
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APPENDIX |. ANALYSIS EXAMPLE

Beam G7 (Hsu 1968a) has a rectangular cross section of 10 in. by 20 in.
(25 cm by 50 cm). It is reinforced with 6 No. 5 longitudinal bars (4 at
comners and 2 at midheight of longer side) and No. 4 closed stirrups with
uniform spacing of 5.75 in. (14.6 cm). The material properties are: f, =
46.3 ksi (319 MPa), f,, = 46.8 ksi (322 MPa), and f! = 4.49 ksi (30.9 MPa).

Solution:

A, = 10(20) = 200 sq in. (1,290 cm®)  p. = 2(10 + 20) = 60 in. (152.4 cm)
A; = 6(0.31) = 1.86 sq in. (12.0 cm®) A, =0.20sqin. (1.29 cm?)
Assume t; = 2 in. (5.08 cm)

Substitute into Eq. 15.
— L4 2 2 2 : 2
Ao—Ac-pcz +td=200—60£ + (2)° = 144 sq in. (929 cm")

and into Eq. 16.
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Po=p. — 413 =60 — 4(2) = 52 in. (132 cm)

Afi,  1.86(46.3)
—— = ———— = 1.656 kip/in. (290 kN/m)

Po 52
Ay 22099 _ 1628 kip/in. (285 kN/m)
s 5.75
then Eq. 24.
()
[ = Po S/ _ 1656+ 1628 04571
0.80f ;14 0.80(4.49)(2)
and Eq. 25.
4
cosla = Po _ 1656 _ 05042
(‘M) . (A, ff_v> 1.656 + 1.628
Po s
sin‘a = 0.4958

and finally into Eq. 20.

Aol’ _ 144(0.4571)°
po sin’a cos’a 52(0.5042)(0.4958)

ty =

= 2.314in. (5.88 cm) > 2 in. (5.08 cm)

N.G. repeat cycle assuming ¢, = 2.10 in. (5.22 cm)
Now

ty; = 2.094 in. (5.32cm) = 2.10in. (5.33 cm) o.k.
and finally Eq. 4.

A, fy cota 0.20(46.8)(1.013)
Tn.calc = - (?-AO) = 5 75 (2 X 1414)
N .

= 466.3 in.-kip (52.69 kN-m)

The experimental torsional strength (7, ) of Beam G7 is found to be 466
in.-kip (52.66 kN-m), which is very close to the calculated value of 466.3
in.-kip (52.69 kN-m). It should be noted that the thickness of the shear flow
zone t; of 2.10 in. (5.33 c¢m) is more than 1/5 of the beam width (10 in.
or 25.4 cm) for a beam with moderate total reinforcement ratio of 1.87%.
It is obvious that ¢, of a reinforced concrete beam could become very big
when the reinforcement ratio is large. The definition of the lever arm area
A, by a constant A, in Rausch’s Eq. 4 could therefore produce a large error
of the torsional strength on the unconservative side.
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ApPENDIX Il. DESIGN EXAMPLE

Design the reinforcement for the hollow box beam with the trapezoidal
cross section as shown in Fig. 11. The beam should be able to resist a tor-
sional moment of 7,400 in.-kip (836 kN-m). The net concrete cover is 1.5
in. (3.81 cm) and the material strengths are f; = 4,000 psi (27.6 MPa) and
f, = 60,000 psi (413 MPa).

Solution . o
For the given outer cross-sectional dimensions shown in Fig. 11

(3 + H(3)12)
Ac=s —————

c

= 1,512 sq in. (9,755 cm?).
pe= (3 +4+2V3 +0.5)12) = 157 in. (399 cm).

Check Cracking Torque
T.= AJ(S\/)T[) = 1.512(5)(5V 4,000) = 2,391 in.-kip (270 kN-m)
T, = 7,400 in.-kip (836 kN-m) > 2,391 in.-kip (270 kN-m).

Reinforcement required.

Calculate t;, Ay and p,
Eq. 36.

4T, 4(7.400)
AL 1.512(4)

Iy = 4.89 in. (12.4 cm) < Sin. (12.7 cm)

wall thickness o.k.

o,
Ay = A, —’%= 1,512

157(4.89 2
- ——(_)———) = 1,128 sq in. (7.277 cm)

Po = pe — 4ty = 157 — 4(4.89) = 137.4 in. (347 cm)

No. 6 bars at
8m spacmg\

[é
<
=)

! 3ft

6in.

13 No.7
iongitudinal bars

Q. Q

f 5in.

[
I
05t 3ft

bt
lost'

FIG. 11. Design Example
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Design of Stirrups
Eq. 4.

T,tan o B 7,400 tan o
24.f,  2(1,128)(60)
= 0.0547 (tan ) sq in. /in. (0.139 (tan o) cm®/cm)

The minimum « is

T.p.
o= 12°+ 33°| —
AZfU0.27 = 45¢,)

7,400(157)
= 12° + 33° -
(1,512)%(4)(0.27 — 45 - 0.00207)

= 35.7° < 45°. Under-reinforced.

A,
s

Select o = 45° for best crack control.

| >

‘= 0.0547(1) = 0.0547 sq in./in. (0.139 cm®/cm)

“»

Select No. 6 bars s =

= 8.04 in. (20.4 cm)
0.0547

Check stirrup spacing

0.75
157 - 4(2)(1.5 + ——-—->
P 2

—_= = 17.75in. (45.1 cm)
8 8

s=8.04 <12in.(30cm) < 17.75in. (45.1cm) o.k.

Use No. 6 transverse hoop bars at 8 in. (20.3 cm) spacing.

Design of Longitudinal Steel

T.p, _ 7.400(137.4)

A = =
" 24,f, tana 2(1,128)(60)(1)

= 7.51 sq in. (48.4 cm®)

Select 13 No. 7 longitudinal bars so that spacing will be less than 12 in.
(30 cm).

Actual A, = 13(0.60) = 7.80 sq in. (50.3 cm?®) > 7.51 sq in. (48.4 cm’)  o.k.
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