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Foreword

When the drafting work began on the new
Code of Practice, The structural use of
concrete, due to be published later this
year a study of the behaviour of reinforced
concrete columns was already in hand and
this was extended in scope to provide the
necessary understanding and background
data to enable an appropriate design
procedure to be formulated. Subsequently
the relevant design clauses were submitted
to the drafting committee for
consideration.

This report covers the entire study of the
column problem and gives a comprehensive
comparison between the predicted or
design ultimate loads and those obtained
experimentally by various research
workers. It thus establishes the validity of
certain simplified design formulae and
prescribes their limitations, at the same
time indicating a rigorous approach which
may be relevant in certain applications.
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Synopsis

The aim of the work described in this report was to
provide a practical method for the design of reinforced
concrete columns. To this end, extensive studies of the
behaviour of such columns have been made, using a
computer model. These studies confirmed the suitability
of the design method presented by the European Com-
mittee for Concrete. This method has been developed
and refined to achieve both simplicity in use and, as far
as possible, a realistic representation of actual beha-
viour. Extensive comparisons have been made with the
results of tests on actual columns, providing final con-
JSirmation of the validity of the method. The method is
recommended for general use.

Notation

a = deflection

a, = deflection at ultimate load

A. = area of concrete

As = area of steel reinforcement

b = width of cross-section

d = effective depth, i.e. depth from compression

face to centroid of tension steel
€ = eccentricity of load = M|N

e, = eccentricity of load at one end of column

e, = eccentricity of load at other end of column

€ = initial eccentricity = M;/N

E = modulus of elasticity

fu = ultimate stress

Jeu = characteristic cube strength

5y = characteristic yield strength of reinforcement

h = cross-section depth

I/ = second moment of area

k = stiffness factor = !

k, = beam stiffness

k. = column stiffness

k = factor dependent on intensity of axial load

! = length of member

A = clear length (or height) of column between
end restraints

M = bending moment

M, = additional moment

M; = initial moment

M, = total moment

M, = ultimate moment

M,; = smaller initial end moment due to ultimate
loads

M, = larger initial end moment due to ultimate
loads

N = axial load

Neiw = critical or Euler load

N, = ultimate load or design ultimate load

Ny, = ultimate axial load in absence of any moment
on cross-section

Noa = axial load corresponding to balanced condi-
tions in the cross-section

r = radius of curvature due to bending

ru = radius of curvature due to M,

wey = ratio of column stiffnesses to beam stiffnesses
at upper end of column

o, = ratio of column stiffnesses to beam stiffnesses
at lower end of column

o min = lesser of a.; and .

P = ratio of area of longitudinal steel to area of

concrete
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Introduction

The behaviour of columns has been the subject of
research for many years. Despite this the problem is
still not fully understood and design methods are, for
the most part, based on empirical formulae. The recent
development of the limit state approach to design!-?
has focussed particular attention on two requirements:
accurate information regarding the behaviour of struc-
tures throughout the entire range of loading up to
ultimate load, and simple procedures to enable de-
signers to assess this behaviour. The work described
in this report attempts to satisfy these requirements in
the case of reinforced concrete columns.

The first part of the report discusses the column
problem to highlight the particular difficulties asso-
ciated with reinforced concrete columns. A brief
description follows of a rigorous analysis'®! capable of
dealing with columns in framed structures. Studies of
reinforced concrete columns made using this analysis
are presented.

A design method, based on proposals put forward
by the European Committee for Concrete!'), is then
developed. The method is used to predict ultimate
loads for thosg columns where behaviour has been
accurately established from the analysis. It is con-
cluded that the method is satisfactory.

The design method is developed further for general
application, and some practical upper limits are sug-
gested for its use. Comparisons are then made with an
extensive range of tests on columns. It is concluded
that the method is suitable for adoption in practice.

The column problem
GENERAL

The problem may be approached from the stand-
point of deflections. All structures deflect under load-
ing, but in general the effect of this upon the over-all
geometry can be ignored. In the particular case of
columns, however, the deflections may be such as to
add a significant additional moment.

Any rigorous analysis which attempts to cover this
behaviour is destined to be complex, since even for a
purely elastic material the use of formal mathematics
leads to second-order differential equations. In the
plastic or non-linear range, these second-order differ-
ential equations are often intractable and recourse
must be had to numerical methods to obtain solutions.

In this report, a considerable volume of data is pre-
sented which has been obtained by using a particular
numerical method. Before the actual presentation and
discussion of this information, however, it will be
useful to discuss the behaviour to be expected of
columns on the basis of certain simple assumptions.

THE PINNED LONG COLUMN UNDER
AXIAL LOAD

This is the classical problem treated by Euler, who

demonstrated that such a column would remain stable
until a critical load was reached at which lateral deflec-
tion would develop. Where the column is of length /,
the critical load, N, is given by

7 El

Ncrit = 12

In the more general case of a column with restraints
to end rotation provided by beams or slabs, the critical
load depends upon the ratio of beam stiffness to
column stiffness. It is convenient for such systems to
seek the so-called ‘effective length® which, when used
in the simple formula above, will yield the critical load.
Where the column is braced against sidesway, the
effective length, /., varies between 0-5/ for very stiff
beams and 1-0/ for very flexible beams. For columns
the ends of which are not braced against sidesway, the
effective length /. varies from 1-0/ for very stiff beams
up to a theoretical value of infinity, as the beams
become very flexible.

THE SHORT COLUMN UNDER AXIAL
LOAD

On the assumption that the material has a strength
/4, the maximum axial load N,, which can be resisted
by a short column of area A is given by

NUZ = A./;\

TYPICAL VALUES OF CRITICAL LOAD
AND MAXIMUM AXIAL LOAD

Values of N, and N,, have been calculated for the
cross-sections shown in Figure 1. The sections have
been assumed to be uncracked, and the moduli of
elasticity of the steel (E5) and concrete (E.) have been
taken as 200 and 20 kN/mm? respectively. The stresses
in the steel and concrete at ultimate have been taken
as 400 and 20 N/mm? respectively. Figure 2 gives
values of N /Ny, over a range of slenderness ratios
I/h. It will be seen that, for //h < 12, the value of
Nerinf Nz 1s > 5:0. 1t follows that in this range the
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Figure 1: Pinned columns.



effects of stability will be small in controlling the col-
lapse load. As I/h increases up to 60, however,
Nerit/ Ny, reduces to 0-2 and it is plain that here the
stability or deflection effects will dominate the situa-
tion. Also drawn on Figure 2 for interest is a plot of
the reduction coefficient from CP 114:19573; it will
be seen that this follows the same trend as the line for
Neriof/ Nuz- 1t is plain, therefore, that stability or deflec-
tion effects can be significant in practical reinforced
concrete construction.

ASSESSMENT OF EI AND
MOMENT-CURVATURE RELATION

The basic quantity required in any calculations for
Ny 18 the value of EI, which here can be considered
as the slope of the relation between moment, M, and
curvature, 1/r. For an elastic material this presents no
difficulties but in the case of reinforced concrete there
are problems, because the moment-curvature response
is non-linear.

Moment-curvature relations for a cross-section with
a small amount of steel are shown in Figure 4, which
has been computed from the stress-strain curves given
in Figure 3. It will be seen that the intensity of axial
load is of major influence. Zero axial load gives the
minimum initial stiffness. When, however, the axial
load is equal to 0-4 times N,,, the initial response is
nearly three times as stiff (essentially because tensile
strain does not develop). As the axial load increases
beyond this, however, the initial stiffness decreases.
Figure 5 shows similar relations for a cross-section
with a large amount of steel. Here, apart from a small
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Figure 2: Influence of slenderness.
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region under very low moments, the stiffnesses (i.e.
slopes of the moment-curvature relations) do not vary
with axial load nearly so much as in the previous case;
the variation is, however, still significant.

COLUMNS WITH LINEAR
MOMENT-CURVATURE RESPONSE UP
TO MAXIMUM MOMENT CAPACITY

Here the moment-curvature relation is simplified as
shown in Figure 6, and is assumed not to be influenced
by axial load. This is probably a reasonable assump-
tion for columns with large amounts of steel, but
appreciable errors must be expected for columns with
small amounts of steel. Nevertheless the approach is
worth pursuing.

Consider the simple pin-ended column under end
moments shown in Figure 7. Plainly the moments will
be a maximum at the centre of the column and will be
given by

M, = M, + Na

The column will be capable of resisting axial load
until M, is equal to M, so that the maximum axial
capacity N, will obey the following:

M, = M; + N,
or
M, — M,

ay

N, =

At this stage a, is, of course, not known.

Turning now to the curvature diagram, also sketched
in Figure 7, it will be seen that it must be a maximum
at the centre with the value 1/r,. Formal mathematical
treatment of this problem will yield an exact equation
for the bent shape which will have the general form
shown in Figure 7. Taking the conservative and un-
conservative curvature diagrams and integrating them
to give the deflections gives

[Z

ay = — (conservative)
8ry.
12

a, = (unconservative)
12r,

It is plain, therefore, that a reasonable estimate of ay,
certainly suitable for design purposes, would be to
take it as an average value of /2/10r,.

COLUMNS WITH A BI-LINEAR
MOMENT-CURVATURE RELATION
(FIGURE 8)

Here the behaviour can be studied by considering
first the situation when the maximum moment in the
column length reaches Af,, and assuming that the
initial moment M, is less than M,. If, in addition, the
deflection a, at this stage is assumed to be given by
1#/10r,, the following equation must hold for N,:

6

_ (M, — M)10r,
= 2

Consider now the situation where the maximum
moment equals M,,. The curvature diagram will be as
sketched in Figure 9. As argued in the previous sec-
tion, it is reasonable here also to assume that

12

~ 10r,

N,

ay

and thus it follows that

(M, — M)I0r,

Ny
2

If, now, the assumption that @ = [*/10r is applied
throughout the loading range, it is possible to derive
a load-deflection curve from the moment-curvature
diagram. This has been done in Figure 11 for the three
moment-curvature diagrams in Figure 10,

For cases I and 11, it will be seen that the maximum
load corresponds to the attainment of ultimate mo-
ment at the centre of the column. In case HI, however,
the maximum load occurs when M = M|, i.e. long
before the ultimate strength of the section is reached.
This situation is often called a stability failure, to
distinguish it from the cases in which the ultimate
moment is attained. It is plain that the more pro-
nounced the bi-linearity of the. moment-curvature
relation, the more likely is a stability failure.

The above is, of course, an extremely simplified
approach to the problem; nevertheless the general
behaviour illustrated in the load-deflection diagrams of
Figure 11 is valid. In order to follow this behaviour
and define the maximum or collapse loads of columns
accurately, 1t is therefore necessary to have a method
which will trace out the load-deflection response from
zero load upwards, taking accurate account of the
moment-curvature relation. The method of analysis
described briefly in the next section was developed
specifically to fulfil this requirement.

It should be noted that where a linear moment-
curvature relation applies, the load-deflection response
of the column will not show a maximum until ultimate
strength 1s attained at a critical section. Thus, if this
simplified relation is accepted, design can be based on
a consideration of the deformed shape corresponding
to ultimate conditions being present in the critical
cross-section. But a rigorous analysis is still necessary
to assess the consequences of such a simplification.

Method of analysis

Only a brief description of the method of analysis
is given here. A full description has been given in
reference 3.

SYSTEM ANALYSED

The system analysed is shown in Figure 12. The
column AB is held by systems which provide rigid
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bracing against sway movement but which are capable
of rotation. Such a column is defined in this report as
a braced* column. The loading consists of an axial
load, N, and end moments, M, and Mp.

The column is considered to have two rigid end
lengths, the remainder being divided into a number of
straight segments. The analysis is based on the cross-
section behaviour at the division points between the
segments.

ASSUMPTIONS

The analysis is based on the following assumptions:
plane sections remain plane after bending;
lateral deflections of the column are small in
comparison with its length;
the longitudinal stress at any point in the column
is dependent only upon the longitudinal strain;
material strained into the inelastic range and sub-
sequently unloaded follows a linear unloading
line;
under loading, the curvature varies linearly along
segments.

GENERAL DESCRIPTION
The behaviour of the column is studied as loading

*In reference 3, the terms restrained and unrestrained are used
to mean ‘braced” and ‘unbraced’. The new terms have been
adopted to avoid confusion which has arisen in interpreting
reference 3.

8

Mg

(b)Y Loaded

is applied from zero, the loading being applied initially
in specified increments. The general load-deflection
response to be expected from reinforced concrete
columns may be seen in Figure 11. For curves of the
type illustrated as case 111, there are two equilibrium
positions corresponding to the same loading in regions
close to the peak of the curve. To avoid difficulties in
such cases, it is convenient to find solutions corres-
ponding to a specified deflection. In this way, the beha-
viour of the column can be traced up to and beyond
maximum load if desired.

The analysis thus consists of finding successive solu-
tions as the load on (or deflection of) the column is
increased in steps. The finding of each separate solu-
tion is said to comprise a stage in the analysis.

The method of solution is iterative, in that initial
proposals are made for the deflected shape of the
column and bending moments are computed for each
division point. This part of the procedure ensures that
equilibrium conditions are satisfied.

The curvature at each division point is then com-
puted by using a subsidiary iterative procedure, in
which the cross-sections are idealized into a number
of elements. These elements are made small enough
for the stresses in them to be assumed uniform. A
strain profile across the section is proposed from which
calculated values of axial load and bending moment
are obtained and, if these agree closely with the load-
ing applied to the section, the curvature corresponding



to the proposed strain profile is taken as correct.
Otherwise the strain profile is modified and the pro-
cedure repeated. In this way, the influence of the axial
load upon the moment-curvature relation is automat-
ically accounted for.

When the curvatures at all the division points have
been computed, the deflected shape is calculated and
compared with that initially proposed. If close agree-
ment Is obtained, it is plain that compatibility condi-
tions are satisfied and the initial proposals therefore
comprise a valid solution. Otherwise the initial pro-
posals are modified and the procedure is repeated.

PINNED AND UNBRACED COLUMNS

The analysis can be used directly to deal with
columns with pinned ends by reducing the rotational
end restraints to zero. In some structures the ends of
the columns are able to sway sideways with respect
to one another. The stability in such cases is assured
by ensuring that the beams and columns are capable
of resisting the moments which will be induced by
lateral forces. Columns of this type are defined in
this report as unbraced columns. The analysis as des-
cribed above is not directly applicable to unbraced
columns, but a simple idealization described in refer-
ence 3 enables such cases to be tackled.

VALIDITY

The validity of the analysis has been demonstrated
in reference 4, where comparisons are made with the
results of other methods of analysis and also with test
results. It is shown that, where the column length is
divided into ten segments and the cross-sections into
ten elements, the ultimate loads obtained are generally
within at least 1 9, of formal mathematical solutions of
the governing differential equations. Furthermore, the
deviations found in the comparisons with actual tests
can, in most cases, be attributed to inaccurate know-
ledge of the stress-strain curves for the materials,
rather than to any inherent defect in the analysis.

A

Design principles

GENERAL

The analyses described in the next section were car-
ried out to help establish a design method. A brief
discussion of the principles of limit state design is
therefore appropriate at this point.

The basic aim of limit state design is to provide a
reasonable margin of safety against the structure’s
becoming unfit for use, i.e. entering a limit state. The
main limit states to be considered are:

the ultimate or collapse limit state, when the

strength of the structure is exhausted;

the serviceability limit state of deflection, ¢.g. when

deflections lead to damage to finishes;

the serviceability limit state of cracking, e.g. when

wide cracks develop in the concrete.

Analysis and design of reinforced concrete columns

For columns, the main limit state will be the ulti-
mate limit state. Under service conditions the loading
on most columns is axial or nearly axial and thus
significant deflection does not normally develop.
Cracking, also, will rarely be critical since, even where
bending moments are dominant in columns, the ten-
sile stresses in the reinforcement will be less than are
usual in beams. In this study, therefore, the main
interest has been the behaviour of columns under
ultimate conditions.

SAFETY FACTORS

It has been suggested®) that, in designing for a
particular limit state, two safety factors should be
used, one applied to the loads, and the other to the
strengths of the materials. The safety factors are ap-
plied to so-called ‘characteristic’ loads and strengths,
which are derived on a statistical basis. The charac-
teristic strength of a material is defined as that strength
below which 59 of test results may be expected to fall.
The characteristic loads should, ideally, be loads which
have a defined chance of being exceeded once in the
lifetime of the structure. Statistical evidence to define
loads in this way is not as yet available and so, for the
moment, they are taken as equal to the working loads
as laid down in current regulations.

The safety factors currently proposed® for the
uftimate limit state are 1-4 and 1-6 on dead and im-
posed loads respectively and 1-15 and 1-5 on steel and
concrete respectively. Thus the design load, N, for a
column is given by

N = 14N, + 1-6N,

where N is the charaeteristic dead load and N, is the
characteristic imposed load.

The cube strengths to be assumed for the concrete
in design are 0-67f,,,, where /., is the characteristic cube
strength, and the yield strength to be assumed for the
steel is 0-87f;,, where f, is the characteristic yield
strength.

In this approach, therefore, an ultimate section
capacity just greater than the design load is provided,
the material strengths being assumed to be at their
design values. At this stage, it would appear correct to
analyse a range of columns containing material of
design strength, and establish the ultimate loads. How-
ever, with long columns, the deformations will affect
the moments and hence the ultimate loads, and so not
only do the strengths of the materials enter into the
matter but also the stiffnesses.

Before specifically tackling this point, it is useful to
look further into the thinking that lies behind the use
of a safety factor on materials. Its purpose is essen-
tially to allow for the effects of bad workmanship. It
is rather more likely that bad workmanship will lead
to pockets of poor material being present than that
the whole column will be uniformly affected. If this is
accepted, and it has been In the present study, it is

9
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more realistic to assume in design that the average
strength of the concrete is at characteristic strength,
and that design strength material is in evidence only
at critical points. Thus the analyses have been carried
out on the basis of characteristic strength material
being present throughout, and the so-called design
ultimate load has then been assessed from this analysis
by considering the effects of the presence of design
strength materials at the most critically loaded points.

LOADING PATTERN

On the question of loading patterns, the usual ap-
proach is to seek the most critical condition and design
for it. The assessment of the most critical loading con-
dition depends upon the type of column, and it is
convenient to consider the three main types of column,
pinned, braced and unbraced, separately.

The pinned column is uncommon in practice at this
time, although the development of precast concrete
construction could lead to more frequent usage. The
possible types of loading condition are summarized in
Figure 13. Load condition (a) is plainly the most crit-
ical because the deflexions caused by the moments will
be the largest. Load condition (b) will be less critical,
and (c) will be much less critical because the central
deflexion caused by the moments will be zero. In prac-
tice, pinned columns will be designed for axial or near
axial load and the most likely hazard to consider in
design will be misalignment at one end. Studies in this
report have therefore been limited to case (b) loading.

Braced columns, i.e. those braced against sidesway,
are the most common form of structural column since,
in most structures, bracing against lateral load is pro-
vided by walls, lift shafts and the like. Three cases of
beam loading are sketched in Figure 14, and it will be
seen that the magnitude of moment transferred to the
end of the column for a given beam load intensity
increases as the loading becomes asymmetrical. The
moments due to the axial load times the deflection
(Na moments) will, however, become less serious as
asymmetry develops, because the deflections will be
less. For slender columns, therefore, where the Na
moments are likely to dominate, load condition (a)
with symmetrical bending 1s likely to be the most
critical. For short columns, load condition (c) is going
to be the most critical. Thus the most likely candidates
for study would appear to be load conditions (a) and
(c). But load condition (b) is the condition laid down
for design in the existing Codes of Practice®. In fact,
the major part of the studies carried out have been
under load conditions (a) and (b). The work done on
load condition (b) indicates that, for short columns, a
redistribution of moments will generally take place,
making the results of a simple moment distribution
rather conservative. Such redistribution will be even
more marked for load condition (¢) and this, combined
with its being rather less likely to arise in practice, led
to the decision to exclude it from study.

10

Figure 13: Loading patterns: pinned columns.
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Figure 15: Loading patterns: unbraced columns.

Coming finally to the unbraced column, one of its
functions is to carry lateral forces arising from wind
loading or other sources, as shown in Figure 15. Un-
braced columns in a structure may, of course, be sub-
jected to moments arising from beam loadings in the
same way as braced columns. The response in this case
is complex and normally will require a study of the
whole storey height. The only examples considered in
this study are those subjected to lateral loading, as in
Figure 15.

ROTATIONAL RESTRAINTS FROM
BEAMS

The relation between restraining moment and end
rotation is complex, because the restraining beams or
slabs can first of all be uncracked or cracked. Here it
is not difficult to arrive at some reasonable assump-
tions for design.

A more difficult point is that, in extreme cases,
yielding of the tension steel could occur in the restrain-
ing beams or slabs. This would introduce a sudden
reduction of stiffness. In considering this problem, it
has been assumed that the strengths of the materials
in the adjoining beams or slabs are at least at the
characteristic values. This is a reasonable application
of the limit state philosophy, since the probability that
serious defects in workmanship (of the kind associated
with the material strength safety factors) will occur in
both beams and columns is very low.



If the restraint systems are at characteristic strength,
yielding is unlikely to occur even under the full design
load envisaged for the columns. Therefore it has been
assumed in this study that the restraining systems have
an elastic response.

Analyses carried out

VARIABLES

The range of variables which could be considered is
very large, and some restriction was necessary to keep
the total number of separate analyses to a practical
level. At the same time, the range of design possibilities
had to be reasonably well covered.

Both circular and rectangular cross-sections as
shown in Figure 16, were considered. The positioning
of the reinforcement was chosen as being close to a
practical average. Two percentages of reinforcement,
1% and 6%, were used.

Only one concrete was considered and this was
assumed to have a characteristic strength of 31 N/mm?.
Only one type of steel was considered, having a charac-
teristic strength of 414 N/mm? The characteristic
stress-strain curves assumed for these materials are
shown in Figures 17 and 18. These curves are slightly
different from those that would be obtained from cur-
rent design proposals®). The differences are, however,
so small as to have a neghgible effect upon the results
presented here.

Analyses were carried out for the three types of
column, pinned, braced and unbraced. Figure 19
shows the pinned columns, which were subjected to
two levels of end moment, O-1 Nk and 0-5 Nh. Figure
20 shows the braced columns analysed and also indi-
cates the columns in a frame building of which they
are effectively the equivalent. The idealizations were
necessary because the method of analysis'®? considers
only one column length, with specified end-moment/
rotation relations. It will be seen that, where moments
are applied at the ends of columns, they are assumed
to split equally between the upper and lower column,
and half of the beam restraint system available is
allowed to assist the column being considered. At
column ends where no moments are applied, the
column below the one being considered is assumed to
assist in resisting end rotation in proportion to its
nominal stiffness. These various assumptions are con-
sidered to be reasonable. Figure 21 shows the unbraced
columns which were analysed and also indicates the
equivalent column in a framed structure.

For each loading condition, five different slender-
ness ratios, //h, were considered, 10, 15, 25, 40 and 60;
the slenderness ratio is defined as the clear height of
the column between restraining beams. The depth of
the restraining beams was assumed to be negligible so
that / becomes, in this instance, the centre-to-centre
distance between beam-column joints,
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Figure 16: Cross-sections considered.
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Figure 20: Braced columns analysed (k signifies conventional stiffness = I/1).

Considering the limited range of variables just out-
lined leads to a total of 200 analyses, which took an
average of 1} hours’ computing time each.

IDEALIZATIONS

The column lengths were divided into between 4 and
10 segments for the pinned and restrained columns,
and between 8 and 16 segments for the unrestrained
columns. The concrete in the cross-section was ideal-
ized into ten elements of equal width, allowance being
made for the area displaced by the reinforcement. The
reinforcement was taken as two elements for the rect-
angular section and as four for the circular section
(Figure 16). These degrees of sub-division of column
length and cross-section were known from previous
checks of the analysis to lead to errors of less than 19

in the results, when compared with a rigorous mathe-
matical solution.
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For the restrained and unrestrained columns, the
moment-rotation relations for the beam restraint
systems had to be calculated. The starting point was to
calculate the flexural rigidity (EI). of the column sec-
tion, the modulus of elasticity of the steel being
assumed to be 200 kN/mm? and that of the concrete
20-7 kN/mm?, and the section to be uncracked. From
the stress-strain curves for concrete in Figure 17, it can
be seen that 20-7 kN/mm? is the tangent modulus at
the origin of the curve. Thus the stiffness calculated is
the stiffness under a small initial increment of load.

The ratios between the column stiffness and beam
stiffness to be considered in analysis have already been
discussed and are shown in Figures 20 and 21. To take
the braced column in Figure 10a as an example, the
relation between restraining moment, Mg, and end
rotation, 0, used in the analysis for the upper end of
the column was derived from



Analysis and design of reinforced concrete columns

(a)
»
i
EQUIVALENT SYSTEM SYSTEMS ANALYSED M
(b) 3 \ 3 p
{k.,=25ka.,_25k({k.,_25k(I
->
0- 1Nh/! 0- SNh/I
ke ke ke
ky = 2-5k [ ky = 2-5ke [ ky = 25k
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§ . s .
Iy 0 4(EI), 0-5 several load stages and also diagrams indicating strain
R = U XX conditions in the concrete along the length of the

For the lower end of the column, the corresponding
relation is
HED.

Mg = 0 x 20
For the unbraced case in Figure 11a, the beams are
bent into a symmetrical double curvature and this
leads to the relation
6(EI),

MR =6 x '—l_ x 0-5
The net result of these assumptions about beam and
column stiffness is that, in the initial stages of an
analysis, provided that the Na moments are not large,
and provided that the axial load, N,'is such as to pro-
duce compressive strain throughout the column, the
bending moments and deflections in the column will
differ only slightly from those obtained from a simple
elastic analysis of the systems sketched in Figures 20
and 21.

GENERAL COMMENTS ON BEHAVIOUR

The results obtained from each of the 200 analyses
carried out are extensive and cannot all be presented
in this report. In this section, 12 columns, four of each
type, are considered in detail to bring out points of
general behaviour. In the next section, the design
ultimate loads for all of the analyses are presented.

The results for these 12 columns are presented in
Figures 22 to 33, in which are given load-deflection
curves, deflection, moment and curvature diagrams for

column; the load stages chosen generally correspond
to about half the maximum load and then close to the
maximum load.

The results are presented non-dimensionally. The
axial load, N, has been divided by N,,, which is defined
as the ultimate axial capacity of the section in the
absence of moment, account being taken of the design
safety factors. In this case, N,, is given by

A, x 207 + A x 414
I-5 1-15

Ny, =

where A, = area of concrete in the section and A, =
area of steel in the section.

The moment M has been reduced to non-dimen-
sional terms by dividing by N,,4, where 4 is the height
of the column section in the direction of bending. The
deflection a has been divided by # and the curvature 1/r
multiplied by A. The quantity A/r at a division point is
thus the change in strain from the compression face to
the tension face of the section.

To help in interpreting the results, interaction dia-
grams giving the combinations of axial load and
moment corresponding to maximum or ultimate load
conditions are also included in the Figures. Plotted on
each interaction diagram are values of the most critical
combinations of load from which the imminence or
otherwise of a material failure may be judged. Inter-
action diagrams have been drawn first on the basis of
characteristic stress-strain curves as shown in Figures
17 and 18. Interaction diagrams based on design
strengths for the materials are also given; these are
described later.
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The results for each type of column are now dis-
cussed. Only results for square columns are discussed
here, since essentially similar results were obtained for
the circular columns.

Pinned columns (Figures 22 to 25)

Figure 22 deals with a short column with a large end
moment. The moments in the column are hardly
affected by the Na moments, and the maximum load
is governed by the attainment of a strain of 0-0035 in
the concrete at the end of the column, where the Na
moment is, of course, zero.

Figure 23 deals with a longer column which is other-
wise similar to that treated in Figure 22. Up to load
stage 1 the maximum moment occurs at the end of the
column, but as the load increases the point of max-
imum moment moves down the column. At load stage
3 the loads are at a maximum and the point of max-
imum moment is just beyond the quarter-point of the
column length, and the moment there is 209, greater
than the end moment. Thus, in this case, the Na
moments do have some influence upon the maximum
load.

Figure 24 deals with a slender column, approaching
the upper limit of practical design. At maximum load
(load stage 2) the moments at the centre of the column
have become several times the moments induced by
the end moment loading. The strains in the concrete
at this point are still well below 0-002, i.e. the concrete
is nowhere close to material failure. The reason for the
attainment of maximum load is that the development
of tension has reduced the stifiness, i.e. the second
stage of bi-linear behaviour has been entered. This is
essentially an instability failure. It is of interest to
note, however, that in this case the axial load remains
almost constant as the deflections increase up to load
stage 4. At this stage the concrete strain is 0-0023, i.e.
material failure is approaching.

Figure 25 deals again with a slender column but this
time subjected to a substantial end moment. In this
case the analysis has been terminated at a deflection
exceeding 0-84, i.e. more than 1Y50 of the length. This
is considered to constitute an effective collapse, since
deflections of this order in a practical column would
almost certainly require a subsequent replacement of
the structure. It will be seen that failure by attainment
of a strain of 0-0035 in the concrete is not far off at
this stage. Despite the fact that the initial end moment
is large, the additional Nae moment becomes dominant
at later stages.

A detailed study of the results outlined above leads
to the following conclusions. For the short columns
(defined as having //h < 15), the Na moments have
either no or only a very slight effect upon the max-
imum load, which is governed by the exhaustion of the
strength of the most critically loaded section. In the
intermediate range of slenderness (defined as 15 < //h
< 30), the Na or instability effects can add substan-
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tially to the moments on the column and thus reduce
the maximum loads; attainment of maximum load is,
however, still governed by the exhaustion of the
strength of the most critically loaded section. For
slender columns (//h > 30), the Na moments become
dominant, and maximum load can be attained without
the strength of the most critically loaded section being
exhausted, i.e. there is an instability failure. For slen-
der columns with large end moments, the attainment
of a deflection greater than 1/50 of the length is pos-
sible without exhaustion of the strength of the most
critically loaded section.

Braced columns (Figures 26 to 29)

Figure 26 deals with a short column. The attainment
of the maximum load corresponds to the concrete at
the end of the column reaching a strain of 0-0035.
Between load stages 1 and 3 the axial load doubles but
the bending moment diagrams show an increase in
bending moment of only about one-third. This mark-
edly non-linear behaviour is because a substantial
length of the column is severely deformed and the
over-all stifiness has dropped well below the initial
value. This is the well-known ‘redistribution of mo-
ments’ effect and is not related to the Na moments
which, for this column, can be seen to be negligible.
Figure 27 shows the same column as in Figure 26 but
with moments applied at both ends producing single-
curvature loading. The deflections go up to 0-084, as
opposed to 0:03/ in the previous example, but para-
doxically the moments in the column at maximum
load are lower. This is because the redistribution effect
is more in evidence. In fact between load stages 3 and
4 the moments reduce throughout the column. The
net result is to increase the maximum load beyond
that obtained in the previous example.

Figure 28 shows a much more slender column and,
as in the case of the pinned columns, the point of max-
imum moments moves from the end of the column
almost to the centre. The end moment reduces also,
practically from the beginning of loading, and is al-
most zero when the maximum load is reached. Again
this is essentially a moment-redistribution effect, but
in this instance it is brought about mainly by the
influence of the Na moments and not so much by a
reduction in stiffness of the column cross-section.

Figure 29 deals with the same column as Figure 28
but this time equal end moment loadings are applied.
The deflections are somewhat larger at maximum load
than in the previous case, but the reduction and rever-
sal of moments at the end of the column are such that
the central moment at maximum load is only slightly
greater. The axial load at maximum load would thus
be expected to be lower and it is, at 0-57N,,, instead of
0-69N,,. This rather large reduction is because these
axial loads are close to the load corresponding to
balanced conditions in the cross-section, and a small
increase in applied moment has a proportionally



greater effect upon the axial load capacity of the
section. The maximum load of the column is governed
by the attainment of a strain of 0-0035 in the concrete
at the centre of the column; the load-deflection curve
is, however, almost horizontal at this stage, indicating
that Na effects equally govern.

Reviewing the results above leads to the following
general conclusions for braced columns. For short
columns, the Na effect is small and in any event en-
hances the maximum load by assisting the redistri-
bution effect. The computed maximum loads of such
columns are thus higher than would be obtained from
a simple elastic analysis. For the intermediate and
slender columns, the Na effects become more import-
ant, although they do not appear to reduce the carry-
ing capacity significantly until the slenderness ratio
approaches 40. This indicates the presence of a con-
siderable reserve of strength compared with the reduc-
tion coefficient of around 0-5 which would apply to
columns of this slenderness with current regulations®).

Unbraced columns (Figures 30 to 33)

Figure 30 deals with a short column with a severe
sidesway loading. ]:he deflections and moments arising
therefrom are small and do not significantly affect the
maximum load, which is governed by the attainment
of a strain of 0-0035 in the concrete.

Figure 31 shows a more slender column and here the
Na moments are quite large at maximum load, amount-
ing to about half of the total end moments. The
maximum load is reached at load stage 2, when the
steel and concrete strains are not too large, but at
load stage 3 the tensile steel yields and the strength of
the end cross-section is virtually exhausted.

Figure 32 shows the same column as Figure 31, but
with the stiffness of the beams reduced. The column is
thus more flexible in face of sidesway force. The addi-
tional moment is a greater proportion of the total
moment than in the previous case and the maximum
load is substantially lower. Attainment of maximum
load is essentially governed by instability, closely fol-
lowed by yielding of the steel at load stage 3.

Figure 33 is the same column as in Figure 32 but
with a much reduced lateral force, approaching per-
haps a more realistic value if wind loading is the source
of the load. Here the N¢ moment contributes prac-
tically all of the column moment at maximum load.
At maximum load, i.e. at load stage 3, the sidesway
deflection is about half of that in the previous example
and the curvatures and strains are all much lower.
Material failure is not reached until a much larger
deflection, by which time the load has reduced sub-
stantially. This is a clear example of the case HI type
of instability failure shown in Figure 11. The reason
for the clarity of the example is that the maximum load
is very close to giving the maximum amount of bi-
linearity possible in the moment-curvature relation.

The general behaviour of unbraced columns, as
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exemplified above, is much the same as for pinned
columns, as would be expected. An additional point to
note is that the moments arising at the ends of the
slender columns must in this case be transferred into
and be carried by the restraining beams. In the last
example, this moment is between four and five times
the simple moment due to lateral force. It follows that
the additional Na moments arising in slender columns
should be considered when the beams are being
designed.

ASSESSING DESIGN ULTIMATE LOADS
FROM ANALYSES

The behaviour outlined in the previous section was
for columns of uniform material at characteristic
strength. As discussed in the section on design assump-
tions, it is necessary to consider the presence locally of
pockets of understrength material. The degree of
understrength considered in this study corresponds to
applying safety factors of 1-5 and 1-15 to the concrete
and steel respectively. This gives design stress-strain
curves as shown in Figures 34 and 35, which in turn
lead to interaction diagrams giving combinations of
ultimate axial load and moment which the various
sections will sustain. These are expressed in non-
dimensional terms and have, as previously mentioned,
been added to the interaction diagrams based on
characteristic strength shown in Figures 22 to 33 for

[ 13-8 Njmm? (= 20-7/1-5)

COMPRESSIVE STRESS

13-8 kN/mm?

0-002
STRAIN

0-0035

Figure 34: Design stress-strain curve for concrete with
characteristic strength of 31 N/mm?.

—360 N/mm2 (= 414/115)

STRESS

200 kN/mm?

0-0018
STRAIN

Figure 35: Design stress-strain curve for reinforcing steel with
a characteristic strength of 414 N/mm?,
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comparison. They are also drawn to a larger scale in
Figures 36 to 39 with eccentricities added.

The method of obtaining the maximum load which
would have occurred in the presence of understrength
material is best illustrated by an example. In Figure 22
it will be seen that the curve plotted on the interaction
diagram giving the most critical combinations of axial
load and moment cuts the design strength interaction
diagram at N/N,, = 0-4; this plainly is the maximum
load the column could carry if a pocket of design
strength material were present at that critical section.
Thus the design ultimate load is equal to 0-4N,,. The
maximum load produced by the analysis based on the
characteristic strengths corresponds to N/N,, = 0-5,
giving an over-all strength factor of 0:5/0-4 = 1-25.
This is midway between 1-15 and 1'5 as would be
expected.

For more slender columns, the instability effects
begin to be important and the influence of the reduc-
tion in strength is not so marked. For instance, for the
column shown in Figure 23, the design ultimate load
is 0-38N,, compared with 0-43N,, if understrength
material is not considered. The strength factor for the
column as a whole is thus 0-43/0-39 = 1-10.

Where the column collapse load is governed by an
instability failure, 1.e. for very slender columns, the
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Figure 36 Interaction diagram based don design strength.
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1-0

-

/ »
[y = ; [H

[ ] L]
0-6— s/
S

|z

L] *
N /// w
vz © — "
o4t S ’
> .
\/ L
=0 “‘_h/
’ =t =0
021 / My . Nbal/Nyz = 015
‘/ ’
- /
| | | | |
0 0-05 01 015 0-2 0-25 03
M/Nyzh

Figure 37: Interaction diagram based on design strength.
Recrangular colunm, ¢ = 0-06.

22

presence of understrength material, while weakening
the column locally, does not influence the maximum
load since the section strength is not a controlling
factor. In fact, of course, a small pocket of under-
strength concrete will make the column deflect a little
more, but this can be ignored. Figure 24 shows an
example of this type.

Applying the approach just described to all 200
analyses gives the design ultimate loads which are
presented in Figures 42 to 47. Also shown in these
Figures are curves relating to the design proposals
developed later in the report. The curves are presented
non-dimensionally in terms of N,/N,, against the
slenderness ratio //h.

The results will be discussed in detail when the com-
parison with the proposed design method is made. It
1s, however, of interest at this stage to note the remark-
ably high loads which can be carried by the slender
braced column; for instance, Figure 44 shows a capa-
city of 0-4N,, corresponding to a slenderness ratio of
50. This is much higher than present design rules
would suggest as reasonable. The other major point to
note is the drastic reduction in capacity of the un-
braced column with respect to slenderness ratios,
particularly where the beam stiffnesses are equal to
half the column stiffness.
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The design method
GENERAL

As indicated in the introduction, design methods
should be simple to use and should also reflect the
actual behaviour reasonably accurately. In this sec-
tion, the behaviour reviewed in the previous section is
summarized, and then some general observations are
made regarding the choice of design method. The
method itself is then briefly outlined.

The behaviour reviewed in the previous section of
this report can be classified into four different types.
It is helpful for the time being to continue using the
terms short columns for cases where //i < 15, inter-
mediate columns for those where 15 << I/h < 30 and
slender columns for those where //h > 30. The types
of failure are discussed below.

(1) Material failure. This is defined by the attainment
of the maximum capacity at a section while the Na
moments at that section are not significant. This beha-
viour is typical of short columns but it can also apply
to intermediate columns where large end moments are
applied in conjunction with the axial load.

(2) Material failure influenced by Na moments. This is
also defined by the attainment of maximum capacity
at a section, but in this case the Na moments at that
section contribute significantly to the total moment.
This behaviour is typical of intermediate columns, and
for unbraced and pinned intermediate columns the Na
effects can considerably reduce the load capacity in
comparison with short columns. However, for a
braced intermediate column, the Na moments can
have a beneficial effect in that the effective stifiness of
the column is reduced ; consequently the end moments
reduce and may even reverse from values calculated
from a simple elastic analysis.

(3) Instability failure. This 1s defined as the attainment
of maximum load before material failure develops at
any cross-section. As shown in the introductory sec-
tion on the column problem, this type of failure can
only occur with sections exhibiting a markedly non-
linear moment-curvature relation. The column itself
also has to be long.

(4) Deflection failure. This has been arbitrarily taken
to be when the deflection reaches 1/50 of the clear
length of the column. Whilst a column reaching this
state will generally have a small reserve of strength, it
is not really usable, because the owner of the structure
would almost certainly insist on complete replacement
if deflections of this order actually occurred. This kind
of failure only applies to long columns.

To cover these four types of behaviour accurately is
plainly a matter of some difficulty. The first type, i.e.
material failure, can be dealt with to a large extent by
having a classification of short columns for which the
design is carried out without reference to the Na
moments. For the other types of failure, the Na mo-
ments have to be considered. The question of accuracy,
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however, decreases in importance as the slenderness
of the columns increases. This is because the efficiency
of the long column in carrying axial load is low and it
will therefore not be used much in design. So not many
practical columns should display instability or de-
flection failure. Therefore it is reasonable to derive a
method which will deal accurately with material failure
influenced by Ng moments, i.e. the intermediate col-
umns. Whilst such a method will not deal realistically
with instability and deflection failure, it should be
possible to ensure that the method is conservative for
such cases.

The first method for consideration is an approach
which uses the rigorous analysis®®’ as used in this
report. It is possible that with modern developments
in computers this may become feasible, but for the
moment the approach cannot be considered because
of the time taken to prepare input data and the cost
of computer time.

Another approach is the reduction factor method as
used at present in this country®. It is open to the
philosophical objection that it effectively suggests
magnifying both the axial load and moments, whereas
simple logic suggests that the moment alone should be
magnified. A more serious objection is that it does not
convey any clear idea of the mode of collapse of the
column. Despite these objections, a number of studies
were made in an endeavour to develop the method:
these were, however, abandoned at an early stage.

The approach finally chosen for detailed study is
that suggested by the European Committee for Con-
crete’s Commission on Buckling. Their approach has
been developed and refined in various bulletins(7-13)
published over the last decade. At stages throughout
the development of the method, comparisons have
been made with test evidence. For instance, compari-
sons with 269 individual test results are given in
reference 13. A more extensive comparison is given in
a later section of this report.

The essential point in the method is the provision of
arelatively simple expression for a so-called ‘additional
moment’. This moment is added to the moments cal-
culated from a first-order theory, i.e. simple elastic
analysis. The column section is designed to withstand
the axial load and total moment. A more detailed
presentation and development of this principle is given
in the sub-sections below.

BASIC EXPRESSION FOR ADDITIONAL
MOMENT

The expression proposed in the most recent CEB
Recommendations ') is

121
My=N—7\=].co ... |
10 (ru) M
where M, = additional moment;

N

i

design axial load:
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i

I effective (or buckling) length of the
column determined from elastic theory;
1/r, = curvature due to loading at the centre of

the effective length.
To assess the curvature (1/r,), the following expres-

sion applies:

0-003 I L )
( T E T 50,0000
- = K......... )
ry h
where f,* = design strength of the reinforcement;
E; = modulus of elasticity of the reinforce-
ment;
h = over-all depth of the section;
K, = a factor depending upon the intensity of
axial load.
K is given by the following expression®:
K, = N =N o 3)
Nuz - Nbal

where N, is the axial load capacity of the section and
Nyar is the axial load corresponding to ‘balanced’ con-
ditions, i.e. when the tension steel has just reached its
design strength simultaneously with the attainment of
maximum or ultimate strain in the outermost concrete
compression fibre.

Equation 1 has already been developed in the intro-
ductory section on the column problem and needs no
further explanation. Equation 2 is an estimate of the
curvature under maximum or ultimate conditions
when the section is in the ‘balanced’ condition, pro-
vided K, is taken as equal to 1-0. The term /./50,000/
introduces the slenderness ratio /./h as a variable here,
but its effect is small in the practical range of ratios up
to 30. Equation 3 varies K, from 1-0 at the point
corresponding to the balanced condition to zero as the
axial load is increased up to the maximum possible
capacity. These equations deal with short-term loading
and make no allowance for any long-term deflections
which can take place under service load conditions.
Suggestions for dealing with this have been made but
will be considered later.

CALCULATION OF INITIAL MOMENT

The calculation of initial moments is carried out by
simple elastic theory. This, of itself, presents no
difficulties but for most braced columns the design
loading condition produces double-curvature bending
with the maximum moment occurring at one end. Tt is
plain that the additional moment has a major influence
at the centre of a braced column and here the initial

*The expression for K, given in the Recommendations'® is
simpler but less accurate; it was adopted by the editors in re-
sponse to suggestions about the difficulty of using equation 3
above in design. The more accurate expression has been re-
tained here, but the design difficuity is met by making the use
of K, optional in the proposals developed later in this report.
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moments are less than at the ends. MacGregor1?) has
suggested the following relation for the effective initial
moment to which the additional moment should be
added.
M; = 04M, + 06M, > 04 M,

where M| is the smaller end moment, taken as negative
where the column is bent in double curvature, and M,
is the larger end moment, taken as positive.

In design, of course, the column section will still
have to be designed to carry M, at the end, and in
many cases this will be found to be the most critical
loading.

For unbraced columns, the additional moment must
be added at the end of the column and thus the initial
moment in this case will be the actual calculated end
moment.

APPLICATION TO COLUMNS
PREVIOUSLY ANALYSED

For these columns the design strength f,* of the
steel is 360 N/mm? with a modulus of elasticity E; of
200 kN/mm? The expression for curvature 1/r, thus
becomes

0-003 + 0-0018 ok
1 50,0004
- 1
r, 11
. l—(1 0-00415!3.) K
© 2084\ !

Substituting now into equation 1 gives
_ N (l—e)z (’1 0-00415 é) K,
2080 \ Bt

a

The interaction diagrams for strength, based on the
design stress-strain curves as given in Figures 34 and
35, are presented in Figures 36 to 39. The axial load
corresponding to Ny, is also marked on Figures 36 to
39. It will be seen that, for the rectangular section,
Npai/ Ny, = 0-34 for the case with o = 0-01, whilst for
the higher steel areas corresponding to p = 0-06,
Nbal/Nuz = 015,

Since K; 1s not known beforehand, it is plain that a
trial-and-error procedure is required to reach a solu-
tion, in cases where the design ultimate load N, is
greater than Np,. To illustrate the procedures, typical
examples will be worked out.

Pinned columns

Consider the case of I./h = 10, ¢ = 0-01, with end
moments M, = 0-1Nh, M, = 0.

M; = 0-06Nh
Assume that N,/N,, = 0-78, giving

~1:00 - 0-78
T 100 — 0-34

Il

It

K, = 0-33



Hence
Nh
= —— x 102(1 — 000415 x 10)0-33
M = 2080 = 10°¢ x 10)
= 0-015Nh

Therefore the total moment M, = (0-06 + 0-015)Nh
= 0-075 at the centre of the column. In this case M,
governs and so the design ultimate load is found on
the interaction diagram corresponding to an eccen-
tricity of load of 0-1h. Consulting Figure 36 gives a
value of 0-78 for Ny /N,,. This agrees with the assump-
tion made when assessing K, and is therefore the
correct solution.

Consider now a column similar but with /./h = 25.
Assume that Ny/N,, = 0-55, giving

1-00 — 0-55
t= 10— o34 = 0%
Hence
M, = Nh x 257 (1 — 0-00415 x 25) x 0-68
2080
= 0-175Nh
Therefore )

M, = (0:06+0-175)Nh = 0-235Nh > O-1N#h,

and therefore M, governs. Thus the design ultimate
load can be found from the interaction diagram in
Figure 36 corresponding to an eccentricity of 0-235h.
This gives N /N,, = 0-55; this checks with the value
of Ny/N,, assumed to give K, and thus no further trials
are necessary.

Braced columns
Consider the example illustrated in Figure 40.

M, = 0-32Nh [0-6 ~ 04 (0—]2)]

0-32
= 0-144Nh
From elastic buckling theory, /. in this case equals
0-691. Therefort? .
L = 345
ho
Assume that N,/N,, = 0-40, giving
1-00 — 0-40
Ki=——""""—=07
1-00 — 0-15
Hence
Nh
M, = — x 3452 (1 — 0-00415 x 34-5) x 0:70
2080
= 0-344Nh
Therefore

M, = 0-344 + 0-144 = 0-49Nh > 0-32Nh,

and therefore M, governs. This gives N /N,, = 0-40,
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from Figure 37; this agrees with the initial assumption
and is thus correct.

Unbraced columns
Consider the example shown in Figure 41.

M; = 0-05Nh
From buckling theory, /, = 1-58/. Therefore

Ifh = 237
Assume that N,/N,, = 0-61, giving
1-00 — 0-6]
YT oo o3 Y
Hence
M, = Nh x 2372 (1 — 0-00415 x 23-7) 0-59
2080
= 0-145Nh
Therefore

M, = (0-145 + 0-05)Nh = 0-195k > 0-05Nh

and therefore M, governs. From Figure 36, N,/N,, >
0-61, which agrees with the initial assumption and is
therefore correct.

N

v
D‘SN"(\kb = 0»5k¢E

"

0-32Nh

P =006

| A

0-12Nh

INITIAL MOMENTS OBTAINED
FROM ELASTIC ANALYSIS

Figure 40: Braced column example, Ih = 50.

N
0-1Nhjt \J kp = ke 0-05Nh
T *
1
1
0-05NB

INITIAL MOMENT DIAGRAM
Figure 41: Unbraced column example, I;h = 15.
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Comparison between design method and
analysis

The results for rectangular columns are presented in
Figures 42 to 44, covering the various categories
studied. The results for each category are discussed in
turn below. Circular columns are covered in Figures
45 to 47.

It should be noted that in Figures 42 to 47:

‘Analysis’ denotes ultimate loads obtained from
computer studies;

‘Design I’ denotes ultimate loads assessed from the
design procedure taking

= N—h ([e)z(l 0-00415 é) K
* 2080 ‘A Rl

and using elastic theory to determine the effective
length /7 ;

‘Design II’ denotes ultimate loads assessed from the
design procedure taking

L 1
Nk (L) (1 - 0.0035—")
= 1750 h

h

e~
(a) | |
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Figure 42: Ultimate axial loads for pinned rectangular columns,
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and using the simple Code procedures (p. 36) to
determine the effective length.

PINNED RECTANGULAR COLUMNS

These can be seen in Figure 42, in which the solid
lines give the analytical results and the broken lines
the results from the design method. It will be seen that
agreement is excellent, apart from the case with M =
0-1Nh and p = 0-01. For the higher slenderness ratios,
the design method underestimates the capacity by a
considerable amount. This is a region where instability
rather than material failures occur and the discrepancy
is to be expected.

BRACED RECTANGULAR COLUMNS

The results for p = 0-01 are given in Figures 43a to
d, and those for ¢ = 0-06 in Figures 43¢ to h. Where
p = 0-01, the design method gives an underestimate
in all cases, of the same order throughout the slender-
ness range. The discrepancy in the lower slenderness
range is due to redistribution of moments which takes
place in the analysis, which takes rigorous account of
the non-linear behaviour of the column. For the cases
with p = 0-06, the agreement is excellent.
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Figure 44: Ultimate axial loads for unbraced rectangular columns.
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UNBRACED COLUMNS

The cases for p = 0-01 are covered by Figures 44a
to d, whilst those for p = 0-06 are given in Figures 44e
to h. The results for p = 0-01 show considerable dis-
crepancies, the design method being conservative par-
ticularly in the case with low initial moments and low
beam stiffness (Figure 44). This represents an extreme
practical case. For p = 0-06, the agreement is excellent
in all cases.

CIRCULAR COLUMNS

The results for circular columns are presented in
Figures 45 to 47. A comparison between Figures 42 to
44 and 45 to 47 shows only very slight differences
between the rectangular and circular columns. The
design method tends to be slightly more optimistic for
the circular columns but the difference is very small.
This is at first sight surprising since the design method
is based on the actual depth of the member, h, whereas
the radius of gyration for a circular section is 0-25/0-289
= 0-86 times that for a rectangle of depth 4. However,

(a)

(c)

Ik

Figure 45: Ultimate axial loads for pinned circular columns.
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study of the design interaction diagrams (Figures 36 to
39) shows the circular section to be much weaker in
bending in proportion and this is reflected in the
ultimate loads obtained from the design method.

DISCUSSION

The over-all result is very satisfactory in that the
design approach can be seen to be accurate over a
wide range. Particularly satisfying are the analyses of
the braced columns for which very few test data are
available and for which, in consequence, few compari-
sons have been made to date.

A degree of conservatism does enter the picture for
cases where the applied initial moments are low and
the steel percentages are low. This is not too important
since, in practice, accidental moments arise which will
reduce the possibility of very low initial moments
being present; and with the lower percentages of steel,
concrete creep may have a greater effect upon de-
flexions and some degree of conservatism could well
be desirable.

Analysis

(d)
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Figure 46: Ultimate axial loads for braced circular columns.
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Further development of design method

GENERAL

The comparison presented in the previous section
has confirmed the accuracy of the basic approach,
when applied to a given range of columns. It is neces-
sary to develop the approach further for general
application.

The expression for additional moment requires to be
generalized to deal with all types of reinforcement and
to take account of possible long-term deformations
under service loads. Simplified approaches to the cal-
culation of effective lengths and of initial moments
also appear desirable. The possibility that column
sections may be stronger about one axis than another
should be considered. And finally the approach must
be developed to deal with slender beams. These points
are covered in some detail below, after which a sum-
mary of the approach, written in the style of a Code
of Practice, is given.

GENERAL EXPRESSION FOR
ADDITIONAL MOMENT

In the basic équation for curvature (equation 2) the
concrete strain is taken as 0-0030 and, as stated on
page 24, no allowance has been made for long-term
effects under service conditions. In the most recent
CEB Recommendations*), it is suggested that this
concrete strain be multiplied by a factor dependent
upon the age of loading, atmospheric conditions, and
the ratio of the moment under the long-term or per-
manent load to that under full characteristic load. It is
only under exceptional circumstances that this factor
will exceed 1-25 and for this reason it is suggested that
the concrete strain be takenas0-003 x 1-25 = 0-00375.

Turning now to the steel strain, given by f,*/E; in
equation 2, the value appropriate to the comparisons
was 0-0018, corresponding to steel with the fairly high
characteristic strength of 410 N/m?2. A strain of 0-002
will be sufficient to cover the range of steels likely to
be used as compression reinforcement.

Substituting these two values into equation 2 gives:

L {1 0-0035 /e) K

ra  175h L
Substituting now into equation 1 (page 23) to obtain

the additional moment gives:

Nh (1\? I
Ma = - |= 1 — 00 _e)
1750 [ /1) ( 035 h Ki

It remains to give some guidance in the assessment
of Nya, the axial load corresponding to ‘balanced’
conditions. This is required to calculate K, which is
given by:

Ny, = N

K =—"—<10
' Nuz_Nbal
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TABLE 1: Expression for additional moment
when K| is taken to be equal to 1-0.
IR M,
h Nh
5 0-014
10 0-055
15 0-122
20 0-212
25 0-325
30 0-46
35 0-62
40 0-79
45 098
50 1-18
55 1-40
60 1-63
80 2-64
100 371

A constant value of 0-002 having been chosen for
the steel strain in the expression for curvature, it is
appropriate to define N, as the axial load corres-
ponding to the attainment of a tensile strain of 0-002
in the outermost layer of tension steel along with the
appropriate ultimate strain in the concrete. N, de-
fined in this way can easily be calculated and inserted
in design charts or tables.

The retention of K, in the expression for additional
moment will require a ‘cut and try’ approach in design,
because a specific section will have to be chosen in
order to give values for N, and Ny,. This can be
avoided, of course, by taking K| to be equal to 1-0 in
all cases, at the expense of some conservatism. The
expression for additional moment becomes dependent
in this case upon /L/h above, and a simple tabular
presentation may be adopted (Table 1).

CALCULATION OF INITIAL MOMENT
IN BRACED COLUMNS

When the moments at each end of a column are
different, it is necessary to work out an ‘equivalent’
initial moment. It will be appropriate to use the
expression given in the comparisons, which was:

M; = 0-4M, + 0-6M, > 0-4M,

where M, is the smaller of the end moments, taken as
negative if the column is bent in double curvature and
M, is the larger end moment, taken as positive. In the
comparisons, the values of M, and M, were worked
out by doing a complete moment distribution for the
simple systems under consideration. It would appear
reasonable to simplify this for design purposes by
recommending that the moments arising from loadings
involving moment applied at only one end of the
column should be calculated on the assumption that
the other end of the column remains fixed.



CALCULATION OF EFFECTIVE LENGTH

In physical terms the effective length is the length
of the pin-ended column which embodies the column
being considered, as shown in Figure 48. It will be
seen that for the braced column the effective length
must always be less than the actual storey height but
that for the unbraced column it will always be greater.
Where the relative stiffnesses of the beams and col-
umns are known, the effective length can be computed
directly by using formal mathematics. !>

-

effective length

Figure 48: Buckling modes for rectangular frames.
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Since the computation of relative stiffness is always
approximate in reinforced concrete, it is reasonable to
take a simple lower bound to the effective lengths. In
the case of braced columns, the effective length can be
taken as the lesser of

HO7 + 0-05(xe; + ae2)]
and
1(0-85 + 0050 1min)

where a.; and «., are the ratios of the column stiffness
to the beam stiffnesses at the upper and lower ends
respectively, and «. ,;, 15 the lesser of a.; and a,.

In the particular case of a regular framed building
where the beam stiffness is equal to the column stifl-
ness, «.; and o, become equal to 1 and the effective
length is 0-8. The over-all results from the expressions
above are compared in Figures 49 to 51 with the
results of a formal mathematical analysis. It will be
noted that the beams providing restraint are assumed
to be bent in symmetrical single curvature, i.e. their
actual stiffnesses are half the nominal value. This, of
course, only applies in the general case if all columns
are loaded critically together; this is a safe assumption,
since loading surveys indicate that severe overload is
likely to be a local phenomenon.

For unbraced columns, the effective length is given
by the lesser of

M1+ 0-15(xe; + )]
and
[(2 + O.3ac min)

where a., %o and a5, have the same meaning as
above.

Figures 52 to 54 give appropriate comparisons. It
will be seen that here it 1s assumed that the beams are
bent in symmetrical single curvature, which must be
the case since the columns must all sway sideways the
same amount.

BENDING ABOUT A MAJOR AXIS

The method as developed so far deals with bending
about one axis. This is the normal design situation
and, provided the column is square or circular, the
method does not require further development. How-
ever, it is often the case that the column is made
deeper about the axis where bending moment is ap-
plied. In these cases the slenderness ratio about the
minor axis can be much greater than about the major
axis. In extreme circumstances the column could fail
in the minor axis direction, before the full strength
about the major axis can be mobilized.

The obvious solution is to consider additional mo-
ments in the minor axis direction, and this leads to the
following design conditions:

Nh lex)z ( lex)
My, = M, + — |2} {1 — 00035 <) Ky,
w * 1750 ( h nl !
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_ M ’_) ( ~o 1_)
M, = 1750 (\b/ 1 — 0-0035 b Ky,
where M, and M,, = design bending moments about
the major and minor axis res-
pectively;
= width of the section;
lexs ley = effective lengths computed in
the plane of bending about the
major and minor axis respec-
tively;
Ny, — N

Kiy, K = values of K, =
IX iy Y ! Nuz - Nbal

where Ny, 1s assessed for bend-
ing about the major and minor
axis respectively.

In cases where M,, becomes significant, a biaxial
type of failure can be expected, with bending taking
place about a diagonal axis. The actual curvatures
about the major and minor axis in such cases will be
somewhat less than about the diagonal axis and it
follows that the expressions above will be conservative.

A simplification js desirable where the designer does
not wish to tackle the complexities of designing the
cross-section for a biaxial system of moments. It is
demonstrated in Appendix 1 that the design can be
based on bending about the major axis above, pro-
vided the total design moment is taken as

1.\ I,
Nh (~) (1 — 0-0035 g) K,

M it 1750 (b

where [, is the effective length calculated in the plane
of bending about the major or minor axis, whichever
is the greater, and b is the width of the section.

The term [./b means that a larger additional mo-
ment is considered in design, providing a theoretical
excess of strength about the major axis. It is shown in
Appendix 1 that this should provide sufficient strength
to deal with possible minor axis loading.

A

SLENDER BEAMS

The provisions so far deal with the possibility of
buckling by flexure about the major and minor axes.
Slender beams are also subject to buckling, in this
case by a combination of lateral bending and twisting.
The existing Code'® eontains certain restrictions on
the span/breadth ratios which may be used and sug-
gests that, where the effective length/breadth (/./b)
ratio for a column exceeds the given limit of 30, inter-
polation be carried out to obtain a reduction factor
for design.

Work by Marshall '), based on experimental work
such as that by Hansell and Winter!?) suggests that
the limitations imposed on slender beams by present
practice are conservative and, in addition, are not
expressed in terms of the major governing parameter.
This he shows to be
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Id
b
where / = span between points of simple support
where restraint is provided against twist-
ing, but not against warping of the cross-
section;
d = effective depth;
b = breadth of the compression face.
Marshall concludes from a review of all the test
data available that lateral torsional buckling will not
influence collapse, provided that

1d
B < 500

For design purposes, therefare, it is reasonable to

set a limit for columns of

Ih

7 < 250
below which no provisions need be made for lateral
torsional buckling. The end restraints provided for
columns will generally be more effective than the sup-
ports at the ends of simply supported beams.

In the special case of precast columns for single-
storey construction, it is possible for the members
connecting with the top of the column not to provide
any restraint against twisting deformation. Here it will
be prudent to insist that

Ih
rie 100

Provided the above conditions are met, the design
procedures previously established can be used without
modification.

SUMMARY OF DESIGN METHOD

The method is now summarized in the form and
style of a Code of Practice. Explanatory notes are
added. The actual Clauses are set in italic type with
the explanatory notes immediately following.

1. Columns

1.1 General. A column should be considered as braced
in a given plane if lateral stability is provided by walls
or other suitable bracing designed to resist all lateral

Jorces in that plane. It should be considered as unbraced

if lateral stability is provided by the columns alone.

A column should be considered as short where the
ratio of its effective length, ., to the lateral dimension
h, of its cross-section in the plane of bending does not
exceed 12. The effective length should be assessed for
buckling about both the major and the minor axes of
bending.

The ratio of the clear length, [, of the column between
end restraints to the lateral dimension h should not
exceed 60).
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Application of the design method to columns with
I./h < 12 shows that only very rarely is the additional
moment large enough to affect the design. Even where
it does, its effect is not more than 5 to 109,. For many
practical columns /./A is less than 12, and this pro-
vision thus avoids superfluous design calculations.

The introduction of the limitation on /[i/h arises
from the fact that in this study comparisons are made
for cases where /o/h < 60. This value was chosen as
representing an extreme practical upper limit.

1.2 Forces in columns. The cross-sections of columns
should resist all possible combinations of axial load and
bending moment, corresponding to the various possible
load patterns. In general, the most critical loading to
consider will be bending with maximum axial load.

Moments in columns arise from loading on members
framing into the ends of the column, and from the loads
(if any) applied at points along it; moments from this
source are conveniently called initial moments. These
moments should be evaluated from simple elastic
analysis.

Moments also arise from accidental eccentricities due
to construction tolerances; these should be allowed for
by taking the inftial moments to be not less than 0-05Nh
where N is the design axial load and h the total depth of
the section at right-angles to the axis of bending. This
accidental eccentricity need be considered about only
one axis.

Finally moments may arise from the lateral deflections
of the column under load,; moments from this source are
conveniently called additional moments and are signi-
Jficant only for long columns. Appropriate allowance for
additional moments is made in the equations for total
moment given for long columns in clauses 1.5 to 1.7.

It should be noted that, for unbraced long columns, the
additional moments act at the column ends, and thus the
beams (and bases if appropriate) into which the columns
frame must resist these total moments. The beams (and
bases) need, however, no specific check except where the
average value of I.[h for all columns at a particular level
or storey is greater than 20. .

Information 1o assist in a more accurate treatment of
additional moments is given in clauses 1.8 and 1.9.

If the maximum design axial load for a column
cross-section is at or below the balance point, the
axial load is assisting the cross-section to carry bending
moment. In such cases the minimum design axial load
with maximum bending may be more critical. But to
reach a minimum axial Joad means reducing the im-
posed load which in turn reduces the bending moment.
Only in exceptional circumstances, therefore, is it
necessary to consider other than the maximum design
axial load to act.

In assessing the initial moments in regular framed
buildings it is usual to introduce simplifications into
the elastic analysis. It will be adequate for a braced
column to consider the ends of members away from
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the joint at which out-of-balance moment is applied
to be fixed. For unbraced columns, analysis may be
based on dividing the lateral shear force between the
columns in proportion to their stiffness, but care
should be taken if the beam stiffnesses are much less
thaii the column stiffnesses.

A reasonable allowance for accidental eccentricity
is, of course, built into the partial factors of safety.
Columns are, however, particularly susceptible to this
type of constructional inaccuracy—hence the specific
provision for 0-05NA.

The warning given for unbraced long columns about
designing the beams and bases is an obvious require-
ment. [ts effect upon design will be minimal since in
most frames columns are neither unbraced nor long
and the warning applies only to structures where both
misfortunes apply !

1.3 Short columns subjected to moments. The column
cross-section should be designed to resist the critical
combination of axial load and initial moment.

For normal cases, only single-axis bending need be
considered. Even where it is possible for significant
bending moments to arise simultaneously about both
axes, it will generally be adequate to design for the
maximum possible moment about the major axis.

For most internal and edge columns in framed
structures, the load patterns necessary to produce bi-
axial bending produce a major axis moment which is
less than if major axis bending alone is considered.
For corner columns, biaxial bending will occur but in
this case about a diagonal axis. The axial load is,
however, much less and, in general, it will be adequate
to use the same steel as in an edge column.

1.4 Effective length. The effective length I, of a braced
column may be taken as equal to the clear length I,
between end restraints. A more accurate estimate may
be made by using the smaller of the following two
expressions:
Lo = L[0-7 + 0-05(xe; + )] </,
le = 1(0-85 + 0050, min>) < [,
where oy is the ratio of the sum of the column stiffnesses
to the sum of the beam stiffnesses at one end
of the column;
ay is the ratio of the sum of the column stiffnesses
to the sum of the beam stiffnesses at the other
end of the column.
% ya 15 the minimum of a.y and a_,.
For an unbraced column, the effective length should
be taken as the smaller of the following :

le = I[1-0 + 0-15(xy + )]
I ]0(20 + 0-300, min)

where I, oy, aey and o i, are as above.

Il

When calculating «, only the members properly
framed into the end of the column in the appropriate



plane of bending should be considered. The stiffnesses
should be obtained by dividing the second moments of
area of the concrete sections by the appropriate lengths.

In the case of flat-slab construction, the beam cross-
section should be taken as a width of slab extending over
the column strip.

Where a column is cast into a base which is not de-
signed 1o resist moment (or supporting beams which are
designed as simply supported), « at that end should be
taken as 10. Where a base is designed to resist the
applied moments, « may be taken as 1-0.

The expressions for effective length are simplifica-
tions of the rigorous buckling formulae for columns
in regular framed buildings. For braced frames, the
results are conservative—if overload is clearly con-
fined to just one column and the beams framing in are
fixed at their far ends, the values of «.; and «, can be
halved. i

For columns which are not in regular frames, the
formulae do not apply since the deformation of such
columns at collapse may involve a significant amount
of sway deflection, but it need not totally dominate
collapse. The behaviour in such cases will be inter-
mediate between that for a braced and an unbraced
column. The designer must have recourse to first
principles here.

1.5 Long columns bent about a minor axis. The cross-
sections should be designed to resist the ultimate axial
load, N, and a total moment, M,, given by:
R :
ﬂ([—e) (1 — 0-0035 I—e)
1750 \h/ % h
where M; is the maximum initial moment in the length
of the column, but not less than 0-05Nh, cal-
culated by using simple elastic analysis,;

h s the total depth of the cross-section in the
plane of bending ;

l. Is the effective length either in the plane of
bending or in the plane at right-angles, which-
ever is the greater.

In the case of braced columns where no transverse
loads are applied in the length of the column, a reduced
value of M, may be taken as follows:

M; = 0-4M, + 0-6M,
where M, is the smaller initial end moment, taken as
negative, when the column is bent in double curvature,
and M, is the larger initial end moment, taken as

positive. In no case, however, should M; be taken less
than 0-4M, or such that M, is less than M,

M = M+

1t will be noted that the factor K, has been omitted
from the equation, i.e. K; has been set to 1-0 in all
cases. It has been omitted to achieve simplicity in the
general run of designs. Section 1.8 below allows it to
be included in design as an option. It couid be argued
that the term (1 — 0-0035/./A) should also be omitted,
but since designers will generally represent the equa-
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tion above graphically it is no real disadvantage to
leave the factor in.

1.6 Long columns bent about a major axis. Provided
the cross-section is such that hib < 3-00, it should be
designed 1o resist the ultimate .axial load, N, and a
total moment, M,, given by:

N (1N I
M, = M, +—-——-(f) ( - 0 —ﬁ)
. 1750 \5) |1 — 00035

where M;, I, and h are as in clause 1.5 and b is the
width of the column cross-section at right-angles to the
plane of bending.

Alternatively, columns bent about the major axis may
be treated as biaxially loaded columns with the initial
moment about the minor axis taken as zero.

As described in the derivation, the use of /./b as the
effective slenderness ratio will lead to a reasonable
solution for columns bent about a major axis. A signi-
ficant economy may result, however, from adopting
the biaxial approach.

1.7 Long columns bent about both axes. The cross-
section should be designed to resist the ultimate axial
load, N, and total moments, M,, about the major axis
and M,y about the minor axis, given by :

M, = M +1£#Q)Xl omﬁkﬁ
oo th h
M~M+ﬁzﬁnlomﬁq
Y T 1750 \ B b

/

where My, = design initial moment in the plane of
bending about the major axis;

iy = design initial moment in the plane of
bending about the minor axis;

lex = effective length computed in the plane of
bending about the major axis;

<
|

ley = effective length computed in the plane of
bending about the minor axis;

h = depth of column cross-section in the plane
of bending about the major axis;

b = width of the column cross-section in the

plane of bending about the minor qxis.

1.8 Adjustments to additional moment. Jn each of the
equations for total moment in 1.5, 1.6 and 1.7, the
second term comprises the additional moment. These
terms may, if desired, be reduced by multiplying by the
Sfactor, K|, given by

Ny, = N
Ki=————7—<10
Nuz - Nbal
where N = ultimate axial load;

Ny, = axial capacity of the cross-section in the
absence of bending moments ;

Ny = axial load corresponding to ‘balanced’
conditions in the cross-section, which
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should be taken when the tensile strain
in the outermost layer of tension steel is
0-002.

Unbraced columns at a given level or storey subject
to a lateral load are usually constrained to deflect side-
ways by the same amount. In such cases, l.[h (or 1.[b,
Ly/h, loy[b as appropriate) may be taken for all columns
as the average of the values computed for each .of the
individual columns.

The provisions for reducing the additional moment
can only be applied in cases where a reasonably accur-
ate estimate of the cross-section is already available,
since the value of N, and, to a lesser extent, of Ny,
depends upon the amount of reinforcement provided.
The provision for average /./h ensures that an individ-
ual slender column at a particular storey level is not
grossly over-designed.

1.9 Diagrams for additional moment. The procedures
given above for obtaining total moments do not enable
the designer to establish the bending moments through-
out the column length; this is not necessary in general,
since it is usual to provide a uniform cross-section with
symmetrically grranged steel. If desired, however,
bending moments as indicated in Figures 55 and 56 may
be used.

In the case of unbraced columns as indicated in Figure
56, the additional moment M, is introduced and should
be taken as equal to the second term in the expression
Jfor total moment given in 1.5, 1.6 and 1.7 as appropriate.

The diagrams shown in Figures 55 and 56 have been
derived from a detailed study of the bending moments
developing in the column under ultimate conditions.
It should be noted that, in Figure 55, allowance is
made for restraint moment effect where the beams are
stiff (i.e. when «. is small) via the broken lines of the
bending moment diagram. The development of such
moments can be seen in Figures 28 and 29. In Figure
56, M, is added to the column end with the smaller
value of «, i.e. the end with the stiffer beams. The
moments added at the other end.is reduced in propor-
tion to the ratio of the beam stiffness, which allows
for the fact that, where these are different, the point of
inflection must move towards the end with the more
flexible beams.

COMPARISON BETWEEN ANALYSES AND
THE DEVELOPED DESIGN METHOD

The ultimate loads of the columns analysed in the
computer studies have been assessed by using the
developed design method. The effective lengths used
in the calculations were assessed not from buckling
theory, but on the basis of clause 1.4 above, the values
of a.; and « being assessed from the equivalent
systems as sketched in Figures 20 and 21. The design
total moments were assessed by using the provisions
of clause 1.5, the reduced value of M; = 0-4M, +
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Figure 56: Bending moment diagram for unbraced columns.



0-6M, being used where appropriate. In analysis of the
braced columns where moments are applied at only
one end, the initial moments in the column length have
been calculated by simple moment distribution assum-
ing the other end of the column to remain fixed. The
adjustment to the additional moment as given in clause
1.8 above has not been applied. The results (labelled
‘Design IT’) are presented in Figures 42 to 47, where
they can be compared with the results of the computer
analyses (labelled ‘Analysis’) and with the results
(labelled ‘Design I') obtained from the design method
as developed to apply strictly to the computer analyses.

As expected, the developed method yields more
conservative answers throughout, arising from the
various simplifications introduced, and the adjustment
introduced to cater for long-term effects. For the
pinned columns an appreciable degree of conservatism
is introduced in the intermediate range of slenderness
where low moments are applied. This is due to the
neglect of the adjustment factor, K,. In the case of
braced columns conservatism is not apparent until the
slender range of columns is entered, and here the in-
fluence at work is the conservative approach used to
determine the effegtive length. For the unbraced col-
umns, conservatism emerges for the cases with low end
moment, and this again can be traced to the neglect
of the adjustment factor.

The areas where results from the developed method
differ greatly from the results obtained from the
method developed to apply strictly to the computer
analyses are not large. This indicates that the simpli-
fications introduced have not brought any great sacri-
fice in over-all accuracy. Application of the adjustment
factor K, to the additional moments (which has been
included in the design method as an option) would
reduce the areas of difference considerably.

COMPARISON WITH TESTS

Reference has already been made to comparisons
which have been made with test data. These compari-
sons have demonstrated the general validity of the
approach over a wide range. )

Nevertheless, it is of Vvalue to prepare a further
comparison for several reasons. Firstly, the method
contains recommendations with regard to the calcu-
lation of effective length and of initial moment which
are developments from the original approach. Second-
ly, there are now available test data not hitherto con-
sidered. Thirdly, the computer studies against which
the method has been compared ignore the influence of
the tensile strength of the concrete, which should
increase the ultimate load in an actual test. Fourthly,
the influence of long-term loading, which would tend
to decrease the ultimate load by inducing creep de-
flection, has also been ignored in the computer studies.

The various test series are described in references 18
to 38 and are summarized in Table 2. The end condi-
tions are classified as pinned, framed, or biaxial as
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shown in Figure 57 and the loading is further classified
into short- or long-term. 381 tests have been con-
sidered.

The classification of long-term tests presented some
difficulty (Table 2). Two types of results have been
obtained, the first where the load is maintained con-
stant until failure, and the second where a load is
applied and maintained for a considerable time but
the result is merely an increase in deflections; a short-
term load to failure is then applied. A long-term test
for the purpose of this comparison has been taken to
be either one which reaches ultimate conditions under
a constantly maintained load, or a column for which
the long-term maintained load comes out to be 85%,
or more of the short-term ultimate achieved at the
termination of the test. The remarks given in Table 2
give details of this classification.

A full description of how the comparisons were
made is given in Appendix 2, where detailed results
are given in Tables 3 to 6. This Appendix is provided
for detailed reference only, since it is difficult to gain
any reliable impression from scanning the 381 results.
In the following, the results are looked at in various
other ways.

The key factor is Ny e/ Ny cale» Which ideally should
be 1. The major variable involved in the design method
is the slenderness ratio. In Figure 58 can be seen the
relationship between Ny /Nucae and slenderness
ratio; separate histograms have been prepared for
results separated out into various ranges of slender-
ness.

It will be seen from Figure 58 that in the slenderness
range 7-5 to 17-5 the mean result is 1-16 with a stan-
dard deviation of 0-22. In this region the effects of
slenderness are small and the scatter is thus due to
inevitable experimental variations in concrete strength
and workmanship.

It is of interest to compare with this the work of
Massonnet and Moenart®®, who produced evidence
on the validity of the CEB’s proposals for stress-strain
curves for concrete and steel when used to assess
strengths of sections. They found a mean value and
standard deviation for the ratio of test to calculated
value of 1-02 + 0-14. These are lower than the figures
of 116 + 0-22. It is -considered that, if the effects
of slenderness could be separated from the data in
this range, the mean and standard deviation would
then be very close to the figures of Massonnet and
Moenart.

At higher slenderness ratios, the results become
rather more spread out and more conservative. Some
rather large values occur, but these are mainly in cases
with steel percentages < 19 and/or eccentricity <
0-1h. In practice it is, of course, essential to allow for
the arbitrary eccentricity of 0-05/# and, had this been
included in both test and design, the discrepancies
would be somewhat reduced. In practice also, it is
usual to insist on a minimum steel percentage of
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TABLE 2: Column test series considered in comparisons.
Number End conditions* Loading?t
Series Date of Remarks
tests Pl P2 F1 F2 F3 B S L | L-S
Baumann#’ (Series 1) 1934 27 14 13 27
Baumannt'®’ (Series 2) 1934 16 16 16
Thomas !9 1939 14 14 14
Rambgl]®} 1951 38 38 38
Ernst, Hromadik and Tests with I /h
Riveland V) 1952 8 8 8 omitted
Gehler and Hutter?2 1954 50 50 50
Gaede'??) 1958 16 16 8 8
Kordina ' 19602| 4 | 4 4 ?‘t" .‘;’“f"l‘fhe‘;’
Aas-Jakobsen 5 19607 20 | 20 20 clans faken from
reference 11

Saenz and Martin'?®’ 1963 52 52 52
Chang and Ferguson'?"! 1963 6 6 6
Breen and Ferguson?®) 1964 6 6 5 1 LS test taken as

) short-term (see text)
Martin and Olivieri‘?’ 1966 8 2 6 8
MacGregor and Barter 3% 1966 8 4 4 8
Furlong and Ferguson " 1966 7 7 6 1 L-S test taken as

short-term (see text)

Ferguson and Breen'3? 1966 8 8 7 1
Green 3% 3 1966 6 6 1 5
Pannell and Robinson 3% 1968 16 9 7 16
Mehmel, Schwarz,
Kasparek and Makovit3s! 1969 16 14 2 16
Breen and Ferguson 36! 1969 10 10 10 Cantilever columns
Ramu, Grenacher, Seven of the 12 L-S
Baumann and 1969 37 37 6 19 12 columns taken as
Thiirlimann 3?9 long-term (see text)
Sturrock and Cranstont3®’ 1971 8 3 5 8
Totals 381 267 12 65 17 8 12 334i 33 14

* For classification of end conditions, see Figure 57.

t The load classifications are as follows:

S = Short-term loading up to ultimate

L-S = Long-term load followed by short-term loading up to ultimate load

L = Long-term load maintained till failure.

-»>
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Figure 57: Categories of loading arrangements.
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Figure: 59 Nu test/ Nu cale for various ranges of steel strength.

around 19 and this would rule out some of the worst
discrepancies observed.

Figure 59 and 60 give comparisons which investigate
the influence of steel strength and concrete strength
respectively. Tt will be seen that no significant trend or
variation in Ny s /Ny cale €an be traced; this indicates
that these variables are adequately covered by the
design method which considers them only when de-
signing the section.

Figure 61 gives histograms for the tests subdivided

NUMBER OF RESULTS
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into the three categories of pinned, framed and long-
term. No noticeable difference emerges between the
frame and pinned tests, indicating that the methods
for assessing effective lengths are reasonable. The long-
term results show a tendency to be on the low side, as
expected. However, only a small fraction give test
loads of less than two-thirds of the short-term load as
calculated, and this is considered an adequate safety
margin to provide against this drastic condition of
loading. The biaxial tests have not been presented as a
separate histogram since there are so few of them. The
values of Ny s/ Nucare are conservative for these tests,
ranging from 1-5to 4-6. This is to be expected because
the full additional moment is being considered to act
about both axes simultaneously. It should be noted,
however, that these biaxial tests are in the main for
high slenderness ratios, and the results are thus in-
fluenced by the basic conservatism revealed in Figure
s8. ‘

Figure 62 gives a histogram for all 381 results. A
number .of very high results are present but, as will be
seen from the notes, they are all for cases with high
slenderness ratios, small steel percentages and zero
initial eccentrigities. Conservative results are to be
expected for such cases. At the lower end of the histo-
gram, there are 62 results below 0-95. A cursory
impression might be that in some respects the approach
is inadequate. Results with N, .s/Ny caie In the range
0-85 to 095 can reasonably be assumed to be due to
normal scatter of test evidence. Values below 0-85, of
which there are 31, give cause for concern, and it
seems prudent to examine them in some detail, to
establish whether any common factor might be present
which should be taken into account.

Fifteen of the 31 are long-term tests, already classi-
fied as a rather drastic loading. and extremely unlikely
to arise in practice. If this type of loading was foreseen
in practice, the additional moments would be in-
creased from those proposed in any case. Eight of the
remainder are from tests under pure axial load by
Saenz and Martin *! and are all for slenderness ratios

50 T ]

40 -

I
F
P}
>
2
S 30
-4
]
« b = 405
e i -
e ¥ le/h = 40 o= 9-008
=} e= 017
z p=0-008
Ifh=50 Igh=40 | Ijh=40

e=20 e=20 e=90
P=127 p=0009 c=0005
AR

N,

u test

N,

u ale

Figure 62: Nutest/ Nu calc for all tests.
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of 17-5 or 21-0. These tests were described by the
authors as being of a practical nature and considerable
out-of-straightness was reported for some specimens.
In the design assessment for this series, it would
probably have been more appropriate to include the
0-05h minimum eccentricity. Columns at this slender-
ness are very sensitive to the presence of the minimum
eccentricity and the discrepancies become much less
serious if it is included. Three of the tests are from the
lateral load series of Ferguson and Breen'32), This
series is discussed in Appendix 2, where it is concluded
that the joints in the frames were probably much more
flexible than assumed. Two of the tests are from the
series by Thiirlimann®7), classified as short-term. They
were, however, subjected to considerable long-term
loads prior to a short-term load to ultimate. The
remaining three tests are as follows:

No. 15 from Ernst, Hromadik and Riveland’s series

No. 28 from Rambgll’s series

No. 7 from Baumann’s series
These three are isolated low values, plainly well away
from the trends being shown by the remainder of the
respective test series. They can be accepted as the
extreme edge of experimental scatter.

It may be concluded that the above comparison
provides further confirmation of the design method.
Indeed, it could be argued that at the higher slender-
ness ratios the approach is rather too conservative.
However, since it is possible that errors in workman-
ship will have a rather greater influence upon the
ultimate loads of slender columns than upon the ulti-
mate loads of elements which are not slender, it is
considered prudent at this time to leave the approach
as it 1s.

Taking these experimental comparisons along with
the rather wider range of analytical comparisons
previously described, the reliability of the design
method for general use can be taken as established.

Conclusions

A considerable amount of data has been obtained
and presented concerning the behaviour of reinforced
concrete columns. Against the background of this
information a design method, based essentially on
proposals put forward by the European Committee
for Concrete, is derived and developed. The general
validity of the approach is demonstrated by compari-
sons with computed collapse loads. Finally, some
essential practical upper limits and extensions are
made to the method, widening its scope considerably.

Throughout this development it has been recognized
that a balance must be struck between the requirement
for realistic representation of column behaviour and
the requirement for simplicity in use. It is considered
that in both these respects the method is satisfactory.
Taking this point in conjunction with the demon-
strated validity of the approach, it is recommended
for general use.
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APPENDIX 1

The design of slender columns bent about
the major axis

A rigorous approach to the problem is plainly not possible at
this time, because no precise data are available either from
experiments or from 4nalyses. Therefore an approximate ap-
proach must be derived, based on the technique developed for
single-axis bending.

For the purpose of developing the approach, a braced column
will be considered with the effective lengths about the major
and minor axes being equal. In addition, the initial moment
about the major axis equals 0-1NA and is constant throughout
the column length; this means that the centre moments must
govern the design. The proper design approach will give the
following moments for a biaxial design:

My = 0INh + Nh (yle‘)z
e 1750 \h

[P (13)2
YT 1750 \b

A very crude and certainly conservative method of design for
biaxial bending would be to add an area of steel over and above
that required for M, in each face capable of carrying a force
equal to M,y/0-8b, assuming the steel to be located as shown in
Figure 63. This gives in this instance an area,

Nb (Ie :
1750 x 0-8b\b

2
N (Il
:mo([—)) ...................... (4)

If, now, a design is carried out ignoring M,y but instead using

Asly =

0-8b

C

Figure 63: Location of steel.
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(I./b)? in the expression for M,y, an extra moment will be catered
for about the strong axis, equal to

o [ - ()

If it is assumed that this is resisted by extra steel at a lever
arm of 0-8h, we get:

Y WA AT
= [ ()0

Where A/b is in the range ! to 1-5, it is plain that the area of
steel provided by expression 4 is considerably less than by
expression 5. For such cases, the differences in slenderness ratio
are not large, and with bending only about the major axis, it is
probable that deflection will develop only in the major axis
direction; thus there is no cause for concern about the possible
slight lack of conservatism here. As /b moves up towards 2-0,
i.e. towards a situation where deflection.about the minor axis
can be envisaged, the results become much closer and the basic
soundness of the approach is demonstrated.

A basic assumption is that the steel provided in the column
will be detailed in the four corners. This will normally be the
case.

APPENDIX 2

Comparison of design method with tests

The various test series considered are given in Table 2. Over
such a large number of individual series there is considerable
variation in the units employed, and the types of concrete and
steel used. The results have all been reduced to a common basis
in SI units. In the assessment of the strength of sections, the
stress-strain curves given in Figures 64 and 65 have been used;
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Figure 64: Stress-strain curves assumed for reinforcement.
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these curves have been taken from the Draft British Code(®®.

It will be noted that in Figure 65 the curve is related to the
cube strength f;,. Where individual authors have reported prism
or cylinder strengths, the cube strength has been assumed to be
1-25 times these strengths. Figure 64 for the reinforcing steel
shows a deviation from linear behaviour at 0-8f, strictly applic-
able to cold-worked steels. This has no effect if the tension steel
is yielding but the compressive strength is limited since it is
taken as the value appropriate to 0-29% strain. For steel with a
yield stress f; of 250 N/mm?, the effective compressive yield is
220 N/mm?. For steels with a tensile yield stress greater than or
equal to 500 N/mm?, the effective compressive yield is limited
to 400 N/mm?. Steels of this high strength tend to be of the
cold-worked type, and so the general use of this curve is
reasonable.

The interaction diagrams giving the section strengths for each
individual column cross-section were produced by a specially
written computer program. To avoid conversion errors, the
program was designed to accept data in a variety of different
systems of units and to convert automatically to the SI system.

In finding N, caic the fully developed design method was
used, i.e. the provisions of clauses 1.5, 1.6, 1.7 and 1.8 were
employed in their entirety. The process of calculation has already
been illustrated in the main text of the report. With regard to the
assessment of effective length, this has for pinned columns been
taken simply as the centre-to-centre distance between the end
bearings. For columns tested with fixed or flat ends, the effective
length has been taken as 0-7/, where both ends are fixed and
0-851, where just pne end is fixed. Where beams are present,
i.e. for framed columns, the simplified formula in clause 1.4,
based on the clear length between restraints, has been used.
For the cantilever columns of Breen and Ferguson*®) the
effective length has been taken as 2/,. A strict reading of clause
1.4 would lead to 2-3/; but in the experiments a rigid base was
provided, and thus 2/, is more realistic. With regard to initial
eccentricity, the arbitrary 0-054 was not included, because this
is essentially for construction tolerances. Whilst initial eccen-
tricity was undoubtedly present for some tests, it is not present
generally in laboratory tests. Including it would thus have given
an unfair advantage to the design method.

The results are presented in Tables 3 to 6, separated into the
categories of pinned, biaxial, framed and long-term tests. Suffi-
cient information has been given in the Tables to allow other
workers to operate on the data if desired.

Nearly all the pinned tests are either axially loaded, or with
equal end eccentricities, although a few have different eccen-
tricities at each end. In some of these, the end eccentricity was
found to govern the design, and allowance then had to be made
for the strengthened zones at the ends of the columns, which
cause failure some distance down the volumn where the eccen-
tricity is reduced.

For the biaxial tests, it was necessary to prepare strength data
for biaxial bending. This was done by preparing interaction
diagrams between M, and My, for various levels of ultimate
load. A guess was made at the design ultimate load and the
appropriate interaction diagram selected. Calculation of addi-
tional moment about each axis gave a relation between M, and
M, from which the ultimate values could be assessed. Dividing
the Myx (or M,y) moment by the appropriate eccentricity of
load gave a value for ultimate load to compare with the initial
guess.

In the frame tests, the moments have been calculated from
straightforward moment distribution based on stiffnesses cal-
culated from the concrete sections alone. The effective lengths
were calculated on the basis of the clear height between end
restraints. It should be noted that, in the tests with framing
beams, the axial load was always applied through a roller
seating at some distance above the beam centre-line. Where the
end slope of the beam is significant, an additional Na moment
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is introduced here. This moment has not been taken into account
in design. The figures given for e, and e, in Table 3 are those
calculated at the face of the column-beam joints. Where e,
governs the design assessment, this point is noted in the Table.

No modification to the design method was made when assess-
ing the ultimate loads appropriate to the tests classified as
long-term. The concrete strength used was that appropriate to
the time the column actually collapsed. These long-term tests
either had a constant load applied until eventual collapse, or a
constant load greater than 859 of the final short-term load at
failure. The design method includes an increase in ultimate
strain from 0-003 to 0-0375 to allow for long-term effects but
this is purely under service or working load conditions. The
short-term elastic strains under such conditions are unlikely to
exceed 000050 and the effective allowance of 0-00075 for creep
strain is reasonable when considered in this light. Thus the
comparisons in this report for long-term tests should give an
indication of the maximum possible reductions for long-term
loading.

Whilst it is difficult to obtain any reliable over-all impression
from the Tables, some individual points are worthy of attention.
It can be seen that, for the lower slenderness ratios of 15 or less,
the values of Ny test/Nu calc are generally, as expected, close to
unity. Some test series show deviations from this.

For instance, the series by Gehler and Hutter?2) have values
ranging from 1-20 to 1-40. Almost certainly, in this case, the
method of testing the control specimens is in doubt. It has been
shown®0 that different testing machines can introduce markedly
different cube results. Another possibility is that the basic load-
measuring equipment in the column testing machine was at
fault. Such points can arise in all research work, but raise
particular difficulty in conducting comparisons of this kind. It
is appropriate at this point to mention that the work of Hanson
and RosenstromV) included in comparisons made by others,
has been rejected here because even wider discrepancies are in
evidence than with Gehler and Hutter. In particular, prism tests
reported by them give higher strengths than the corresponding
cubes, indicating a serious experimental error in the control
tests.

Results giving concern because of an opposite trend are those
from the lateral load series by Ferguson and Breen3?. All values
of Ny test/Nycale €xcept one are below unity and the single
long-term result at 0-56 is the lowest value of all 381 results. The
three values corresponding to an /./h of 13 are 0-82, 0:94 and
0-80, indicating something amiss, because the effects of slender-
ness should be minimal for such a slenderness ratio. In the report
on the tests, the occurrence of ““wide flexural cracks " is reported
at the joints, at a stage where the stresses in the reinforcement
should be well below yield. Tests of corner joints by Swann (42}
with similar reinforcement details show deformations consider-
ably greater than can be calculated on the usual assumptions
that the members extend to the centre of the joint. More recent
analytical studies of a variety of framed tests by Drysdale,
Mirza and McCutchéont#® indicate that joints contribute
greatly to over-all deformation. In view of this evidence, it is
considered that the effect of joint flexibility, markedly increasing
the effective length, is a major contribution to the over-all poor
performance of these tests. The individual low long-term value
of 0-56 merits some further attention. In this case, very high
compressive strains were recorded. It should be noted, however,
that the compression steel, which might have been expected to
reduce these strains somewhat, continued into the beam only
some 75 mm. Most of the stress in this bar, which would cer-
tainly have been yielding, would be taken out in simple end
bearing. Some severe local deformation of the concrete at this
point would be inevitable in these circumstances, leading to
further significant joint deformation.
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TABLE 3: Data from tests on pinned columns.
Test b h dih | 100p | feu fy ei/h Ic/h Nuytest | Nuz calc |Nbalcale | Nu cale| M test Remarks
No. | Gmm) | Gnm) (N/mm?) (kN) | (kN) | (&N) Nuy cale

THOMAS1?)

LCI1 303 309 [0 147 | 590 597 191 597 | 099

LC2 331|279 |0 208 | 540 627 206 | 590 | 092

LC3 297 | 334 | 001 | 238 | 480 597 185 | 430 | 1-12

LC4 2971 309 | 001 | 268 | 470 587 189 | 280 | 1-68

LCS 3144 | 305 | 0-04 | 268 | 460 611 195 | 230 | 2-00

LC6 152 | 152 | 0-75| 2-18 | 34-3 | 327 | 0-04 | 238 | 450 664 212 | 340 | 133

LC7 329 | 282 | 003 | 208 | 460 626 206 | 440 | 1-04

LC8 287 | 312 | 002 147 | 470 573 178 | 520 | 0-90

LC9 250 | 308 | 002 | 268 | 360 515 159 | 240 | 1-50

LCI0 235 | 283 | 004 | 238 | 370 483 149 | 265 | 1-40

LCI1 233 | 271 | 0-04 | 208 | 420 475 147 | 320 | 131

LCI2 261 | 282 | 003 | 147 | 440 522 167 | 470 | 094

PLCI 235 | 310 | 006 | 332 81 163 33 49 | 165

pLcz | 7O 7O OT3 A out | s10 |00 | 332 | 82 166 32 | 50 | 164

GEHLER AND HUTTER'??) (FIRST SERIES)

1Al 241] 282 |0 40 240 408 171 51 | 470

1A2 241 | 282 |0 40 260 408 171 51 | 510

IB1 241 282 0 30 390 408 171 127 | 307

1B2 2411 282 |0 30 400 408 171 127 | 315

IC1 . 259|282 |0 25 500 435 182 | 240 | 211

1C2 160 | 140 1 0-84 | 089 259 | 282 | 0 25 540 435 182 | 240 | 225

iD1 256 | 282 |0 20 490 430 180 | 430 | 1-14

ID2 256 | 282 | 0 20 550 430 180 | 430 | 1-28

1El 247 282 |0 15 600 417 175 | 417 | 1-44

1E2 2471282 10 15 570 417 175 | 417 | 137

IF} 238 | 282 | 0 10 480 400 168 | 400 | 1-20

IF2 238 | 282 | 0 10 500 400 168 | 400 | 1-25

1Al 243 | 337 | 0 20 330 533 160 | 128 | 257

11A2 160 | 140 | 0821 275 | 5 51 337 | o 40 350 533 160 | 128 | 273

GEHLER and HUTTER ??) (THIRD SERIES)

1/1 3122350 40 174 489 220 29 | 600

12 160 | 140 1 0851 050 | 5,51 235 | o 40 195 489 220 29 | 670

2/1 325|289 | 0 40 218 592 219 | 103 | 212

212 160 | 140 | 0-83 | 202 | 3, 5| 589 | 40 289 592 219 | 103 | 276

3/1 300 | 275 | 0 40 325 729 204 | 180 | 1-81

32 160 | 140 1 080 | 561 | 3, | 575 | o 40 286 729 204 | 180 | 1-54

4/1 167 | 206 | 0 30 272 285 111 88 | 3-10

4)2 167 | 206 | 0 30 252 285 111 88 | 286

s/1 263 | 206 | 0 30 310 428 175 | 118 | 263

52 160 | 140 | 0851 089 | o5 | 506 | 0 30 326 428 175 | 118 | 276

61 32:7.] 206 | 0 30 405 523 219 | 136 | 300

6:2 327 | 206 | 0 30 405 523 219 | 136 | 3-00

7.1 233 | 289 | 0-04 | 15 472 457 155 | 380 | 124

72 233 | 289 | 004 | 15 450 459 155 | 390 | 118

81 29-8 | 289 | 0-05 | 20 480 552 198 | 3% | 123

8i2 298 | 289 | 0-05 | 20 445 552 198 | 390 | 1-14

9,1 272 | 289 | 0-08 | 30 320 515 185 | 165 | 194

9,2 272 | 289 | 008 | 30 298 515 185 | 165 | 1-80

1011 272 | 289 | 0-01 | 40 152 515 185 82 | 185 Bending moment

102 160 | 120 | 083 | 202 | 272 | 289 | 001 | 40 165 515 185 82 | 201 applicd by

11 233 | 289 | 008 | 15 430 457 155 | 340 | 126 e Joad at

112 233 | 289 | 0-08 | 15 470 457 155 | 340 | 1-38 erat’

1211 29-8 | 289 | 010 | 20 396 | 552 | 198 | 320 | 124 | Mid-heightof

12,2 29-8 | 289 | 0-10 | 20 405 552 198 | 320 | g-27 | column

131 304 | 289 | 0-15 | 30 236 361 201 146 | 1-62

132 3044 | 289 |0-15| 30 240 561 201 146 | 1-64

14 1 26:1 | 289 | 020 | 40 126 498 174 75 | 168

14,2 26:1 | 289 | 020 | 40 113 498 174 75 | 1-50

151 233 | 289 | 008 | 15 400 457 155 | 330 | 1-33

15,2 160 | 140 | 085 202 | 331 5e9 | 008 | 15 440 | 457 | 155 | 340 | 146
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TABLE 3 continued

Test b h dih | 1000 | feu | Sy |eifh | Jefh | Nuest | Nuzeale | Noal cate| My cale Na test Remarks
No. | Gmm) | Gum) (N[mm?) (N) | N) | N |(EN) [N e

16/1 233 | 289 | 015 | 20 263 457 | 155 | 230 | bM| o

16/2 233 | 289 |015| 20 | 306 | 457 | 155 | 230 | 133 asghéng';ome"t
171 . 12331 289 [023 ] 30 196 as7 | ass 1120 | re3| (PR Y
172 | 160 | 140 1085 1202 33 289 |023| 30 | 174 | 457 | 155 | 120 | 145 mid-height of
18/1 251 | 289 | 030 | 40 105 483 169 60 | 175 o

18)2 251 | 289 | 030 | 40 100 483 169 60 | 167

GAEDE!'Z3)

1 247 | 335 [020] 294 75 297 | 125 65 | 115

15 32-1 | 288 | 020 | 294 97 366 | 161 66 | 147

4 301 | 273 | 050 | 294 35 345 | 152 35 | 100

115 . 1316 | 2712 | 050 | 294 38 359 | 299 36 | 106

11 154 1100 | 087 1 100 } 5y o | 396 050|354 | 33 | 379 | 164 | 28 | 118

Hi2 286 | 326 | 050 | 354 33 336 | 146 27 | 122

13 284 | 327 | 050 | 354 34 334 143 27 | 126

114 388 | 314 | 050 | 354 37 438 188 30 | 123

PANNELL AIEID ROBINSON 3%)

1A 248 [ 352 [0 | 416 61 156 22 35 | 174

2A 237|365 |0 | 416 75 154 40 35 | 214

3A 221|365 |0 | 272 100 148 39 96 | 104 | Lo ent
4A 95 | 63 | 080 | 325|274 | 365 |0 | 152 | 174 169 48 | 169 | 103 7 dgb
5A 274 | 365 |0 | 320 99 169 48 69 | 143 ];pral ]o:d at
6B . 295 | 352 | 1442 | 416 15 175 51 12 | 125 'Z-hei o
8B 207 | 352 | 017 | 416 55 140 36 28 | 196 | ™MdNeE

7B 317 | 352 | 177 | 277 20 184 61 15 | 133

9B 63 | 95 1 08713251 2051 352 | 072 | 277 40 140 41 29 | 138

STURROCK AND CRANSTON (38}

8 550 | 420 [0-15] 50 160 | 1630 | 619 90 | 178

9 400 | 100 | 081 | 127 | 550 | 420 | 015 50 170 | 1630 | 619 90 | 1-89

10 550 | 420 | 0-15| 50 200 | 1630 | 619 9 | 220

MARTIN AND OLIVIERI (%)

202.1 375 276 [0 | 40 147 349 116 63 | 223

402.2 304 | 276 |0 | 40 125 296 99 55 | 227

412.1 421 | 276 | 008 | 40 118 383 134 55 | 214 |\ ek = 0211;
4122 . | 313 ] 276 | 008 40 90 303 101 48 | 1871 e h = —0-106
422.1 127190 1 080 | 250 | 43 6| 276 | 016 | 40 94 394 139 49 | 192\ eJh = 0-388;
4222 3241 | 276 | 016 | 40 76 309 106 43 | 177|) egh = —0194
4321 466 | 276 | 0-11 | 40 96 417 147 52 | 185|) efh = 0-282:
4322 330 | 276 | 0-11 | 40 94 315 107 47 | 200 |/ eyh = —0-141
MACGREGOR AND BARTER 30) -

Al 427308 [008] 273 | 170 268 82 | 113 ] 150]\ ek = 02
A2 112 | 63 | 082|402/ 408 | 308 |0-08| 273 | 170 262 81 | 110 | 155 = —e,h
BI 263 | 308 | 060 | 27:3 33 242 73 31 | 106|, efh =15
B2 40-8 | 308 | 0:60| 273 31 262 8l 33 | 094 = —eylh
CHANG AND FERGUSON 27!

i 295 | 338 | 007 31 168 304 146 | 118 | 142

2 437 | 338 | 039 31 69 544 | 212 68 | 101

3 361 | 338 | 006/ 31 189 464 176 | 135 | 140

4 1356 | 103 | 084 | 178 | 5501 338 | 038 | 31 73 | 479 | 185 | 72| 101

5 410 | 338 | 021 31 123 515 | 200 98 | 126

6 420 | 400 | 0:06 | 31 198 539 | 204 | 150 | 132

ERNST, HROMADIK AND RIVELAND 21!

3 2516] 357 [0 15 290 473 184 | 473 | 103

4 2516 | 357 |o 25 450 473 184 | 280 | 1-60

7 2516 | 357 |0-125] 15 360 473 184 | 310 | 1-16

8 25-16| 357 |0-125| 25 290 473 184 | 170 | 1-70

1 1521 152 1 083 | 123 |55, 61 357 |o-250| 15 260 473 184 | 210 | 124

12 25-16| 357 |0-250] 25 170 473 184 | 130 | 131

15 25-16| 357 |0375] 15 90 473 184 | 150 | 0-60

16 25-16| 357 |0-375| 25 110 473 184 99 | 1411

46



TABLE 3 continued

Analysis and design of reinforced concrete columns

Test b h dih 100¢ f;:u f;' ei/h le/h Nutest | Nuzacle | Nbal calc | Nucate | Nu test Remarks
No. | (mm) | (mm) (N[mm?) kN) | (kN) | (kN)) | (AN) Ny cale
MEHMEL, SCHWARZ, KASPAREK AND MAKOV1 3%
01 253 159 | 0-88 | 11t [ 374 | 500 | 0-08 | 88 940 1174 481 940 1-00
02 254 | 156 | 0-85 [ 1-12 | 40-5 | 500 | 1-00 | 90 137 1241 483 124 1-10
1-1 253 | 203 | 084 | 1-22 | 392 | 480 | 018 | 168 855 1576 614 760 1-12
12 253 | 202 | 084 | 122 | 37-8 | 480 | 048 | 168 320 1518 592 350 0-92
21 252 | 202 | 084 | 123 | 372 | 480 | 0-18 | 223 590 1497 583 540 1-09
22 252 | 203 | 084 | 1-:22 | 407 | 480 | 048 | 222 258 1620 632 292 0-88
31 252 152 | 0-84 11-23 | 382 | 500 | 0-16 | 224 470 1158 451 430 1-09
32 252 151 | 0-83 | 1-25 | 41-1 | 500 | O-50 | 225 176 1225 457 196 0-90
33 254 159 | 0-84 | 1-10 | 353 | 500 | 008 | 21'5 780 1123 442 575 1-36
34 253 158 | 0-84 | 1-12 | 42-8 | 500 | 1-00 | 21-5 102 1311 524 101 1-01
4-1 253 150 | 0-83 | 1-25 | 40-5 | 500 | 0-16 | 300 368 1207 476 265 1-39
42 253 148 | 0-83 | 1-27 | 41-5 | 500 | 049 | 304 145 1218 467 142 1-02
51 253 158 | 0-81 | 3-19 | 40-6 | 412 | 0-16 | 215 735 1488 729 670 1-10
5-2 252 159 | 0-84 | 318 | 37-0 | 412 | 0-50 | 214 370 1396 446 363 1-02
6-1 254 | 159 | 084 | 1-11 | 425 | 500 | 0-10 | 145 540 1315 526 890 106 |e,/h=0-17;e,/h =0
62 | 253 157 | 0-85 | 1-12 | 441 | 500 | 0-30 | 216 343 1339 536 350 098 |e,/h = 0-50; e,/h =0
RAMB@LL 20
1 182 144 | 079 (097 356 | 294 | O 9-1 860 686 268 686 1-26
2 181 141 | 079 (100 | 31-8 | 294 | O 9-1 640 603 235 603 1-06
3 182 143 | 0:81 (098 | 330 | 294 | 0-08 | 91 690 636 254 500 1-38
4 181 141 | 0-82 | 1-:00 | 284 | 294 [ 0-08 | 91 590 513 230 400 1-47
b 181 143 PO-77 [ 098 | 347 | 294 | 017 | 91 510 661 253 390 1-31
6 181 143 | 079 [ 098 [ 314 | 294 | 0-17 | 91 530 604 235 360 1-47
7 180 [ 145 | 0-79 | 097 | 296 | 294 | 033 | 91 340 578 225 215 1-58
8 181 144 | 0-79 [ 097 | 316 | 294 | 0-33 | 91 305 613 239 225 1-35
9 181 142 | 079 [ 099 | 292 | 204 | 0-67 | 9-1 118 563 219 73 1-62
10 181 144 | 0-80 | 097 | 306 | 294 | 067 | 91 106 594 237 80 1-32
11 181 141 | 0-80 | 1-00 | 322 | 294 | 0-83 | 91 78 611 244 55 1-42
12 181 141 | 0-80 | 100 | 269 | 294 | 0-83 | 91 78 522 203 55 1-42
13 181 142 | 079 [ 099 | 356 | 294 | O 132 580 672 262 672 0-86
14 181 142 | 0-83 [ 099 | 320 | 294 | O 132 690 612 251 612 1413
15 181 147 | 0-78 | 095 | 309 | 294 | O 13-2 650 610 238 610 1-06
16 183 146 | 078 | 095 | 309 | 294 | O 132 650 610 238 610 1-06
17 180 142 | 079 | 099 | 31-4 | 294 | 0-08 | 13-2 580 597 233 450 1-29
18 181 144 | 0-80 | 0:97 | 295 | 294 | 0-08 | 13-2 530 576 230 430 1-23
19 180 [ 142 | 079 | 099 | 302 | 294 | 017 [ 132 470 577 225 310 1-52
20 182 143 | 079 | 098 | 304 | 294 | 0-17 | 132 510 590 230 320 1-59
21 183 145 | 080 | 096 | 288 | 294 | 033 | 132 305 573 189 180 1-70
22 182 144 | 079 [ 097 | 291 | 294 | 0-33 | 132 305 572 223 183 1-67
23 181 144 | 0-78 | 097 | 29-3 | 294 | 0-67 | 132 94 572 223 69 1-36
24 181 144 | 0-79 | 097 | 27-4 | 294 | 0-67 | 13-2 94 540 216 70 1-34
25 182 144 | 0-79 | 097 | 352 | 294 | 0-83 | 132 69 677 264 S1 1-35
26 181 141 | 0-80 | 1-00 | 33-4°| 294 | 0-83 | 132 67 631 252 S1 1-31
27 182 141 | 077 | 099 | 366 | 294 | O 132 580 689 262 620 093
28 183 146 | 079 | 095 | 357 | 294 | O 132 490 700 273 660 074
29 182 144 | 079 | 097 | 369 | 294 | 0-17 | 13-2 335 708 276 240 1-40
30 182 143 | 076 | 098 | 33-9 | 294 | 0-33 | 132 195 651 247 124 1-57
31 183 144 | 0-79 | 096 | 364 | 294 | 0-67 | 132 73 703 274 56 1-30
32 183 142 | 079 | 098 | 36:8 | 294 | 0:83 | 132 57 701 273 45 1-27
13 183 143 | 0-81 | 097 | 344 | 294 | O 30-1 495 663 74 185 2-88
34 182 145 | 0-80 | 096 | 369 | 294 | 0-08 | 29-6 410 713 60 150 273
35 183 144 | 0-70 | 171 | 332 | 294 | 0-17 | 299 235 692 52 145 1-62
36 182 145 | 080 | 096 | 340 | 294 | 0-33 | 29-6 118 661 27 69 1-71
37 183 143 | 0:79 (097 | 336 | 294 | 0-67 | 301 56 649 15 39 1-44
38 182 145 | 0-79 [ 096 | 405 | 294 | 0-83 | 296 44 776 15 39 I-13
BAUMANN 181
1 200 100 { 0-87 | 1-57 | 184 | 293 | O 32-1 264 323 122 116 2-28
1A 200 | 100 | 087 | 1-:57 | 19-7 | 293 | 0-08 | 32-1 152 340 130 102 1-49
3 140 140 | 087 | 160 [ 20-1 | 293 | 0O 229 343 340 130 340 1-01
3A 140 | 140 | 0-87 | 160 | 20-3 | 293 | 0-08 | 229 235 344 130 193 1-22
5 177 139 | 0-87 | 250 | 330 | 28] | O 233 645 681 258 610 1-06

47



Research Report 20

TABLE 3 continued

Test b h dih | 100p | fey 5 eilh le/h | Nytest | Nuzeale |Noal cale [Nucale | Nu test Remarks
No. | (mm) | (mm) (Njmm?) &N) | GN) | GN) | KN | Ny care
5A 178 140 | 0-87 | 247 | 330| 281 | O 231 685 688 261 620 1-10
6 198 98 | 0-87 | 162299 | 293| 0 32:8 390 463 189 139 2-80
6A 200 100 | 0-87 | 1-57 [ 299 | 293| 0 321 400 475 195 147 2-72
7 182 178 | 0-88 | 190 | 353 | 281 | 0O 180 685 904 361 904 0-76 } local end failures
TA 180 180 | 0-87 | 190 | 353 | 281 | O 17-8 820 9204 361 904 0-91 in test
8 182 178 | 0-87 | 190 | 360 | 281 | O 17-5 1070 918 367 918 1-17
8A 180 180 0-87 | 190 | 360 | 281 | O 156 1215 918 367 918 1-32
2/1 250 250 | 0-87 | 129 | 419 272| O 119 | 2040 1923 826 1923 1-06
2/2 250 125 | 088 | 064 | 419 | 304 | O 258 695 924 415 350 1-98
2/3 250 160 | 0-87 | 078 | 419 | 294 | © 406 | © 665 1194 525 95 7-00
2/4 250 250 | 0-87 | 1-:29 | 402 | 272 | 0-17| 120 960 1854 797 1110 0-87
2/5 250 125 [ 0-88 | 065 | 40-1 | 304 | 0-17| 258 345 888 399 177 1-95
2/6 250 160 | 0-87 | 0-78 | 40-2 | 294 | 0-17| 406 225 1150 506 69 326
217 250 250 | 0-87 | 1-29 | 25-5 | 272| O-17| 117 840 1246 834 750 1-12
2/8 250 126 0-88 | 064 | 255 | 304 | 0:17| 256 235 588 258 147 1-60
2/9 250 160 | 0-87 | 078 | 30-6 | 294 | 017 | 406 205 894 393 62 3-30
2/10 253 251 0-88 | 1-27 | 374 | 272 | 033 11-7 690 1761 757 635 1-09
2/11 252 126 | 088 | 064 | 374 | 304 | 033] 256 195 843 379 93 2-10
2/12 250 162 0-87 | 078 | 372 | 295 | 0-33| 401 113 1081 475 54 2-:09
2/13 247 251 0-88 | 1-30 | 41-1 | 272 | 0-33| 11-8 700 1877 807 675 1-04
2/14 248 126 0-88 | 065 | 41-1 | 304 | 0-33| 256 163 908 408 91 1-79
2/15 247 161 0-87 | 079 | 413 294 | O 40-5 550 1172 515 100 550
3/19 250 1130 0-87 | 097 | 29-8 | 293 | 01 247 385 723 318 252 1-53
3/26 252 | 250 0-87 | 099 | 37-2 | 281 | 01 12:6 1320 1705 750 1140 1-16
332 250 250 | 0-87 | 2:00 | 343 | 282| 01 12:6 | 1350 1718 687 1160 1-16
AAS-JAKOBSEN 25)
1-01 264 | 498 | 2:42| 219 9-8 12-5 452 9-5! 1-03
1-02 264 | 498 | 1:23| 219 196 12-5 452 185 1-06
1-03 264 | 471 | 060 219 39-2 123 452 32'5| 1-20
1-04 264 471 032 219 59-0 123 452 46:5| 1-27
1-05 36-5| 530 2-60| 219 9:8 159 60-4 9-2| 1-07
106 093 | 2:04 365 | 530 1-38| 219 196 159 60-4 18-:0f 1-08
1-07 36:5| 530 078 | 219 400 159 60-4 31-8| 1-26
1-08 365 530 052| 219 56-0 159 60-4 4301 1:30
1-09 276 | 431 2:30| 219 9-8 124 458 86| 1-14
1.10 27-6 | 412 1-07| 219 19-6 123 45-7 177 1-11
111 007 276 | a12| 055] 219 | 392 123 457, 325 121
1-12 276 | 500 1-30| 219 196 129 46-4 17-6] 1-11
1-13 0-93 | 3-20 | 27-6| 461 | 3-20| 219 9-8 146 452 10-0| 098
1-14 093 | 1-63 | 27-6 | 461 | 3-20| 219 103 146 452 10-0| 1-03
1-15 093 (092 | 27-6] 461| 1-63| 219 203 146 45-2 19-5| 1-04
1-16 093 | 320 | 27-6 | 461 | 092 | 219 37-0 146 454 3221 115
2-01 094 | 233 | 23-5] 206} 1-10| 42-8 9-8 97 41-0 66| 148
202 094 | 233 +24:5 ] 206 | 047 | 42-8 19-6 100 41-6 11-:2| 175
2-:03 093 | 204 | 2944 | 471 | 0-80| 42-8 19-6 133 490 1521 129
2-04 091 | 320 | 319 480 | 0-72| 428 314 162 520 23-8 1-32
BREEN AND FERGUSON30? .
(€] 156 101 0-82 | 1-82 | 321 | 410| 0-30| 20 151 427 149 139 1-09
G2 154 102 | 082 | 1-82 | 31:6 | 405 | 0-60| 40 47-8 421 147 39 1-22
G3 153 102 | 0-82 | 1-82 | 319 | 410 | 076 | 50 30-0 425 148 25 1-20
G4 154 101 0-82 | 1-83 | 319 | 403 | 0-30| 50 533 423 148 35-5( 1-50
G5 153 102 | 0-83 | 1-84 | 359 | 465| 091 | 60 294 474 166 212 139
G6 153 102 | 0-82 | 1-83 | 377 | 450 | 0-38| 50 49-0 491 171 38 1-29
G7 155 102 | 079 | 1-80 | 41-8 | 441 | 0-30| 40 667 538 188 55 1-21
G8 152 102 | 0-82 | 1-84 | 350 | 428 | 025| 60 48-0 457 159 28 1-71
G9 153 101 0-81 | 1-84 | 343 | 420 | 033 20 147 448 157 135 1-09
G10 152 102 079 | 1-84 | 347 | 412 | 030 10 209 450 153 194 1-08
KORDINA 21!
Al 101 | 357 294 | 020 29 117 404 173 70 1-67
A2 1-01 [ 426 294 | 050 | 29 51-5 474 203 35 1-47
A3 1541100 ) 087 1) 61 | 326 | 204 | 020| 29 s | 313 | 160 | 67 | 176
A4 1-34 | 428 | 305 | 017 | 29 139 490 206 100 1-39
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TABLE 3 continued

Analysis and design of reinforced concrete columns

Test b h dih | 100e | feu fy eith | lefh Nutest | Nuzeale |Nbal cale| Ny cale Ny test Remarks
No. | (mm) | (mm) (N]mn) (kN) (kN) (kN) | (kN) | Ny care
RAMU, GRENACHER, BAUMANN AND THURLIMANN'37)
41 0-82 | 167 | 30-1 | 459 | 0-033| 288 515 978 342 365 1-41
11 0-83 | 1-67 | 382 | 459 | 0-10 |28-8 380 1177 423 350 1-09
12 0-82 | 1:67 | 41-6 | 459 | 0-10 |28-8 290 1262 454 365 0-80
14 35 15 0-81 | 1-67 | 32-1 | 459 | 0-10 |28-8 381 1027 359 310 1-23
53 0-82 | 167 | 46'S | 459 | 0-10 | 288 468 1383 497 390 1-20
23 082 | 1-67 | 373 | 459 | 025 |289 185 1138 409 265 0-70
24 0:82 | 1-67 | 31-5 | 459 | 0-25 |289 236 1012 354 245 0-96
31 0:82 | 1-67 | 28-8 | 459 | 1-00 |28-9 785 895 304 90 | 0-87
82 25 10 | 082 | 1-71 | 450 | 459 | 005 | 432 174 901 324 113 1-54
73 25 15 | 0:81 | 167 | 350 | 459 | 0-033| 144 880 1099 384 950 | 093
74 25 15 | 081 | 1:67 | 41-:2 | 459 | 0033|144 900 1251 450 | 1090 | 0-83
GREEN3)
S9 ‘ 152 ‘ 102 |O-8] ‘1-83 ‘353 [438—‘ 0-42 |18-8 [ 138 ‘ 461 } 161 ‘ 120 | 115 [
3
TABLE 4: Data from tests on biaxially loaded columns.
Test b h dih |100p | fou Sy ealh | Lejh Nutest | Nuzcale [ Vbalcale | Nu calc| Ny test Remarks
No. | (mm) | (mm) (N[mm? (kN) (kN) | (KN) KN Ny carc
PANNELL AND ROBINSON®%)
0-80 0-38
11 0-87 22-3 | 352 043 416 40 147 51 15-8 | 2-53
0-80 0-29
12 0-87 23-2 | 285 0-09 416 40 140 42 181 | 221
13 32(7) 20-0 | 285 gzg 41-6 20 127 393 | 110 | 181
0-80 0-67 Slenderness
14 95 64 087 325 | 210 | 285 112 41-6 20 131 40-6 9-5 | 2:12 | ratio about strong
0-80 017 axis is 27-8
15 0-87 20-0 | 366 021 41-6 50 139 366 | 197 | 2-54
080 0-30
16 087 20-1 . 366 037 41-6 30 139 39 167 | 1-80
0-80 0-77
17 0-87 365 | 352 086 41-6 20 202 686 | 137 | 1-46
STURROCK AND CRANSTON!3%)
0-81 0 :
3 087 490 | 290 038 50 273 1430 600 75 3-64
0-81 0
4 092 500 | 420 025 50 463 1500 645 100 4-63
081 0 Slenderness
5 400 100 092 1-27 | 50-0 | 420 030 50 349 1500 645 100 3-49 | ratio about strong
081 0 axis is 12-5
6 092 380 | 420 038 50 321 1234 530 85 3-78
0-92 0
7 0-92 500 | 420 034 50 378 1500 645 100 3-78
NoTES: 1. Two values are given for d/h and ¢;:h. These refer to the minor and major axis, the value for the minor axis being given

first.

2. The slenderness ratios given are about the minor axes since, in both test and design, deformations at the ultimate stage
dominate about this axis.
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TABLE 5: Data from tests on framed columns.
Test b h dfh | 100p Jeu fy eilh le/h Nutest | Nuzcale |Nbalcale | Nu cale | Na test Remarks
No. | (mm) | (mm) (N[mm?*) (kN) (kN) | (kN) | (kN) Ny eale
SAENZ AND MARTIN(2®)
1E-3 0841 1-10 425|263 | O 15-1 396 350 147 350 1-13
10E-1 0-83 ]| 248 |399 | 248 | O 15-1 381 360 148 360 1-05
26D-1 263 |0 17-5 261 250 105 250 0-86
2 084 1-10 [289 | 263 (O 17-5 272 250 105 250 110
3 263 | 0 17-5 236 250 105 250 0-94
23D-1 248 | O 17-5 277 246 84 245 113
2 0-83] 248 |245 | 248 |0 17-5 233 246 84 245 0-95
3 248 | O 175 251 246 84 245 1-02
3E-1 263 | 0 17-5 333 329 138 330 1-01
2 0841 110 1393 1 563 o | 175 | 236 | 329 | 138 | 330 | 072
31D-1 248 | 0 17-5 395 389 144 390 1-02
2 0-83( 248 |43-5| 248 | 0 175 375 389 144 390 0-96
3 248 | 0 17-5 343 389 144 390 0-88
27D-1 263 | 0 21 215 263 136 265 0-82
2 084 1-10 (307 | 263 | O 21 216 263 136 265 0-82
3 4 263 | 0 21 192 263 136 265 0-73
24D-1 248 | O 21 211 258 87 260 0-82
2 083 248 [26:0 | 248 |0 21 198 258 87 260 0-77
3 248 | 0 21 215 258 87 260 0-83
1E-1 263 |0 21 297 253 148 355 0-84
2 084 110 |42:5 263 |0 21 343 253 148 355 097
10E-2 248 | 0 21 365 362 130 360 1-01
3 083|248 1399 | o [0 | 21 370 | 362 | 130 | 360 | 102
29D-1 263 |0 24-5 177 239 100 130 1-36
2 084 1-10 | 275 | 263 |0 24-5 159 239 100 130 1-22
3 263 | 0 24-5 189 239 100 130 1-46
30D-1 127 90-4 248 10 24-5 171 260 91 195 0-88
2 0-83| 248 | 263 | 248 | O 24'5 195 260 91 195 1-00
3 248 | O 24-5 192 260 91 195 1-00
2E-1 263 | 0 24-5 248 381 160 180 1-38
2 084 | 1-10 | 462 | 263 | O 245 246 381 160 180 1-37
3 263 | 0 24-5 250 381 160 180 1-39
20D-1 248 | O 24-5 230 332 120 230 1-00
2 083 1-10 | 359 | 248 | 0 _24-5 229 332 120 230 1-00
3 248 | O 24-5 242 332 120 230 1-05
6E-1 263 | 0 28 148 212 86 81 1-83
2 084 | 1-10 | 240 | 263 | O 28 151 212 86 81 1-86
3 263 | 0 28 141 212 86 81 1-74
15E-1 247 | 0 28 190 251 85 125 1-52
2 0-83| 248 251 | 247 | O 28 161 251 85 125 1-29
3 247 | 0 28 168 251 85 125 1-34
SE-1 263 | O 28 238 396 166 125 190
2 084 | 110 1482 263 | 0 28 244 396 166 125 195
14E-1 248 | O 28 227 337 121 150 1-51
2 083 | 248 366 | 248 | O 28 243 337 121 150 1-62
3 248 | O 28 223 337 121 150 1-48
21E-1 248 | 0 301 169 234 79 100 1-57
2 0-83 | 248 |22-8 | 248 | 0 301 152 234 79 100 1-42
3 248 | O 30-1 137 234 79 100 129
28F-1 248 | 0 30-1 196 345 125 120 1-63
2 0-83| 248 |37-7 | 248 | O 301 225 345 125 120 1-87
3 248 | 0 301 226 345 125 120 1-88
BARTER AND MACGREGOR 3¢}
Cl 33-1 | 308 | 0-05| 21 170 227 68 159 1-07 ;e‘/’h = 011
C2 380 | 308 | 0-05| 21 175 250 77 175 1-00 = —e,h
DI 112|635 | 0-82) 402 | 3,31 308 | 0.39] 21 2 | 219 73 48 | 088 ||efh = 082
D2 39-2 | 308 | 0-39| 21 54 255 76 54 1-00 } = —e/h
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Analysis and design of reinforced concrete columns

TABLE 5 continued

Test b h dih | 100p | feu /y eilh | L/h Nutest | Nuzcale [Nbatcale | Nucale| Nu test

No. | (mm) | (mm) (Nfmm?) (kN) (kN) | (kN) | (kN) Neearc Remarks
BREEN AND FERGUSON '
Fl 349 | 365 | 013 | 240 260 443 164 181 1-44 ei/h = 0:30;
elh = =012
: . . . . e//h = 0-10;
F2 262 | 359 | 004 | 240 260 354 127 220 1-18 enfh = —004
4 . . e/h = 0-30;
F3 12 | 102 | 084 | 1ga| 334|364 [ 013|112 20 | 428 | oass | 214 |26 | 2T TR
F4 28-1 | 361 | 004 | 112 370 373 134 300 1-24 e/h = 0-10;
FS 324 | 372 | 004 | 230 320 419 155 280 1-14 elh = —0-04
Th = 0-30:
F6 331|354 013 240 260 | 423 | 158 | 182 | pa3e | Q0 =030
eh = —012

FURLONG AND FERGUSON"!)

1 3-28 | 29-8 | 350 | 0] 156 267 450 130 300 0-89
2 1-84 | 37-0 | 379 | 01 170 274 468 160 290 0-94
3 1-84 | 28:8 | 394 | 03 17-0 177 387 133 140 1-26
4 152 7102 | 0-80 | 1-84 | 279 | 372 | 02 | 156 234 374 125 185 126
S 1-84 | 279 | 364 | O-1 14-0 247 372 124 260 095
6 1-84 | 306 | 349 | 03 14-0 200 396 132 160 1-25
7 1-84 | 41-3 | 350 | O-1 140 349 506 178 350 1-00*
FERGUSON AND BREEN'3?) (Lateral load series)t

L1 084 | 195 [ 243 | 383 | 01 26 167 451 162 175 095
L2 *| 0-84 [ 193|359 | 407 | 03 | 26 111 475 171 119 0-93
L3 0-84 | 193 | 276 | 389 | 0] 32 138 485 136 112 1-23
14 153 103 | 0:85 [ 194 | 32-8 | 393 | 0] 13 245 438 159 300 | 0-82
L5 0-84 | 193 | 350 | 398 | 03 13 189 463 166 200 0-94
L6 0-84 | 194 | 31-9 | 384 | 01 13 245 426 153 305 0-80
17 0-84 | 192 | 258 | 393 | 01 2] 178 368 130 200 0-80
BAUMANN'®)

2:17 200 90 | 0-87 | 1112 | 246 | 304 | O 227 375 347 145 310 121
2/18 201 91 | 087 | 110 | 246 | 304 | O 29-1 360 352 147 130 2:77
2120 250 130 | 0-87 | 097 | 298| 293 | O 19-6 845 723 319 723 1-17
2/21 200 89 | 088 [ 1-13 | 426 | 304 | O 230 550 555 241 420 1-31
2/22 200 89 | 088 | 1-13 426 | 304 | O 23-0 620 555 241 420 1-48
223 248 129 | 0-88 | 098 | 468 | 293 | 0 150 | 1075 1073 472 1073 1-00
2:24 248 129 | 0-88 | 098 | 468 | 293 | O 19-8 945 1073 472 1073 0-88
2425 250 | 248 | 0-87 | 099 | 37-2 | 281 | 007 | 71 1300 1680 743 1130 1-15
2127 201 92 | 088 | 170 | 382 | 272 | 007 | 7-1 340 541 222 168 2-02
228 200 89 | 088 | 1'76 | 359 | 272 | 007 | 298 290 496 205 144 201
2/29 250 130 | O-87 | 1-89 | 398 | 281 | 007 | 196 735 1002 410 600 1-22
2130 250 132 | 0-83 | 1-86 | 398 | 281 | 007 | 193 770 1015 414 640 1-20

2/31 250 | 250 | 087 | 2:00| 342 | 282 | 0-:07| 98| 1430 1718 687 1160 123

* Long-term test but deflections insignificant.
1 See note in text on this series.
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TABLE 6: Data from long-ferm tests on columns.

Test b h dih | 100p | feu | f;' eifh | leth Nutest  |[Nuzcale| Noalcale | Nu cate | Nu test

No. | (mum) | (rm) (Nfrm) (N | N | RN) | GN) | B e AT
FERGUSON AND BREEN'#2)

L8 | 154 | 103 |O~84 |1-93 {403 |39o 03 |26 ‘ 67 ‘ 517 | 191 | 119 |0~56 |
GAEDE!23)

2 250 [ 334 [ 02 [291 62 300 125 63 |099
3 27-3 | 342 | 02 |291 62 323 137 68 | 091
14 312 | 280 | 02 |294 63 356 153 60 | 105
16 386 | 292 | 02 |29 80 434 186 74 108
17 154 1100 | 087 1100 | 375 | 286 | 02 |294| 80 421 181 71 113
1 259 | 327 | 05 | 294 21-5 | 308 129 37 | 058
12 27-7 | 324 | 05 | 294 235 | 325 136 35 | 067
1113 249 | 333 | 05 | 294 23-5 | 298 125 37 | 063
RAMU, GRENACHER, BAUMANN AND THURLIMANNU"?

61 081 [167 [4277 [459 [0 288 645 1288 463 465 [1-39
81 081 [1-67 [382 [459 | 0 28-8 | 600 1179 424 | 450 |133
42 081 |1-67 [ 312 | 459 | 0033|288 | 407 1005 344 370 | 1-10
43 : 082 | 1-67 | 321 | 459 | 0033|288 | 426 1026 359 380 | 112
44 0-81 | 1-67 | 268 | 459 | 0033|288 | 427 896 295 | 330 | 129
51 083 | 167 | 544 | 459 | 0-033 | 28-8 | 490(430)* 1576 583 510 | 096
13 082 | 1467 | 342 | 459 | 0-10 288 | 305 1080 378 335 | 091
15 082 | 167 | 362 | 459 | 0-10 [ 288 | 342 1128 359 340 | 1-00
16 082 | 167 | 274 | 459 | 0-10 | 288 | 323 910 309 295 | 1-09
21 ‘ 082 | 1-67 | 34-8 | 459 | 0-10 | 288 | 300(260) | 1094 382 330 | 091
22 ” |5 | 082|167 373 | 450|025 |289| 185 1155 415 | 265 | 071
25 082 | 167 | 366 | 459 | 025 | 289 | 190(161) | 959 398 | 235 |08l
52 082 | 167 | 31-5 | 459 | 0-25 | 289 [ 219(185) | 1579 354 300 | 073
32 081 |1-67 | 358 | 459 [ 1.0 | 289 |76-5(68-5) | 1119 391 95 | 081
33 082 [ 1-67 | 346 | 459 | 1-0 | 289 |81-5(71-5) | 1090 381 93 | 088
55 0-81 | 0.99t| 39:5 | 459 | 0-033| 289 | 426 1121 336 370 | 115
56 0-82 | 0:991| 45-5 | 459 | 025 [28-9| 183 1270 406 | 254 | 0T
83 082 | 428 | 392 | 550 | 0 289 | 760 1635 425 900 | 084
64 081 | 428 | 330 | 550 | 0033|289 | 630 1484 356 710 | 0-89
63 081 | 428 | 49-4 | 550 | 0-25 | 28-9 | 355(344) | 1881 507 375 | 095
54 0-82 | 1-67 | 422 | 459 | 0033|289 | 430 1276 459 420 | 102
62 085 | 1-67 | 461 | 459 | 0-033| 289 | 485 1373 521 40 | 105
65 083 [ 1-71 | 306 | 459 | 005 [432] 156 663 232 110 | 1-42
71 55 (o | 0821711392 1459 | 005 |432] 137 806 290 14 | 120
66 0-82 | 1-71 | 319 | 459 | 0-375] 432 66 684 239 72 092
72 0-83 | 1771 | 40-2 | 459 | 0-375| 432 61 822 254 75 | 0-81
GREEN33)

51 081 [186 [ 345 [ 452] 0-035] 18-8] 236 450 153 360 | 0-65
54 082 [ 1-79 | 345 | 386 | 0-18 | 183 187 452 162 | 212 | 088
55 152 | 104 | 0-82 | 1-79 | 34-1 | 403 | 0-105]| 183 185 452 162 | 270 | 069
56 082 | 1797 28-6 | 443 | 0-155| 183 162 402 136 | 205 | 079
58 0-82 | 1-79 | 353 | 412| 027 | 183 133 466 167 168 | 0-79

* Where a second value for Ny test Is given in parentheses, this signifies the long-term load in an L-S test (see footnote to Table 2).

+1n these cases 0-15 is in compression and 0-84 in tension.
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