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CHAPTER 1 — INTRODUCTION
101 — Objectives

The objectives of this report are to discuss the factors affecting the
short-time and long-time deflection behavior of prestressed concrete
members and to recommend both approximate and more precise analyti-
cal methods for calculating these deflections.

In the design of prestressed concrete structures the deflections under
short-time or long-time service loads may often be the governing criteria
in the determination of the required member sizes and amounts of
prestress. The variety of possible situations that can arise are too numer-
ous to be covered by a single set of fixed rules for calculating deflections.
However, it is felt that a thorough understanding of the basic factors
contributing to these deflections, which are discussed in this report, will
enable a competent designer to make a reasonable estimate of the de-
flections in most of the cases encountered in prestressed concrete design.

102 — Scope

Both short-time and long-time transverse deflections of beams, girders,
and slabs involving prestressing with high strength steel are considered.
Specific values of material constants given in this report, such as modu-
lus of elasticity, creep coefficients, and shrinkage coefficients, refer to
normal weight concrete. Bonded or unbonded prestressing steel is in-
cluded, but the effect of unprestressed reinforcement is not considered.
103 — Notation H = relative humidity (H = 70 for

70 percent relative humidity)
= over-all depth of cross section

A — area of section

B, b = ipt denoting bottom fi
7 subscript denoting bottom fiber I — moment of inertia (second mo-

of section .

C, = creep coefficient defined as ment of the area) of section
ratio of creep strain to initial ¢ = subscript denoting initial val-
strain at any time t ue (immediately following ap-

C. = ratio of ultimate creep strain plication of prestress or trans-
to initial strain verse load)

¢ = subscript denoting concrete, as 1 = beam span
fo and E. M = bending moment

E = modulus of elasticity P = prestress force

e — eccentricity of prestress steel sh = subscript denoting shrinkage
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ACI Committee 435 (335), Deflection of Concrete Buiiding Structures, was formed in 1957
under the chairmanship of M. V. Pregnoff; Dan E. Branson became chairman in 1962. The
committee’s assigned task is to study available research on deflection of concrete flexural
members in buildir.,g structures under rapid and long-term loads to develop recommendations
for the prediction of such deflection. Committee membership is: Professor Branson, chairman;
J. R. Benjamin; A. H. Brownfield; C. D. Bullock; W. G. Corley; L. N. Larson; D. R. Peirce;
M. V. Pregnoff; A. C. Scordelis; M. A. Sozen; and D. Watstein. This is the committee’s first report.

T,t = subscript denoting top fiber of y = distance from centroid of sec-

section tion to fiber under considera-
t — subscript denoting variable tion

time measured from the time © = unit creep strain defined as

of application of prestress cregp per unit s.tress .

force € — unit strain, tensile strains .are

. . . positive and compressive

u = subscript denoting ultimate strains are negative

value ¢ — curvature or angle change per
x = variable distance along beam unit length of beam = d*y/dx*
Yy — variable deflection along beam o —= unit stress

CHAPTER 2 — GENERAL FEATURES OF BEHAVIOR

201 — Introductory remarks

This chapter is concerned with the transverse deflections of pre-
stressed concrete members caused by the application of prestressing and
external forces. Especially in indeterminate structures, the axial changes
in length of prestressed concrete members caused by the prestressing
force or by external forces may also be critical. Although direct refer-
ence will be made only to transverse deflections, it is also possible in
general to estimate the effects of axial displacements by means of the
methods outlined in this report.

The definition of the deflection of a prestressed concrete beam can
be ambiguous. In this repert, the deflection will refer to the position
of the beam before the prestressing operation unless specified otherwise.
A simply supported beam deflects upwards under the action of the pre-
stressing force and downward under the action of the transverse loads.
The deflection may be defined with respect to two different reference
lines: the position of the beam before the release of prestress or the
position of the beam just before the application of load. The situation
may become complicated if the load or prestress is applied in stages. Any
definition may be justified in relation to the critical quantity being
sought. For roof beams, the critical deflection would be that with respect
to the original position of the beam in the forms. For bridges with cast-
in-place riding surfaces, the critical deflection would be that occurring
after the riding surface is placed.

Only uncracked prestressed concrete sections will be considered;
cracked prestressed concrete sections can also be analyzed on the basis
of the methods described here. Unless noted otherwise, the beams con-
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sidered will be assumed to be cast in a single operation and have bonded
reinforcement.

The deflections of prestressed concrete beams are considered under
two engineering definitions: short-time and long-time deflections.

Short-time deflections are defined as those occurring instantaneously
under the application of any internal or external force. The time ele-
ment is assumed to be unimportant, no matter what the rate of loading,
provided the load is applied within a matter of hours.

Long-time deflections refer to those existing at some time interval
after the prestressing or loading operation.

202 — Short-time deflections

In general, the variables affecting the short-time deflections of a pre-
stressed concrete beam are the magnitude and distribution of the load,
the length of the span, the size and configuration of the cross section,
and the quality of the concrete. More specifically, the effect of critical
variables may be summarized by the magnitude of the strain or stress
gradient or the curvature at a section and the variation of this quantity
along the span.

The curvature at a particular section (see Fig. 1) is defined by

€pi — Eri M
TR T EL
in which tensile strains are positive and compressive strains are negative.

In most cases the variations in the amount of the prestressing steel
affect the short-time deflections due to transverse loads negligibly. As
long as the beam remains uncracked, variations in the prestressing force
do not affect the short-time changes in deflection at all, provided the
concrete and the steel strains increase linearly with stress, as will be
assumed throughout this chapter.

In effect, the short-time deflections of uncracked prestressed concrete
elements can be calculated in accordance with the usual methods of
calculating deflections applied to linearly elastic members. The modulus
of elasticity to be assumed in these calculations is discussed in the fol-
lowing chapter. As indicated above, the calculations may be carried out
on the basis of the gross concrete section.

203 — Long-time deflections

Even if the external loads remain constant, the deformations and
displacements of a prestressed concrete béam will change with time as
a result of creep and shrinkage of the concrete and relaxation of the
prestressing reinforcement.

Shrinkage strain is defined as deformation of the concrete which
occurs without stresses attributable to forces external to the concrete.
Creep is defined as the time-dependent deformation occurring under
stress over and above that which would have been caused by shrinkage.
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Fig. |—Stress and strain distribution immediately after application of the
prestressing force

Actually, these two types of strains are rather difficult to separate from
each other and more elaborate definitions have to be stated if the quest
of the analysis were these strains alone. Nevertheless, in considering
the deflections of reinforced or prestressed concrete elements, the above
simple definitions are satisfactory.

Relaxation loss of the prestressing steel is defined as the stress loss
occurring at constant strain, a phenomenon related to creep.

In Chapter 3, all of these effects are discussed in detail.

To bring out the effects of the critical variables on time-dependent
deflections, two simple cases will be considered in the following sec-
tions: a prestressed concrete beam without any transverse load and a
prestressed concrete beam with all the transverse load applied at once.

203.1 — Prestressed concrete beam without transverse loads

Stress and strain distributions over the depth of a cross section of
a rectangular bonded beam immediately after application of the pre-
stressing force are shown in Fig. 1. It is assumed that there is a linear
distribution of strain over the depth of the section and that there is
a linear relationship between concrete stress and strain. Under ordinary
conditions, both of these assumptions are reasonably correct. The stress
at any level is given by the well-known relationship:

f= 2 4 Mc 2)

A 1
and the curvature can be expressed as

_ Eui — €ty __ Pe _ M
pro= I = 2 e (3)

where P is the prestressing force.
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Fig. 2—Stress and strain distribution at a time # after initial application of
prestressing force

The stress and strain distributions in Fig. 2 depict the conditions
existing after a given time. The normal stresses on the section decrease
as a result of a reduction in the prestressing force while there is a
general shift to the right in the strain distribution accompanied by an
increase in the strain gradient or angle change ¢.

These changes are caused by an interaction between creep and shrink-
age of the concrete and relaxation of the reinforcement. All of these
effects occur continuously with time and affect each other continuously.
However, it is preferable to treat these individually and as step-functions
to simplify the discussion.

Consider first the effect of shrinkage strains. It is assumed that each
element of concrete in the cross section shrinks equally. Thus, the
shrinkage strain distribution after a time t is given in Fig. 3b. This dis-
tribution of shrinkage strain causes a reduction in the reinforcement
strain which corresponds to a reduction in the prestress. The loss in
prestress causes a change in the stress distribution over the depth of
the section as indicated in Fig. 3c and the corresponding change in the
strain distribution, Fig. 3d. Thus, the change in curvature is
Agy — Agy
T

The effect of the relaxation losses in the steel is quite similar to that
of shrinkage. At a time t there is a certain loss in the prestress force
which creates a reduction in the curvature as explained above.

A¢p =

The effects of the creep of the concrete are not as simple, since the
reduction in stress causes changes in the rate of creep strain.

It is assumed that the amount of creep strain at a given time is propor-
tional to the stress. Thus, the change in strain caused by creep is directly
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Fig. 3—Stress and strain distributions due to shrinkage

proportional to the instantaneous strain distribution (Fig. 1c), which is
related directly to the stress distribution. This change in the strain dis-
tribution involves a contraction at the level of the steel and, therefore,
a reduction in prestress. The reduction in prestress caused by creep,
shrinkage, and relaxation decreases the normal stress. This decrease in
normal stress reduces the rate of creep.

Thus, after a finite interval of time the increase in curvature caused
by creep is a multiple of the instantaneous curvature. However, this
multiple is less than the ratio of creep to instantaneous strain obtained
for the same time interval from a comparable concrete subjected to
constant stress.

The effects of shrinkage, creep, and relaxation add up to the stress
and strain distributions shown in Fig. 2b and 2c. Although the stress in
the top fiber remains in tension, the total strain may be a shortening if
the shrinkage strain is large.

Creep strains affect the curvature almost directly while the shrinkage
and relaxation affect it indirectly through losses in prestress. The beams
subjected to prestress alone may be considered to be subjected to two
different effects: the increase in curvature caused by creep and the
decrease in curvature caused by the prestress loss due to relaxation,
shrinkage, and creep. In general, these add up to an increase in the
curvature.

A qualitative curvature versus time curve is shown in Fig. 4. The
magnitude of the time-dependent deflection depends on the particular
characteristics of the beam involved. The deflection of the beam depends
on the distribution of the curvature which is influenced primarily by
the profile of the steel.
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Fig. 4—Plot of curvature versus time for a beam subjected to prestressing
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As in the case of short-time deflections, the magnitude of the deflec-
tion may be estimated by the magnitude of the stress gradient over the
depth of the section after release of prestress. If the stress gradient is
very -small, then shrinkage and relaxation are bound to dominate, in
which case the beam may deflect downward. However, under usual cir-
cumstances the stress gradient is large and creep dominates the deflec-
tion thus causing the beam to move upward in a simply supported case.

203.2 — Prestressed concrete beam subjected to transverse loading

If the beam considered in the preceding paragraphs is subjected to a
transverse load, the stress distribution across the section at a given
point along the span may be as indicated in Fig. 5d. Provided neither
the concrete nor the steel is strained into the inelastic range, the stress
distribution caused by the prestressing force (Fig. 5b) can be superposed
on the stress distribution caused by the transverse load on the uncracked
transformed section (Fig. 5c) to obtain the stress distribution shown
in Fig. 5d.

Naturally, the magnitude and gradient of the stress distribution varies
depending on the combinations of the stress distributions shown in Fig.
5b and 5c. For example, in a simply supported uniformly loaded beam
with straight cables, the stress distribution over the end reaction may
be assumed to be essentially that caused by the prestress. The stress
distribution at midspan is the one influenced most by the transverse
loads. While the curvature near the reaction may be increasing with
time so that the curvature is concave downward, the curvature at mid-
span may be changing so that the additional curvature is concave
upward.

The phenomena occurring at a section under the combined influence
of the prestressing force and the transverse load may be described in
a simpler manner if the effects of the prestress and the transverse load
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are treated separately. The effect of the prestressing force was discussed
in the preceding section along with the effects of shrinkage and relaxa-
tion. The effect of the stresses caused by the transverse load are dis-
cussed below.

The strain distribution shown in Fig. 6b corresponds to the stress
distribution in Fig. 5c. It depicts the strains that would occur in an un-
cracked section under the influence of only the transverse load. The
short-time curvature is

If it is assumed that the creep characteristics for this imaginary beam
are equal in tension and compression, it follows that after a given time
the strain distribution will be as shown in Fig. 6c. Depending on the
amount of steel and creep strain at the level of the steel, the neutral
axis will shift towards the steel and the stresses in the concrete will be
reduced. However, this is a minor effect and may be neglected. Conse-
quently, the relative increase in curvature after a given time will be
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Uniform Load the same as the ratio of the creep to
(®)  instantaneous strain in a compara-
| ble specimen of concrete under

/ constant stress.

(0) The changesin the curvature or in
the deflection of the beam caused
by the prestress and the transverse

Prestress _ ) load may be determined by super-
position. For example, in the uni-
formly loaded beam considered, the
curvature distribution on applica-
tion of the load is as shown in Fig.
Tb. Assuming that the prestress
force is developed so that the cor-
Fig. 7—Variation in curvature with span  responding strain distribution is
constant throughout the span, the
curvature distribution shown in Fig. 7Tb can be divided in two parts:
(1) a rectangular distribution caused by the straight tendons (Fig. 7c)
and (2) a parabolic distribution (Fig. 7d) caused by the uniform trans-
verse load. Both of these curvature distributions will change with time.
The deflections corresponding to these two imaginary systems are
shown in Fig. 8. Curve A shows the variation with time of the deflection
caused by the prestress while Curve B indicates the same variation for
the load. It is assumed that the prestress is released simultaneously with
the application of the load.
To get the net deflection, the imaginary deflections caused by the
prestress and transverse load can be added as indicated by the broken

Combined -

Load + (d)

— A (Due To Prestress)

Up

» Time

Deflection

— — ———

A +8B

/—B (Due To Load)

14

Fig. 8—Deflection versus time due to prestress and load
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curve. It is seen that how much the beam deflects and whether it deflects
upward or downward depends on the relative effect of the prestress and
of the transverse loads. Ideally, a beam can be designed to have no mid-
span deflection at all.

The picture shown in Fig. 8 does not change drastically if the load is
applied at a different time from the time of prestressing or if the load
is applied in several increments. The total deflection can be found by
superposing at the appropriate time the deflections caused by the
prestress and the transverse load.

An important feature of the deflection of prestressed concrete beams
is brought out by these considerations: if the short-time deflections
caused by the prestress and the permanent load are comparable, the
time-dependent deflection, with respect to the position of the beam
before prestressing, is bound to be very small.

204 — Comparison of the defiection characteristics of prestressed
and reinforced concrete beams

It is difficult to make a direct and fair comparison of the deflections
of reinforced and prestressed concrete beams. It would be unfair to
compare the relative deflections of two identical sections, one pre-
stressed and the other nonprestressed, under the same load. The sections
would be quite different if they were originally designed as reinforced
or prestressed concrete sections for the same load. Nevertheless, some
discussion of this problem is necessary because of the many misunder-
standings that exist about the relative deflections of prestressed and
reinforced concrete sections.

The mere act of prestressing does not reduce the deflections of a re-
inforced concrete element under live load. In fact, there would be no
difference between the deflections of two sections, one prestressed and
the other not prestressed, if both sections were uncracked. However, the
act of prestressing does reduce the deflections at working loads because
it maintains an uncracked section under large working loads.

Consider a particular example: a simply supported beam subjected to
a uniform load. If the prestressed and reinforced concrete sections are
proportioned to develop the maximum permissible stresses, the following
comparison may be made.

Typical permissible stresses for prestressed concrete are 0.45 f, in
compression and 6V f, in tension. Therefore, in an extreme case, the
curvature over the reaction could be as large as

0.45f. +6VFf. ;

B n.”' (concave down) ... (6)

¢ =
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If E, = 1000 f, and if it is assumed for the sake of numerical sim-
plicity that the tensile stress is 0.05 f,":

¢ = 0_h5 % 107 in.”" (concave down)
The curvature at midspan due to transverse load alone could be as
large as

¢: = ﬂf};c_';/()zéﬂi in.” (concave Up).......ccccceeeveecnn. (N

In accordance with the preceding considerations:

¢ = 1 %X 102 in.”" (concave up)

h

Assuming that ¢; (due to prestress) is constant throughout the length
of the beam and ¢, (due to the transverse load) varies parabolically
along the span, then the downward deflection of the beam at midspan:

. (5 1 .
A = L —_— s — —— @ FR 8
A (48 o Sg’)ln (8)

% - (i) (%) 107 o (9)

For a reinforced concrete beam with a “balanced” section according
to ACI 318-56 working stress design:

¢ = 8:3 J:Ef" in.”' (concave up) ... (10)
If it is assumed that d = 0.8h, the deflection at midspan:
A 1 "L i
—_— === = e 1
L_(B.Q)(h)lo ......... (11)

Thus, the short-time deflection of the reinforced concrete beam may
be about three times the deflection of the prestressed concrete beam,
provided the two are designed for the maximum permissible stresses.
Actually, the estimate of the deflection of the prestressed concrete beam
may be quite accurate although the estimate of the deflection of the
reinforced concrete beam may be on the conservative side since the
distribution of curvature along the span would not be parabolic as
assumed in calculating the deflection from the curvature. Furthermore,
if a continuous beam is considered, the advantage given to the pre-
stressed concrete beam, because of the beneficial distribution of curva-
ture along the span, would exist also for the reinforced concrete beam.
Consequently, the ratio between the deflections would not be as large.

It is interesting to note also the manner in which creep and shrinkage
of the concrete affect the time-deflections of reinforced concrete beams.
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Fig. 9—Strain distribution in a reinforced concrete beam

Usually, the steel stresses in reinforced concrete beams are such that we
may ignore the relaxation losses of the reinforcement.

Shrinkage generally causes a downward deflection in both ordinary
reinforced and prestressed concrete simple span beams. The magnitude
of the shrinkage curvature depends on the amount of nonsymmetry of
reinforcement and on the relative areas of concrete and steel in the
reinforced concrete beam. This effect is more or less similar to what
occurs in prestressed concrete. If the centroid of the prestressing rein-
forcement is at the centroid of the section, shrinkage of the concrete
would not cause any increases in curvature with time.

There is a distinct difference, however, between the way in which
creep affects the deflections of reinforced and prestressed concrete
beams. The strain distribution in a reinforced concrete beam imme-
diately on application of load is shown by Line A in Fig. 9.

Considering creep only, the increase in strain will be as shown by
Line B. Strain in the extreme fiber in compression increases considerably,
while the strain at the level of the steel changes very little. As this
occurs, the compressive stresses in the concrete are reduced since the
neutral axis moves toward the reinforcement, and the steel stresses
increase since the internal lever arm shortens.

It is seen from Fig. 9b that the relative increase in curvature caused
by creep is less than the relative increase in strain such that

LI
@i €4

where k is less than 1. Thus, the relative increase in deflection is less
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than the increase in creep. However, no matter what the conditions, the
reinforced concrete beam does undergo creep deflection. On the other
hand, the prestressed concrete beam may be proportioned so that under
sustained loads it will have practically no deflection due to sustained
loads at a given point in the span.

CHAPTER 3 — MATERIALS
301 — Reinforcing steel

301.1 — Introductory remarks

It follows from the discussion of the general features of the short-time
and long-time deflections of prestressed concrete members that two
properties of the reinforcing steel are of importance in determining the
deflections of the prestressed concrete beam: the modulus of elasticity
and the relaxation losses of the reinforcement.

In discussing short-time deflections, it was mentioned that the cross-
sectional area of the reinforcing steel in a beam is usually small enough
so that the deflections may be based on the gross concrete area. In that
case, the significance of a knowledge of the modulus of elasticity is not
important. However, in considering time-dependent deflections result-
ing from shrinkage, and those resulting from creep at the level of the
prestressing steel, it is important to have a fairly good estimate of the
modulus of elasticity of the reinforcing steel.

The relaxation loss is of direct importance in estimating the change
in deflection caused by this loss.

301.2 — Modulus of elasticity

In calculating deflections under working conditions, it is sufficient to
refer to the modulus of elasticity of the prestressing reinforcement
rather than to the whole stress-strain curve since this reinforcement is
seldom stressed into the inelastic range.

The definition and determination of the modulus of elasticity for
single wire or bar reinforcement is a simple matter. In most calculations,
the assumption of this value as 30 X 10° psi, is of sufficient accuracy
considering the unknowns relating to properties of the concrete which
are more critical in the calculation of deflections.

In the case of strand reinforcement, both the definition and the de-
termination of this parameter become problematic. During the pre-
stressing operation, or during release of prestress if the strands are
unbonded, the pertinent parameter is the change in deformation over
a given length compared with the change in force. The apparent modu-
lus of elasticity in this case may depend on the length of the wire and
the type of the grips at the ends. Under these conditions, because of
the tendency of the strand to untwist, the apparent modulus of elas-
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Fig. 10—Stress variation with time in a prestressing wire due to relaxation

ticity is less than that assumed for steel. This is usually on the order
of 27 X 10% psi.

If the strand is embedded in concrete, the freedom to twist is lessened
considerably. In that case, it seems unnecessary to differentiate the
modulus of elasticity of the strand from that of single-wire reinforcement.

In calculations involving time-dependent deflections, it is generally
unwarranted to differentiate the modulus of elasticity of strand from
that of ordinary reinforcement.

301.3 — Relaxation characteristics of prestressing reinforcement

The relaxation loss is defined as that loss in stress occuring at constant
strain.

In an ordinary prestressed concrete member, the strain of the steel
does change with time as a result of shrinkage and creep of the concrete
and also as a result of loss of prestress due to its own relaxation. How-
ever, this change in strain is a fraction of its initial strain. Thus al-
though the type of loss occurring in a prestressed concrete member is
not pure relaxation as defined, it is closer to relaxation than it is to
the basic definition of creep, which is change in strain under constant
stress.

In the early days of prestressed concrete construction, relaxation
losses of the steel were thought to be short-lived. It was the general
opinion that the wire would stop relaxing after a matter of weeks if
not hours. Later information showed that the relaxation losses do not
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Fig. I 1—Stress variation with time in a prestressing wire due to relaxation

stop, although, as in the case of creep and shrinkage of the concrete,
the rate decreases drastically within the first year.

In Fig. 10, as an example, the stress variation in a wire prestressed to
86 percent of its 0.1 percent offset stress (or 79 percent of its 1 percent
stress) is shown as a fraction of the initial stress. There is a relatively
large loss within the first 6 months. After 2 years the loss rate becomes
very small. In Fig. 11, the same data are plotted against the logarithm
of time. This curve indicates that the relaxation loss may never stop.
Nevertheless, the half-life for this wire would be on the order of 100,000
years. It can also be reasoned that given enough time the stress in the
wire would approach zero. Although this condition is conceivable, it
does not apply strictly to a prestressed member since there is a statical
check on the lower bound of stress that can be reached.

To make generalizations about the amount of relaxation loss to be
expected is even more difficult than making generalizations about the
amount of creep strain to be expected. Relaxation losses may be critically
affected by the manner in which a particular wire is manufactured.
Thus, they may change not only from type to type of steel but also from
manufacturer to manufacturer. Factors such as reduction in diameter of
the wire and the heat treatment of the wire may be significant in fixing
the rate and amount of relaxation loss that may be expected.
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Nevertheless, sufficient data over a sufficient number of years have
been obtained to make it possible for a statement to be made of the
amount of relaxation loss to be expected in the ordinary types of pre-
stressing wire or strand being used currently. A recent study?' of 427
test results with test durations up to 9 years has shown that the following
simple formula may be used for estimating the relaxation loss in pre-
stressing reinforcement for time periods up to about 50 years. The
expression which should apply to high tensile strength single wire and
strand reinforcement is

R log t [ fau
% =1 __1%__(%”_ — 055 ) ................................ (13)
in which f, is the steel stress t hours after initially being stressed to
fsi» and f,, is the yield point stress. Log t is to the base 10.

The form of this expression, which should be used only as a guide,
indicates that the critical parameter is the relation of the initial stress
to the yield point stress which has been defined as the 0.1 percent
offset stress.

302 — Concrete

302.1 — Modulus of elasticity

The modulus of elasticity of concrete has always been an elusive prop-
erty because of its significant variation primarily with concrete quality,
concrete age, stress level, and rate or duration of applied stress. These
effects are all associated, at least in part, with the creep or plastic flow
of the material, even for very rapid rates of loading. Evans' has stated,
interestingly, that under instantaneous loading much more creep occurs
in the first 0.01 sec than in the period from 0.01 sec to 1.0 min. Of
primary interest with regard to the design aspects of the concrete
modulus of elasticity are the relations between E, and f/, E, with con-
crete age (under instantaneous loading), and E. with concrete creep
(creep and material stiffness are inherently related in a visco-elastic
material).

The equation given by ACI-ASCE Committee 423 (323)* which is a
slight modification of that originally suggested by Lyse:

E. = 1,800,000 + 500 fo oo (14)

or by Jensen:?

E

: PR PP ORPRPRP PR 15
10,000 (15

——5 —_
T

or by ACI Committee 318:**
Eo = W33V e oo (16)
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All equations provide an adequate relation between E, and f, for nor-
mal sand and stone concrete. It is well known that E, increases signifi-
cantly with time. The data of Davis and Troxell* show an increase of f.
and E, up to 1.3 times the 28-day value at the end of 3 years. The modulus
of elasticity employed in the analysis of concrete structures must be
used with caution and properly reduced for loads other than those of
very short duration. The resulting reduced modulus is given by the
equation:

where C, is the creep coefficient, which is a function mainly of relative
humidity, concrete quality, duration of applied loading, and age of
the concrete when loaded.

302.2 — Creep

Under the action of sustained stress, concrete exhibits a prolonged
yielding or time-dependent creep strain. The true nature of creep
mechanism is not yet fully understood. Twenty-year shrinkage and creep
data of Troxell, Raphael and Davis® illustrate the fact that concrete
shrinkage and creep continue for a very long time. Average curves
show slightly less than 80 percent of their 20-year value at the end of
1 year for both shrinkage and creep. Approximate ultimate values for
the creep coefficient for normal weight concrete under average design
conditions are shown in Table 1, where, in each case, the larger of the
values corresponds to an earlier loading age.

In considering the effects of creep in the deflection of concrete mem-
bers, the use of a unit creep strain d; (creep per unit stress) or creep
coefficient C, (ratio of creep strain to initial strain) amounts to the same
thing, since the concrete modulus E, must be brought in in either case
and

Ci =0 E: (18)
This is seen from the relation:
Creep strain = (o eonsrant) 01 = (e wmiriar) Cooooo. . (13)
where
Ec — O constant

€initial

TABLE | — C, RATIO OF ULTIMATE CREEP STRAIN TO INITIAL STRAIN

Average relative humidity

Concrete

strength 100 percent 70 percent 50 percent

Ordinary 1-2 1.5-3 2-4
high 0.7-1.5 1-2.5 1.5-3.56
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Which to use is a matter of convenience depending on whether it is
desired to apply it to stress or strain.

302.3 — Shrinkage

Among the more important factors that influence drying shrinkage
are the water-cement ratio of the paste, the amount of paste in the
concrete, the mix proportions, the curing conditions, the length of the
drying period, the humidity of the surrounding air, the maximum size
and composition of the aggregate, and the size and shape of the con-
crete mass.

The most important single factor affecting shrinkage is the amount of
water placed in the mix per unit volume of concrete. The shrinkage of
concrete is mainly due to the evaporation of the mixing water. Be-
cause of this, the humidity of the surrounding air, for a given concrete
mix, affects to a large extent the magnitude of the resulting shrinkage.

Schorer’s® formula is probably adequate for calculating shrinkage
strains for most design purposes:

g = 125X 107 (90 — H) ... (20)

where H is relative humidity (H = 70 for 70 percent relative humidity).
This formula gives an ultimate or design total shrinkage strain as a
function of relative humidity, but other variables account for rather
wide variations under certain conditions. Eq. (20) yields &5 = 500 x 10—
for H = 50. Staley and Peabody’ reported shrinkage strains as high as
870 X 10—¢ for specimens cured at 50 percent relative humidity, but
this variation from Schorer’s value is extreme. Most shrinkage data
agree with the above formula within 25 percent.

CHAPTER 4 — CALCULATION OF DEFLECTIONS

401 — Introduction

This chapter presents two methods for calculating long-time deflec-
tions of prestressed concrete members. The first is a general method
which is applicable in almost all cases and involves a step by step pro-
cedure of calculation. The second method is shorter and approximate,
but should yield sufficiently accurate answers for design purposes in
most cases.

402 — Loading conditions

To calculate the deflections of a member at a particular time, its load
history, including prestressing, up to that time should be known. The
designer must make a reasonable prediction of the expected load history
in advance to be able to predict the member deflections at various im-
portant stages with reasonable accuracy.
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Listed below are the usual loadings which should be investigated. In
each case both short-time and long-time deflections should be checked.
Special conditions may require additional stages to be investigated.

(a) Prestress plus dead load.
(b) Prestress plus lightest expected total service load.

(c) Prestress plus heaviest expected total service load.

403 — Calculation of long-time deflections

The phenomenon of time-dependent deflecions in prestressed con-
crete beams was discussed in Section 203 of this report where it was
shown that a prestressed concrete beam develops deformations under
the influence of two usually opposing effects: the prestress and the trans-
verse load. Thus, the net curvature at a section at a given time t, ¢;, is

Dt = Pmt b Dt oo R (21)

where ¢, is the curvature caused by the transverse load and ¢, is that
caused by prestress.

The variation of ¢+ with time was discussed qualitatively in Section
203.2 and is illustrated in Fig. 6. On application of the transverse load:

€ni — €t M.

i = —n = TR (22)
where M, is the bending moment acting on the particular section con-
sidered. As a result of creep, the strains and therefore the curvature
increase. As this occurs, the neutral axis shifts towards the reinforce-
ment since the reinforcement becomes relatively stiffer. Consequently,
the compressive stress distribution on the concrete changes. However,
in practical cases, this change in compressive stress is small and it can
be assumed without appreciable error that the neutral axis remains
stationary and that the concrete creeps under constant stress. Accord-
ingly, the creep strain at any time t can be obtained by multiplying
the instantaneous strain by the creep coefficient C; for that particular
time:

M.
EI

The form of Eq. (23) indicates that the determination of ¢.: represents
an ideal application of the ‘“reduced modulus” method, the quantity
E/ (1 4 C;) being the reduced modulus. However, it must be noted that
Eq. (23) is a simplification. It refers to a fictitious condition (see Section
203.2). It ignores changes in actual stress caused by prestress as well as
the shift of the neutral axis. It assumes tacitly that E and C; do not vary
over the cross section or for different loading conditions; the variations
in these quantities may be critical if the permanent load is applied in
several increments at different times.

¢mt = (14Ct) ¢o = (1 4+Ch)
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The determination of ¢,, the curvature caused by the prestress, is
not as simple. As discussed in Section 203.1, it involves the effects of
creep, shrinkage, and relaxation. The quantity ¢, can be considered
in three parts: (1) Instantaneous curvature occurring upon application
of the prestress, (2) change in curvature corresponding to the loss in
prestress as a result of creep, shrinkage, and relaxation, and (3) change
in curvature resulting from creep under prestress. Since the loss in pre-
stress is usually appreciable, Part 3 involves creep under varying stress.
Furthermore, there is an interrelationship between Parts 2 and 3: Creep
affects the loss in prestress while the prestress affects the amount of
creep. Shrinkage and relaxation are also affected by the varying stress.
However, this can be ignored in view of the fact that the possible errors
in the basic shrinkage and relaxation coefficients are larger than any
effect the varying stress may have on them.

Two different approaches can be used in calculating creep strain in
concrete subjected to varying stress: the rate of creep and the super-
position methods.

The rate-of-creep method, illustrated in Fig. 12, is straightforward.
Consider an extreme case in which a concrete specimen is subjected to
a compressive stress ¢ for a time interval t;. At the end of this interval,
the stress is removed completely.

According to the rate-of-creep method, the creep strain at time t; is
0d41, the product of the sustained stress and the unit creep strain for the

“Jl._

(oa

c L re—
°
5 |
3 |
[+
e
S I

I

|

t Time

Fig. 12—Creep strains by the rate of creep method
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time considered. Once the stress o is removed, there is no further change
in creep strain and at a time, say 2t;, the creep strain is still ¢d,.

The superposition method,'® illustrated in Fig. 13, predicts the same
creep strain at time t;, od,. However, rather than assuming directly
that the compressive stress is removed at time t;, it is assumed that the
specimen is subjected to an additional stress of ¢ in tension and creeps
under two opposing fictitious stresses. For example, if it is assumed that
the creep characteristics of the concrete are the same in tension and
compression and are independent of the concrete age when loaded, the
compressive creep strain at time 2t; is 0d;2 while the tensile creep strain
is 0d;; since the tensile stress is a new stress at time t;. The total com-
pressive creep strain at time 2t, is thus o (8,2 — 8;1) and represents a
reduction with respect to the creep strain at time t;, since (8 — d41)
< du.

In the particular case considered, the rate-of-creep and superposition
methods give significantly different results. However, their results are
comparable if the stress variation is not as drastic as the one assumed.
Although the superposition method has been claimed to predict the
time-dependent deflections caused by prestress better than the rate-of-
creep method,? its use is laborious and worthwhile only if the basic
creep, shrinkage, and relaxation data are known reliably and accurately.
The method proposed here for the calculation of ¢, is based on the
rate-of-creep method. However, the calculation of ¢,, Eq. (21) does in-
volve the superposition method since the two curvatures ¢,: and ¢,
are determined separately using unit creep curves with time zero de-
fined as the time corresponding to the application of the particular effect
considered.

In determining ¢, the changes in curvature caused by the loss in
prestress and creep can be evaluated by a summation procedure which
recognizes the changes in compressive stress. Thus:

P e : er g e
o= — = P,.,— P, LN n— Cn- el ——
oy b + 2. ( P,) F > (C Cna) P ol (24)
\ J N J — ~ J
Part 1 Part 2 Part 3

In the above equation, the curvature caused by the initial prestress
has been taken as negative. The subscripts (n — 1) and (n) define the
beginning and end of a particular time increment. Parts 1, 2, and 3 refer
to the parts into which ¢, was divided in the preceding discussion. The
prestress force at any time, P, is determined by subtracting the losses
caused by shrinkage, relaxation, and creep from the initial prestress
force P;. The losses caused by shrinkage and relaxation are obtained
directly from the shrinkage and relaxation coefficients assumed. How-
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Fig. 13—Creep strains by the superposition method

ever, the effect of the creep must be determined from the summation:
t
S, (Cn — Cay) P

Parts 2 and 3 of Eq. (24) may be determined using the following
sequence:

1. Obtain the gross increase in creep strain by multiplying the stress in
each extreme fiber at the beginning of the interval considered by the
increment of unit creep strain for that interval.

2. Determine the creep strain at the level of the center of gravity of the
reinforcement.

3. Sum the creep strain determined in Step 2 and the shrinkage strain

" increment for the time interval considered to obtain the total change in
strain at the level of reinforcement.

4, Determine the total loss in reinforcement stress for the interval con-
sidered by adding the loss caused by the shrinkage and creep (the strain
in Step 3 times the modulus of elasticity of the reinforcement) to the relaxa-
tion loss for the corresponding time interval considered.

5. Find the change in stress in the extreme fibers corresponding to the
loss in steel stress. Using the short-time modulus of elasticity E., of the con-
crete, determine the corresponding change in strain.

6. Determine the net change in creep strain in the extreme fibers by
finding the algebraic difference between the gross change in strain (Step 1)
and the change in strain caused by the change in stress in the reinforce-
ment (Step 5).

7. Obtain the increase in curvature from the net strains determined in
Step 6.

8. Find the stress in the extreme fibers at the end of the time interval
by finding the algebraic difference between the initial stress and the change
in stress determined in Step 5.
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The procedure described above or any other summation technique
to evaluate Eq. (24) can be programmed for a digital computer. Once
such a program is available, it is feasible to use Eq. (21), (23), and (24)
in preliminary design and even in cases where the basic information on
creep, shrinkage, and relaxation is not well established. If the data on
the time-dependent properties of the materials are not reliable, deflec-
tions should be calculated for critical combinations of the expected
upper and lower bounds of the creep, shrinkage and relaxation versus
time curves.

Eq. (24) may be simplified by making some approximations to Parts
2 and 3. First, consider Part 2. At any given time, the losses caused
by relaxation and shrinkage are known directly from the assumed
relationships. The summation is required to determine the effect of
creep. If the creep coefficient is C;, the creep loss in the prestress level
may be written roughly as Cinf.,, where f. is the effective initial
prestress in the concrete at the level of the prestressing steel and n is
the modular ratio. The actual loss will be less than this quantity since
creep strains will occur under a decaying rather than a constant pre-
stress. Thus, assuming the creep loss to be a stress of Cin f, tends to
underestimate ¢,; since it increases Part 2 in Eq. (24). An alternative is
to admit the creep loss to be Cin fu (1 — Cin foi/fse), where f, is the
initial effective prestress. This tends to overestimate ¢,. A desirable
solution would be to use Cin f.; when considering the deflections under
load and Cin fu (1 — Cin fui/fse) when considering the deflections under
prestress alone. A compromise is to assume that the loss in the pre-
stress level is equal to a stress of Cin foi (1 — Cin foi/2fse) . Assuming that
one of these approximations is adopted the loss in prestress force
P/ = (P; — P;) due to relaxation, shrinkage and creep can be evaluated.
If the variation in E with time is neglected Part 2 of Eq. (24) becomes
simply:

e. _ Ple:
(Pc——Pt) ﬁ = T

Part 3 of Eq. (24) may be simplified by assuming that creep occurs
under a constant prestressing force equal to the mean of the initial and
final prestressing forces:

P; 4 P, er __ 2Py — P/ s 26
— C: o A C: o7 TR (26)

The loss in the prestressing forces P/, is determined in the evaluation
of Part 2. Thus, combining Eq. (24), (25), and (26), a close approxima-
tion for Eq. (24), which can be evaluated without the necessity for a
summation procedure, is as follows:

P.e. Py Py
= — 1 — == 1 — =) Ci | 27
¢1t EI I: P¢ ‘I" ( 2P1) t] ( )
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404 — lllustrative example

The purpose of the numerical example given in this section is to illus-
trate the use of the procedure outlined in the preceding section. A simple
case is analyzed so that attention may be focused on the basic steps of
the procedure rather than on computational details.

Consider an 18-in. double-T-beam with a simple span of 54 ft. Assume
a dead load of 275 1b per ft and a live load equal to the dead load.

The longitudinal reinforcement (A, =152 sq in.) has an effective
prestress {after release) of 140,000 psi. The effective depth varies lin-
early from 14.7 in. at the third-points of the span to 10.9 in. at the
supports.

The pertinent geometrical properties of the cross section are:
Area = 267 sq in.
Moment of inertia (plain section) = 7550 in.*
Distance from centroidal axis to bottom extreme fiber = 12.5 in.

The material properties are assumed as follows:

Concrete strength = 5000 psi (at release, no further increase in strength)
Modulus of deformation for concrete, E. = 4.3 X 10° psi

Modulus of deformation for embedded strand reinforcement, E, = 30 x 10°
psi
Concrete creep coefficient, Cy = 2.0

Concrete shrinkage strain = 0.0006 (after release of prestress)

Steel relaxation loss = 5 percent of effective prestress after release

For the simply supported beam considered, Eq. (24) may be written
directly in terms of the deflections caused by the load and the prestress:

At = Amt A Apt o (28)
where
At — total midspan deflection
Am: = midspan deflection caused by the transverse load
Ayt = midspan deflection caused by the prestress

In accordance with Eq. (23):
Amte = (14 Ct) Ams

where
Am¢ = instantaneous deflection caused by the transverse load

The instantaneous deflection for a simply supported beam under uni-
form load is

5 WL?
384 E.I

Ams =
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when
W = total load on the beam
= 275 X 54 = 14,850 1b for the dead or the live load
5 X 14,850 X (54 x 12)°

384 x 4.3 X 10" x 7550
— 1.6 in. downward for the dead or the live load

Ame =

A

Ame = (142) 1.6
= 4.8 in. downward for the dead or the live load
This step concludes the calculations to determine the deflection caused
by the transverse loads. The calculation of the deflection caused by the
prestress follows.
The position of the prestressing force varies linearly in the outer
thirds of the span. Therefore:

A= L (19 ¢ + 8 ¢2)

216
where
A = midspan deflection
¢ = curvature existing in middle third of span
¢. — curvature at the support

To obtain the instantaneous deflection A, caused by the prestress,
¢1 and ¢» can be expressed as follows:

_ A, f.w (2]
N

_ An fau e
= 7RI

where

e, = eccentricity of the prestressing force in the middle third of the span
e. = eccentricity of the prestressing force at the support
1.52 % 140,000 x 9.2

— 3 L
" TR 43 x 100 0.060 X 10~ in.

152X 140,000 X 54 _ 035 v 10 in
P = TR x 43 x 100 oo X T

Api = ﬁ% (19 X 0.060 + 8 X 0.035) X 10~ = 2.8 in. upward
The loss in prestress must be determined before calculating the up-
ward time-dependent deflection. Since the reinforcement is draped, the
compressive stress at the center of gravity of the steel varies in the
outer thirds of the span. Hence, the loss caused by creep of the concrete
will be evaluated at the two extreme points of the draped portion of
the reinforcement.
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In the middle third of the span, the initial compressive stress at the
center of gravity of the prestressed reinforcement is

1 o2 1 9.2 .
o= At (2 4+ 20 = 152 % 140,000 (=L 1+ 222} _ 3200
et f (A+ 1) X1 000(267+7550) pst

At the support:

1 5.4 .
o= 152 % 140,000 (L 1+ 34 ) _ 1600
et X (267 + 7550) 1600 psi

The unit loss in prestress is determined in accordance with the dis-

cussion preceding Eq. (27).
In the middle third of the span:

%. = Relaxatiin loss 4 Shrinkage loss + Creep loss
_ o 2% 7% 3200)
= 0.05 X 140,000 + 0.0006 x 30 x 10°+ 2 X 7 x 3200 ( 1 — 55 140,000

7,000 + 18,000 + 38,000

= 63,000 psi
P, 63,000
P: T 140,000 045

At the support:

py o . 2><7><1600)
= 0.05 x 140,000 4 0.0006 x 30 X 10°4+2 X 7 X 1600( 1 S 140000 140,000
= 7,000 4 18,000 + 21,000
= 46,000 psi
P _ 46000 _ (33
P 140,000

It should be noted that the creep losses calculated above are fictitious
since the calculations refer to a beam with no transverse loading. The
total curvature at the two sections considered is evaluated using Eq. (27).

In the middle third of the span:

(¢,,,),:¢1[1—%:—+(1_—21;;_1) ]

— 0.060 X 10 [1—0.45+( 1_%) 2]

0.060 x 10~° X 2.4 = 0.13 X 10~®* in.™*

At the support:

0.035 x 10 [2.3] = 0.08 X 10-*in.™*
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Total deflection at midspan caused by prestress Ay:

Apt = %[19 (¢pt)1+ 8 (¢pl)2]

- l“legz)i (19 % 0.13 + 8 X 0.08)

= 6.0 in. upward

Although the deflections A, and A, have been evaluated, Eq. (28)
cannot be used without knowledge of the loading sequence. The deflec-
tions caused by the transverse load and prestress have to be combined
depending on the datum plane for the deflection and the program of
loading as illustrated below. Downward deflections are assumed to be
positive.

If the dead and live loads are applied immediately after release of
prestress, the total deflection referred to the position of the beam before
the application of prestress is:

Ay = 9.6 — 6.0 = 3.6 in. downward
If the live load is transient, and therefore not included

Ay = 4.8 — 6.0 = — 1.2 in. upward

Often the permanent live load is applied some time after the beam is
prestressed. If it is desired to find the deflection referred to the position
of the beam just before the application of the permanent live load,
this cannot be done simply by adding the time-dependent deflections
under the different effects. Part of the time-dependent deflection under
orestress and dead load would have already occurred. For an extreme
example consider the application of the live load after almost all of
the time-dependent deflection has taken place. In that case, the deflection
under the live load would be 4.8 in. If the live load is applied at an
earlier time, it is necessary to make an assumption about the rate of
the time-dependent deflections. Unless pertinent data are available, it is
satisfactory to assume that one-quarter of the time-dependent deflec-
tion occurs in 2 weeks, one-half in 3 months, and three-quarters in 1 year.
Accordingly, if the permanent live load is placed 3 months after release
of prestress, the total deflection under the live load would be:

At Instantaneous and time-dependent deflection under live load +

one-half of time-dependent deflection under dead load +
one-half of time-dependent deflection under prestress

4.8 +40.5x%x32—0.5x3.2

4.8 in. downward

In the foregoing discussion, it was assumed that the basic properties
of the concrete did not change after release of the prestress. If the
strength of the concrete increases between the time the prestress is re-
leased and the time the live load is applied, the deflections correspond-

nmn++1
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ing to these effects must be calculated on the basis of the pertinent
moduli of elasticity and creep factors. However, the effect of changes in
the properties of the concrete on time-dependent deflections caused by
the prestress or the load may be ignored. The time-dependent deflections
may be based on the properties of the concrete at the time of application
of the force producing the deflection.

CHAPTER 5 — SUMMARY

The principal factors affecting the short-time and long-time deflec-
tion behavior of prestressed concrete beams have been discussed and
methods for calculating these deflections have been presented.

The factors influencing the deflection behavior are external load,
amount of prestress, shrinkage, creep, and relaxation of steel stress. The
determination of long-time deflections is complex because these factors,
which are interrelated, produce a constantly changing strain and thus
stress distribution over the depth and span of the beam. The changes in
stress with time are primarily due to losses in prestress force caused
by creep, shrinkage, and relaxation of steel stress. Changes in strain
with time are due to creep and shrinkage as well as changes in stress
distribution.

The deflection of a beam from a reference base of zero stress, strain,
and deflection can be evaluated at any time if the magnitude and the
longitudinal distribution of the curvatures (angle change per unit
length) for the beam span are known for that instant. Any suitable inte-
gration procedure or equivalent method, such as conjugate beam or
moment area, may be used to obtain the deflections from the curvatures.

Two methods have been presented in this report by which the curva-
tures can be evaluated at any particular time. The first method is a
general one, which involves a step by step summation procedure. This
summation is performed using any desired number of time intervals
from the original state of stress, strain and deflection to the time for
which the deflection is desired. This procedure can be used in almost
all cases provided the basic material properties and the program of
prestressing and loading of the beam are known. The procedure has
been verified by checking computed and measured deflections on several
groups of experimental beams. Results indicate that long-time deflections
may be predicted within 5 to 10 percent by this method. The method
unfortunately involves a considerable amount of computation.

The second method is an approximate one in which the curvatures
at a particular time are estimated by substituting into a single formula
average values for constants related to the creep, shrinkage and pre-
stress loss characteristics of the beams. In most cases this procedure
will yield values which are sufficiently accurate for design purposes.
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Sinopsis — Résumés — Zusammenfassung

Deflexiéones en Miembros de Concreto Presforzado

Reporte del Subcomité 5 del Comité ACI 435 (335), Deflexiénes en Estructuras
de Concreto. Discute factores que afectan las deflexién de corta larga duracién
en miembros de concreto presforzado.

Se presentan métodos analiticos para calcular estas deflexiones, tomando en
cuenta presfuerzo, carga transversal, flujo pléstico, contraccién y relajacién del
esfuerzo en el acero.

Déflexion dans les Poutres en Béton Précontraint

Ce compte-rendu du sous-comité #5 du Comité ACI 435 (335), Déflexions
dans les Batiments en Béton, discute les facteurs qui influent le comportement
de la déflexion pour périodes courtes et longues dans les poutres en béton
précontraint. On présente des méthodes analytiques pour calculer ces déflexions,
en tenant compte de la précontrainte, les charges transversales, fluage, con-
traction, et la relaxation de la contrainte dans l’acier.
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Verformung von Spannbetonbauteilen

Dieser Bericht des Unterausschusses 5 des ACI Komitee 435 (335), Verformung
von Betonkonstruktionen, erortert die Faktoren, die das kurzfristige und lang-
fristige Verformungsverhalten von Spannbetonbauteilen beeinflussen. Analyti-
sche Methoden fiir die Berechnung dieser Verformungen werden angegeben, in
denen Vorspannung, Querbelastung, Kriechen, Schwinden sowie das Nachlassen
der Stahlspannung beriicksichtigt werden.



