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Rectangular Concrete Stress
Distribution in Ultimate
Strength Design

By ALAN H. MATTOCK, LADISLAV B. KRIZ,
and EIVIND HOGNESTAD

An ultimate strength design theory of broad applicability is developed,
based on an equivalent rectangular stress distribution in the concrete com-
pression zone and in general accord with the Appendix to the 1956 ACI
Building Code. The theory is characterized by simplicity without significant
loss of accuracy.

The proposed method of ultimate strength design is applied to a wide
variety of structural concrete beams and columns, subject to various com-
binations of bending and axial load. Calculated ultimate strengths are
compared with experimentally determined ultimate strengths for a wide
range of variables, and an excellent agreement results.

It is concluded that the proposed extension of the rectangular stress
distribution theory permits prediction with sufficient accuracy of the ulti-
mate strength in bending and compression of all types of structural con-
crete sections likely to be encountered in structural design practice, including
odd-shaped sections and other unusual cases.

Part 1 — Review of Basic Assumptions

B In THE OcTOBER, 1955, REPORT OF ACI-ASCE Committee 327 on ulti-
mate strength design as abstracted in the Appendix to the 1956 ACI
Building Code (ACI 318-56), ultimate strength design methods were
given in specific terms only for the cases most frequently met in de-
sign practice. Specific design methods were not given for odd-shaped
cross sections and other special cases. Secondly, extensive researches
in the United States and abroad have been completed since the Commit-
tee 327 report was prepared. A re-evaluation of the design principles in-
volved is therefore desirable. Finally, the rectangular stress distribu-
tion theory has become widely used in design practice and in general
accord with the 1956 Code. The extent to which this simple theory can
be safely extended to unusual design cases has previously not been
thoroughly studied.
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At the request of Subcommittee 15 on ultimate strength design of
ACI Committee 318, Standard Building Code, and in the light of re-
cent research findings, the authors have studied the rectangular stress
distribution theory as commonly used in design practice under the
1956 Code. In addition, they have extended this theory into a gen-
erally applicable and reasonably simple design tool based on a single
set of assumptions.

This paper presents such assumptions and substantiating evidence
for consideration by ACI Committee 318 and the ACI membership as
a contribution toward development of a future revision of the ACI
Building Code. In this manner, the recommendations and views ex-
pressed are those of the authors and do not necessarily reflect the
collective judgment of Committee 318.

ASSUMPTIONS IN ULTIMATE STRENGTH DESIGN

By use of the following general assumptions, ultimate strength of
sections subjected to combined bending and axial load can be pre-
dicted with adequate accuracy, even for odd-shaped cross sections and
other unusual cases:

1. At ultimate strength, a concrete stress of intensity 0.85 times the con-
crete cylinder strength may be assumed uniformly distributed over an
equivalent compression zone bounded by the edges of the cross section
and a straight line located parallel to the neutral axis at a distance k.c
from the region of maximum compressive strain. The distance ¢ from the
region of maximum strain to the neutral axis is measured in a direction
perpendicular to that axis. The fraction k: is taken as 0.85 for concrete
cylinder strengths up to 4000 psi and is reduced continuously at a rate of
0.05 for each 1000 psi of strength in excess of 4000 psi.

2. Tensile strength of the concrete may be neglected in flexural cal-
culations.

3. Strain in the concrete at the various section levels may be assumed
directly proportional to the distance from the neutral axis. Except in
anchorage regions, strain in reinforcing bars may be assumed equal to the
tensile or compressive strain in the concrete at the same distance from the
neutral axis as the centroid of each bar or group of bars considered.

4. The maximum strain at an extreme edge of the concrete compression
zone may be assumed equal to 0.003.

5. Stress in reinforcing bars below the yield point stress for the grade
of steel used may be taken as 30,000,000 psi times the steel strain. For
strain greater than that corresponding to the yield point stress, the rein-
forcement stress may be considered independent of strain and equal to the
yield point stress.

USE OF SIMPLIFIED EQUATIONS

The equations for ultimate strength design given in the Appendix
to the 1956 ACI Building Code, ACI 318-56, can almost all be derived
from the assumptions set out above. Certain of the Code equations
for the design of columns contain additional simplifying assumptions.
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For the straight-forward cases, for which these Code equations have
been derived, the equations are entirely adequate and may be used
with confidence. It should be noted however, in using Eq. (A3) from
the Appendix to the 1956 ACI Code for the design of a beam with
compression reinforcement, that the stress in the compression steel
at ultimate strength should be checked to confirm that yielding of the
steel has in fact occurred.

In unusual problems of design, the basic assumptions given may be
used directly in everyday practice. Cases not susceptible to direct
mathematical solution may be treated by suitable iteration procedures.
In mathematically complex cases, calculations based on the basic as-
sumptions may be used together with experimental data to develop
and verify simplified procedures for design office use, such as those
proposed in the writings of P. M. Ferguson and C. S. Whitney,

Notation

Wherever possible the notation used in the ultimate strength design appendix
to the ACI Building Code (ACI 318-56) has been used in this paper. For con-
venience, the notation is summarized as follows:
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net concrete cross section, or
area of segment of circle cov-
ered by equivalent concrete
stress distribution

area of tensile reinforcement
area of compressive reinforce-
ment

steel area required to develop
compressive strength of over-
hanging flange in T-sections
total area of longitudinal re-
inforcement

depth of equivalent rectangu-
lar stress distribution

width of a rectangular sec-
tion, or over-all width of
flange in T-sections

width of web in T-sections
resultant concrete compres-
sive force

distance from extreme com-
pressive fiber to neutral axis
at ultimate strength

diameter of a circular section
distance from extreme com-
pressive fiber to centroid of
tensile reinforcement
distance from extreme com-
pressive fiber to centroid of
compressive reinforcement
modulus of elasticity of rein-
forcing steel

eccentricity of axial load,
measured from the centroid of
tensile reinforcement, unless
otherwise specified

ratio of change in strain of
steel of prestressed beam to
change in strain of concrete at
the level of the steel
resultant steel compressive
force

resultant steel tensile force
6 x 12-in. concrete cylinder
strength

stress in tensile reinforcement
at ultimate strength

stress in compressive rein-
forcement at ultimate strength
yield point stress of tensile re-
inforcement

yield point stress of compres-
sive reinforcement

G.
GS(‘
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Ieu
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center of action of concrete
compressive force

center of action of steel com-
pressive force

center of action of steel tensile
force

c/d

ratio of average stress to max-
imum stress

ratio of depth to resultant of
concrete compressive force, to
depth of neutral axis

ratio of maximum stress to
6 x 12-in cylinder strength, f.’
ultimate moment of resistance
plastic modular ratio, e.E./
0.85 k.f’

ultimate strength of eccentri-
cally loaded member

ultimate strength of concen-
trically loaded member
tensile steel ratio, A,/bd
compressive steel ratio, A.'/bd
steel ratio at balanced ulti-
mate strength condition in a
beam without compression re-
inforcement

steel ratio at balanced ultimate
strength condition in beam
with both tension and com-
pression reinforcement

A,;/b'd

tension steel ratio for T-beams,
A,/bd

tension steel ratio for T-
beam with balanced ultimate
strength condition
tension reinforcement
pfy/fe

compression reinforcement in-
dex, p'fy//f

tension reinforcement index
for balanced ultimate strength
conditions, psf,/f.

index,

tension reinforcement index
for T-beams, puwfy/f.
tension reinforcement index

for T-beams with balanced
ultimate strength condition,
Duwofy/fe’

flange thickness in T-beams,
also total depth of rectangular
section column
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o = inclination of neutral axis to e, — tensile steel strain at ultimate
horizontal in nonsymmetrical beam strength
section £y = tensile steel yield strain

2 = strain e’ = compression steel strain at ul-

e¢s = concrete tensile strain at ulti- timate strength
mate at level of steel in pre- &y’ = compression steel yield strain
stressed beam . .

g — concrete precompression strain e.. = effective steel prestrain
at level of steel in a pre- &= = strain in steel distance, ax,
stressed beam from neutral axis

Eu — maximum concrete compres- ¢ — half included angle between
sion strain at ultimate beam two upper faces of beams with
strength triangular ccmpression zones

CONCRETE STRESS DISTRIBUTION

The general form of the concrete compression stress distribution at
ultimate strength in a reinforced concrete member is shown in Fig. 1.
The properties of the “stress block” are represented by the following
coefficients:

k. = ratio of average stress to maximum stress

k. — ratio of depth to resultant of compressive force, to depth to neutral

axis

ks = ratio of maximum stress to 6 x 12-in. cylinder strength, f.’

Historical background

The use of a design theory based on the ultimate strength of sec-
tions is in effect a return to the original concept of design, in that
early design formulas were empirical, being based on the failure loads
of typical elements as found by experiment.

The first published ultimate load theory was that of Koenen! who in
1886 assumed a straight line distribution of concrete stress and a neu-
tral axis at middepth. Since that time about 30 theories have been
published. The salient points of many of these theories were set out
in Bulletin No. 399,28 University of Illinois Engineering Experiment

Station.
r— kyfe
t
kp-C
c ~ ¥
=k -d C(Resultont Concrete)
Y Compressive Force
Fig. |—Concrete stress dis- l Neutmi
tribution at ultimate strength Axis
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Fig. 2—Design values from tests of reinforced concrete

Many different distributions of stress in the concrete compression
zone have been suggested, but in the light of recent experimental®
and analytical® investigations, it is considered that the use of the “equiv-
alent rectangular stress block” in design calculations will yield suffi-
ciently accurate results and will at the same time lead to considerable
simplification of design calculations. The use of a rectangular concrete
compression stress block was first proposed by von Empergert in 1904,
and since that time by several other engineers, the best known in this
country being C. S. Vhitney, whose paper® in 1937 was a notable con-
tribution to the literature of ultimate strength design.

Reinforced concrete investigations

Until recently, most of the available information regarding stress
distribution in concrete was derived from tests of reinforced concrete
members. In the early 1930’s the extensive ACI investigation® of con-
centrically loaded columns led to the addition law which states that
the ultimate strength of a column is equal to 85 percent of the cylinder
strength times the concrete area plus the yield stress of the longitudinal
steel times its area. Thus, for concentrically loaded columns, the value
of k; = 0.85 was derived experimentally.
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Several papers on stress distribution and ultimate strength design
were published in Europe during the 1930’s, and these were followed
by the studies of ultimate strength in this country by Whitney.® His
analytical approach involved an equivalent rectangular stress block
with a maximum stress of 0.85 f/, thus his value of k; was 0.85.

In 1943 an extensive study of the ultimate strength of beams was
presented by Jensen.” He proposed a trapezoidal idealized stress dis-
tribution, and derived the properties of this trapezoid as a function
of cylinder strength by analysis of the observed ultimate strength of
reinforced concrete beams. On this basis he found the values of kjks
and ks, shown in Fig. 2.

A study of the ultimate strength of eccentrically loaded columns
was reported by Hognestad® in 1951. The stress distribution used con-
sists of a rising parabola and a descending straight line after the
maximum stress. From the results of concentrically loaded columns, a
maximum stress equal to 0.85 f’ was chosen, that is, k; — 0.85. The
slope of the descending straight line was chosen so as to give the best
statistical agreement between calculated and observed column strengths
in 120 tests. The corresponding values of k;k; and k. are also shown
in Fig. 2.

Additional experimental evidence as to the parameters of the con-
crete stress block was presented in 1956.° Using the measured values
of depth to the neutral axis at failure and of the ultimate moment of
resistance, and assuming a safe limiting value 0.43 for ko, values of
kiks were calculated for 69 beams tested at Imperial College, University
of London, and at the University of Illinois. Based on these results the
values of k;k; labeled “Mattock” in Fig. 2 were proposed as suitable
for ultimate strength design.

Plain concrete investigations

In recent years various tests have been carried out on plain con-
crete specimens, using special testing techniques, in an effort to obtain
a true picture of the stress-strain relationship for concrete during
loading to failure. Independently, but almost simultaneously, tests of
eccentrically - loaded prismatic concrete specimens were carried out
in the Portland Cement Association laboratories!® and by Risch! at
the Munich Institute of Technology.

The specimen used in the PCA tests is shown in Fig. 3. The two
thrusts P, and P, were varied independently, in such a manner that
the neutral axis was maintained at the bottom face of the specimen
throughout the test. By equating the internal and external forces and
moments, it was possible to calculate the values of kiks and k. directly.

In the Munich tests, groups of about five identical prisms were
tested with a different and constant eccentricity for each test. By plot-
ting, for all specimens within one group, strain measured at an outside
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face at ultimate strength versus applied eccentricity, the eccentricity
corresponding to a position of the neutral axis at an edge of the section
was determined. By applying statistical methods, the magnitude and posi-
tion of the internal concrete force at ultimate strength was determined.
The parameters of the concrete stress block obtained at the two
laboratories are summarized and compared in Fig. 4 with the values
proposed in this paper. The PCA tests with sand-gravel aggregates have
been reported in detail elsewhere,’® a detailed report on the tests by
J. A. Hanson with lightweight aggregates has not yet been published.
The German tests!! were made with sand-gravel aggregates. It can be
seen that test results for sand-gravel concretes are in good agreement,
and that the radical change in aggregate type to lightweight materials
caused only a minor change in the stress distribution properties.

Analytical investigations

In a recent analytical paper? the problem of ultimate flexural strength
of reinforced concrete members was reduced to finding the maximum
value of a load function expressed in terms of the internal resisting
forces of the loaded member. Assuming only that concrete stress, f, is
some function of strain, ¢, given by f = F(t), and that plane sections
remain plane during bending, the moment of resistance of a reinforced
concrete section was expressed in terms of the extreme edge concrete
strain, e, the reinforcement yield point, f,, and the dimensional prop-
erties of the cross section. This expression for moment was differentiated
with respect to the extreme edge concrete strain and equated to zero.
The resulting equation demonstrates that, when the maximum moment
in a rectangular reinforced concrete beam failing in tension under
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symmetrical bending is reached, then the concrete stress distribution
is such that the total compressive force is equal to that obtained from
an equivalent rectangular stress block in which the stress is equal
to the actual stress in the extreme compression fibers, and which has
a depth equal to twice the distance from the extreme compressive
fibers to the center of action of the resultant concrete compressive
force. From a study of concrete stress-strain curves obtained in the
PCA eccentrically loaded prism investigation,!” it was deduced that
the relationship between concrete stress at extreme compressive fiber,
fu, and the cylinder strength, f./, can be expressed closely as
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Fig. 4—Properties of concrete stress distribution at ultimate strength determined
from tests on plain concrete
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However, for purposes of practical application a conservative straight-
line relationship, f, = 0.85f. was proposed.

EQUIVALENT RECTANGULAR STRESS DISTRIBUTION

Nature of approximation

The essentials of the approximation are shown in Fig. 5 and may be
summarized as follows: At ultimate strength, the compressive stress
in the concrete compression zone is, for purposes of computation, as-
sumed to be uniformly distributed from the region of maximum com-
pressive strain to a depth, a, measured in a direction perpendicular to
the neutral axis, where the depth, a, is less than the depth to the neutral
axis, c¢. The uniformly distributed stress is taken to be equal to 0.85
of the cylinder strength, f’. The ratio, a/c is taken to be equal to 0.85
for concrete cylinder strength up to 4000 psi, and thereafter is reduced
by 0.05 for each 1000 psi of strength in excess of 4000 psi.

For a rectangular concrete compression zone the average concrete
compressive stress kiksf, is equal to 0.85(a/c)f/, that is kk; =
0.85(a/c), also ky, = Y2(a/c). Since k; is taken as 0.85 f,, it follows
that a/¢c = k; and a = kjc. For the values of a/c proposed above, k;k;
and k, will have values as indicated in Fig. 2 and 4. It is seen that the
proposed values for k;ks;, and ks correspond closely with the values
determined by experiment.

Assumptions in ultimate strength design

The assumptions necessary in ultimate strength design were set out
earlier in this paper, and will now be discussed item by item.

The nature of the first assumption has already been discussed above.

The second assumption is very nearly correct; any tension zone which
does exist in the concrete at ultimate strength, in a normally propor-
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tioned reinforced concrete section, is very small indeed; and its lever
arm is also small. It is therefore reasonable to neglect any contribution
by concrete tension to the ultimate moment of resistance of a section.

The third assumption is not strictly correct for a reinforced concrete
section after cracking, since the strain in the concrete on the tension
side of the neutral axis will vary considerably, at any given level, due
to cracking. If, however, we measure the extension per unit length of
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a gage length including several cracks, we find that this “apparent”
tensile strain varies linearly with distance from the neutral axis. If
for a particular section, we measure the compression strains and ap-
parent tensile strains using the same gage length, then the distribution
of these strains will be very close to linear. By experiment it has also
been found that for the normal type of deformed bar reinforcement,
the strain in the steel is nearly equal to the strain in the adjacent con-

TABLE |—SUMMARY OF COMPARISONS OF CALCULATED AND

EXPERIMENTAL ULTIMATE STRENGTHS

1:I_.oadil-z% Average value Standard
ype an . andar
Type of member number Failure mode Test ultimate strength deviation
tested Cale. ultimate strength
Reinforced concrete Simple Controlled by All beams: 1.06 0.113
rectangular beams bending, crushing of Beams with fo'>
reinforced in tension 59 beams concrete 2000 psi: 1.02 0.083
Reinforced concrete Simple Controlled by 5 -
rectangular beams bending, yield of tension Eﬁzr{lz;l isrllrtlgrflt]gé?ate
reiéxforced in tension 33 beams reinforcement grade steel: 1 0.042
and compression : Beams using high
Simple Controlled by . 0.170
lffl;)ding, crushing of strength alloy steel: 1.21
eams | coneretednd | Al beams: 1.07 0.072
pression steel
Prestressed beams Simple Varied All beams: 1.03 0.077
with well bonded bending,
tendons 32 beams
Prestressed beams Simple Varied All beams: 1.05 0.094
with unbonded bending,
tendons 24 beams
Symmetrical rein- Simple ‘Controlled by All beams: 1.11 0.100
forced concrete bending, yield of the
T-beams reinforced 15 beams reinforcement
in tension
Unsymmetrical rein- Simple Varied All beams: 1. 0.138
forced concrete bending, Beams controlled by
T-beams reinforced 12 beams yield of steel: 1 0.047
in tension
Reinforced concrete Simple Controlled by All beams: 110 0.069
beams with a tri- bending, crushing of
angular compression 6 beams concrete
zone reinforced in
tension
Reinforced concrete Axial Controlled by All columns: 1.00 0.074
rectangular columns loading, crushing of
16 columns | concrete and
yield of steel
Reinforced concrete Axial load-| Varied All columns: 0.97 0.059
rectangular columns ing plus
bending
about one
principal
axis,
86 columns
Reinforced concrete Axial load-| Controlled by All columns: 0.99 0.046
rectangular columns ing plus crushing of
bending concrete and
about two yield of some
principal of the steel
axes,
10 columns
Reinforced concrete Eccentric Controlled by All columns: 1.05 0.060
circular section oad, crushing of
columns 30 columns | concrete and

yield of some
of the steel
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crete. The second assumption is therefore sufficiently accurate for the
purpose of design calculations.

The maximum concrete compressive strain at ultimate strength has
been measured in many tests of plain and reinforced concrete members.
In Fig. 6a test results are plotted which were obtained at the University
of Illinois®!? in tests of reinforced concrete columns and beams, while
in Fig. 6b are shown values of maximum concrete compressive strain
measured in the PCA? and Munich"' tests of plain concrete. It can be
seen that the value of 0.003 in. per in. proposed for design is a reason-
ably conservative value.

The implication of the fifth assumption is that the effect of strain
hardening of the steel above the yield point is neglected. Compatibility
of strains can no longer be relied on at high steel strains beyond the
yield point, also the stress-strain curve beyond the yield point is not
(and probably cannot conveniently become) stipulated in American
specifications for manufacture of reinforcement. It is therefore con-
sidered unwise in design to rely on obtaining an increase in ultimate
strength through strain hardening of the reinforcement.

SUMMARY OF COMPARI,SONS WITH EXPERIMENTS

Development of design equations and comparison with test data are
presented in detail in Part 2 and the appendix, respectively. A summary
is presented below.

The correctness of the equation for ultimate strength of a reinforced
concrete beam reinforced only in tension, with the strength controlled
by tension, is verified by R. C. Elstner’s statistical analysis of 364 tests
of this type of beam. This analysis leads to a value of 0.593 for the
coefficient of q in the equation, as against a value of 0.59 derived from
the assumptions set out in this paper, the differences being insignificant.

The comparisons of calculated and experimental ultimate strengths
for other types of member and conditions of loading are summarized
in Table 1. The data contained in the table were obtained from tests of
334 structural concrete elements of nine different types, in which the
elements were subjected to four different combinations of flexure and
axial loading. The tests included cases in which the concrete compres-
sion zone at ultimate strength was segmental, trapezoidal, or triangular
in shape, in addition to the more common rectangular shape. It will be
seen that there is close agreement between the experimental and calcu-
lated ultimate strengths. The mean value of “Test Ultimate Strength”/
“Calculated Ultimate Strength” for all 334 cases considered is 1.037, and
the standard deviation is 0.097.

CONCLUDING REMARKS

The validity of the basic assumptions, particularly the use of an
equivalent rectangular stress distribution as proposed herein, and their
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applicability to the calculation of the ultimate strength of structural
concrete sections has been confirmed by two findings:

1. The parameters proposed for use in ultimate strength design, as cal-
culated from the basic assumptions, are in close agreement with the values
of these parameters determined from tests of plain and reinforced concrete.

2. There is excellent agreement between the ultimate strengths of a wide
range of structural concrete members determined experimentally, and the
calculated ultimate strengths of the members based on the assumptions
set out in this paper.

It is concluded, therefore, that the proposed method of ultimate
strength design permits prediction with sufficient accuracy of the
ultimate strength in bending, in compression, and in combinations of
the two, of all types of structural concrete sections likely to be en-
countered in practice.

Part 2 — Design Equations

DESIGN OF RECTANGULAR BEAMS IN BENDING

Beams reinforced in tension only

Ultimate strength controlled by yielding of reinforcement—In this
case, steel stress at ultimate strength, f,, equals the yield stress f,.
From equilibrium of internal forces in Fig. 7

0.85kife’ be = Asfy i (1.1)

From equilibrium of internal and external moments

Mu: = A, fy(d——sz) ......................................... (1.2)
Solving Eq. (1.1) and (1.2) and substituting q = pf,/f.:

k-
u = " — —— g ) 1.
M. Af,,d(l 0‘85qu) (1.3)
or
Mui = bd*f. q ( 1k 4 ) ..................... (13A)
0.85k;
Since k; = 2ks;, we may write
Muae = Aufy d(1 — 0.59Q) oo (1.4)
or
Mu = bd2f Q(1—0.59G) oo (1.4A)

Eq. (1.4A) is, of course, identical with Eq. (Al) in the Appendix to
ACI 318-56.

The correctness of Eq. (1.4A) was demonstrated statistically by R.
C. Elstner. Using the general concrete stress distribution parameters

=
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ki,ke,ks, Eq. (1.3A) may also be written:

— 2 ’ — kz ) 15
M.,u_bdfoq(l ) IO (1.5)

Examining the results of 364 beam tests by the method of least squares
ko/k:k3 is given by:

Mul!

ke . A (1.6)
k.ks 3q*
F—b— —Ey—] k-ksfc 085 |
T f > T %
w5 ¥ Q =
0x x }
® B | Neutral _ l "~ & _L
L Axis C=k,(ksfsbc)  |C=085k, fibc
< e 0o oo — L >
As Es Agts Ayt
Strain Actual Assumed
Stresses Stresses
Fig. 7—Conditions at ultimate strength
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Fig. 8—Tests of 364 beams controlled by tension
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Using this equation Elstner found ko/kiks = 0.593. In Fig. 8, the curve
of Eq. (1.4) is drawn, together with the 364 test results considered in
Elstner’s investigation.

Ultimate strength controlled by compression—In this case crushing
of the concrete takes place while the steel stress is below the yield
point.

From equilibrium of internal forces:

085kifebe = Asfoiiiiiiiiiiiii (1.1A)

From equilibrium of internal and external moments:

Mut = AyFo(d — KaC) oo, (1.2A)
From assumption of linear strain distribution:

ke = & = & ] (1.7)

d € + €y
Solving Eq. (1.1A) and (1.7) for ku:
Ky = /‘/pm + (2.27_"_)2 e (1.8)

where m = (E;&,)/(0.85k,f’) as shown in Fig. 9.

The ultimate moment of resistance of a section may be calculated
by substituting the value of k, obtained from Eq. (1.8) in the follow-
ing equation:

Mure = (0.85k:f)bd*ku(l —Kakeu) oo, (1.9)

Balanced conditions—In this case simultaneous yielding of steel and
crushing of concrete takes place.

The balanced steel ratio, ps, is obtained by solving Eq. (1.1) and (1.7):

= 085k, — & £
Do 5k, P fv (1.10)
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Fig. 10—Steel ratio g, for ' . . : . . ,
balanced ultimate strength
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We may also write:

—p Jr — 085k — & 1
Qv = Do =0 1 e (1.11)

or, substituting for ¢, and ¢,

90,000
= 0. ky (— Y 1.1
@ 85 (f,, 06,560 (1.11A)

The ultimate moment for balanced failure may then be written:

Mu: = (0.85 k: £) b d? ( -t )[1 — ke ( o )] ,,,,, (1.12)

Alternatively the value of q;, found using Eq. (1.11A) may be substi-
tuted in Eq. (1.4).

Fig. 10 shows the balanced steel ratios q, for various strengths of
concrete and steel. Also plotted in Fig. 10 is the limiting value of q to
be used in design of sections prescribed by ACI 318-56. It is seen that
the limiting value prescribed is safe for steel yield points not exceed-
ing 60,000 psi as assumed in the Code, but the limit is in fact greater
than g, for high steel stresses. If it is considered desirable for design
purposes to establish a limiting value of q less than q, even for high
steel stresses, then it is proposed that this limiting value be expressed
as a fraction of q, and not in the form in current use. If, however, a
simple direct expression for the limiting value of q is desired, then-
the following is proposed:

“For f, < 4000 psi, qu. = 80/7/f,; for concrete strengths greater
than 4000 psi reduce qu, by 0.02 for each 1000 psi.” This simplified
expression ensures that qu. will be between 70 percent and 80 percent
of g, for an extremely wide range of concrete and steel strengths.

In Table A-1 of the appendix a comparison is made between the ulti-
mate moment calculated using Eq. (1.9) and the ultimate moment meas-
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ured in 59 tests on singly reinforced beams failing in compression. The
average value of Mye:/Mcqe for all beams is 1.06 and the standard
deviation is 0.113. It is of interest from a practical design point of
view to note that the average value of M;et/Moy, for beams made
from concrete with a cylinder strength of 2000 psi or over is 1.02, and
that the standard deviation for this group of beams is 0.083. A histo-
gram of these results is plotted in Fig. 11.

Beams reinforced in tension and compression

Ultimate strength controlled by yielding of tension reinforcement—
In this case tensile steel stress at ultimate strength, f,, is equal to the
yield stress, f,.

From equilibrium of internal forces in Fig. 12:

085kifobe + Al fe = Acfy oo (2.1)
From equilibrium of internal and external moments:
Myt = 085k.if’be(d—ke) + A/ f/(d—d') (2.2)

In most normal doubly reinforced beams the compression steel is close
to the face of maximum concrete compression. The strain in the steel

|
401 I
|
30+
3\2 I - Average = 1.0l
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!
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Fig. 12—Conditions at ultimate load, beam reinforced in tension and compression

will then be greater than the yield point strain ¢,’, and the steel stress
f&’ will equal f,/. In this case we may rewrite Eq. (2.1) and (2.2) as
follows:

085kifebe + Alfy = Ao (2.1A)
“Muar = 085k f’be(d —kee) + Asfy/(d—d') ... (2.2A)
From Eq. (2.14)
I fyp — £'D
ke = £ = (W) .................. (23)
or
e _(a—-g
¢ = ( 13 ) L (23A)
where
S 3
qQ =0p X
Calculate ¢ from Eq. (2.3) and check that f = f,” using
e =e S (2.4)
c

If ¢ = ¢/, the compression reinforcement has yielded and the ulti-
mate moment may be calculated by solving Eq. (2.1A) and (2.2A),
this yields:

— A _ k. frp — fi' D rfor —dn

Mui = (A.f, — AC ) d ; 1 - oo ( = )$ L A/ Ad — d)
Since k, = 2k,, we may write:

Mar = (A f, — AS £ d gl - °_f59_<fm — /P } + Af/{d—dY  (25)
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This may also be written:
Mu: = (A, fy — A/ £)HA{1—-059 (@ —q)} + ASf/ {d—d’} .. (25A)
If f, = f,/ this becomes

Mus = (A=A d §1-059 ){ (=) |+ Afy(d—d}...(25B)
This is Eq. A3 of the Appendix to ACI 318-56, and is valid only if the
compression steel has yielded. When using this equation a check should
be made on the compression steel stress using Eq. (2.3) and (2.4).

If & < ¢/, then compatibility of strains in the compression zone
must be considered.

f' = e/ E. = euE, (i:c_d_) ................................. (2.6)

Solving Eq. (2.1) and (2.6) for k,:

=< = m (ot z . i_m( P & )
o= = 1/[2(1) v )] rem g - (P - )0

where, as before, m = (E;&,)/(0.85k, ).

The compression steel stress, f,’, may then be obtained from Eq.
(2.6) by substituting the value of c, calculated using Eq. (2.7). The
moment of resistance is obtained by substituting the calculated values
of ¢ and f/ in Eq. (2.2).

Ultimate strength controlled by crushing of concrete—The tensile
reinforcement is in this case stressed elastically. From equilibrium of
internal forces:

085kif’be + Al f = Asfo (2.8)
From equilibrium of internal and external moments:
Mu: = 085kif’be (d—kee) + Asf/ (d—d') o (2.9)
If the compression reinforcement has yielded these equations become:

085kifebe + ASF) = Asfe o, (2.8A)
and

My = 085kif’be(d—kee) + ASf/ (d—d’) ... (2.9A)

From assumption of linear strain distribution:

or

€ = &u (d — c) . (210A)
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Solving Eq. (2.10) and (2.8A) for k,

=g = TG 7 o - B 7) om

—

where m is as before.

Check that &/ is > g, using &’ = &, [(c — d’)/c].

The moment of resistance is calculated using Eq. (2.9A), substituting
the value of c, obtained from Eq. (2.11). If the compression reinforce-
ment has not yielded, then the compatibility of strains across the entire
section must be considered. This yields:

R (d = ") ........................................ (2.10A)

and

g (c = d') .......................................... (2.6)

Solving Eq. (2.10A), (2.6), and (2.8A) for k,

ke = %: /‘/;%(p'+p)$:+ m(p'—(g—+p)— %(p’+p)-(2~12)

The value of ¢ obtained from Eq. (2.12) is substituted in Eq. (2.6) to
give &’ and hence f,/. These values of ¢ and f,’ are substituted in Eq.
(2.9) to yield the ultimate moment.

Balanced conditions—In this case simultaneous yielding of tensile
steel and crushing of concrete takes place. From assumption of linear
strain distribution:

c = (gyi&)d .......................................... (2.13)

Solving Eq. (2.13) and (2.8):

Balanced steel ratio

pr=p I o (2.14)
fv

where p; is the balanced steel ratio for a beam having the same steel
and concrete strengths, but reinforced only in tension, as given by Eq.
(1.10).

& = &u — %(Sy + &)

If d’/d is < (e« — &/)/ (e« + &), then & > &,/ and f/ = f,/

Pe = P fL’—}- Do (2.15)
fy
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If d’/d is > (e« — &')/ (ts + &), then f¥ < f,/

_ L E{_ _ @
P =p fyg e — 2 (o) E+ Booo (2.16)

The ultimate moment at balanced failure is given by:

Mu: = 0.85 ki f.’ bd? (_87)3 1 — ke (eﬁ)gﬁu ASf (d—d) (2.17)

€y + €u gy + €
where
s d’ g — &
S = o = = L s
f fv d ( €. + &y )
and

’ o _a a €a — E
f._E.geu T(ey-}-s. 21f >(S“+£:)
The results of applying the above analysis to 44 doubly reinforced
beams is shown in detail in Table A-2 and is summarized below. (His-
tograms of these results are plotted in Fig. 13.)

Failure : Average Muu (test) Standard
mode Reinforcement & M. (cale) deviation
Tension Structural or inter- 1.03 0.04
mediate grade Steel
Tension High strength alloy 1.21 0.17
steel
Compres- Structural or inter- 1.03 0.07
sion mediate grade Steel

It is of interest to note that the compression reinforcement yielded
in only eight of the 33 beams failing in tension. In four of the beams
the “compression” reinforcement was actually in tension at ultimate
load.

The reason for the relatively high value of M;./ Mo for beams fail-
ing in tension and reinforced with high strength alloy bars is probably
strain hardening of the tension steel in beams with only a small per-
centage of tension reinforcement. The yield plateau of this reinforce-
ment is of the order of 0.2 percent whereas that of structural grade
reinforcement is about 1.5 percent. The alloy steel therefore quickly
passes into the strain hardening range with consequently higher steel
stresses at failure. Since neither the length of the yield plateau, nor
the shape of the steel stress-strain curve beyond the yield plateau are
included in steel specifications, it is the opinion of the writers that for
practical design purposes the calculation of the ultimate moment of
beams reinforced with high strength steel of this type should be based
on the specified yield stress. However, if it is desired to analyze the
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behavior of a specific beam, for which the stress-strain curve of the
reinforcement is known, the following approach can be used.
From equilibrium of internal forces:

0.85ksfobe 4+ ASFS = Aufarooee (2.18)

From compatibility of strains:

e = £ (ﬁ) c _ )
(] ’ d €s + €u

Solving the above equations:

g = [o.sszl)clf.,' (E. e eu) : _E,eug 1 — %(%)ﬂ ...... (2.19)

Plot the curve of f;, and ¢ given by Eq. (2.19) on the same base as
the stress-strain curve for the reinforcement. The intersection of the
curves gives the steel stress and strain at ultimate moment, from
which the ultimate moment can be calculated. This approach was used
to analyze Beam IIIB-1 from Table A-2, using a typical stress-strain
curve for this type of reinforcement, and a value of Myest/Meq, 0f 1.23
was obtained, as against 1.44 if the calculated ultimate moment is based
on the yield strength of the reinforcement. The remaining hyper-
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Fig. 14—Stress and strain conditions in prestressed beams

strength of 23 percent could be due to several as yet unpredictable
causes such as variation in length of yield plateau from bar to bar,
departure from linear strain relationship at a wide crack, etc.

Prestressed beams

The following reasoning applies to prestressed rectangular beams
and to T- or I-section beams in which the flange thickness is greater
than the depth of the equivalent rectangular stress block at failure.

From equilibrium of internal forces in Fig. 14:
085kifrbe = Aiforiiiiiiiii 3.1)
From equilibrium of internal and external moments:
Mure = Asfo (d—KoC)uovvrviciiiiiiiic (3.2)
or
My = 0.85kifo/be (d—Ke€)ooovoeiriiiicn, (3.2A)

From assumption of linear distribution of concrete strains:

Solving Eq. (3.1) and (3.3) we obtain:
(1) Change in concrete strain at level of steel from zero load to failure

(6c + e) = €op + & 280Jaf’ _ ) ........................ (3.4)
pf.

Because of high bond stresses and consequent bond slip at failure in this

type of beam, the change in strain in the steel during loading to failure

may not be equal to the change in strain in the adjacent concrete. We

will write therefore:
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(2) Change in strain in steel during loading to failure:
= bl = ¢ % w — L o 3.5
= & €eo F%spﬂ—e o7, 1)§ ............... (3.5)

where F is the ratio of the actual change in strain of the steel, to the
change in strain of the concrete at the level of the steel calculated on
the basis of linear distribution of concrete strain.

It has been suggested? that for well bonded tendons F = 1.0, while
for post-tensioned tendons without bond a suitable value deduced from
the experimental results'®*2%2¢ plotted in Fig. 15 is F = 0.8k,. There-
fore, for prestressed beams with well bonded tendons:

e.=geu_°%’;:i~1)+ec,+e..% ....................... (3.6)

while for prestessed beams with unbonded tendons:

e = %%(ew — &) +0.8 tu + £ue 2 .................... 3.7

Since the shapes of the stress-strain curves of prestressing steel do
not in general lend themselves to algebraic representation, the analysis
of a given section is best carried out using a process of iteration. As-
suming a value of f,, the steel stress at failure, the corresponding strain
g, may be calculated using Eq. (3.6) or (3.7). The steel strain so ob-
tained is entered on the stress-strain diagram for the reinforcing steel
and a new value of f, obtained. The process is repeated, using the new
value of f,, as often as is necessary.

T T T T T T
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a
0.00080+ X T
Ao +;_
X ° + o a
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ky

Fig. I5—Post-tensioned prestressed beams without bond F-g, vk,

Py
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When the steel stress has been determined, the neutral axis depth
may be calculated using Eq. (3.1) and the ultimate moment using Eq.
(3.2).

Value of ¢,: For a safe estimate of g, the minimum probable value
of &, should be used. It can be shown? that with present day allowable
concrete stresses a reasonable value of g, is 0.0004.

The analysis proposed above was applied to 32 prestressed beams
with well bonded tendons and to 24 post-tensioned beams without bond;
the results are detailed in Tables A-4 and A-5 and are summarized
below.

1. Beams with well bonded tendons:

Average Mieot/Mcarc = 1.07; Standard deviation = 0.077
2. Post-tensioned beams without bond:

Average Miest/Mcuie = 1.05; Standard deviation = 0.094
Histograms of these results are plotted in Fig. 16.

Note — Expressions for the strength of prestressed beams with non-rec-
tangular compression zones may be derived by combining the approach
used above to take into account the influence of prestress, with the ap-
proach described below for reinforced concrete beams with nonrectangular
compression zones.

I

NONRECTANGULAR BEAMS
Symmetrical T-beams

Ultimate strength controlled by yielding of reinforcement — When
the flange thickness exceeds the depth of the equivalent rectangular
stress block, the equations developed for the singly reinforced rectangu-
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Fig. I7—Conditions at ultimate strength in reinforced concrete T-beam

lar beams are valid for the T-beam. If the depth of the equivalent
rectangular stress block is greater than the flange thickness, i.e., if

ke = (A, £,)/(0.85f’b) > t (Fig. 17), then:
From equilibrium of internal forces:
085kif’b’c + 085 f/ (b—b')t = Asfy oo, (4.1)

From equilibrium of internal and external moments:
Muz;:0.85k1;fc’b'c(d Ja )+ 0.85 f. (b—b)t(d—t—) (4.2)
Solving Eq. (4.1) and (4.2):

— _ _ I — -t
Mu: = (A, — Au) fod g 1059 her ca, A.,)g + Auf, (d ! ) (4.3)
In which A, = {0.85f/ (b — b’)t}/f, is the steel area necessary to
develop the compressive strength of the overhanging portions of the
flange. Eq. (4.3) may also be written as follows:

Ma: = (Ao — Aup) §,d { 1 — 0.59 (pw —py) ffg + Auf, (d - g_) .......... (4.4)

where: p, = A,/b’d and p; = A,/b’d. This is Eq. (A4) of ACI 318-56.

Ultimate strength controlled by crushing of concrete—While steel
stress is still below the yield point:

From equilibruim of internal forces:
0.85k.f.’b'c 4+ 085f/ (b—b)t = Asfe v, (4.1A)

From equilibrium of internal and external moments:

Mu: = 085k f/ b'e (d _ ke ) 4+ 085f, (b—b)t (d - ;_)_.“(4.2)
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From assumption of linear strain distribution:

Solving Eq. (4.1A) and (4.5) for k,:

= Vp”m“LD(b;'b') zlf,dg + Bt :

] TCELATE TR g 2. O — (4.6)

where, as before, m = (E,&,)/(0.85k:f/).

The ultimate moment of resistance of the section may be calcu-
lated by substituting the value of ¢ obtained from Eq. (4.6) in Eq. (4.2)
above. '

Balanced conditions—i.e., simultaneous yielding of steel and crush-
ing of concrete.

From assumption of linear strain distribution:

< —(su—{—ey) ............................................. 4
Solving Eq. (4.1) and (4.7):
A, —A'f -_()851<;11L"(’3 18 ):p,, .................... (4.8)

Where p, is the balanced steel ratio for a rectangular beam made of
same concrete and steel.
The ultimate moment for balanced conditions may be written:

Muar = 0.85 Kk, fo' b’ (_8_) da ; 1 -k e_)z
g + & 2 \ew + &

+ 085f/ (b—b)t ( d— %) .................................. (4.9)

The results of tests on 15 T-beams were analyzed and are detailed
in Table A-3. The mean value of M;e:/Mewe is 1.11 and the standard
deviation 0.10. The results include some beams in which strain harden-
ing of the reinforcement is known to have occurred. If desired the
strain hardening effect could be investigated in a particular case using
the approach outlined for doubly reinforced beams.

Nonsymmetrical T-beams

For most nonsymmetrical T-beams used in monolithically cast con-
struction, lateral deflection is prevented. The neutral axis is then
horizontal, and the strength of an unsymmetrical T-beam equals that
of an equivalent symmetrical beam with the same total flange width.

When lateral restraint is absent, however, the beam may be consid-
ered to be loaded vertically and to be free to deflect laterally as shown
in Fig. 18. Since no moments are applied in a horizontal plane, the



ULTIMATE STRENGTH DESICN 9C3

center of concrete compression must be vertically above the centroid
of the tension reinforcement. The width of the stress block at the top
face of the beam will therefore be 1:5 times the width of the web of
the beam for this condition to be satisfied, assuming the reinforcement
is placed symmetrically within the web.

Ultimate strength controlled by yield of reinforcement—From equi-
librium of internal forces:

%2 (15b°a085f’) = Aify .o e (8.1)

From equilibrium of internal and external moments:
= -2
M = AdS, (d g ) ....................................... (5.2)
or

= 0.75b’ 2 0.85 f.’ ( d — g_) ................................ (5.2A)

Solving Eq. (5.1) and (5.2) we have:
Mut = AsF,d (1 —052Qw) oo (5.3)

or

Mui: = b d*fo’ quw (1 —0.52Quw) oo (5.3A)

where

\ . (c) Actua!
a) Section b) Strains (d) Assumed
(a) : (b) Stresses Stresses

Fig. 18—Conditions at ultimate strength in a reinforced concrete unsymmetrical
T-beam



904 JOURNAL OF THE AMERICAN CONCRETE INSTITUTE February 1961

Ultimate strength controlled by crushing of concrete—While the
steel stress is below the yield point.

From the geometry of the section, as shown in Fig. 18:

= D' SIN 0o .
c % sin a (5.4)

where a is the inclination of the neutral axis to the horizontal.
From the assumption of linear strain distribution:

& _ (dcose + ¥%b'sina—c¢) (5.5)
Eu c

From equilibrium of internal forces:
1% (36b")2tan 0. 0.85 f' = A Es€e oo, (5.6)
From equilibrium of internal and external moments:
Mair = % (3b)°tan a 085 £ (d — %b'tana) ... o)
Solving Eq. (5.4), (6.5), and (5.6) for tan a we have:

tan_[W-—‘) +(n.) - (1-—)] ........... oo

9 (b:)n
4k1mA

where, as before, m = (g, E;) /(0.85k,f.’).

The ultimate moment is calculated by substituting the value of tan a
from Eq. (5.8) in Eq. (5.7).

Balanced condition—Simultaneous crushing of concrete and yield of
steel.

From equilibrium of internal forces:
% (3 b)2tan00.85f’ = A.fy = A.Esgy coovvviievc (5.9)

From assumption of linear strain distribution:

(dcoso + % b’sina) — ( 3 bsina )
€y __ 2k1
€u - 3 ol
3 klb sma)
& 2"1(_"_(:om+ %)_ S (5.10)
Eu 3 b'

Solving Eq. (5.9) and (5.10) for the steel ratio p,» for balanced ultimate

conditions:
Dus = LOlka 7] (5.11)
( +1 )— ks
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or

................................. (5.11A)

qus =

The ultimate moment of resistance is given by substituting g, in
Eq. (5.3)

Muie = A, fyd (1 —0.52 Qud) oovveeicieiccice, (5.12)

The results of tests on 12 unsymmetric T-beams are summarized
in Table A-6. The mean value of M;.:/Mu. for all beams is 1.10, and
the standard deviation is 0.138. The mean value of Me:/Mai. for beams
with ultimate strength controlled by tension is 1.04 and the standard
‘deviation is 0.047.

Beams with triangular compression zones

The following analysis was developed in connection with tests of
this type of beam, to check the applicability of the rectangular stress
block approximation to members having triangular shaped compres-
sion zones.

Ultimate strength controlled by yield of reinforcement—From equi-
librium of internal forces (see Fig. 19)

0.85f, a’tan 0 = A fy e e (6.1)

From equilibrium of internal and external moments:
Ma = A4, ( - 2?‘1) ....................................... (6.2)

Solving Eq. (6.1) and (6.2) we have:

Mue = Afyd (1—0.723 V@) oo, (6.3)
or

B kot sfossti

2 T
_ L7 i

! ©
NA | 1 B B -
oo 144
T—As kg £, oA, f A,

(c) Actual (d) Assumed

(a) Section (b) Strains Stresses Stresses

Fig. 19—Condition at ultimate strength in a reinforced concrete beam with a
triangular shaped compression zone
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Mue = d* tan 6 f/q (1 —0.723 V@)oo, (6.3A)

Ultimate strength controlled by crushing of the concrete—While the
steel stress is below the yield point.
From equilibrium of internal forces:

where

0.85 fo'a* tan 6 = Asfoviiiiiii (6.4)

From equilibrium of internal and external moments:

M = 0.85 f./a® tan 6 (d - 23_“) ............................. (6.5)

From assumption of linear strain distribution:

i:(d—c) ............................................. (6.6)

Eu c

From Eq. (6.4) and (6.6):

c @i«”’ge__t?n_f’_)Jrc_d:o ............................ (6.7

Solve Eq. (6.7) for c and substitute in Eq. (6.5A) below to compute
ultimate moment

M = 0.85f. kc* tan 0 (d - 2:’;1 c ) .................. (6.5A)

Alternatively Eq. (6.4) and (6.6) can be solved for c using an iterative
procedure. The value of ¢ obtained is then, as before, substituted in
Eq. (6.5A).

Balanced conditions—Simultaneous crushing of concrete and yielding
of steel.

From equilibrium of internal forces:
0.85f, (kic)? tan 0 = A, fy .o, (6.8)
From assumption of linear strain distribution:

_g_ = (e,, :‘_‘ — ) ............................................ (6.9)

Solving Eq. (6.8) and (6.9) for the steel ratio p, for balanced ultimate
conditions [p = A,/ (d?tan6)].

. 0.85 fo' / k1 2
Pr = 1, \o + & ) ....................................... (6.10)
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or

2
@ = 0.85 (ﬁ) ..................................... (6.10A)

The ultimate moment of resistance is given by substituting g, in Eq.
(6.3)

Mure = Ay d (1 — 0723 V@)oo (6.11)

The results of tests on six beams with triangular compression zone
are summarized in Table A-7. The mean value of M;e:/Mcqe is 1.10 and
the standard deviation is 0.069.

DESIGN OF COLUMNS

Concentrically loaded columns

In this case it is assumed that at ultimate strength of a column the
entire concrete cross-section is uniformly stressed to 85 percent of the
cylinder strength of the concrete, and that the entire cross section of
the column is uniformly strained to 0.003 in. per in.

For columns reinforced with steels having a yield point of 90,000 psi
or less, ultimate strength will be controlled by simultaneous crushing
of the concrete and yielding of the steel. The ultimate strength is
therefore given by:

P, = 085f Ac + frAut o (7.1)

where A. is the net concrete cross section
A,: is the total longitudinal reinforcement cross section

In the above it is assumed that sufficient lateral ties are provided to
ensure that the reinforcement will not buckle before reaching its yield
stress.

Eq. (7.1) was used to calculate the ultimate strength of 16 concen-
trically loaded reinforced concrete columns with lateral ties, tested as
part of the ACI column investigation and reported in University of
Illinois, Engineering Experiment Station Bulletin No. 267.% The results
are set out in detail in Table A-8. The average value of Piest/Peqe for all
beams is 1.00, and the standard deviation is 0.074.

It was concluded in the ACI column investigation® that Eq. (7.1)
also serves to calculate the yield point load of a concentrically loaded
circular column with spiral reinforcement. Further increase in load
is obtainable in this type of column when loaded concentrically due
to the lateral restraint of the compressed concrete by the spiral. How-
ever, Hognestad® has shown that if the load is eccentric to even a small
degree, then no further increase in load is obtained after yield in this
type of column. Since a truly concentrically loaded column is an extreme
rarity in practice, it is proposed that increase in load after yield of
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Figure 20—Conditions in an eccentrically loaded column at failure, ¢ < d

spirally reinforced columns should be ignored, and that their ultimate
strength should be calculated using Eq. (7.1).

Eccentrically loaded rectangular column, reinforced on two faces

It is reasonable to assume that the compression reinforcement has
yielded. This may be verified by checking that e, = [(¢c — d’) /c] is=¢,’.
If this is not the case, a solution may be developed by taking into ac-
count compatibility of strains, as was done for the case of a beam re-
inforced in compression in which the compression reinforcement did
not yield.

In what follows it is assumed that the above check has been made,
and that the compression reinforcement has been found to yield.
From equilibrium of internal and external forces in Fig. 20:

P, = 085k:f’be + A fy — Asfeoii, (8.1)
From equilibrium of internal and external moments:
P = 085k:f’be(d—kee) + ASf (d—d’) (8.2)

Strength governed by tension steel yielding—Solving Eq. (8.1) and
(8.2) for c¢/d, and substituting

q = z}f," and qQ = p’f"”

fe
F- -G

VT ) e (] e
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Substituting this value of ¢/d in Eq. (8.1) yields:

P, = fobd |: (@ —q) + 0.85 ;_(%_ 1)

Ty e LD ErE T

For symmetrically reinforced columns, p = p’. Assuming f, = f/,
q = q’, therefore:

P, = 085f./bd [_(_gl__ 1) + 1/(%_ 1)2+ 2,35q(d—dd' )],4.4(8.5)

In the above equations the displacement of concrete by the com-
pression reinforcement is ignored. For values of p’ > 2.0 percent the
ultimate load may be over-estimated by up to 6 percent.® This error
may be corrected by considering an effective yield point [f,” — 0.85 /]
instead of f,/ in the calculation q’.

351
301
|
25
9 |,_-Average 0.98
. ¥
€ 20
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o
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Strength governed by concrete crushing—From assumption of linear
distribution of strains:

L= (EST) ............................................. (8.6)

and,

fo = Ev &, = E, & (d:‘: ) ............................... (8.6A)

If k, c is less than t, Eq. (8.1) and (8.2) apply.
If k, c is greater than t, these equations become:
P, = 085f/’bt + A/ fy + Asfarr (8.1A)
Pie = 085§/ bt ( d _%) + A @ =d) (8.2A)

Once again, if greater precision is desired in computation of the
ultimate load, an effective yield point [f,/ — 0.85f,’] should be used
instead of f,’.

Solving Eq. (8.1), (8.2), and (8.6A) yields a cubic equation in c/d
which does not lend itself to easy solution.

The following method of solution by successive approximations was
proposed by Hognestad.?

With known section dimensions, material constants, and eccentricity e,
the problem is to find ¢, and hence P,. The procedure is as follows.
Assume a value for ¢ and use Eq. (8.2) to calculate P,. Substituting
the assumed value for ¢ in Eq. (8.6A) calculate f,. Using the calculated
values of P, and f, in Eq. (8.1) calculate c. The process is repeated
until the assumed and final value of “c” coincide or are sufficiently
close.

Balanced conditions — Simultaneous yielding of tension steel and
crushing of concrete.

In this case &, = ¢,

. ¢ _ £u
L= (E" B ) ......................................... 8.1
Solving Eq. (8.1) and (8.7):
P. = 085k f/bd (ﬁ + AFS — Aufy (8.8)

Solving Eq. (8.2) and (8.7):

— ’ 2 €u €u ’ a4
Pie = 0.85kif. b d (m)g 1 — ks (m)% + AJf, (d—d) .(8.9)

The analysis proposed above was applied to 84 eccentrically loaded,
rectangular reinforced concrete columns tested by Hognestad.® The re-
sults are set out in detail in Table A-9. The average value of Pi.¢/Peac
for all columns is 0.97, and the standard deviation is 0.059. A histogram

o

“

[
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Fig. 22—Stress and strain conditions in circular column subject to eccentric loading

of these results is plotted in Fig. 21. The calculation of the ultimate
strength of this large number of columns was greatly facilitated by
use of an electronic computer.

Circular columns subject to eccentric load
Case 1—Equivalent rectangular stress distribution covers part only
of column cross section as shown in Fig. 22.

Let G., be center of action of steel compressive force.
Let G.:. be center of action of steel tensile force.
Let G, be center of action of concrete compressive force.

From condition of equilibrium of internal and external forces:
P, = 085f’As + Fio — Fuatocoovoiiiiiii, (9.1)

where

A, = area of segment of circle covered by equivalent rectangular stress
distribution.

F,. = resultant steel compressive force (SA.f:c)

F.: = resultant steel tensile force (3A.f.)

From condition of equilibrium of internal and external moments:
Puwe = 085f AcYo + FucUeo + Fat Yut oo, (9.2)

Where the eccentricity e is measured from the center of the column.
For the general case an iterative solution of the Eq. (9.1) and (9.2)
is proposed.
Assume a position of the neutral axis cc and calculate the stress in
each bar of the reinforcement using:

fon = Evtn = Eutw (%) . which must be < §,

Calculate the resultant tensile and compressive steel forces, Fy; and F,,,
and their centers of action, Gy (Yor)$ G..,(y").
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The first moment of area about center O of the segmental area covered
by the rectangular stress distribution, A.y., is given by:

Ayo = (’%‘)” = % {DUusc) — (1€} oo (9.3)

Substitute the values calculated above in Eq. (9.2) and obtain P,.

Substitute this value of P, together with the calculated values of F,,
and F; in Eq. (9.1) to obtain A,, and hence a value for k;c and c.

The calculation should be repeated as often as is necessary, until as-
sumed and final values of ¢ are equal or sufficiently close. The value
of P, corresponding to this value of c is the ultimate load capacity of
the column.
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Fig. 24—Conditions at ultimate load, eccentrically loaded rectangular column
with reinforcement on all four faces

Case 2—Equivalent rectangular stress distribution covers the entire
column cross section.
From condition of equilibrium of internal and external forces:

P. = 0.85§, ({_Dﬂ) d Fao oo (9.4)

From condition of equilibrium of internal and external moments:
Pie = Flac Yo e (9.5)

As before assume a position for the neutral axis and calculate F,,
and y.. Using these values of F, and y, in Eq. (9.5) calculate P,. From
Eq. (9.4) calculate F,, inserting value of P, found above.

Adjust the assumed neutral axis position until the two values of Fg,
calculated are equal or sufficiently close.

The above method of analysis was applied to 30 eccentrically loaded
circular columns tested by Hognestad® and the results are contained
in Table A-10. The average of Pje:/Pcq. for the whole series was 1.05,
and the standard deviation 0.060. A histogram of the results is plotted
in Fig. 23.

Rectangular columns, reinforced at all four faces (Fig. 24)
Let G.. be center of action of steel compressive force.
Let G.: be center of action of steel tensile force.
Let F.. be resultant steel compressive force (3A. f..).
Let F.: be resultant steel tensile force (34, f.1).

From condition of equilibrium of internal and external forces:

Po = 085f'bkic + Faoc — Fateoovreeveceerccce (10.1)
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From condition of equilibrium of internal and external moments:

P.e = 0.85f,/ bksc (L_ ky

: ; )+ Froeo + Fustur ... (10.2)

In the general case an iterative solution of the above equations is
proposed.

Assume a position of the neutral axis and calculate the stress in
each bar of the reinforcement using:

fin = E.em = E, g0 (%"_) ; which must be = f,

Calculate the resultant steel forces F,, and F,, and their centers of
action G,, and Gy With these values of F,, and Fy, calculate P, using
Eq. (10.1). Substitute this value of P, in Eq. (10.2) together with the
previously calculated values of Fy, Fy, Ys, Yst, and hence calculate
the neutral axis depth c.

The calculation should be repeated as often as is necessary until the
assumed and final values of c¢ coincide or are sufficiently close. The
value of P, corresponding to this value of ¢ is the ultimate load ca-
pacity of the column for the particular eccentricity considered.

Rectangular columns with bending on both principal axes (Fig. 25)
Let G.. be center of action of steel compressive force.
Let G.: be center of action of steel tensile force.
Let G. be center of action of concrete compressive force. -

From condition of equilibrium of internal and external forces:

P, = 085f Ao + Foc — Fat oo (11.1)
where
A, — area of compression zone covered by rectangular stress block
F,. = resultant steel compressive force (SA. f.o)
F,: = resultant steel tensile force (SA. f.:)

From condition of equilibrium of internal and external moments:
0.85f’ Acxo = (Fet Lot — FaoXso — Pu€s) oo (11.2)
085f AcYo = (Fat Yot — Fio¥Yso — Puey) oo, (11.3)

In the general case an iterative solution of the above three equations
is proposed.

Assume a position of the neutral axis cc and calculate the stress in each
bar of the reinforcement using:

fn = Evem = E. ¢ (%'_) . which must be = f,
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Fig. 25—Conditions at ultimate load in column subject to axial load and bend-
ind on both principal axes

Calculate the resultant tensile and compressive steel forces, F,; and
F,., and their centers of action Gat(x“, Yor) and Gsc(ac,c, Yoo * Using the
above values of F,, and F,, find P, for the assumed neutral axis position
using Eq. (11.1). From Eq. (11.2) and (11.3) obtain A.y. and A.x.,
using the values of P,, F,, etc. already found.

It is then possible to calculate the dimensions of the area covered
by the rectangular stress distribution and hence to obtain the position
of the neutral axis. The calculation must be repeated as often as is
necessary until assumed and calculated positions of neutral axis co-
incide or are sufficiently close. The value of P, corresponding to this
neutral axis position is the ultimate strength of the column.

The calculation of the dimensions of the compression zone from values
of A,y. and A.x, obtained as outlined above is considered below.

Case 1—Line AA cuts adjacent sides OP and OR as in Fig. 26.
XY Aoye XY*?

Acx. = —6—— = —6_
3 ———A 3
X 6(A.x.)
(A.y.)
and
Y = 8A.,x.

- Xt



916 JOURNAL OF THE AMERICAN CONCRETE INSTITUTE February 1961
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Case 2—Line AA cuts opposite sides PQ and OR as in Fig. 27.

b? Y.
cle = —— Y
A.x 2|: 1+3:|

Ay = %[ Ye + YQ(YI + ’g)]

. le[s Ach V_(Acyc)_:;(Ao:c.,) ]

and

A,z — Y1]

Y2:3|:§_

Case 3—Line AA cuts opposite sides of OP and QR as in Fig. 28.

Az, = %[Xl” + Xg(xl +XT)]

_t X,
Aoye = T[X‘ +3

X1:|:3 (%y_o) — /‘/% (Acx.) — 3 (%)]

2 Acyc—Xl]

X =

Case 4—Line AA cuts adjacent sides PQ and QR as in Fig. 29.
Use @ as origin for x, y, and e.

Pie: — FooXeo + Far ot = 0.85f Ac Lo, (11.2A)

Piey — FacYio + Fir st = 0.85F AcYoooovovvnn. (11.3A)
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Case 5—Equivalent rectangular stress distribution covers entire cross
section. As in Case 4, use @ as origin. Let neutral axis CC intersect x
and y axes at X’ and Y’ distance 2’ and y’ from Q.

Again fi = E, & (%) , which must be = f,.

Assume position of neutral axis. Calculate stress in each bar, and hence
total steel force F, and point of action G,(x;y,). Then:

P, = F, 4+ 085f/ bt (11.4)

From condition of equilibrium of internal and external moments:
P.(e.) = {085f, bt} %+ Fua oo (11.5)

and

P.(e,) = {085f bt} %JF Folf oo (11.6)

Substituting the value of P, from Eq. (11.4), Eq. (11.5) and (11.6)
may be solved for x; and y,. If these values of x, and y, do not agree
with the values calculated above using the assumed position of neutral
axis, a new position of neutral axis must be assumed and the process
be repeated as often as is necessary. In a simple section it may be
possible to link x, and y, to &’ and y’ algebraically, in which case itera-
tion may be used to solve the problem rather than trial and error.

Test results for columns subject to axial load and bending about
both principal axes are rather scarce. The analysis proposed has been
applied to ten columns tested by Andersen and Lee?" and the results are
contained in Table A-11. The average value of Pyey/P.u. for the series
is 0.99, and the standard deviation is 0.046.
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APPENDIX — TEST DATA

TABLE A-I—REINFORCED CONCRETE BEAMS REINFORCED IN
TENSION ONLY (Ultimate strength controlled by compression)

, Muis Test
Source Blngn 1’3%1’ 1{’;1 p bd* fo aﬁﬁ%ﬁg
Test Calculated
W. A. Slater 1 1390 64.8 0.021 0.506 0.362 1.40
and 2 2790 64.8 0.028 0.337 0.342 0.99
I. Lysel® 3 4070 64.8 0.037 0.326 0.336 0.97
4 4800 64.8 0.047 0.339 0.333 1.02
5 5740 64.8 0.056 0.320 0.323 0.99
6 2590 64.8 0.030 0.422 0.349 1.21
6A 4130 64.8 0.039 0.327 0.337 0.97
' 7 2950 64.8 0.028 0.341 0.339 1.01
8 2760 64.8 0.031 0.380 0.348 1.09
9 2820 64.8 0.032 0.391 0.347 1.13
10 2820 64.8 0.030 0.346 0.345 1.00
10A 3810 64.8 0.040 0.354 0.344 1.03
Columbia C1 3550 61.37 0.0341 0.406 0.339 1.20
University Ci11 3550 62.00 0.0345 0.394 0.340 1.16
Cc2 3550 63.04 0.0334 0.386 0.338 1.14
C12 3550 64.28 0.0328 0.365 0.337 1.08

.iu
\
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TABLE A-I (cont.) — REINFORCED CONCRETE BEAMS REINFORCED IN
TENSION ONLY (Ultimate strength controlled by compression)

Beam ! —Muie Test
Source No. {;Sl' 1{2’1 D bd2 fo’ Wxﬁelsawf
Test Calculated

K. C. Cox1s 122 1700 53.4 0.0176 0.405 0.343 1.18
123 1700 53.4 0.0264 0.423 0.363 1.16

124 1700 53.4 0.0352 0.455 0.374 1.22

125 1700 534 0.0440 0.471 0.382 1.23

142 1700 48.1 0.0244 0.442 0.359 1.23

143 1700 48.1 0.0368 0.426 0.376 1.13

144 1700 48.1 0.0488 0.490 0.385 1.27

224 3100 53.4 0.0352 0.343 0.348 0.98

225 3100 53.4 0.0440 0.353 0.359 0.98

243 3100 48.1 0.0368 0.370 0.350 1.06

244 3100 48.1 0.0488 0.375 0.363 1.03

214 3100 55.2 0.0308 0.374 0.341 1.10

215 3100 55.2 0.0388 0.372 0.353 1.05

235 3100 48.1 0.0388 0.381 0.353 1.08

252 3100 50.6 0.0348 0.379 0.348 1.09

253 3100 50.6 0.0520 0.388 0.366 1.06

325 4500 53.4 0.0440 0.320 0.336 0.95

343 4500 48.1 0.0368 0.297 0.326 091

344 4500 48.1 0.0488 0.342 0.341 1.00

425 5800 53.4 0.0440 0.293 0.309 0.94

444 5800 48.1 0.0488 0.300 0.314 0.95

S. L. Lash 4205 1970 39.2 0.0400 0.449 0.374 1.20
and 4206 1930 444 0.0475 0.464 0.380 1.22
J. W. Brison1¢ 4308 3330 42.8 0.0454 0.367 0.357 1.03
4407 4170 40.8 0.0367 0.305 0.333 091

4408 4490 43.4 0.0471 0.346 0.339 1.02

6203 2150 88.0 0.0140 0.346 0.316 1.09

6204 2150 75.8 0.0200 0.333 0.338 0.99

6205 1950 75.8 0.0225 0.415 0.349 1.19

6206 2080 73.5 0.0284 0.400 0.357 1.12

6207 1915 75.2 0.0385 0.391 0.373 1.05

6208 2120 75.2 0.0391 0.407 0.370 1.10

6303 3290 72.0 0.0147 0.270 0.292 0.92

6304 2760 75.8 0.0233 0.347 0.332 1.04

6305 3200 74.0 0.0286 0.338 0.335 1.01

6306 2760 75.2 0.0394 0.359 0.359 1.00

6404 4490 5.8 0.0226 0.263 0.296 0.89

6405 4140 74.0 0.0280 0.293 0.318 0.92

6406 4190 75.2 0.0390 0.317 0.336 0.94

6407 4190 62.1 0.0408 0.314 0.338 0.93

6504 4870 75.8 0.0233 0.247 0.289 0.85

6505 4450 65.0 0.0371 0.299 0.327 0.91

6506 5450 75.8 0.0458 0.292 0.318 0.92

Avg, all beams (59) ...t 1.06
Standard deviation, all beams ................. ... i =+0.113

Avg for beams with fo" > 2000 psi ................. . ... 1.02
Standard deviation for beams with fc’ 2000 psi ................... 0.083
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TABLE A-4—PRESTRESSED CONCRETE BEAMS WITHOUT BOND

Steel Mouit

Beam b, d, P, fse, tensile o, bd2 fo’ Mtest

Source No. in in per- ksi |strength, | psi Mecaio

cent ksi Test | Cale

J. R.Janney, 3—0.128 | 6.0 8.3 0.322 | 110 235 5900 | 0.084 | 0.079 1.06
E. Hognestad, 3—0.144 | 6.0 8.3 0322 (1 235 5250 | 0.102 | 0.093 1.10
and 3—0.307 | 6.0 8.3 0.644 | 130 235 4930 | 0.200 | 0.184 1.09
D. McHenry? 3—0.428 | 6.0 8.3 0.965 | 120 235 5300 | 0.229 | 0.233 0.98
3—0.428 | 6.0 8.3 0.965 | 133 235 5300 | 0.238 | 0.241 0.99

A.Feldman2 U-1 599 | 842 | 0.346 | 1275 250.76 4240 | 0.139 | 0.135 1.03
U-3 6.00 | 7.85 | 0.183 | 120.8 250.76 5620 | 0.055 | 0.048 1.15

U-4 6.16 | 8.33 | 0.782 | 118.9 250.76 4060 | 0.274 | 0.250 1.10

U-5 6.09 8.24 0.685 120.7 250.76 4060 | 0.273 0.271 1.01

U-7 6.00 7.50 0.382 121.9 250.76 5020 | 0.120 0.124 0.97

U-8 6.00 | 7.65 | 0.624 | 118.9 250.76 2565 | 0.285 | 0.290 0.95

U-9 6.00 | 7.35 | 0.650 | 120.0 250.76 3550 | 0.273 | 0.246 1.11

U-10 6.02 7.55 0.820 118.8 250.76 3390 0.328 0.292 1.12

U-11 590 | 8.20 | 0.355 | 122.8 250.76 5490 | 0.121 | 0.107 1.13

U-12 6.00 | 834 | 0.401 | 125.8 250.76 4020 | 0.173 | 0.145 1.19

U-14 595 | 7.84 | 0.184 | 122.1 250.76 7600 | 0.049 | 0.043 1.14

U-16 5.96 7.56 0.509 121.1 250.76 2190 0.308 0.287 1.07

R.J. Allen? U-17 6.20 | 7.39 | 0.527 | 118.8 255 2120 | 0.330 | 0.304 1.09
U-18 6.10 | 7.45 | 0.797 | 1105 255 2770 | 0.339 | 0.321 1.06

U-19 6.04 | 6.85 | 0.365 | 123.7 255 6270 | 0.113 | 0.101 1.12

U-21 6.20 | 7.60 | 0.384 | 119.8 255 2450 | 0.218 | 0.223 0.98

U-22 6.10 | 7.32 | 0.743 | 118.2 255 4910 | 0.227 | 0.215 1.05

U-23 6.00 | 6.99 | 0.288 | 117.7 255 7580 | 0.049 | 0.067 0.72

U-24 6.00 | 7.85 | 0.192 | 119.0 255 5660 | 0.064 | 0.061 1.05

Avg Mitost/Mcaic for 24 beams = 1.05. Standard deviation = 0.094.

TABLE A-5—PRESTRESSED CONCRETE BEAMS WITH WELL BONDED

TENDONS
Steel _Mutr
Beam | b, d, D, fre, tensile ¢, bd? fo' Miest
Source No. in. in per- ksi strength, psi Mecatc
cent Kksi Test | Cale
D. F. Billet B2 6.15| 9.53 | 0.198 | 1168 246 5420 | 0.087 | 0.079 1.10
and B3 6.00 | 9.62 | 0.101 | 120.0 246 3750 | 0.065 | 0 1.06
H. H. Appleton?? B7 6.13 | 8.09 | 0942 | 1128 248 5910 | 0.272 | 0.256 1.06
B8 6.13 | 7.99 | 0.953 | 1129 248 3280 | 0.462 | 0.349 1.32
B9 6.06 | 9.23 | 0.418 191 240 6330 | 0.129 | 0.128 1.01
B10 6.06 | 9.01 0.107 19.0 240 3530 0.068 | 0.068 1.00
Bl11 6.06 | 9.21 | 0419 204 240 3910 | 0.208 | 0.190 1.09
B13 6.02 | 8.15| 0.656 212 240 3750 [ 0.283 | 0.242 1.17
B14 6.00 | 799 | 0916 20.2 240 3750 | 0.327 | 0.266 1.23
B15 6.03 | 9.29 | 0.418 | 150.0 240 5710 | 0.143 | 0.143 1.00
B16 6.01 | 9.00 | 0.108 | 150.3 240 3330 | 0.077 | 0.073 1.05
B17 6.00 | 9.09 | 0.429 | 151.0 240 4580 | 0.179 | 0.178 1.01
B18 6.00 | 8.29 | 0.647 | 148.8 240 4100 | 0.273 | 0.264 1.03
B19 6.08 8.27 0.873 151.3 240 6220 | 0.244 | 0.242 1.01
B21 6.08 | 9.05 0.284 118.0 248 6560 | 0.093 | 0.098 0.95
B22 6.07 | 9.13 | 0.561 | 115.2 248 7630 | 0.153 | 0.150 1.02
B23 6.04 | 8.20 | 0.943 1173 248 8200 | 0.213 0.206 1.05
B24 6.07 | 8.24 0.746 116.4 248 6120 | 0.235 0.221 1.06
B25 6.06 | 8.01 0.641 1145 248 3270 0.349 0.294 1.19
B27 6.07 | 8.36 | 0.920 | 118.0 248 4590 | 0.319 | 0.295 1.08
A. Feldman2t B28 6.15 | 7.93 0.475 92.5 186 2500 0.281 0.260 1.08
B29 6.16 | 8.07 0.815 92 186 4280 | 0.261 0.240 1.09
B30 6.09 | 8.08 | 0.177 | 101.1 248 2890 | 0.135 | 0.129 1.05
B31 6.08 8.23 0.579 94.1 248 3450 [ 0.279 | 0.250 1.12
B32 6.00 | 9.32 | 0.510 | 1153 256 7180 | 0.154 | 0.158 0.97
B33 6.03 9.08 0.312 116.9 256 8320 0.093 | 0.091 1.02
J. R. Janney, 1—0.141 | 6 8.3 0.322 | 119 235 5350 | 0.144 | 0.127 1.13
E. Hognestad, 1—0.250 | 6 8.3 0.644 | 113 235 6050 | 0.218 | 0.186 1.17
and 1—0.420 | 6 8.3 0.965 | 117 235 5400 | 0.260 | 0.258 1.01
D. McHenry?2? 2—0.151 | 6 8.3 0.322 | 126 235 5000 | 0.146 | 0.134 1.07
2—0.306 | 6 8.3 0.644 118 235 4950 0.237 0.214 1.11
2—0.398 | 6 8.3 0.965 117 235 5700 | 0.271 0.251 1.08
Average Mztest/Mcato: All 32 beams = 1.07. Standard deviation = 0.077.

i'&/,*_ | PPy
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TABLE A-6—UNSYMMETRIC REINFORCED CONCRETE T-BEAMS

Ultimate
Flange | Effec- moment, Mitest Type
Source Beam width, tive fe', As, fus in.-kip —_ of
B, in. depth, psi sq in.| ksi Meaie failure
d, in. Cale | Test
A. H. Mattock L1 8 13.8 2820 1.20 45.6 647 678 1.05 T
and L2 8 13.8 6200 1.20 46.1 710 693 0.98 T
L. B. Kriz? L3 8 12.9 3260 2.40 45.6 952 1062 1.12 C
L4 8 12.9 5570 2.40 51.0 | 1300 | 1325 1.02 CT
L5 12 13.8 2050 1.20 4179 627 671 1.07 T
L6 12 13.8 6320 1.20 475 733 778 1.06 T
L7 12 12.9 2225 2.40 43.0 695 876 1.26 (o]
L8 12 129 6420 2.40 43.0 | 1160 1173 1.01 T
L9 16 13.8 2680 1.20 45.4 637 663 1.04 T
L10 16 13.8 4820 1.20 445 678 757 1.12 T
L11 16 12.9 2530 2.40 50.7 75 1129 1.46 (o]
Li12 16 12.9 5820 2.40 50.5 | 1298 1265 0.97 T

(a) All beams: Avg Mtest/Mcarc = 1.10; Standard deviation = 0.138.
(b) Beams with ultimate strength controlled by tension: Avg Mtest/Mcaic = 1.04; Standard

deviation = 0.047.

TABLE A-7—REINFORCED CONCRETE BEAMS WITH TRIANGULAR
COMPRESSION ZONES

Ultimate moment,
fﬂ). fﬂl'{ Afx in.—kip _—_M“”
Source Beam psi ksi sq in. Mcato
Calc Test
A. H. T1 3620 49.0 0.88 194.5 196.8 1.01
Mattock T2 3455 49.0 1.32 215.0 240.9 1.12
and T3 6290 45.0 1.80 320.0 326.8 1.02
L. B. T4 1735 49.5 0.88 116.3 131.8 1.13
Kriz28 T5 3500 50.5 1.32 219.0 258.4 1.18
T6 7000 45.0 1.80 323.0 368.3 1.14
For all beams, d = 7 in., § = 45 deg.
Ultimate strength of all beams controlled by crushing of concrete.
Avg Mtest/Mcaro = 1.10. Standard deviation = 0.069.
TABLE A-8—TIED REINFORCED CONCRETE COLUMNS
LOADED CONCENTRICALLY*
Yield point ltimate load
Percent- of rein- fo, v tlmﬁis oac, Piost
Column age rein- forcement, psi Poato
forcement psi Test Calc
a 4 50,000 2860 219 231 0.95
b 4 50,000 3090 255 242 1.05
a 4 50,000 2650 253 222 1.14
b 4 50,000 2850 238 231 1.03
a 1.5 44,700 4700 225 246 0.92
b 1.5 44,700 4150 227 222 1.02
a 4 50,000 4670 285 310 0.92
b 4 50,000 4730 320 313 1.02
a 4 50,000 4225 293 291 1.01
b 4 50,000 4570 309 306 1.01

Continued on p. 926
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TABLE A-8 (cont.)—TIED REINFORCED CONCRETE COLUMNS
LOADED ECCENTRICALLY*

Yield point :
Percent- of rein- £, Ultlmﬁ%g load, Piost
Column age rein- forcement, psi Peare
forcement psi Test Calc
a 6 42,200 4215 317 315 1.01
b 6 42,200 4985 291 348 0.84
a 4 50,000 5870 353 363 0.97
b 4 50,000 6950 387 410 0.94
a 4 50,000 6245 410 379 1.08
b 4 50,000 6530 420 391 1.08

Average value of Ptest/Pecato = 1.00.

Standard deviation = 0.074

*Source: Series 3 of ACI column investigation—University of Tilinois Bulletin No. 267.

TABLE A-9—RECTANGULAR REINFORCED CONCRETE COLUMNS

LOADED ECCENTRICALLY

Group |
Concrete Eccen- Ultimate load,
Source Column cylinder tricity kip Ptest Mode of
and o. strength, (total), —————————— | Poato failure
characteristics fe', psi in. Test Calc

E. Hognestad? A-la 5280 0.12 388 452 0.86 C
A-1b 5660 0.14 441 481 0.92 (o]

=t=10in. B-la 4250 0.12 343 372 0.92 C
B-1b 4070 0.12 352 356 0.99 C

As =1.24sqin. C-la 22170 0.13 222 212 1.05 (o]
C-1b 2020 0.13 191 192 1.00 (o]

As’ = 0.22 sq in. A-2a 5280 2.72 239 240 1.00 (o]
A-2b 5830 2.78 253 260 0.97 (o]

fv = 43.6 ksi B-2a 4250 2.71 213 206 1.03 C
B-2b 4070 2.74 190 197 0.96 e

E, = 28 X 108 psi C-2a 2270 2.77 118.5 116 1.02 C
C-2b 1970 2.1 100.0 103 0.97 (o]

fy' = 60.0 ksi A-3a 5660 5.32 133.5 154.0 0.87 T
A-3b 5830 5.28 140.0 158.0 0.89 T

d = 8.67 in. B-3a 4630 5.41 125.9 134.3 0.94 CT
B-3b 4290 5.37 116.0 129.4 0.90 CcT

d’ =133 in. C-3a 1880 5.28 60.5 66 0.92 C
C-3b 1690 5.33 64.0 52 1.03 C

A-4a 4810 7.95 84.5 85.7 0.99 T

A-4b 5600 7.85 81.0 92.1 0.88 T

B-4a 3800 7.98 80.0 1.7 1.03 T

B-4b 4290 8.02 81.0 81.1 1.00 T

C-4a 1690 7.82 50.5 48 1.05 (o]

C-4b 1730 7.81 52.0 49 1.06 C

A-5a 4810 12.90 48.2 45.6 1.06 T

A-5b 5600 12.90 42.8 46.9 0.91 T

B-5a 4290 12.92 46.1 445 1.04 T

B-5b 4590 12.95 45.5 45.0 1.01 T

C-5a 2310 12.84 39.0 37.7 1.04 CT

C-6b 1770 12.84 32.8 34.0 0.96 CcT

Group 1l

E. Hognestad® B-6a 4080 0.07 456 437 1.04 (e}
B-6b 4040 0.06 420 436 0.96 (o]

b=t=10in. C-6a 2020 0.10 225 268 0.84 C
C-6b 1520 0.18 202 222 0.91 C
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TABLE A-9 (cont.)—RECTANGULAR REINFORCED CONCRETE
COLUMNS LOADED ECCENTRICALLY

Concrete Eccen- Ultimate load,
Source Column cylinder tricit, kip Piest Mode of
and No. strength, (total), ————————— | Poato failure
characteristics fe', psi in. Test Cale
As; =124 sq in. A-Ta 5240 3.44 274 254 1.08 C
A-Tb 5810 2.716 284 312 0.91 C
A =124sqin. B-Ta 4080 2.75 256 245 1.04 C
B-7b 4040 2.74 248 244 1.02 C
fy =43.6 psi C-Ta 1970 2.78 141 147 0.96 C
C-Tb 1520 2.17 126.8 135 0.94 (o]
E:; =28 X 108 psi A-8a 5520 5.34 162 177.9 0.91 T
A-8b 5810 5.40 152 179.5 0.85 T
fv = 43.6 psi B-8a 4700 5.35 156 164.9 0.95 CT
B-8b 4260 5.32 146 158.6 0.92 CT
d = 8.67 in. C-8a 1820 5.32 99 103 0.96 [o]
C-8b 1820 5.39 99 102 0.97 C
d’=1.33in. A-9a 5100 7.87 89.0 99.1 0.90 T
A-9b 5170 7.89 91.2 99.1 0.92 T
B-9a 4700 7.85 94.0 97.7 0.96 T
B-9b 4370 7.82 89.5 96.6 0.93 T
C-9a 1880 7.88 73.0 75.8 0.96 CT
C-9b 1730 7.85 65.5 74.1 0.88 CT
A-10a 5100 12.78 46.1 47.8 0.97 T
A-10b 5170 12.75 44.0 48.0 0.92 T
B-10a 4260 12.78 43.5 47.2 0.92 T
B-10b 4370 12.79 44.0 47.2 0.93 T
C-10a 2300 12.85 44.5 44.3 1.00 T
C-10b 1770 12.88 45.0 42.6 1.06 T
Group Il
E. Hognestad® B-11a 3870 0.08 500 513 0.98 (o}
B-11b 4070 0.10 485 517 0.94 C
b=t=10in. C-11b 2070 0.00 353 376 0.94 (o]
A-12a 4150 2.70 315 306 1.03 C
As; =240 sq in. A-12b 5050 2.72 326 343 0.95 C
B-12a 4300 2.72 303 318 0.95 (o]
A’ =240sq in. B-12b 4010 2.76 284 298 0.95 (o]
C-12a 2300 2.76 252 224 1.12 C
fy = 43.6 ksi C-12b 2200 2,712 230 218 1.05 (o]
A-13a 5350 5.36 220 227 0.97 C
Es =29 X 108 psi A-13b 4850 5.34 210 216 0.97 C
B-13a 3580 5.35 180 188 0.96 C
fv = 43.8 ksi B-13b 4290 5.34 206 206 1.00 (o]
C-13a 2300 5.33 151 153 0.99 (o]
d = 8.50 in. C-13b 2070 5.28 137 148 0.93 C
A-14a 5350 7.87 142 159.0 0.89 T
d’ =1.50 in. A-14b 5100 7.93 153 155.5 0.98 T
B-14a 3580 7.89 138.8 141.0 0.98 CT
C-14a 1950 7.84 115.5 108 1.07 (o]
C-14b 2070 7.87 104.0 111 0.94 " C
A-15a 5100 12.92 88.0 82.8 1.06 T
A-15b 4850 12.85 79.0 83.0 0.95 T
B-15a 3800 12.91 74.0 80.3 0.92 T
B-15b 4630 12.92 84.5 82.0 1.03 T
C-15a 1950 12.89 72.5 74 0.97 (o]
C-15b 2070 12.91 74.5 3.5 1.01 CT

Avg Piest/Pcato = 0.97.
Note: The eccentricity recorded in this table is measured from the center of the column.

Standard deviation = 0.059.
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TABLE A-10—CIRCULAR SECTION COLUMNS SUBJECT TO
ECCENTRIC LOAD*
Ultimate load,
Column Eccen- kips Piest Cross
No. fo', psi tricity, “Poate section
e, in. Test Cale
A-16a 5150 0 760 704 1.08 All columns
A-16b 4640 0.01 693 655 1.06 12-in. diameter.
B-16a 2990 0.03 515 497 1.03 Reinforcement:
B-16b 3310 0.01 514 527 0.98 eight 7g-in.
diameter
C-16a 1590 0.03 371 362 1.02
C-16b 1420 0.02 365 345 1.06 fy = 43.8 ksi
A-17a 5150 3.30 343 308.6 1.11
A-17b 4640 3.29 283 291.9 0.97
B-17a 3620 3.34 253 251.7 1.01
B-17b 3310 3.34 238 239.3 0.99
C-17a 1420 3.556 187 160.0 1.17
C-17b 1600 3.50 179 164.9 1.08
A-18a 5020 6.44 162 164.3 0.99
A-18b 5000 6.50 171 162.5 1.05
B-18a 3380 6.42 140 140.8 0.99
B-18b 3580 6.47 136 143 0.95
C-18a 1680 6.80 127 100.6 1.26
C-18b 1590 6.60 107 101.9 1.05
A-19a 5020 9.62 111.0 107.2 1.04
A-19b 5310 9.62 114.3 109.4 1.04
B-19a 3380 9.54 98.5 93.2 1.06
B-19b 3580 9.56 103.0 95.4 1.08
C-19a 1680 9.80 79.0 72.9 1.08
C-19b 1630 9.80 79.0 72.4 1.09
A-20a 5310 15.68 67.7 63.0 1.07
A-20b 5000 15.58 63.5 62.0 1.02
B-20a 2990 15.75 57.5 53.0 1.08
B-20b 3620 15.60 62.0 57.0 1.09
C-20a 1630 15.60 47.0 45.8 1.03
C-20b 1600 15.72 47.0 44.9 1.05

AVEg Ptest/Pcaic for all 30 columns = 1.05
Standard deviation = 0.060
*Source: E. Hognestad.s

TABLE A-11 — RECTANGULAR COLUMNS SUBJECT TO AXIAL THRUST
AND BENDING ABOUT TWO AXES*

Column b, T, d, Rein- fv, £, ez, ey’, Ptest, Pecato, | Piest
No. in. in. in. forcement psi psi in. in. kip kip Poaio
SC1 4 4 0.75 4-1/4 358 | 5435 | 3.14 | 3.14 5.27 5.10 1.03
SC6 diameter 4.68 0.92
SC2 4 4 0.75 4-5/16 39.2 | 5435 3.07 | 3.07 7.44 7.46 1.00
SC7 diameter 7.25 0.97
SC3 4 4 0.75 4-3/8 40.2 | 5435 3.06 | 3.05 9.50 9.13 1.04
SC8 diameter 9.81 1.07

SC4 4 4 0.75 4-1/2 45.7 5435 3.03 3.03 13.50 13.88 0.97
SC9 diameter 14.30 1.03
SC5 4 4 0.75 4-5/8 40.7 | 5435 | 3.02 | 3.02 16.48 17.34 0.95
SC10 diameter 16.50 0.95

Avg Ptest/Pcaic = 0.99
*Source: P. Anderson and H. N. Lee.??

Standard deviation = 0.046





