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SYNOPSIS

The principal factors controlling the dynamic response of structures to
earthquakes are summarized, and are related to the lateral force provisions
recommended for inclusion in the Uniform Building Code by the Structural
Engineers Association of California (SEAOC). These provisions are seen to
conform very well with the concepts of dynamic theory.

INTRODUCTION

Experience with recent earthquakes in Tehachapi, Calif. and Mexico City,
Mexico has shown that it is possible to build economical, attractive structures
which are highly resistant to earthquake affects. But at the same time, these
earthquakes demonstrated that where the dynamic effects of earthquakes are
not fully understood or properly accounted for, the results can be disastrous.

The purpose of this paper is to summarize the principal factors controlling
the dynamic response of structures to earthquakes, and to relate these factors
to current trends in the development of the earthquake provisions in building
codes. It will be seen that the lateral force requirements recently recom-—
mended by the SEAOC take cognizance of the major factors affecting the dy-
namic response of structures and, thus, provide a rational basis for the design
of earthquake-resistant structures.

Note.—Discussion open until September 1, 1960. To extend the closing date one
month, a written request must be filed with the Executive Secretary, ASCE. This paper
I8 part of the copyrighted Journal of the Structural Division, Proceedings of the Ameri-
can Society of Civil Engineers, Vol. 86, No. ST 4, April, 1960,

:11 Presented at February, 1959 Convention in Los Angeles, Calif,

Assoc. Prof, of Civ. Engrg., Univ. of Calif., Berkeley, Calif.
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Before going into the details of the dynamic response theory, it will be use-

ful to emphasize a few pertinent facts regarding the nature of earthquakes. An |

i rse, simply a ground-vibration phenomenon. 'Sinf:e the )
2::.:2(4;&1:;52(:0;“ (;?: gro,ss ch:racteristics, ax}d possesses mass, it will v1btrate
when subjected to a shock loading just as will any other mechanical system,
Thus, when a slippage occurs suddenly at a fault zone, shock waves :jlfre f:tci)gi-
gated through the earth in all directions, and whep the surface mani es1 ate:
of these waves pass any given point on thfe earth, it (and any str\.mtuxt'g oc ¢
on it) will be caused to vibrate. Motions induced by thg grounq V}bra ions muy
have both vertical and horizontal component‘s, bu? sm<.:e k?uu'.dmgs norma ty
have considerable excess strength in the vertlgal d%rectwn it is cust.orzlazu;};l o
consider only the effects of the horizontal motions in earthqu'ake-resxsthn ;-
sign. It should be emphasized that the forces developed during an earthquake
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FIG. 1.—EARTHQUAKE FORCES, RIDGID STRUCTURE

are not applied directly to the structure, but rather are inertia forces result-
ing from the motions of the structure.

EARTHQUAKE EFFECTS ON A RIGID STRUCTURE

In order to provide a suitable background for 'this study of the dynamtg:
response problem, it will be useful to cons'ider fxrst' thg effect of an ear b
quake on a rigid structure. Such a structure is ;hown in Fig. 1. It is assum ¢
that both the building and its foundations are rigid so that .thfe earthq\;a;ke mcae
tions of the ground, u,, are transmitted directly tf) the building. I’n this fas :
it is clear that an effective earthquake force, Fi, will be developed inthe s ruc-
ture equal to the product of the ground acceleration and the mass of the struc
ture,

....................

in which Ug is the ground acceleration, W denotes the weight gt the structure,
and g is the acceleration of gravity., For convenience, Eq 1 is usually re;a;
ranged so that the force is given as the product of the weight of the structu

ST 4 EARTHQUAKES 51

and a seismic coefficient, C, which represents the ratio of the ground accel-
eration to the acceleration of gravity:

0y
Fi=g—gw=cw e (2)
in which
.
c=g—g.. .......... R (3

For design purposes, it is common practice to expressthe earthquake force in
terms of the shearing force developed at the base of the structure. In this

case, simple statics show that the base shear, V, is equal to the force Fy, and
is given by

V=CW ..., . it . (9

Eq. 4 demonstrates that the dynamic analysis of a rigid structure is very
simple. All that is required is an estimate of the maximum ground accelera-
tion which will occur during the earthquake. This acceleration, expressed as
a ratio to the acceleration of gravity is the seismic coefficient C in the formu-
la,

The rigid-structure concept provided the basis for the lateral-force pro-
visions of some of the earliest earthquake codes, which specified that a struc-
ture should be designed for a certain percentage of gravity (say 10% or 12%),
regardless of the characteristics of the structure. Unfortunately, the dynamic-
response characteristics of actual structures are not so simple. Their flexi-
bility and mass impart to them vibration characteristics which directly affect

the magnitude of the seismic forces to which they will be subjected during an
earthquake.

DYNAMIC RESPONSE OF A FLEXIBLE STRUCTURE

The effectofa structure’s flexibility on its response may be discussed most
easily by reference to a simple, one-story structure, as shown in Fig. 2. The
weight of the structure, W, is assumed to be concentrated at the roof level.
Such a structure is said to have a single degree of freedom (considering plane
motion only) because only one type of deformation is possible, represented here
by the displacement, u. The significant dynamic properties of this structure,
in addition to its weight, are the stiffness of the columns, k, which represents
the force developed per unit displacement, and the damping, c¢, which repre-
sents the force per unit velocity. In the explanation which follows, damping
Will be omitted for simplicity, but the effect of damping will be included with
the final results,

In the absence of damping, the base shear in this structure may be ex-
Pressed as the product of the displacement and the column stiffness,
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Dynamic equilibrium conditions (using d’Alembert’s principle) show that the
base shear must balance the inertia force of the mass, that is,

(noting the sign convention assumed in Fig. 2). It will be noted that the inertia
force here depends on the total motion of the mass, rather than the ground mo-
tion, as was the case only in Fig. 1. It is convenient to express the total ac-
celeration as the sum of the ground acceleration and the relative acceleration
of the mass with respect to the ground, thus

Then Eq. 6 may be rewritten as
Wivku=-
g

Eq. 8 is identical with that which would apply to a stationary structure sub-
jected to an effective force, Fge, equal to the product of the mass of the struc-
ture and the ground acceleration. Thus the dynamic effects of earthquakes
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FIG. 2.—EARTHQUAKES FORCES, FLEXIBLE STRUCTURE

may be studied by considering the structure to be stationary and applying to it
an effective earthquake force, Fe.

Now it is clear that this effective force is notdirectly resisted by shears in
the columns; the mass must first be accelerated, and, thus, the inertia of the
structure modified the dynamic effect of the applied load. The base shear, v,
in this case, depends on the nature of the applied force Fe (that is, the time
history of the ground acceleration) and also on the vibration characteristics of
the structure. If the ground displacements were a simple harmonic motion of
period Tp, as shown inFig. 3, the effective earthquake force could be expressed

= ; _ e W
Fe Fosmpt——ugo
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- N i
V max umatxk—Fo(r———l w2 | L (11)
L-(zfd ()
5 =
p TP
in which
_ w
T=2n7 E_K .................. (12)

is the period of vibration of the structure. From Eq. 11 it is clear that the re-
sponse of the structure depends, in a very direct fashion, on the natural period
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FIG. 3.—RESPONSE TO HARMONIC MOTION

of vibration of the structure, which depends, in turn, on its stiffness and weight.
The base shear may be either less than or greaterthanthat ofa rigid structure,
depending on how close to resonance this system is, that is, how near its natural
Period of vibration is to the period of the applied ground motion.

. It is sometimes convenient to expressthe response of a structure to a spe-
Cific ground motion in terms of a velocity coefficient, Sy, as follows:

V =

EZns
max g

T v
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where Sy represents the maximum velocity produced in the structure by the
particular motion. The velocity coefficient for simple harmonic ground motion,
therefore, is given by

T 1
Sv_21rugo[1_

7%2_] ......... e

A graph representing the variation of the velocity coefficient, Sy, with the period
of vibration of the structure for a harmonic ground motion ofa particular am-
plitude and period, is shown in Fig. 3. Such a graph is called the velocity spec-
trum of the ground motion because it shows the maximum velocity developed by
this motion for a complete spectrum of periods of vibration of the structure.
It will be recalled that the preceding remarks refer to the response of an
undamped structure. If the structure is damped, that is, if it has some form of
resistance which depends on the velocity of motion, as represented by the vis-
cous damper shown in Fig. 2, the magnitude of this damping force will also af-
fect the response of the structure. The magnitude of the viscous damping of a
system, c, is usually expressed as a ratio to a critical or reference damping
coefficient, cc. Thus, the damping ratio A, is given by A = c/ce. The velocity
spectrum of a damped system for a harmonic-ground motion is given by

1+<2A1x>2 1/2
T .. T
Sv_Z_Eugo RV PN (15)
[1-<T_>] (2 L)
T T
p p

and, also, is shown graphically in Fig. 3, for various values of the damping
ratio. The important effect that damping has in limiting the response of the
system at frequencies approaching resonance is clearly shown in Fig. 3.

EARTHQUAKE RESPONSE OF A SIMPLE FLEXIBLE STRUCTURE

The preceding material is not intended to imply that earthquake motionof the
ground may be represented by simple harmonic motion. The only reason for
including this explanation is to emphasize, with a familiar example, the im-
portant influence of the period of vibration of the structure on its response to
a given ground motion. That an earthquake is far from a simple harmonic
motion is clearly shown by Fig. 4, which presents the ground acceleration
measured at Taft, Calif,, from the Tehachapi earthquake of July 21, 1952. The
motion may be characterized best as a series of erratic, almost random, ac-
celeration pulses. Thus, the concept of resonance which was applied to har-
monic motions has no place in the treatment of earthquake response.

On the other hand, the response to an earthquake motion can be expressed
in terms of a velocity spectrum, just as was described previously, if the ve-
locity spectrum is determined properly; and, again, the response will be found
to depend on the period of vibration of the structure. For a completely arbi-
trary ground motion, such as is represented by an earthquake, the velocity
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spectrum of an undamped system may be evaluated from
t 2w
X T T
Gysingt (=T AT] e (16)

s
0

white for a damped system, the velocity spectrum is given by

t
. =M2T .27
v [J; uge (T—>(t-‘r) sin (t-T)dT]max....(17)

max

S =

In both Egs. 16 and'17, the primary dependence of the spectral values on the
period of the structure is evident. Damped and undamped velocity spectracal-
culated for the motion recorded at Taft, during the Tehachapi earthquake, are
shown?2 in Fig. 5. The spectral curves are less regular in this case than they
were for the simple harmonic-ground motion because of the erratic nature of
the earthquake, but they have the same significance and the maximum base
shear can be obtained by the use of Eq. 13, as before. Since Eq. 16 (or 17)
must be evaluated throughout the entire history of the earthquake, for any
given period of vibration, in order to find the maximum velocity developed for
that one period, the calculation effort required to obtain a complete velocity
spectrum is enormous. Such work is generally done by either analog or auto-
matic digital computers.

The importance of the velocity-spectrum concept in earthquake engineering
cannot be over-emphasized. The complete dynamic effect of the earthquake is
represented by the spectrum, and to determine the force which would be de-
veloped in a given structure, by a given quake, it is necessary only to evaluate
the damping and period of vibration of the structure, and then find the appro-
priate value of Sy from the velocity spectrum. For example, if the structure
of Fig. 2 had a period of vibration of 0.7 sec and 10% critical damping, the cor-
responding spectral velocity, Sy, for the Taft earthquake would be 0.9 it per
sec. Then, if the mass of the structure were 20 kips, the base shear produced
in this structure by this earthquake motion would be

W 27 _ 6.28 1 _ .
V= % (0.9) = 20 <_(T7> <-——32.2> (0.9) = 5.0 kips

The response of any other single-degree-of-freedom systemto this earthquake
could be evaluated similarly.

4

EARTHQUAKE RESPONSE OF MULTI-STORY STRUCTURES

Although the dynamic effect of an earthquake ona simple elastic structure is
completely represented by the velocity spectrum, there still remains the impor-
tant question of how to evaluate the effect of earthquakes on more complex sys-
tems such as multi-story buildings. Fortunately, the procedure developed for
structures having a single degree of freedom may be applied similarly to
multiple-degree-of-freedom systems. It is necessary only to evaluate first
the vibration properties of the structure, thatis, its vibration periods and mode

2 “Behaviour of Structures During Earthquakes,” by G. W. Housner, Proceedings
ASCE, Vol, 85, No. EM 4, Ocotober, 1959, p, 109,
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shapes. A structure may vibrate with as many different mode shapes and peri-
ods as it has degrees of freedom, and a multi-story building will have one de-
gree of freedom for each story (considering plane motion only) if the weight is
assumed to be concentrated at the floor levels. Thus a 10-story building will
have ten vibration mode shapes and periods.

Now the important characteristic of these vibration modes is that they are
completely independent of each other. Thus, the response to a given ground
motion can be calculated independently for each mode, exactly as was des-
cribed for the one-story system illustrated previously. The total effect of the
earthquake may thenbe obtained by simply addingtogether the individual mode
effects.

To demonstrate the procedure, the structure shown in Fig. 6 will be con-
sidered. This is the Alexander Building in San Francisco, Calif. undoubtedly
the subject of more technical discussions on earthquake effects than any other

Story Wei?m-wx Vibration Mode Shapes

(kips, L b2 R

1601 1.408[-0.638] 0.271
800 1.228|-0.350| 0.017
860 1.142[-0.141 1 0.163
901 1.052 | 0.018/-0.243
920 0.964| 0154|-0.267|
892 0.866| 0.283|-0238
898 0.776| 0.387|-0.161
898 0.673| 0456/-0.069
907 0581 | 0495 0035
916 0494 | 0502 0.122
914 0409 | 0482 0.192
937 0.332| 0441/ 0.230
969 0.258| 0.377| 0.236
982 0.191 | 0.301] 0.210
1224 Vibration 0.131 | 0215 0.162

S I - | Perlods T= [ 125 [0.35]0.20 |secs

Total Weight = 14,619% : Eff. Weights = 10,377 243" s95* = w,
2
(? Oxn Wy )
where W, = TS 02w
T Yxn¥x

FIG. 6.—VIBRATION PROPERTIES OF THE ALEXANDER BUILDING

building in the world. The first, second, and third mode shapes for this build-
ing, and the corresponding vibration periods are shown. Also indicated is the
effective weight, W, associated with each mode. This weight is used, together
with period of vibration and spectral velocity value for each mode, to calculate
the base shear for that mode, using the equation

which is the same asEq. 13 except that the subscript n has been added to indi-
cate that values appropriate to the nth mode of vibration are to be used. The
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effective-weight for the nth mode is obtained from the relationship

Z ¢xn Vx
in which ¢, represents the displacement at the xthfloor level in the nth mode
of vibration, and wy represents the weight of the xth floor. The base shear cal-
culated for each of the three modes of vibration, using the velocity spectrum of
the Taft earthquake record and assuming 10% damping, is shown in Fig. 7.

In addition to the base shear for the multi-story structure, of course, the
manner in which the forces are distributed through the height of the structure
is also required. In general, the force in the nth mode at height x, Fy,, i
given by the base shear for that mode multiplied by a distribution coefficient,
as follows:

n

w
9 xn "x

Fen“Val 5w
Z¢xn x
X

Xn

The distribution of forces for the three modes considered in this analysis is
also shown in Fig. 6.

As was mentioned previously, the total response of the structure to the
earthquake motion may be obtained by superposition of the responses calcu-
lated for each mode. Thus, if we had the time-history of the base-shear vari-
ation for each mode, the time-history of the total base shear could be deter-
mined by merely adding the individual response terms at each instant of time.
However, it should be recognized that the total maximum base shear developez
by the Taft earthquake cannot be obtained by merely adding the base shears
shown in Fig. 6, even though each value represents the maximum force de-
veloped in that particular mode. This is because the maximum velocities
represented by the velocity-spectrum values for the different periods of vi-
bration would occur at different times during the history of the quake, and thus
they do not represent simultaneous affects. Acccrdingly, the value obtained &
direct superposition of the maximum modal forces willalways exceed the trce
maximum forces. For example, a complete analysis of the response of t=¢
Alexander Building to the E1Centro earthquake of 1940, showed3 that the super-
posed modal maxima gave a base shear force which exceeded the true max:-
mum base shear by about 28%.

Since it is possible to obtain only an approximation to the maximum re-
sponse by direct superposition of the modal maxima, it is equally rational a=d
considerably simpler to calculate only the fundamental mode response, and =2
increase it by a factor to account for higher mode effects. Referring again o
the analysis of the response of the Alexander Building to the El Centro quaks=.
it was found that the true maximum base shear was about 19%greater than tk=:
given by the first mode spectral-response value. This increase applies or.¥
to this particular building and earthquake, of course, but it may be consider<3
representative of the order of magnitude of higher mode effects in tall buiiZ-
ings. (However, it may be noted here that increasing the fundamental moce

3 «On the Importance of Higher Modes of Vibration on the Earthquake Response o =
Tall Building,” by R. W. Clough, Bulletin, Seismological Soc. of Amer., Vol. 45, No. <+,
October, 1955, p. 289,
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response by a constant factor to account for higher mode effects is not entire-
ly rational, because the higher modes provide different effects at different
heights. A better procedure would be to add a specified fraction, say 50%, of
the second and third mode maxima to the first mode maximum to obtain an
estimate of the total forces developed throughout the height.)

INELASTIC RESPONSE TO EARTHQUAKES

The procedure described previously makes possible the analysis of earth-
quake forces in any type of structure, and would apparently provide a com-
plete picture of the dynamic effects of earthquakes. However, when the forces
due to a moderately severe quake are calculated by this procedure, it is found
that they exceed, by a significant amount, the design forces which would be
specified by building codes. For example, inthe previously mentioned study of
the response of the Alexander Building to the El Centro earthquake of 1940, it
was found that the base shear was about 20% of the weight of the building. Even
the relatively moderate Taft earthquake would have produced a base shear of
about 10% of the buildings’ weight. On the other hand, building codes would
specify a value of about 3% to 5% for the base-shear coefficient for this struc-
ture. This would appear to indicate that the lateral-force provisions of build-
ing codes are quite unconservative in providing resistance to a severe quake.

At the same time, however, it must be recognized that buildings having
considerably less strength than is required by modern codes have withstood
rather severe quakes with only moderate damage. This apparent discrepancy
may be attributed, in part, to the fact that buildings possess considerable
strength in excess of the design values due to use of conservative design
stresses and to the participation of non-structural elements in resisting later-
2] deformations. Nevertheless, this factor does not fully explain the relative-
1y slight damage exhibited by many ordinary buildings which have gone through
heavy quakes. Even more important in many cases, is the fact that, as the re-
sponse of the building builds up, cracking and yielding begin to take place, and
these inelastic deformations absorb a large part of the vibrational energy of
tne structure. As a result, the continued build-up of energy which is required
t» develop the maximum velocities indicated by the spectral response curves
is prevented.

On this basis, it is clear that inelastic deformations of the structure are a
gredominate factor in limiting the forces developed in a structure by a strong
earthquake. Moreover, it is evident that earthquake codes have empirically
saken account of this effect, since the code provisions provide strengths which
zre not sufficient to resist the earthquake forces elastically. To account for
-nis effect rationally requires that inelastic action be incorporated into the
znalysis, and this may be accomplished effectively only through the use of
zutomatic digital or analog computers. A study of this type was performed4 by
J. Penzien in which he evaluated the inelastic response of a single-story sys-
<em to the El Centro earthquake of 1940. A part of the results of this study is
presented in Fig. 8, in a form somewhat similar to the velocity-spectrum
<urves discussed previously (except that maximum displacement rather than
~velocity is the quantity presented.) The dashed curve in Fig. 8 represents the

4 «Elasto-Plastic Response of a Single Mass System Subjected to a Strong—Mot'%on
Zarthquake,” by J. Penzien, presented at a meeting of the ASCE, Los Angeles, Calif.,
February, 1959,

s
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maximum elastic response of the structure for varying values of period of vi-
bration, while the solid lines indicate the inelastic response for several values
of plastic limit, This limit is represented by the parameter 6, which is the
ratio of the lateralforce which wouldinitiate yielding to the weight of the struc-
ture. Thus, decreasing values of 6 indicate decreasing elastic strength. The
important effect that inelastic deformations have in limiting displacements is

evident in this figure, since the weaker structures are seento undergo smaller
displacements.

DYNAMIC CHARACTERISTICS OF THE EARTHQUAKE

One other aspect of the earthquake-response problem should be considered
herein—the dynamic characteristics of the earthquake itself. As was noted

2.0 //\
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A. 25 Miles from center of large earthquake
B
C. £ 10 Miles from center of small earthquake

1+

70 Miles from center of large earthquake

FIG. 9.—UNDAMPED VELOCITY SPECTRUM CURVES (FROM REFERENCE 1)

previously, the velocity spectrum depends on the nature of the earthquake mo-
tion and may be quite different for different quakes. Thus, the difficulties of
establishing a standard spectrum for use inearthquake codes isobvious. How-
ever, enough earthquake records have now been obtained to establish certain
general characteristics of the velocity spectra. These average characteristics
were evaluated by G. W. Housner and are presented2 in Fig. 9. Two basic
points may be recognized from the curves of Fig. 9. First, comparison of
curves A and B shows that propagation of the quake through the ground for a
long distance not only reduces the general intensity of the motion (as might be
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expected), but of equal importance, it tends to filter out the short-period com-
ponents of the motion more effectively than the long-period components. Thus,
while a nearby earthquake will tend to cause the most severe damage to stiff,
short-period structures, a quake at a greater distance will not affect such
structures appreciably and will concentrate its effects instead on the flexible,
long-period buildings.

The second basic principle is demonstrated by curve C, which shows that
small, nearby quakes still further emphasize the short-period components of
the motion, and thus may be expected even more exclusively to limit their
damaging effects to the short-period, stiff structures. Flexible, tall buildings
will show very slight effects from such local quakes.

SUMMARY

The preceding brief presentation of the principal dynamic effects of earth-
quakes will be summarized by comparing the results of theory with some of
the lateral-force requirements recently proposed by the SEAOC.5 The com-
parison is presented, in brief, in Table 1 and will be discussed subsequently.

Considering first the dynamic theory, the base-shear force developed in the
nth mode of vibration of a structure is given by Eq. Ia of Table 1, which shows
that the force depends on the effective weight, the period of vibration and the
spectral-velocity value. Eq. Ib indicates that the spectral velocity depends on
the period of vibration, and that the effective weight varies with the mode shape
and weight distribution. Eq.Ic showsthat the base shear is distributed through
the height of the building in proportion to the weight distribution and modaldis-
placements. Egq. Id is simply a reminder that dynamic forces may be greatly
reduced by inelastic action.

Compared with these basic facts of dynamic theory, in the right-hand column
of Table 1 are presented some of the principal provisions of the proposed
SEAOC. Eq. IIa shows that the total base shear is to be given by the product of
the weight, a seismic coefficient C, and a factor k. This latter factor will be
discussed later. An empirical expression for the seismic coefficient is given
By Eq. IIb. It is clear that the selection of this coefficient mustbe carefully
considered because of the many factors for which it is intended to account. A
primary factor, of course, is the quantityi,%r- Sy (frequency times spectral ve-
locity) and the variation of this quantity is represented in Eq. IIb by the nega-
tive cube root of the period. This, however, is only a part of the task assigned
to the expression of Eq. IIb. Other factors which must be represented by the
equation are the difference between the effective first mode weight, W1 and the
total weight and the influence of higher modes of vibration(because onlya sin-
gle mode is considered in Eq.Ia). Finally, but still of great importance, the
factor C, in Eq. Ila, must take account of the energy-absorption effects of in-
elastic action which greatly alter the maximum response values. Accounting
for all of these factors places a heavy burden on the expression of Eq. IIb, but
it would appear to do the job as well as any possible choice on the basis of
current knowledge.

Eq. Ilc provides for distribution of the calculated base shear through the
height of the building. Comparison with Eq. Ic shows that the two are identical

5 «Recommended Lateral Force Requirements,” Seismology Committee,

] SEAOC,
presented at a meeting of the SEAOC, Yosemite, Calif., October 2, 1958,
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if the vibration displacements increase linearly with height. It will be noted in
Fig. 6 that the first mode for the Alexander Building is essentially of this
shape. Other buildings may tend to emphasize either the shear or the flexural
distortion to a greater extent but this appears to be a reasonable assumption
for a typical building of tall, slender proportions.

Finally as shown in Eq. IId, the factor k is assigned a value between limits
of 2/3 and 4/3. The purpose of this factor is to account forthe varying plastic-
deformation capacities of different types of construction. It is evident that
considerable amounts of energy must be absorbed in plastic deformations if
the response of a structure is to be reduced materially below the amplitude of
motion which would be developed elastically. Consequently, it is important
that the structure possess adequate capacity for plastic deformation. The “k”
value of 2/3 is intended to be applied to structural types which may undergo
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sizeable amounts of plastic deformation without suffering major damage, while
the factor of 4/3 would be applied to structures which can undergo only minor
amounts of plastic deformation.

It is apparent from the preceding remarks that current concepts regarding

! the lateral-force provisions of building codes have advanced considerably be-

yond the original rigid-structure treatment. The seismology committee which
promulgated the lateral-force provisions proposed by the SEAOC has done a
remarkable job of relating the practical requirements of a building code to the
essential features of dynamic theory. There is still a need for extensive re-
search on the inelastic response of structures, and further studies of the char-
acteristics of earthquakes will be needed to define a standard earthquake.
However, it is encouraging to find a proposed building code which so nearly
represents the current state of the art in this rapidly developing field.



