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COMBINED MEMBRANE AND FLEXURAL
REINFORCEMENT IN PLATES
AND SHELLS

By Ajaya K. Gupta,’ M. ASCE

AsstRacT: A plate or shell element subjected to membrane forces N;, Ny, Ny
and bending moments M,, M,, My, is considered. Based on equilibrium con-
siderations, equations for capacities of top and bottom reinforcements in two
orthogonal directions have been derived. An iterative method is suggested for
calculating the design capacities. The proposed equations are more general and
rigorous than those derived for membrane reinforcement alone and those for
flexure only. For the membrane alone case, the proposed equations degenerate
into the previously derived equations. For the latter, it is shown that the pres-
ent practice of designing flexural reinforcement may underestimate the required

capacity.

INTRODUCTION

The problem considered here is that of a plate or shell element which
is subjected to membrane forces Ny, Ny, N,, and bending moments M, ,
M,, M,, (Fig. 1). The principal directions of the membrane forces and
the bending moments in general do not coincide.

The only practical treatment of this problem available in English lit-
erature to the knowledge of the writer is a summary report by Brondum-
Nielsen (1). The forces and moments are resisted by the net resultants
of the tensile forces in the top and bottom reinforcements provided in
two directions and by those of the compressive forces developed in
compression blocks of concrete. The report is brief, however, and does
not establish a general procedure for design. In somewhat vague terms,
Baumann (2) suggests resolving the forces and moments into forces in
the top and bottom layers, and using an approximate lever arm of 0.8k,
where & is the thickness of the shell. ,

In the present paper, detailed equations for capacities of the top and
bottom reinforcements in the x and y orthogonal directions have been
derived based on equilibrium considerations. These equations can be used
directly for design purposes. In the particular case when there is no
membrane force, it is shown that the present methods for flexural re-
inforcement design may underestimate the required reinforcement.

THEORY

Fig. 2 shows two layers of reinforcement both in x and y directions.
The capacities of these reinforcement layers are designated by N%,
N%, N}, N},, where subscripts x and y designate the directions, and ¢
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FIG. 1.—Applied Forces and Moments on an Element‘

and b stand for the top and bottom layers, respectively. A vertical plane
of crack, whose normal makes an angle 6, with the x-axis in the xy plane
penetrates through the top surface. The concrete is under compressiox;
parallgl to this crack; it is assumed that the depth of Whitney’s stress
block is 4,. The corresponding crack direction for the bottom surface is

h
Yem Layers ),. xt
, hxb
X

3 s hy,
7 ‘ -
.
-—A -

hyy

N

N

y

(a) Shell Element Showing the Reinforcement Layers

X i P
N ) X
t /
Vi )
N
N
N\

..

\]
v Top Layer { Bottom Layer

y
(b) Crack Directions

_FIG. 2—Relinforcement Layers and Crack Directions

551



‘desiﬁd by 6, and the thickness of the stress block by a, .
The"tal forces and moments resisted by the reinforcement in the x

and y directions are given by
N}=NAL+NL; NF=NAE+Nb 6))
M¥=—N{h, + Nihy; Mf=-=Njihy+ Njhy oooooonennion., (2

If the average compressive stress in concrete is f, the force and mo-
ment resultants of the top concrete block are

1
Ni=-aff; Mi==_(r=a)Ni..oooooiiii, ®3)

and for the bottom concrete block

1
Np = -af;; M;= 5 =N e e @

Eqs. 1-4 give the resisting forces and moments. These forces and mo-
ments should be under equilibrium with the applied forces and mo-
ments. Therefore

N, = N¥+ Nisin?8, + Nisin®6,; N, = N}+ Ni cos’ 8, + Nj cos? 6,
N,, = —Nji sin 0, cos 8; — N}, sin 6, cos 6,

M, = Mf+ M{sin® 0, + M§sin?8,; M, = MJ+ M; cos® 8, + Mj cos® 6,
M,, = —M;isin §,cos 8, — M;sin8,cos0, ..............cooiiiiin., 5)
Egs. 3, 4 and 5 yield ‘

(h = 3N,y — 2M,, (h — a)N,, + 2M,,

—Ni = ; —Nj=—m——————= ... 6
! h. sin 20, ’ h, sin 28, ©
where h. = h — (a, + a,)/2. Egs. 1-6 give
N:} = Nx; + NW,C,,, tan 9, + nybcpr tan 91,
Ny = Nyy + N Cyy cot 8, + N, Cpp cOt 8
N:}, = Nxb + ny,be, tan 9, + nybC,bb tan 6,,
N;b = Nyb + nyt ybt cot 6, + nybCybb cot ('),, .......................... (7)
hy M, h, M,
in which N,,=——bN,——; N,,,=—'N,+—
h, h, h, h,
h,, M h M,
Ny;=-—y—N———y; N,=-2N +
h, y h, y h, v h,
h—a)N,, — -
Ny = & @) Noy = 2Msy Nyy= 80Ny #2My ®)

2h, ! 2h,

1
hy + E (h - a)

and Cxtt = ——h———— ; fob =

1

by, — 3 (h —ay)
h.
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1 1 [
b+ 2 (h = a) o = = (h — ay)
= 2
Cytt - ’ Cytb =
y hy
1 1
hy — = (h — a;) ho + = (h - )
bet = 2 ; C = 2
hx ’ xbl hx
1 1
hyl-z(h_at) hyt+£(h_ab)
C = - =
ybt hy ’ Cybb hy
hx = hxt + hxb; hy = hyt + hyb ............................ f et (9)

_ Eqgs. 7 constitute the desired design equations for calculating the re-
inforcement capacities. If the cross-coefficients, C,y,, Cyuy, Cur, Cpn, were
zero, we could visualize the plate-shell element as consisting of two
membrane layers. The first two equations give the design reinforcement
for the top membrane, and the remaining two for the bottom membrane.
T_he cross terms are introduced because reinforcements in the x and y
directions are not concentric (h,, # hye , by # hy), nor are the centeroids
of concrete compression blocks concentric with either reinforcement. The

compressive forces in concrete can be obtained from Egs. 6 and 8, and
are given by

_ 2nyt ¢ 2Nr_l/b
20 VBT g e (10)

The compressive stresses can be calculated from Egs. 3 and 4.

(3

DesicN METHOD

The quantities of interest are the reinforcement capacities N3, Nj;,

N;f‘,, + N}, . The other unknowns are a;, a4y and 6,, 6, . Ideally, these quan-
tl_Ef_s should be selected so that the total capacity is the minimum pos-
sible.

Temporarily, to simplify the design equations, we assume
ho =hy =y = hy = 0.5h, = 0.5k, = 0.8h...............ccunr... 1)
Egs. 7 now become
N} =Ny + N, C, tan 6, + N,y Cptan 6, -
Nji = Ny + Ny, Cy cot 8, + Ny, Cy, cot 8,
N =N, + N,y Cy tan 8, + N, Cyp tan 6,

N;b = Nyb + nyf Cbt cot 6, + nyb Cbb cot 9}7 ......................... (12)
From Egs. 8
M, M
Ny =0.5N, — —; N, =0.5N, + —
* 0.8k 0= 03N+ 5
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> M, M, '
——=; Np=05N,+—= ... ..................... 13
Ny Y o8 ¥ Y 0.8k ‘ (3
Equations for N,,, and N,,, do not change. Also, from Eqgs. 9
0.625 a,

Cu = Car = Cypr = 1.125 —

0.625 a,

C!b = Cxtb = Cytb = _0.125 +

0.625a,

Co=Cup = Cybt =-0.125 +

0.625 Ay

Ci = Cup = Cyp = 1.125 —

We still need to iterate to evaluate 4, and a,. In the first iteration we
may set a; = a, = 0.2h, which would eliminate C;, and Cy;, and Cy = Gy,
= 1. Egs. 12 become :

N%=Nu+ Ny tan8,; Ny =N, + Ny, cot#,
Nfb = Nxb + nyb tani 0,,; N;b = Nyb + nyb cot (')b ................... (15)

As we had mentioned earlier, Eqs. 15 are the perfect two membrane
plate equations. These equations can be solved by standard techniques
(3,4). Typically, for minimum capacity, we have 8, = /4 and 8, = *n/
4. The signs of 6, and 6, would depend upoti the signs of N,,; and N,
respectively. When the w/4 angle leads to a negative capacity, the par-
ticular capacity is set to zero, and the corresponding angle is calculat_ed
accordingly. It is possible that one or more of the preceding capacities
are zero.

Once 6, and 0, are evaluated, the compressive forces in concrete can
be calculated from Egs. 10. We substitute the values of Nt and Nj into
Egs. 3 and 4 along with the allowable compressive stress in concrete
fatowabte » Which in turn yields new values of 4, and a, .

Next, we return to Eqgs. 12-14 with new g, and g, values, calculate the
reinforcement capacities, compute concrete compressive forces from Egs.
10, and compute new values of 4; and 4, from Eqgs. 3 and 4, if necessary.
If new values of 4, and g, are calculated, we would go back to Egs. 12-
14, and so on. Finally, we have reinforcement capacities in accordance
with the values of h,, hy,, etc. assumed in Eqgs. 11. The actual values
of hy, hy, etc. are different, and therefore, the reinforcement capaci‘cies
need be adjusted accordingly. _

Say, for hy, hy, hw, hy, h;, h, the calculated capacities aré N,
Ng', Njii', Nji'. We need to calculate N¥, N, N%, N}, for by, By, My,
hy , he, hy . The necessary transformation can be achieved in accordance
with Egs. 1 and 2. We note that for equilibrium, N¥, N} and M}, M}
remain same for both sets. We have

N:r _ l hxb - hJI:t hxb - hal(b N;kt,
Nfb hx hxr - h:':t hxf + h;b N;kb'
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nd {N;,}z 1 [hyb—h;, hyb—h;b]{w;;} ~ ‘ (16)

N;L hy hy‘ _ h;t hy¢ n h;b ;Z' ......................

If any of the new capacities is negative, we may have to repeat the cal-
culations to avoid the negative quantity.

ExampLE

Given, N, = .—2,000 Ib/in., N, = 1,700 Ib/in., N,, = 1,000 Ib/in., M,
= -13,500 Ib-in./in., M, = 2,700 Ib-in./in., M,, = 200 Ilb-in./in.,
fgllowable = 11000 PSi, h = 10 in~

. Siqce hy , etc. are not specified, we shall assume Eq. 11 holds. For the
first iteration we assume 4, = a, = 0.2h = 2 in.

.

Egs. 8: N, = 688 Ibs/in., Ny = 512 Ibs/in., N,y = 475 lbs/in.
N,, = —2,688 Ibs/in., N, = 1,188 Ibs/in., N, = 525 lbs/in.

Egs. 15: N}, = 688 + 475 tan ,, s = 512 + 475 cot 6,
% = —2,688 + 525 tan 0, , 7 = 1,188 + 525 cot 6,

Take 6, = w/4, N} = 1,163 Ibs/in., N/, = 987 lbs/in.

Egs. 10: —=N; = 950 Ibs/in., Egs. 3: 4, = 0.95, say 1 in.
N, =0, tan 0, = 5.12, Ny, = 1,291 Ibs/in.

Egs. 10: —=Nj = 2,791 Ibs/in., Eqgs. 4: a4, = 2.8, say 3 in.

o

Next Iteration

Egs. 14: C, = 1.0625, C,, = —0.0625, Cy, = 0.9375, Cy = 0.0625
Egs. 8: 2h, = 16 in., N,,, = 413 Ibs/in., N,» = 588 Ibs/in.

Egs. 12: N,Z, = 688 + 439 tan 6, + 37 tan 9§,

Nji = 512 + 439 cot 6, + 37 cot 0,
» = —2,688 — 26 tan 6, + 551 tan @,
N, = 1,188 — 26 cot 0, + 551 cot 0,

Take 6, = w/4, N}, = 0, tan 6, = 4.926, Ny, = 1,274 lbs/in.
Egs. 10: ~Nj = 3,016 Ibs/in., Eqs. 4: f; = 1,005 psi

N3 = 1,309 Ibs/in., N} = 959 Ibs/in.
Egs. 10: —N§ = 826 Ibs/in., Egs. 3: f¢ = 826 psi.

The value of f; is a bit too high (>1,000 psi), and £ is less than allow-
able. We may increase g, slightly and reduce 4, . The calculations of the
second iteration will be repeated.

APPLICATION TO MEMBRANE REINFORCEMENT

When the shell is subjected to membrane forces only (M, = M, = M,,
= 0), there will be orily one vertical crack passing through the shell ele-
ment. Only one layer of reinforcement is required in any direction, al-
though if thickness permits, it is desirable to place membrane reinforce-
ment in any direction in two layers in order to provide bending resistance
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ag uncalculated accidental moments. In Eqs. 6, we can substitute

N ,a,=h, 8, =0, and Nj = 0, g, = 0; hence

Ne= 17)
sin 28

Egs. 5 with Eq. 17 give

N¥=N,+ Nytan8;, Ny=N,+Nycoth................c.coeen. (18)

Eqgs. 17 and 18 are identical to equations for membrane capacity (3,4).

APPLICATION TO FLEXURAL REINFORCEMENT

In this case N, = N, = N, = 0. Egs. 8 yield
M"y

M =—; =Ny =Ny= .. (19
_Nxt = Nx = h—x , —Nyt = Nyb = 7['; ’ xyt :tyb hc ...... (1 )
Eqs. 7 become
M, M M,
N; = _h_x - T:y Cxtt tan et + TC Cxtb tan 0,,
M, My My
N;; = —h—y - —}-1:— Cytt cot 9, + hc Cyfb cot (-),,
M, M
Nrb = _h: - h:y bet tan 6, + h:y beb tan eb
M M,, 20
N;‘b = h_: - h:y Cybt cot 6, + hc Cybb cot B,, ........................ ( )
Eqgs. 20 with Egs. 9 give
M3 = AMY, + M, + M, tan 8,; M}, = AM}, + M, + M, cot 8, ..... 1)

for bottom reinforcement, and

M} =AM} + M, + M, tan 6,; My =AM + M, + M, cot 8, ...... (22)
for top reinforcement; where

M3, = Cu by Nfb; M;b = Cyu hy N;b

M3 = —Cup hy N} ; M;kt = _Cybb hy N;r

AMS, = Cou he N;  AM, = Cype hy N

AMG = —Copy iy Ny AMJi = —Cuhy Ny oo (23)

When the flexural capacity is calculated, it is common to ignore A_M*
terms (5). As is obvious from Egs. 21 and 22, doing so is unconservative.
The AM* terms introduce the effect of interaction between the top and
bottom reinforcements in the same direction, the effect which is com-
monly ignored. Of course, when only top or bottom reinforcement is
needed in any direction, the interaction does not exist, and the present
practice is correct in that case.
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Consider an example when, M, = M, = 100, M,, = 150. Taking 6, =
=6, = m/4, Eqs. 21 and 22 give '

o~ AMY, = M, — AM}, = 250; M — AMY = M — A % = =50
Egs. 23 give
G x
AMS =~ M5 AME = -2

cbb xtt

Assuming, h,, = ye = hy = hy, = 0.5k, = 0.5h, = 0.4k as in Eq. 11, and
4, = a, = 0.4h, the preceding equations become

-1 -1
AM;‘Z=—7- i A 22=-7—be

_1 —
Similarly A ;§,=7 i A y*,=—7u s

Hence M}, = My, =262.5; M= M;; = 87.5

The conventional method (5) would yield M§, = My, = 250, M% = M, =
50. For the present example, the conventional method yielded the ca-
pacity for the bottom reinforcement which is 5% too low, and the ca-
pacity for the top reinforcement which is 43% too low. These estimates
will vary for individual cases.

SUMMARY AND CONCLUSIONS

Equations have been derived for calculating reinforcement capacities
for plates and shells subjected to combined membrane and bending. The
actual design procedure would be that of trial and error. A reasonable
design can be achieved in a few iterations. The combined membrane and
bending equations degenerate into the familiar equations for the mem-
brane only case. The same is not true for the pure flexture case. The
equations in the literature (5) for the pure flexture case do not account
for the interaction between the top and bottom reinforcements in the
same direction. This may lead to underestimation of required reinforce-
ment capacities as shown in this paper.
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