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Foreword

The major objectives of Column Research Council, since its founding in
1944, have been to foster research on the behavior of compressive elements
in metal structures and to assist in the development of improved pro-
cedures for design. The Council attempts to offer guidance to practicing
engineers and to specification writers. An effort is made to present both
refined and simplified procedures and to assess their limitations; it is left
to the user to choose among them as he sees fit.

The first edition of the Guide was dedicated to the Council’s first chair-
man in these words: “As first chairman of Column Research Council,
Shortridge Hardesty gave freely for twelve years his time, devotion, and
material assistance. His mind grasped both the practical problems of
engineering application and the fundamental knowledge essential to re-
search. His influence was a personal inspiration to all who worked in
Column Research Council.”

The initial outline of the Guide was prepared in 1956 by Lynn S. Beedle
and the late Jonathan Jones. The first edition was published by the Council
in 1960. It subsequently played an important supporting role in connection
with revisions of both the AISC and CISC design specifications. Special
financial support from the Engineering Foundation and the Association of
American Railroads made the first edition possible. Costs for the second
edition have been borne jointly by the American Institute of Steel Con-
struction and by Column Research Council.

For the preparation and editing of both the first and the second edition of
the Guide, the Council was fortunate in securing the services of Bruce G.
Johnston, and is indebted to him for the amount of time he has devoted
to this work. He has had the assistance of a number of people who have
contributed portions of the manuscript and reviewed the drafts at various
stages of completion.

In the second edition, the original five chapters have been completely
revised and brought up to date, with new material on the effects of residual
stress and initial curvature, and on the strength of tubular columns. A
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chapter on plate girders and one on compression chords of pony trusses

dded. Many new references are given. o
haéen:ez? ztlhe importa)lln objectives of Column Research Council llS t(}
digest critically the world’s literature in i_ts field anq to make the rem:1 ts :))f
research widely available to the engineering profession. You, the rea er o
this book, are invited to share in the improvement of future edxtxo}rlls. !
you know of published papers or results of r.esearch. that wogld enhanc
the value of the next edition, please communicate with the editor.
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Nomenclature

Symbols

A
A-A

A coefficient. Area of cross section. Diameter of rivet or bolt head.

A reference line.

Area of compression flange.

Area of cross section remaining elastic.

Area of flange.

Area of stiffener cross section.

Area of tension flange.

Area of web.

Length of side of stiffened plate. Length of perforation in a per-
forated plate. Torsion bending constant for an I section.

A coefficient.

Width of rectangular cross section. Width of plate. Width of
pony truss bridge, center to center of trusses. Length of short
side of a box section, center to center of long sides. Length of
side of stiffened plate. Transverse distance from edge of a
perforation to nearest line of longitudinal fasteners.

Width of compression flange.

Effective plate width.

Half-width of flange.

Width of tension flange.

Width between centers of flanges in a wide flange column.

A coefficient. Transverse pony truss bridge frame spring constant,
particularly the least one. Carry-over factor.

Cy, Ca, C3, Cy  Coefficients for lateral-torsional buckling.

C.

6309
]

AISC column formula coefficient.

Torsional warping constant.

Required transverse pony truss bridge frame spring constant.

Distance to extreme fiber of beam or column section in bending.
Distance center-to-center of perforations in a perforated plate.
One-half distance between batten fasteners, measured longitu-
dinally. Distance from middle plane of channel web to centroid
of section.
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Nomenclature

Flexural rigidity of a plate per unit width.

Depth of a section. Diameter of circular cross section. Mean
diameter of a tubular column. Long side of box section, center-
to-center of short sides. Transverse distance between lines of
longitudinal fasteners in a perforated plate. Stiffener spacing for
a stiffened plate.

Diameter of elastic portion of a circular cross section.

Distance between flange centroids in a plate girder.

Stress-strain modulus of elasticity.

Strain-hardening modulus (initial).

Tangent modulus.

Distance from centroid of girder cross section to shear center
(positive if shear center lies between centroid and compression
flange, otherwise negative). Distance from shear center to the
middle plane of a channel web. Width of end panel in a plate
girder. Eccentricity of end load in a beam-column.

Assumed equivalent eccentricity (representing defects, etc.).

Allowable average compressive stress in axially loaded members.
Allowable stress for a column having zero slenderness ratio.
Allowable compressive bending stress.

Basic allowable design stress for light gage steel shapes.

Normal force in flange of plate girder.

Normal force in web of plate girder.

Average compressive stress due to axial load.

Compressive stress due to bending moment.

Elastic shear modulus. A gage length.

Joint bending stiffness ratio (subscripts apply to respective ends of
the column)..

Distance from shear center of glrder to point of application of
transverse load (positive when load is below shear center, other-
wise negative).

Depth of a rectangular cross section. Clear depth of plate girder
web between flange components. Depth of pony truss at truss ver-
tical, measured from center of floorbeam to center of top chord.
Long side of box section, center-to-center of short sides. Trans-
verse distance between lines of fasteners in a battened column.
Distance between beam or girder flange centroids.

Distance to compression-flange centroid from centroid of section.

Distance to tension flange centroid from centroid of section.

Depth of web.

Moment-of-inertia of cross section.
Moment-of-inertia of floorbeam in a pony truss.

Nomenclature xiii
I, Moment-of-inertia of column cross section. Moment-of-inertia

BN

L, I,

(I)ese
J

Jr

J

of compression flange about the y axis. Moment-of-inertia of
truss vertical in a pony truss.
Moment-of-inertia of cross section remaining elastic.
Moment-of-inertia of girder cross section.
Optimum moment-of-inertia of web stiffener in a plate girder.
Polar moment-of-inertia of cross section.
Moment-of-inertia of stiffener about web-face axis.
Moment-of-inertia of tension flange about y axis.
Moment-of-inertia of cross section, x and y denoting the coordi-
nate axes.
Effective moment-of-inertia about axis y.

Torsion constant.

Integral torsion constant.

Lateral-torsional buckling constant. Number of panels in a
stiffened plate.

Effective or equivalent length factor.

Modified effective length factor for laced columns.

Average effective length factor of all panel length compression
chords in a pony truss.

Coefficient of proportionality. Coefficient applied in plate buckling.

Buckling coefficient for a plate-girder web in pure bending.

Buckling coefficient for a plate-girder web in combined shear and
bending.

Local buckling parameter for box columns.

Buckling coefficient for a plate girder web in pure shear.

Local buckling parameter for wide-flange columns.

Length of member, particularly a laterally unbraced length.

Unbraced length of a column.

Unbraced length of a girder.

Sublength of laced column; distance between lacing-bar connec-
tions or distance between centers of batten plates.

Panel length in a pony truss bridge.

Bending moment.

Rotational stiffness of near end of member with far end fixed or
hinged, respectively, but with no end translation.

Rotational stiffness of near end of member with far end fixed or
hinged, respectively, but with near end translationally restrained
by a linear spring.

End moments acting on a beam-column at ends a and b, respectively.

Critical bending moment.

End moment for a framed column.

Equivalent uniform moment in a beam column.

Flange moment in a plate girder.




xiv Nomenclature
Mpax Maximum bending moment.
M, Applied end moment.

Mo, M, (x_x) M,y-yy Moment in a beam-column without regard to moment
caused by deflection.

M, Plastic bending moment.

My, My (x-x» My -y, Ultimate bending moment in the absence of axial load
in a beam-column.

M,, M,, M, Moment about coordinate axes x, y, and z, respectively.

M, Yield moment.

m Width of a perforation in a perforated plate.

N Number of component plates in a built-up flange. Nominal axial
load.

N, n A factor-of-safety.

n Number of perforated plates used in a column. Number of paral-

lel planes of battens in a battened column. Number of panels
in a pony truss. Number denoting an individual compression
member as one of several meeting at a common joint.

0-0 Principal axis of an angle cross section.

P Column axial load.

P, Chord stress in a truss at maximum load.

P, Critical load.

P,, P.(x_x» Pew-y, Euler buckling load.

Prax Maximum column load.

P, Axial compressive force of nth member.

P, Column load at proportional limit.

P, Reduced-modulus column load.

P, Tangent-modulus column load.

P, Ultimate load of axially loaded column.

P, Column axial load at full-yield condition.

Py, P, Axial compression force in truss member. (Subscripts refer to
first and second member, respectively.)

r Rivet or bolt pitch.

D Critical rivet or bolt pitch to insure integral action in torsion.

Q Transverse shear in centrally loaded column,

R Mean radius of tubular column.

R., Ry Rotational restraint at end of member. (Subscripts denote ends
a and b, respectively.)

r Radius-of-gyration of member.

re Radius-of-gyration of column flange.

ro Polar radius-of-gyration of the cross section about its shear center.
Radius-of-gyration of one chord in a battened column.

s Radius-of-gyration about the centroidal axis x-x (strong axis).

#

Nomenclature XV
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R

X.
X-X, x-x

Xo

Y.
Y-Y, y-y

Ye
Yo

Radius-of-gyration about the centroidal axis y~y (weak axis).

Rotational-stiffness reduction factor.

Section modulus for compression.

Section modulus for tension.

Section modulus about x-x axis.

Width of tension field in a plate girder panel.

Tensile residual stress designation. Total thickness of several
plates.

Translational stiffness of a member.

Translational stiffness of a spring at member end a.

A thickness.

Thickness of side b of box-section column.

Thickness of compression flange.

Thickness of side 4 of box-section column.

Thickness of tension flange.

Thickness of web plates of box-section beam. Thickness of web.

Displacement in the x direction.

Transverse shear force in plate girder.

Plastic shear strength of plate girder.

Ultimate shear strength of plate girder.

Shear strength of plate girder due to tension-field action.
Shear strength of plate girder due to beam action.
Displacement in the y direction.

Uniformly distributed total lateral load in a beam-column.
Uniform load intensity. Displacement in the z direction.

Width of rectangular cross section remaining elastic.

Coordinate axis.

Coordinate axis, particularly a principal axis. A distance.

Distance between the shear center and the centroid in the direction
of the x axis.

Depth of rectangular cross section remaining elastic.

Coordinate axis.

Coordinate axis, particularly a principal axis.

Distance from centroidal axis x-x to face of tee flange.

Distance between the shear center and the centroid in the direction
of the y axis.

Plastic modulus. Limiting constant for medium-length tubular
columns.
A coordinate axis.

Aspect ratio a/b or a/h for stiffened plates. Load ratio P/P,.
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Nomenclature

Constant for stiffened plates. Angle of twist of cross section.
Parameter A/ft,, for plate girder panels. '

Buckling parameter for a stiffened plate.

Optimum relative stiffness of stiffener to web in a plate girder.
Optimum relative stiffness of longitudinal stiffeners.

Optimum relative stiffness of transverse stiffeners.

A deflection.
An increment of strain.
An increment of stress.

Column deflection caused by bending moment due to an axial load
P. Buckling parameter for a stiffened plate.

Maximum initial out-of-straightness of a column. Deflection with-
out regard to moment induced by axial load.

Strain.

Strain in plate-girder web at the flange due to bending.
Strain at initial strain hardening.

Elastic strain at yield stress.

Ratio of tangent modulus to elastic modulus, E,/E.
An angle.
Moment coefficient for lateral torsional buckling.

Slenderness function Va,/o,, Vo,/o..

Poisson’s ratio.

Normal stress.

Average normal stress.

Critical stress.

Critical stress for a variable cross section.

Average stress at Euler buckling load.

Elastic buckling stress for a beam.

Normal stress in a plate-girder flange.

Maximum stress at mid-length of column by the secant formula.

Maximum combined stress due to column load and bending
moment.

Transverse normal stress in a plate-girder web.

Proportional limit-stress.

Maximum residual compressive stress.

Local residual stress.

Tension-field stress in plate girder.

Upper yield point stress.

Shear stress.

Shear stress at buckling load for plate girder.

Shear stress at tension yield in plate girder.

Nomenclature xvii
¢ Angle of rotation. Tension-field angle.

o Optimum tension-field angle.

P Parameter used in beam-column formulas.
W Rolled wide-flange structural shape.
Abbreviations

AASHO Anmerican Association of State Highway Officials.
AISC American Institute of Steel Construction.
AISE Association of Iron and Steel Engineers.

AISI American Iron and Steel Institute.

AREA  American Railway Engineering Association.
ASCE American Society of Civil Engineers.

ASME  American Society of Mechanical Engineers.
ASTM  American Society for Testing and Materials.
CISC Canadian Institute of Steel Construction.

CRC Column Research Council.

CSA Canadian Standards Association.

NACA  National Advisory Committee for Aeronautics.
WRC Welding Research Council.

ksi Kips per square inch.

psi Pounds per square inch.




Chapter One
Introduction

1.1 Scope

The second edition of the Column Research Council’s Guide now includes
centrally loaded columns, laterally unsupported beams, the compression
components of plate girders, beam-columns, laterally restrained com-
pression chords of trusses (for example, pony trusses), and local elements
that transmit compression in any structural member.

Criteria to be considered as a basis for compression-member design
include the evaluation of buckling loads or, alternatively, the determination
of the nonlinear relationship in both the elastic and inelastic ‘stages
between internal resistance and external load when imperfections exist.
Depending on the type of structural element, the buckling load itself may
be inadequate as a design criterion. The post-buckling strength may
require consideration, or, conversely, failure may be reached at a load
less than the buckling load. Generally speaking, the Guide tries to provide
for the calculation of the maximum strength and leaves it to the specifica-
tion writer or engineer to introduce a factor-of-safety by means of which
a suitable design load can be determined.

Materials covered herein include structural steels, light-gage cold-
formed steels, and structural aluminum alloys. Because of the different
characteristics of the stress-strain relationships for these materials, the
same approach cannot necessarily be applied to all. CRC research was
the first to draw attention to the importance of the effect of residual stress
on the buckling strength of steel columns. There is currently (1966) a
proliferation of strength levels available in structural steels as produced for
plates and shapes. In a listing prepared by the CRC Task Group on
Classification of Steels for Structures, no fewer than twenty-three different
yield strengths are found to be available, ranging from 32 to 115 ksi. The
heat-treated steels represented by the upper level of strength have been
used in increasing quantities in towers, long-span bridges, and in other
applications including buildings for which weight reduction may offer
inducement to use more costly materials. Steel column behavior will be
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2 Introduction

evaluated herein in terms of representative yield-point levels in con-
junction with effects of shape, residual stress, and initial imperfections.

The CRC Guide generally does not provide derivations of the formulas
that are presented. Such derivations can be found in references listed in
the bibliography of each chapter, and in the general references given in
the Appendix.

1.2 Column Research Council

The Column Research Council was formally organized in 1944, with a
membership composed of from one to four appointed representatives
from each of twenty-eight organizations. During the past twenty-two
years, six of the original groups have dropped out, but two new ones have
been added, leaving the following twenty-four organizations on the
membership list as of 1966.

Aluminum Company of America

American Association of State Highway Officials
American Institute of Architects

American Institute of Consulting Engineers
American Institute of Steel Construction
American Iron and Steel Institute

American Society of Civil Engineers

American Society of Mechanical Engineers
Association of American Railroads

Boston Society of Civil Engineers

Bureau of Public Roads

Bureau of Yards and Docks, U. S. Navy
Canadian Institute of Steel Construction

Chief of Engineers, U. S. Army

Engineering Institute of Canada

General Services Administration

International Conference of Building Officials
National Bureau of Standards

National Research Council

Society for Experimental Stress Analysis
Structural Engineers Association of Northern California
Structural Engineers Association of Southern California
Welding Research Council

Western Society of Engineers

The initial leadership and direction of CRC were supplied by Shortridge
Hardesty, the first chairman, until ill health forced him to give up active
participation in 1956. He was succeeded by Bruce G. Johnston, who
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served from 1956 until 1962, when Edwin H. Gaylord was elected
chairman.

The Engineering Foundation brought the Council into being, and
support has been provided by contributions (either directly or to individual
research projects) from the following organizations:

Aluminum Company of America*

American Bureau of Shipping

American Institute of Architects

American Institute of Steel Construction*
American Iron and Steel Institute*

Association of American Railroads*

Bethlehem Steel Corporation*

Boston Society of Civil Engineers

Bureau of Public Roads*

Canadian Institute of Steel Construction

David Taylor Model Basin*

Engineering Foundation*

Modjeski and Masters*

National Science Foundation*

Pennsylvania Department of Highways*

Research Corporation*

Rhode Island Department of Public Works
Society for Experimental Stress Analysis

Society of Naval Architects

Structural Engineers Association of Northern California
Structural Engineers Association of Southern California
United States Navy, Bureau of Yards and Docks*
United States Steel Corporation*

Welding Research Council*

Projects were sponsored at many universities. These universities
contributed more in materials and personnel than they received in
reimbursement. Contributing institutions were:

Brown University
Columbia University
Cornell University
University of Florida
University of Illinois
University of Iowa
Lehigh University

* Major support.
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University of Michigan
New York University
North Carolina State University
Pennsylvania State University
Purdue University

" Stanford University
University of Washington

Column Research Council prepared at its inception a statement of
general objectives, which remain as follows:

(@) To organize, maintain, and administer a national forum in which
problems relating to the design and behavior of columns and other
compression elements in metal structures can be presented, and
pertinent structural research problems can be proposed for investi-
gation with the assurance of an evaluation of all problems proposed
and of support for those projects adjudged important.

(b) To digest critically the world’s literature involving compression ele-
ments and the properties of metallic materials available for their
construction, and to make the results widely available to the
engineering profession.

(¢) To organize and administer cooperative research projects in the
field of compression elements.

(d) To stimulate, aid, and guide column research projects on the fore-
going problems in the engineering colleges and research laboratories.

(e) To study the application of the results of this research to the design
of compression elements.

(f) To develop a comprehensive and consistent set of formulas or rules
covering their design.

(g) To promote the widest possible adoption of such formulas by
designers and specification-writing bodies.

() To publish and disseminate original research information within
the field of the Council.

Column Research Council has had corresponding members on every
continent. As a by-product of such contacts, the Japanese Column
Research Council (not affiliated with CRC) was established, with head-
quarters in Tokyo. This group has published a very comprehensive
monograph on elastic stability formulas (A2)* that is presently in its second
edition.

Each chapter of this second edition of the CRC Guide was sent in first-
draft form to members of an advisory committee on review of the Guide,

* General references, prefixed by “A,” are found in Appendix A.
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and certain chapters were also sent to specialists who were not necessarily
members of the Council. The following persons provided substantial
critical reviews of one or more chapters: R. M. Barnoff, Konrad Basler,
L.S. Beedle, J. W. Clark, E. L. Erickson, T. V. Galambos, E. H. Gaylord,
T. R. Higgins, A. Hrennikoff, O. G. Julian, W. G. Kirkland, M. G. Lay,
L. C. Maugh, James Michalos, F. R. Shanley, L. Tall, S. S. Thomaides,
D. L. Tarlton, Bruno Thiirlimann, and George Winter.

Going far beyond the usual critical review, Jackson L. Durkee, of the
Bethlehem Steel Corporation, scrutinized every sentence of the entire
manuscript and suggested changes in detail in order to improve the
clarity of the text. Special acknowledgment is also owing to M. A. El-
Gaaly of the University of Michigan, who acted as a research assistant to
the editor and who prepared drafts of the new chapters on plate girders
and pony trusses. His work included thorough research into the literature
of these two areas, and Chapters 5 and 7 are substantial condensations of
his first drafts. R. B. Harris provided a careful check of the completed
Guide manuscript, and also prepared the index. Checking of proof and
other publication matters were handled by the Publications Committee,
consisting of R. B. Harris, Chairman, along with J. L. Durkee and B. G.
Johnston.

1.3 The Guide to Design Criteria for Metal Compression Members,
Objectives, and Summary

It is the purpose of this publication not to supplant but rather to serve as a
guide to the improvement of existing design procedures and specifications.
As described in some detail in Chapter 2, a major thesis of this design
guide is the unification of all centrally-loaded column strength procedures
on the basis of the modified Eulerian (tangent-modulus) theory. That this
is practical is evident on consideration of the effective gradual transition
from the elastic to plastic behavior that is caused by the presence of
residual stresses and by the nonuniform strain hardening that results from
the fabrication of cold-formed sections. Thus, the differences that exist
between the inelastic stress-strain properties of steel and aluminum alloys
as determined by small coupon tests are less pronounced when the behavior
of a full column cross section is involved.

Chapter 3 is concerned with the local strength of component parts in
compression. Information on tubular columns has been expanded in Sec.
3.5 of this chapter to include both manufactured tubes and larger fabri-
cated cylindrical members wherein imperfections, as well as riveting or
welding, have an adverse effect on strength.

Before considering the column that is eccentrically and/or laterally
loaded (the beam-column), we must first consider, as a limiting condition,
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the beam. The buckling of the laterally unsupported beam is considered
in Chapter 4, in which a general formula is simplified for design of beams
and girders of various types. The limitations in these simplified approaches
are discussed.

In Chapter 5, on plate-girder design, the strength and rigidity
requirements of transverse and longitudinal stiffeners, which improve
web buckling strength, are considered. In addition, the girder flange and
web design problems are treated in connection with the utilization of
post-buckling strength and tension-field action of very thin webs.

Chapter 6 treats the beam-column design problem. Design procedures
of various degrees of complexity are discussed. The recommended
approaches are of the simple “interaction” type involving, in effect,
semirational “interpolation” between the capacity of the beam and that of
the centrally loaded column.

Chapter 7 provides information on the design of the compression chord
of the pony-truss bridge, and includes tabular design information
developed through CRC-sponsored projects.

1.4 The Factor-of-Safety

A most important and difficult problem in relating any compression-
member strength evaluation to an economical and safe design load is the
choice of the factor-of-safety. Ideally the safety of a structure would be
predicted on the basis of known random variation of load, of material
properties, of imperfections-in fabrication, and so forth.

The choice of factor-of-safety in compression-member design is made
more difficult by the multiplicity of factors which affect strength, and also
because the effects of these factors vary with the equivalent slenderness
ratio. The very short column varies in strength primarily in direct pro-
portion to the yield strength of the metal. In the intermediate slenderness
range the effects of eccentricity, initial curvature, residual stress, and so
forth, are most marked. The strength of the very slender column is
determined primarily by the bending rigidity, EI, of the section, a param-
eter that has relatively small variation. The effects of lateral force and
end restraint are also important considerations in long-column design.

Until the day arrives (if ever) when the statistical variation and distribu-
tion of loads and material properties, and all other factors, are well
established, there will always be a certain element of empiricism in the
selection of the proper factor-of-safety. It is ultimately the responsibility
of a specification-writing body to weigh what is known against the elements
of risk, desired economy, anticipated life, and required behavior in
service, in order to determine the factor (or factors) of safety that seems
most appropriate to the particular class of construction.
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1.5 Mechanical Properties of Structural Metals

A knowledge of the stress-strain relations that take place during the
elastic and initial inelastic ranges of behavior is an essential requisite to
compression-member analysis. In the elastic range there are accepted
average values of the modulus of elasticity, and test values vary within
r«;:asonably small limits. Minimum specified values of the yield point or
yield strength (depending on whether the initiation of yielding is a sudden
or grajldual process) are provided' by the various specifications of the
Amencan Society for Testing and Materials (ASTM) and by product
information provided by manufacturers. In this Guide the term “yield
stress” will be used to denote either the yield point or yield strength,
whichever is applicable.

The initial portions of the typical stress-strain curves for structural
metals in compression and in tension are shown in Fig. 1.1. The strength
f)f beams and columns is largely determined by stress-strain characteristics
in the range shown. The complete curves plotted to the same scale would
take up a horizontal space between twenty and thirty times that available
on the drawing,

The stress-strain curve for a particular sample of lower-strength

structural steel can be characterized by the following five items. (see
Fig. 1.1):

E = Young’s Modulus = slope of stress-strain curve in elastic range,
[ upper yield point,
o, = yield-stress level (corresponding to the stress in the flat portion
of the stress-strain curve after initial yield),
strain at initial strain hardening, and

Oyuy

€5t

d
Ey = (—") = strain-hardening modulus (initial).
de )=,

The last four of these properties are essential to calculation of inelastic
strength and deformation of the sample. For a particular sample of
aluminum alloy, quenched-and-tempered steel, or cold-worked steel, two
properties are of significance ; namely, (1) the yield strength, o,, determined
by the extension-under-load method or the offset method (ASTM
Designation A370), and (2) the tangent modulus, E; = do/de, along the
stress-strain curve. For both steels and aluminum alloys the ultimate or
breaking strength, based on original area, is also a part of the record.

The yield stress of steel specimens will vary with temperature, rate of
strain, and the surface characteristics of the test specimen, as well as with
the testing machine and method of testing.

Fo.r lower-strength steels the yield-stress level in a tension or com-
pression test can be regarded as the level of stress, after initial yield, that
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Fig. 1.1. Initial stress-strain relationships for structural metals in compression or
tension.

is sufficient at a given temperature and rate-of-strain to develop suc?es‘sively
new planes of slip in the portions of the test specimen that. remain in the
elastic state. After initial yielding has proceeded discontinuously from
point to point throughout the specimen, strain hardening commences, and
the stress rises with further increase in average strain. The yleld-ﬁtress
level is frequently of primary significance in determining.the ultlmafe
strength of a structure or structural member under either static or dynamic
load conditions. The sharp yield point may disappear with cold work or
heat treatment. The yield-stress level is structurally more significant tlfan
the upper yield point, and is a function of the speed of test, becorr'nn.g
lower with lower testing speeds. “Zero strain rate” defines a lower limit

raie
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for the yield-stress level. Mill tests conform to ASTM Specifications which
specify a maximum strain rate. Although such tests are quite suitable for
quality control, they do not give a true indication of the yield-stress level
of steels under low rates of strain.

Of particular importance in column strength analysis are modifications
in the shape of the average-stress-versus-strain curve as determined by a
very short or stub-column test. Residual stresses cause modifications in
this relationship (indicated qualitatively in Fig. 1.1) for structural carbon
steel and for quenched and tempered alloy steel. Likewise, strain hardening
caused by the forming processes used for cold-formed members (cold
rolling, brake forming) results in increases in yield strength which vary
in different parts of the cross section. These, too, result in a significant
modification of the stress-strain curve, shifting it toward higher values
and producing a more gradual yield process.

The typical stress-strain curves for structural steels shown in Fig. 1.1
are representative of the following four categories of steels:

L. Structural carbon steels. This category includes ASTM A7 and
A36 carbon steel plates, shapes, and bars, and A245 carbon steel sheets
(yield stresses ranging from 25 to 40 ksi). '

2. High-strength low-alloy steels. This category includes ASTM
A440, A441, and A242 high-strength low-alloy steel plates, shapes, and
bars, A374 and A375 high-strength low-alloy steel sheets and strip,
and a multitude of proprietary steels (yield stresses ranging from 40 to
70 ksi).

3. Quenched-and-tempered carbon steels. Steels in this category were
introduced in 1964. These steels are currently produced as plates and are
available as proprietary grades (yield stresses ranging from 70 to 80 ksi).

4. High-yield-strength, quenched-and-tempered alloy steels. Steel plates

in this category are covered by ASTM A514. Structural shapesare available

as proprietary grades (yield stresses ranging from 90 to 100 ksi).

A survey conducted by the CRC Task Group on Classification of
Steels for Structures indicated the current (1966) availability of twenty-
three different yield stresses for the great variety of steels in these main
categories. However, a progression of preferred yield stresses is emerging
that will simplify the designer’s task of selecting the optimum steels for
different parts of a structure. The progression consists of the following
preferred yield stresses: 36, 42, 50, 60, 72, 85, and 100 ksi.

Fig. 1.1 also shows stress-strain curves for two structural aluminum
alloys: 6061-T6, with a minimum yield strength of 55 ksi, and 2014-T6,
having a minimum yield strength of 35 ksi. The various products made
from these alloys are covered in ASTM Specifications B209, B210, B211,
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luminum alloy that is fre-
B221, B234, B241, B247, and B308. Anojcher a ; :
quently used in applications where relatively low s.trength is adequate is
6063-T6, for which the minimum yield strength is 25 ksi. The ASTM
specifications just listed include alloy 6063-T6 as well as many other alloys

that are used in structural applications.

Chapter Two

Centrally Loaded Columns

2.1 Introduction

The centrally loaded column transmits a compressive force whose resultant
at each end is coincident with the longitudinal centroidal axis of the
member. Such an ideal column can be at best approximated in practice;
nevertheless, this concept forms a generally accepted basis for column
strength analysis and design. Bending moments due to initial imperfections,
accidental curvature, or unintentional end eccentricity will reduce the
strength of a column that is intended to be centrally loaded, but these
effects are taken care of in design formulas by an appropriate factor of
safety, and/or by a modification of the basic column strength curve, i.e.,
the estimated functional relationship between the average column
compressive stress at failure and the column slenderness ratio. When
bending moment is caused by intentional end eccentricity or lateral load,
or is induced by framing members, the problem is that of the “beam-
column” (see Chapter 6).

The major advances in the understanding of column behavior in recent
years have concerned the intermediate range between the short column,

‘where the behavior is determined almost entirely by the inelastic strength

properties of the material, and the long column, where the behavior is
determined almost entirely by the elastic flexural stiffness, EI, of the
member. Most columns are in this intermediate length range wherein
secondary factors, such as residual stress, accidental crookedness,
unintentional end eccentricity, and so forth, have the greatest effect on
column strength and thereby introduce a confusing diversion of attention
from the primary features of the column problem.

Column buckling theory was initiated by Euler (2.1), who more than
200 years ago developed the simple formula that bears his name. Euler’s
formula was initially limited to the column with a fixed base and no
lateral support at the top. Lagrange (A4) extended the theory to higher
modes with an analysis procedure that is still used. The “Euler load” is
that load in the elastic range at which a slender axially loaded column of

11
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constant cross section may be in equilibrium in either a straight or a
slightly deflected configuration. The subsequent development of inelastic
modifications of the Euler formula will be reviewed by means of a chart
(Fig. 2.1), adapted from a lengthier review by N. J. Hoff (2.5).*

For many years Euler’s formula was not generally applied to actual
design because proof tests of structures indicated that columns frequently
failed below the Euler load. In 1889, Considére indicated why Euler’s
formula had not been more useful to engineers. He conducted a series of
thirty-two column tests and suggested that if buckling occurred above the
proportional limit the elastic modulus in the Euler formula should be
replaced by an “effective” modulus which would lie between the elastic
modulus E and the tangent modulus E,.

Independently of Considére and during the same year (1889), Engesser
(2.2) suggested that column strength in the inelastic range might be
obtained by the substitution of E, in place of E in the Euler formula. This
is known today as the ‘““tangent-modulus formula.” However, in 1895,
Jasinski suggested that there was an apparent mistake in Engesser’s
formula in that the nonreversible characteristic of the stress-strain diagram
in the inelastic range was not considered, as had been done in a very
general way by Considére. Engesser proceeded, within the same year, to
produce a “corrected”’ general formula for a “reduced modulus,” and he
stated that this reduced modulus depended not only on E, and E but also
on the shape of the cross section as well (2.3).

In 1910, Theodor von Kdrmdn derived explicit expressions for the
“reduced modulus” for both rectangular columns and idealized H-section
columns. From the classical instability concept the reduced-modulus
theory was correct, because it indicated the load at which a perfectly
straight and centrally loaded column could have neighboring equilibrium
configurations with no change in load. This is identical in concept to the
Euler load in the elastic buckling range. However, many experimenters
found that columns tested in the laboratory with utmost care usually
failed at loads just slightly above the tangent-modulus load.

In 1947, Shanley offered a new interpretation (2.4) of the tangent-
modulus load. He showed that it was possible for a centrally loaded
column to start to bend simultaneously with increasing axial load, without
strain reversal, and that it was to be expected (because of inevitable
imperfections, no matter how small) that such bending would start at the
tangent-modulus load. Thus, the reduced-modulus load never could be
reached, because it is based on the assumption of a perfect column that
remains straight until it reaches the reduced-modulus load. In a letter
published jointly with the 1947 Shanley paper, von Kdrmdn (2.4) redefined

* See also Ref. 2.6.
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the tangent-modulus load in a way that can be paraphrased as follows:

.The tz-mgént-moduhfs. lo_ad is the smallest value of the axial load at which
bifurcation of the equilibrium positions can occur regardless of whether the

ST, SO

transition to the bent position requires an increase of the axial load.

Euler
1744
Engesser _=E Consideére
1889-1895 ¢ T(RL)
# ) 1889

Tangent modulus

Reduced modulus

Effective modulus

=2E, 2g 2
o= —, a,= 2 O = T
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Test Shanley 1946-1947 Von Kérman 1910
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Residual-stress
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I

For steel
o= rzEf(%)
= (.K_L)z
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Fig. 2.1. Evolution of the column formula.
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Shanley showed intuitively that after bending starts there must be some
strain reversal to attain an equilibrium position for any finite load incre-
ment above the tangent-modulus load. Equilibrium in a bent configuration
above the tangent-modulus load obviously is not possible if the stress-
strain relationships everywhere across the section have been governed only
by the tangent modulus. This is true even if the tangent modulus suffers no
decrease within the cross section.

In 1950, Duberg and Wilder (2.7) extended the Shanley approach to the
idealized H-section with flexibility over the full length of the colun}n.
The flanges were represented, as in the Shanley model, by two point
concentrations of area with an intervening web of zero area which could,
nevertheless, transmit shear. The result, an important contribut.ion to
column theory, shows how bending occurs under varying inelastic con-
ditions all along the column. Duberg and Wilder confirm the Shanley
concept with the following succinct statement:

If the behavior of a perfectly straight column is regarded as the limiting
behavior of a bent column as its initial imperfection vanishes, the tangent-
modulus load is the critical load of the column—that is, the load at which
bending starts.

Although the Euler and the associated tangent-modulus fo.rmulas
found direct application in the airplane industry in the design 'of
aluminum alloy struts, similar application to structural steel design
lagged because of the discrepancy between tangent-modulus strength pre-
dictions, based on small coupon stress-strain curves, and the actual
strengths of tested columns. As is well known, small coupon tests of
steel usually show practically a linear stress-strain relationship up to
loads very near the yield point. Thus, the tangent modulus is equal to
the elastic modulus for stresses below the yield point and to zero at
the yield point. On this basis, the stress-strain relationships deter.mincd
by a coupon test will not provide enough information to explain the
behavior of steel columns. _

The key to the application of the tangent-modulus concept to structural
steel columns is the determination of the tangent modulus of the effective
stress-strain diagram of the entire cross section. The principal factors that
cause differences between the effective stress-strain curve of the complete
cross section and the individual stress-strain curve of a test coupon are the
presence of residual stress and the variation in yield stress over the cross
section.

In hot-rolled structural-grade steel columns, residual stresses approach-
ing half the yield point are “locked” in the member, as a result of uneven
cooling on the mill cooling beds. Residual stresses are present to a lesser
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degree in angles, universal-mill plate, and channels, but in members
built up by welding they may approach the yield point.

Although Salmon (A5) had suggested initial residual stress as an
influencing factor, its importance in steel columns was discovered in 1949
by members of the Committee on Research of Column Research Council.
This resulted indirectly from an investigation of residual-stress effects on
the local buckling of box girders (2.8), and measurement of residual
stresses in steel shapes as part of a project on the plastic bending strength
of steel beams (2.9). Column Research Council, through its research
committees, then initiated an extensive investigation of the influence of this
variable. It was obvious that both theoretical and experimental work
would be required to establish the validity of the concept. The initial CRC
research assignment was to its Research Subcommittee on Mechanical
Properties of Materials. W. R. Osgood, then chairman of this committee,
developed a theoretical study of the residual-stress effect (2.10). Simul-
taneously, tests and theoretical studies were proceeding at Lehigh
University (2.11), to ‘be followed by additional investigations by A. W.
Huber, R. L. Ketter, and L. S. Beedle (2.12, 2.13). The extension of
residual-stress studies to riveted and welded built-up sections, high-strength
steels, and circular sections has been carried out by Y. Fujita, L. Tall,
A. Nitta, T. V. Galambos, G. C. Lee, and B. Thiirlimann. A review of the
relationships between stub-column behavior, variation of yield point, and
the residual-stress effects is contained in a CRC Symposium paper by
Beedle and Tall (2.14).

As a result of the early research on residual stress, it was possible for
Column Research Council to make the following statement in its Technical

Memorandum No. 1 on “The Basic Column Formula” (2.15), issued in
May 1952:

It is the considered opinion of the Column Research Council that the
tangent-modulus formula affords a proper basis for the establishment of
working-load formulas.

At first glance this pronouncement might seem rather obvious, since the
tangent-modulus concept was already widely used, especially in aluminum-
alloy applications. Its importance lay in the fact that extension of the
concept to structural steels was now possible through introduction of the
residual-stress modification to the tangent-modulus theory.

The past failure of the tangent-modulus concept to explain the behavior
of steel columns had usually been attributed to the presence of accidental
end eccentricities. Using the secant formula, a fictitious end eccentricity
can always be calculated that will exactly account for the column strength
determined by any given test, assuming that (1) the column fails when the
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maximum stress due to combined direct load and bending reaches the yield
point, and (2) the material is perfectly elastic up to the yield point. Thus,
the effects of factors such as initial curvature and residual stress can be
included in design by means of the empirical determination of an
equivalent end eccentricity.

Currently (1966), high-strength steels having minimum yield stresses up
to 70 ksi, quenched-and-tempered carbon steels with yield stresses up to
80 ksi, and quenched-and-tempered alloy steels with stresses up to 100
ksi are coming into increased use in framed structures. There are indica-
tions (2.17) that in the use of these steels the role of residual stress in
rolled shapes will be relatively less important than it is known to be for
structural-grade steels. Thus, as the yield point increases, initial curvature
(particularly in rolled shapes) takes on increasing importance in relation
to residual stress. In addition, increased attention is being given to effects

Table 2.1. Factors that Cause Actual Column Strength To Be Different from
the Euler Critical Load

Factors Related to Factors Introducing Factors Related
Basic Properties Accidental Bending to Type or
of Material Stress Shape of Column

1. Nonlinearity in actual 1. Accidental end eccen- 1. Shear deformation,
especially in built-

stress-strain relation- tricity

ship in compression up columns having
as obtained froma 2. Accidental curva- lacing, batten
small coupon test ture plates, etc.

2. Variation in yield 3. Accidental lateral 2. Local buckling, es-
strength over column load, or lateral pecially when post-
cross-section load unrelated to buckling strength

primary column of thin-walled

3. Residual stress (pri- load plate components
mary factor in struc- is a design factor
tural steels) 4. Thermal effects

3. Torsional buckling

4, Creep

of the nonuniform strain hardening that occurs in the fabrication of cold-
formed sections (A12). However, for welded built-up shapes (irrespective
of type of steel) the maximum tensile residual stress approaches the yield
point and the adverse effects of the concurrent compressive residual
stresses are large (2.18). Another factor of importance when light-gage
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cold- i
resuuf;zrn}:d selctlons are }1sed as columns is the loss of effective sectio
g from local buckling prior to the attainment of i o
o) of maximum column
It is i
. Singl:):;eledmglg complex and unworkable to attempt to introduce into
The ooy l;:::? ormula le:ll known factors that affect column strength
ors must be considered; howe he mi .
most conveniently taken care of i i o apropeate e are
o .
ety f in design by an appropriate factor-of-
Table 2. i j
2.1 summarizes the major column-strength-determining factors
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2.2 Basic Column Strength

Th . .
lin:azaSI:l E;xller'f(.)r.mula (2..1), which gives the critical load at which a
y elastic, initially straight, centrally loaded column will bend. is

.

d2

Py=—EI%2

y EJ g

Upon integration and introducti i

. uction of hinged-end bounda iti

it can be shown that the load for the lowest mode of bucklfr?g‘:i(s)fldltlons,

w2E]
I @1

where P, is known as the Euler buckling load. Upon substitution of

I = Ar?® and division by 4, the fi
buckling load is obtained: ormula for the average stress at the Euler

P, =

o = TE_ |

- * = &Ly @2
Oth:r tg;l zfl,l etl;s fac;or K has b.e.en introduced to permit modification to
e tent b mge'-end Fondltlpn. For purely flexural buckling, KL is
e ¢ ; Xleer(l) inflection pomt§ and is known as the eﬁ"ec;ive or
column and tﬁe t.heoI;:ti(::lz;lb\?atll:u: l(l)ef llr(lt:;(:ion bpon.lts Tr(l)a)’ et e
ideal column with frictionless hinge oD CtYVefm o o
K l:‘=01.ﬂ(1)ther end conditions will t%e(:iizzg:sfj r::‘;tég ng;ee e rotation
eﬂec;ve ;;rlc‘:si)errt 'valules' of: L such that ¢, from Eq. 2.2 would exceed the
ectiv w.Hp ional limit of the material, the centrally loaded straight
1l start to bend as the load increases, at an average stress
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Fig. 2.2. Steps in the determination of a column strength curve from a stress-strain
curve.

The tangent-modulus theory will now be reviewed. Initially, let it.be
assumed that the stress-strain properties of a small coupon in compression
are identical with the average stress-strain properties of a short stub
section of column manufactured of the same material. This assumption
is equivalent to assuming that the material is homogeneous and free from
residual stress. . '

Fig. 2.2 shows the two-stage process by which a stress-strain curve is
used to develop the column strength curve by means of the tangent-
modulus formula

w2E,

G, = m (2.3&)
Alternatively, Eq. 2.3a can be written
2E
o = &I @ (2.3b)

where n = E,/E. .

Fig. 2.2a is a typical stress-strain curve for an aluminum alloy in
compression. At any given point A4 in the inelastic range, the slope of the
curve gives the tangent modulus for that particular stress:

Ao
Et = Z;

For atcuracy in plotting, the inelastic portion of the curve should_be
drawn to an enlarged scale. Proper techniques for making compression
tests and determining E, are described in Technical Memorz}ndum No. 2,
Column Research Council (2.16), reprinted here in Appendix B.
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The values of the tangent modulus determined in Fig. 2.2a may be
plotted as in Fig. 2.2, or they may simply be tabulated. Then, on the
basis of the coupled values of ¢ and E, at points A in Figs. 2.2q and 2.2,
the value of KL/r at 4 in Fig. 2.2¢ is determined by a transposition of

Eq. 2.3a:
= E,
KLjr == [ 5 (P X))

c

The complete column strength curve as illustrated in Fig. 2.2¢ is obtained
by repeating the foregoing process for various levels of stress.

The procedure just described for the determination of the column
strength curve in the inelastic range has been standard practice for
aluminum and magnesium alloys and can also be applied to stainless
steels if one neglects the effects of nonuniformity of yield strength across the
section caused by cold forming. It also applies to other special steels that

have a decidedly nonlinear stress-strain diagram and no sharp yield point
above the proportional limit. /

Reduced-modulus curve
(Engesser-Von Karman)
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Actual curve (Shanley) KL E
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—————————————————————————————— - <P,
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—
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te

é

Fig. 2.3. Load-deflection relationships for a straight column above and below the
proportional limit.




20 Centrally Loaded Columns

The two load-deflection relationships that are characteristic of e_lastn'c
and inelastic column behavior are illustrated in Fig. 2.3. If b'ucklm'g is
elastic, the Euler load P, is reached below the effective proport.nonal hrrin
load P,, the lateral deflection can assume any value without increase in
load, and its magnitude is indeterminate. If the more accurate Iarge-
deflection theory of the “elastica™ is applied usir'lg the more pre<.:1s¢*i
expression for curvature in place of d2y/dx?, there will result a the'o.ret'lca
increase in load as the column deflects, and definite deflected equilibrium
positions may be determined (Ref. A3, p. 429). . o .

If the calculated Euler stress is above the proportional limit, inelastic
buckling occurs and the initial bifurcation wil'l be at the. tangent-modulus
load as predicted by Shanley (2.4), and definite deﬂe.ctxons can be det‘er-
mined with increasing load. Since this involves (for mcrement.al ben.dmg
moments) a shifting neutral axis within the column cross sectlon,.wnh a
nonlinear increase of stress on one side and a decrease o.f stress. in pro-
portion to the elastic modulus E on the other, the successive equ_nhbrlum
positions above the tangent-modulus load and the cox:respondmg .load-
deflection curve shown in Fig. 2.3 can only be determined by an incre-
mental analysis. The initial slope of the curve, however, can be expressed
explicitly by a simple formula (2.19). Procgdurfes are a\-fallajole (2.4, 2.6,
2.7) for determining the maximum load, which is noted in Fig. 2.3 as the
“Shanley” column load, P,.

If the column were constrained to.remain straight up t9 the rf:duced-
modulus load, P,, and then were released, it would buckle with no increase
in load, as shown in Fig. 2.3. If the column were laterally s_upported uptoa
load between P, and P, and then released, it would remain in the straight
position and would be in stable equilibrium. If th§ load were then
increased, the column would start to deflect, at a rate of increase somewhat
less than that at the tangent-modulus load, and it would reach a new
maximum load having a value less than P, (2.6).

2.3 Residual-Stress Effect on Steel Columns

Structural steel, tested by means of a small coupon, usually ex!libi.ts nearly
linear stress-strain characteristics up to the yielc.l stress. Yielding thep
spreads from point to point with no increase in average stress until
average strains many times those at initial yield are reached..O.n such a
basis, the tangent-modulus theory gives a simple but unrealistic resuit.

Thus, if the stress-strain curve were linear up to the yield stress, a column

would develop full yield stress for values of KL/r less than #V E/o, and

would buckle at the Euler load for greater values of KL/r. .
If, instead of a small coupon, a stub column section is use‘d to determine

an average stress-strain curve, the tangent modulus determined therefrom
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will reflect both the presence of residual stress and the variation in yield
stress over the cross section (2.14).* The difference between the stress-strain
curve for a steel coupon and the effective stress-strain curve for a stub
column was illustrated in Fig. 1.1. If the material has uniform yield stress,
the effective proportional limit of the stub column will be

0y, = 0y — O,

In the absence of actual stub column tests a predicted effective stress-
strain curve for the column can be calculated on the basis of an assumed
residual-stress distribution, a particular shape, and an assumed yield
point. When at any point in the column cross section the sum of the average
applied stress and the local residual stress exceeds the yield point, it will be
assumed that the stress rethains at the yield point, i.e., no strain hardening
takes place. If 4, denotes the area of the cross section which has not
reached the yield point, then the effective tangent modulus is

E = dogve _ (dP/A4) _ %
'*" "de ~ (dPJA,E) - 4

= Ey

In order to plot a predicted average stress-strain curve, it would be
necessary to calculate the average stress as a function of the average strain.
However, what is needed is simply the relationship between average stress
and tangent modulus. This can be determined directly and the calculation
of the average strain thus bypassed. After a portion of a stub column has
yielded, as a result of the presence of residual stress, the applied load is

P=(4- 4,9, + odA 2.5
4,
and the average stress is

P [A- 4, 1
o=t - (T)ay tg ] oaa @.6)

Thus, by Eq. 2.6, the average stress depends on the initial distribution of
residual stress and is a function also of A./A. Now, if an arbitrary set of
values A4,/A = 7 between zero and one is chosen, consistent with the
cross-section shape and the residual-stress pattern, Eq. 2.6 can be used to
determine the corresponding values of ag.

Buckling of the steel column with residual stress will be governed by the
Shanley concept, with bending initiated at the critical load simultaneously
with an infinitesimal increment of load and without strain reversal.

* Approved procedures for stub column tests are described in Appendix B, CRC
Technical Memorandum No. 3.
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Fig. 2.4. f(3) for various cross sections and patterns of residual stress.

If there is no strain reversal, none of the yielded portion of the column
cross section can contribute to the internal resisting moment, which is a
function of I, alone. Thus, the strength of the column can be determined
simply by replacing  in.Eq. 2.1 by I,, where I, is the moment of inertia of
that portion of the cross section that s still elastic. This very basic suggestion
was first made by Yang (2.11). Thus, for a steel column, the critical

buckling stress is
2.7

. = m*El, = @°E (_I_,) _ =E )
= A®D? ~ &L \1) ~ &L
Actually, as soon as bending has started with a finite load increment,
there will be a slight regression of strain at the most-strained fiber of the
cross section, and there will be a reduction of stress at this location in
proportion to Ee. Only thus can the column develop the greater internal
bending resistance requisite for equilibrium with the increased external
moment caused by an increase in load above the buckling load. The load-
deflection curve of a steel column with residual stress can then be calculated
up to and beyond the maximum load. The initial slope can be calculated by
an explicit formula (2.19). Initial work involving such calculations of
maximum load is summarized by Tall and Estuar (2.20).
Examples of the calculation of I,/I for Eq. 2.7 are shown in Fig. 2.4 for
various cross sections and patterns of residual stress. The first two of these
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calculations were given in the paper b i

' y Yang, et al. (2.11) and the third
was developed by Nlt.ta (2.21). The second calculation of Fig. 2.4 shows
the approxnmat.e app.hc.ation to wide-flange shapes (web area neglected).
Although f{(7) itself is independent of the initial distribution of residual

Slenderness function=\ = "_r"

cross sections, based on buckling load.
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% R %
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Fig. 2.5. Column strength curves for various patterns of residual stress in various
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stress provided that it satisfies the general geometric requirements that
will develop the yielded (shaded) areas as indicated in Fig. 2.4, the
relationship between the critical stress o, and KL/r does depend on
residual-stress distribution. This is because the average stress on the
column cross section depends on the residual-stress distribution, as shown
by Eq. 2.6.

A review of the various Lehigh investigations (2.12, 2.14) concludes that
for structural carbon steels the average value of the maximum compressive
residual stress ogzc is approximately 0.3¢,. It should be noted, however,
that the residual-stress levels for higher-strength steels do not increase in
proportion with yield stress. The various column strength curves in Fig.
2.5 have been plotted on the basis of this average maximum compressive
residual-stress level, and are given for two patterns of residual-stress
distribution, i.e., parabolic and linear, as indicated. The actual distribution
of residual stress in the flange of a wide-flange section, on the basis of
many samplings, falls between the parabolic and the linear stress distribu-
tion (2.14). Thus, if the column strength of rolled wide-flange structural
steel shapes is to be expressed by a single curve, irrespective of axis of
bending, it should represent an averaging of curves 1, 2, 3, and 4 of Fig.
2.5. This is accomplished empirically by the dashed line labeled “CRC
column strength curve.”

Other curves in Fig. 2.5 are considerably above the CRC curve, and, of
course, those reflecting residual tension at the most-strained fiber (curves
6, 7, and 8) show the highest strengths. For these improbable cases f(n)
is 3p — 332 + 7 for the rectangular cross section (curves 6 and 8), and
2y — n? for the circular cross section (curve 7). It should be noted,
however, that residual stress always causes a reduction in column strength.
Carefully made tests of straight annealed columns show strengths close
to the yield point or to the Euler critical load, whichever is reached

first (2.12).

2.4 Column Strength Curves

Bleich (A1) proposed the following parabolic column strength curve for
steel in the inelastic range:
2y
r

a.
0 = 0, = S(0, — a,)( 2.8)
This equation is similar to the “Johnson parabola,” which was de-
veloped before 1890 on a curve-fitting basis (2.23). Eq. 2.8 is not suitable
if o, < 0.50,, in which case erroneous strength values greater than
the Euler buckling stress would be predicted for a certain range of KL|r
values.

2.4 Column Strength Curves 25

Since the departure from linearity in the effective stress-strain curve for

a steel column is explained by residual stress, the proportional limit
should be replaced by

Op = Oy — Ogc

and, as pointed out in a special report to Column Research Council
(2.14), the following result is then obtained for ozc < 0.50,:

KL\?
% = 0y = 752 (o — oa0)( 1)

. (2.9)

If opc is arbitrarily taken as equal to 0.50,, the plot of Eq. 2.9 becomes
tangent to the Euler curve at that stress and provides a suitable compromise
between weak- and strong-axis buckling of wide-flange sections having an
average maximum compressive residual stress of 0.30, (see curves 1, 2, 3,
and 4 of Fig. 2.5). Thus, for oge = 0.50,,
2 2
0 = 0, — 7= (KTL) (2.10)

Eq. 2.10 is plotted in Fig. 2.5 as “CRC column strength curve.” Eq.
2.10 was recommended in the first edition of the Guide for the establish-
ment of basic column strength curves for steels. It is particularly applicable
to hot-rolled shapes, but further evaluation is needed as to its limitations
when applied to shapes built up by welding. It is interesting to note that
Eq. 2.10 can be reduced to be identical to Eq. 1.395 of MIL-HDBKS
Metallic Materials and Elements for Flight Vehicle Structures, August
1962 (2.25). Also, Winter (2.26) presented the same equation in 1946
and stated that it gave “a very close approximation of the values of the
secant formula in the low and medium range of KL/r.”

Thus, while Eq. 2.10 has been related to the effects of residual stress in
wide-flange shapes, it is also consistent with the secant formula with an
arbitrary end-eccentricity ratio determined so as to make it fit a large
body of steel-column test results. The merit in using the tangent-modulus
concept as the basis for the design curve lies in its generality and inherent
correctness. There is no rational basis for the equivalent eccentricities that
must be assumed to make the secant formula agree with test results. Eq.
2.10 has the further merit that when generalized to apply to the lateral
buckling of steel beams, it agrees well with the lower limit of test results
referred to in Chapter 4.

In a survey prepared for Column Research Council by Beedle and
Huber (2.28) it was recommended that the minimum ASTM Specification
yield point in tension be adopted as a suitable value for g, in compression
as used in Eq. 2.10. This recommendation is hereby extended to all
structural high-strength steels for which ASTM Specifications are provided.
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Fig. 2.6. CRC column-strength curve for steel.

In the inelastic range, ¥ < o /o, < 1, the column strength curve for
steel, Eq. 2.10, can be written in a very simple form by introducing the
Euler buckling stress as a parameter. Then, in the inelastic range,

% _ 1 _025% @2.11)

oy e

For the elastic range, 0 < o./o, < % and o, = g, thus

o, 1 ’

Oy B (0y/0e) 2.12)
Plotted in terms of these parameters, the CRC basic column strength
curve takes the form shown in Fig. 2.6.

Research conducted by Estuar and Tall (2.18) at Lehigh University has
shown that fabrication of H-shapes from universal plates by welding
introduces tensile residual stresses that approach the yield point of the
material. As a result, the effect of welding on the column strength of such
built-up H-shapes is more adverse than that of residual stresses due to
cooling on the column strength of rolled H-shapes. In fact, column
strength for such welded shapes may be as much as 30%, below the values
predicted by the CRC basic column strength curve. A summary of test
results for various welded column sections is given in Fig. 2.7, with the
CRC curve shown by way of comparison. It may be noted here that for
welded H-shapes, indications are that the use of flange plates having
flame-cut edges reduces the adverse effect of welding. Current research
(1966) is expected to provide information on residual stresses due to

L
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welding that will permit specific design recommendations to be formulated
for welded built-up columns. '

The column strength curve in the elastic range is given for any metal by
Eq. 2.2. The following values of elastic moduli are commonly used:

Structural steels 29,000 ksi
Aluminum alloys

6061-T6,

6063-T5, 6063-T6 10,000 ksi
Aluminum alloy

2014-T6 10,600 ksi

Euler stress values are presented in Table 2.2. Although the Euler stress
does not represent the actual column strength in the inelastic range, it
enters into Eq. 2.11 and is useful in determining the bending amplification
factor in problems of combined bending and direct stress (see Chapter 6).

In Table 2.3 are listed the critical average stresses as predicted by Eq.
2.10 for structural steels having yield stresses of 33, 36, 42, 50, 60, 70, 80,
and 100 ksi. This progression includes the preferred yield stresses in

1.00

[ ]
H  CRC basic
column curve

B Welded box shape, A7

H Welded H shape, A7
- O Rolled W shape, A7
O Welded box shape, A514
I Welded H shape, A514
® Welded H shape, Hybrid, A514 Flg., A441 Web
0 i |

0 0.50 1.00 1.50
1 KL (o,

r

A=% =

E

Fig. 2.7. Welded columns and the CRC column curve.




Table 2.3. Basic Column Strength in ksi for Structural Metals. Values below

those underlined are Euler Stresses for Elastic Buckling.
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addition to the yield stress of A7 steel, which was used in most of the basic
research programs.

In the case of aluminum alloys, the ASCE Structural Division Task
Committee on Lightweight Alloys of the Metals Committee has evaluated
the basic column strength (A20, A21, A22), including the effects of cross-
sectional shape. Neither the secant formula nor Eq. 2.10 should be applied
to structural aluminum alloys, for which the column strength curves
can be determined by the tangent-modulus procedure for the minimum
stress-strain curve of the alloy in question. Basic column strength curves
so derived for structural aluminum alloys 6061-T6 and 2014-T6 are
presented in Table 2.3, in which the upper limit of strength (for KL/r = 0)
is arbitrarily taken as the specified minimum yield stress at 0.2%; offset.

Column Research Council concurs in the column strength curves used
as a basis for the allowable column stresses in ASCE Proceedings Papers
971, 3341, and 3342, covering specifications for structures of aluminum
alloys (A20, A21, A22). Allowable stresses for alloy 2014-T6 (A20) were
determined by applying a factor-of-safety directly to the tangent-modulus
column curve. Allowable stresses for alloys 6061-T6 (A21) and for alloys
6063-T5 and 6063-T6 (A22) were determined from the tangent-modulus
column curve, approximated by straight lines in the inelastic stress range.

2.5 Effect of Initial Curvature

In the case of higher-strength steels, the residual stresses due to the
cooling of rolled shapes are lower in proportion to the yield point than
for the structural carbon steels. Thus, for higher-strength steels, the effects
of initial curvature and other geometric imperfections take on greater
relative importance in comparison with the effect of residual stress.

In Fig. 2.8, §, is the maximum initial out-of-straightness of a column
and 8 is the additional deflection caused by bending moment due to
the axial load P. If the initial shape of a hinged column were a half
sine wave, it can be shown (A9) by elementary beam theory that the

| 5,=Maximum initial crookedness
l e r
/ 1

——— 7/ — =

=

- \ —
—_—— -

! d=Added deflection after
| column load is applied

Fig. 2.8. Initially curved column.
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total distance from the column thrust li .
ust line to th
column is e centroid of the deflected

8 E)

S, 6 = 9 = o
+ 1 — P[P, 1 — [P(L]r)*[*EA] (2.13)

Eq. 2.13 may also be applied to columns wi

Eq. y a _ s with other end conditions if th

{mtlal shgpe is identical to the buckled configuration. The ratio 1 (1 — lP/P‘;
1s sometimes called the ‘“amplification factor.” )

The maximum bending moment in the initi
: e initially-
is applied is ally-curved strut after load P

Mopyax = P(8 + 3,) (2.19)
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Combining the foregoing relationships and letting opax = oy, the average
stress for which the maximum stress in the column just reaches the yield
stress is found as

% = T ¥ ol T/ = oale)] (2.16a)

or, alternatively, for direct solution,

0y = % [(a,, + oe(l + Sr—f)) - /(oy + oe(l + 872?))2 - 4cryoe] (2.16b)

Eq. 2.16b, known also as the Perry-Robertson formula (2.34), gives a
conservative estimate of the strength of an initially-curved column free
from residual stress.

In the case of rolled steel sections, the standard mill tolerances for
out-of-straightness given in ASTM Specification A6 can be used as a basis
for estimating 8,. These standard tolerances are shown by the full line in
Fig. 2.9. The dashed line shows a good straight-line approximation for
these tolerances in the usual column length range and is over-conservative
in the long column range.

Whereas the buckling load of a perfectly straight steel column in the
inelastic range is affected markedly by residual stress, a realistic evaluation
of ultimate column strength should include the combined effects of residual
stress and initial curvature or crookedness. Ultimate strength can be
evaluated by numerical procedures that determine, at successive increments
of load and deflection, the column deflection curve up to and beyond
maximum load. Such a procedure was used by Ketter and others (2.13) in
determining the ultimate strength of eccentrically loaded beam-columns;
and it was also used in a series of later investigations, summarized by
Galambos (2.22, 2.33), on the ultimate strength of initially curved high-
strength steel columns of circular cross section with both concentric and
unsymmetrical distributions of residual stress.

More recently, a systematic evaluation of the effect of residual stress
and initial curvature, in combination or separately, on the column strength
of wide-flange sections of both steel and aluminum alloys has been made
by Batterman and Johnston (2.24). Figs. 2.10 and 2.11 show column
strength curves based on these studies, for weak-axis bending and strong-
axis bending, respectively, of wide-flange steel shapes. Residual stress,
when included, is held at a constant level of 10 ksi, and thus is very nearly
equal to 0.3c, for structural carbon steel but only 109 of the yield stress
for the high-strength steel. The effects of initial crookedness and residual
stress may be compared with the idealized strength if both crookedness
and residual stress were absent, i.e., with either the Euler stress or the
yield point, whichever is less. Such a comparison shows that the maximum

2.5 Effect of Initial Curvature 33

e‘ﬁfect of either residual stress or initial crookedness, alone or in combj

tlon,. always occurs when the slenderness-ratio parameter A equals urﬁa-
It Yvnll also be seen that the additive effect of initial curvature, for a il Y-
resgdual-stress magnitude, is greatest at the point where tl';e curvi ‘;‘en
re§1dua1-strt?ss alone meets the Euler curve. For values of A greater th;);
this Euler intersection point, the effects of initial curvature gradually

diminish.
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Figs. 2.10 and 2.11 show that, when the residua}l stre.:ss is held at a
constant level, no single nondimensionalized curve is satlsf?ctory for 2.111
levels of yield stress. They also show that the CRC curve is more satis-
factory for higher-strength than for st{uctura'l grade steels. Furth.etrl;
support is also given to the use of an increasing factor—of-safet)f w;
increasing KL/r, to compensate for effects of initial cprygture. Itisa so
shown that the relative effect of residual stress and initial curvature is

e
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more a function of column slenderness than of yield stress or shape of
cross section.

A comparison of Figs. 2.10 and 2.11 shows that a combination of a
nominal amount of residual stress with a given initial crookedness produces
relatively less difference between column strength curves for weak-axis
bending and strong-axis bending than does residual stress alone. It should
also be noted that the curves in Fig. 2.5 represent buckling loads, whereas
Figs. 2.10 and 2.11 depict the maximum column strength. The buckling
loads, as can be determined by comparison between Fig. 2.10 or Fig. 2.11
with Fig. 2.5, are somewhat less than the maximum strengths.

For a basic study of the effects of geometric imperfections, type of
loading, dynamic disturbances, and other factors, the reader is referred
to a paper by Drucker and Onat (2.32).

2.6 Allowable Stresses for Column Design

The question of factor-of-safety has been discussed briefly in Chapter 1.
The differing character of the several uncertainties that affect columns
makes it inevitable that no single design formula can satisfy all needs.

For a comprehensive review of world-wide column design practice as
of 1962, reference may be made to a paper by Godfrey (2.34). Column
design formulas of eleven different countries are discussed in this paper.
Formulas for structural carbon steels of roughly the same yield stress are
plotted in Fig. 2.12, which is adapted from the Godfrey paper.

On the subject of allowable stress in axially loaded compression
members, the AISC Specification (A13) reads as follows:

1.5.1.3.1 On the cross section of axially loaded compression members
when Ki/r, the largest effective slenderness ratio of any unbraced segment as
defined in Sec. 1.8, is less than Ce:

F, - L= [KIP2C0,

FS. Fgrmula )] 2.17)

where

_ _ 3 3Kl (Klr?
FS. = factor-of-safety = 3 + TCg— - —S_Cc? (2.18)
and
2R
C. = J 2n°E .19)
Oy

1.5.1.3.2 On the cross section of axially loaded columns when Kljr
exceeds C,:

_ 149,000,000

a = (T/r)z- Formula (2) (2.20)

The appendix to the AISC Specification provides tables of numerical
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values for the various grades of steel used in building c?‘nstruction. Th'e
commentary (A14) to the Specification points qut that “Formula (1) }is
founded upon the basic column strength estimate suggested by the

Column Research Council.”

1] —-—- —~  Belgium N.B.N. 1 1959
2 —m— - Canada C.S.A. Std. S16 1961
——————— .M. 1956
i :—--‘—— grear'::ny (I;IN 4114 1952, 4a: Amendment for tubes 1959
§ ——-—— Great Britain B.S. 449 1959 Amendment No. 4 1964
6 —--—-- — Holland VOSB 1963 . ’
7 —-—-—-- Italy CNR - UNI 10011 ‘Sperimentale’ 1963
§ — USA A.L.S.C. 1963

Aliowable stress - ksi

50 100 150 200
0 . KL
Slenderness ratio =

Fig. 2.12. Allowable stresses in axially loaded structural grade steel columns.
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For very short columns the AISC factor-of-safety has been taken as
equal to, or only slightly greater than, that required for members axially
loaded in tension. Similar provisions have been included in the British and
German design standards for some time and can be justified by the
insensitivity of such members to accidental eccentricities. For longer
columns, approaching the Euler slenderness range, the AISC factor-of-
safety is gradually increased 159, resulting in good agreement with
column strength based on the combined effect of nominal crookedness
and residual stress as shown by the normalized AISC design formulas
drawn in Figs. 2.10 and 2.11. This confirms use of the maximum factor-
of-safety in the intermediate slenderness range, in the vicinity of A = 1.
The factor-of-safety probably should not be reduced for values of A > 1,
because of the increasing sensitivity of long columns to variations in the
effective-length factor K and the practical difficulty in determining the
magnitude of X in an actual structure.

In further studies directed toward the goal of continued improvement
of design criteria, attention should be given to the effect of end restraint
and frame action in mitigating the adverse effect of initial crookedness.

The CISC Code incorporates the Canadian Standards Association
specifications (A15), which are also based on recommendations of Column
Research Council insofar as they pertain to compression members.
However, the Canadian specification places more emphasis on the lowest
column strength curve shown in Fig. 2.5 (i.e., curve 1), which is for weak-
axis bending of a wide-flange section with a linear distribution of residual
stress in each flange. This curve is approximately a straight line from
9 = oy to the Euler curve, and the CISC requirement is a straight-line
formula in this region, as follows:

— — Oy
F, = (20,000 — 70 KL/r) (33,000) @.21)
but not to exceed
145,000,000 -
(KL/r)?

As in the case of the AISC formula, the factor-of-safety increases with
increasing KL/r and reaches a value of about 1.97 when the slenderness
ratio falls in the range governed by the Euler formula.

In general, bridge design formulas for columns (A16 and A17) are also
of the parabolic type, but without a transition to an Euler-type formula
for very slender members. Extremely slender members are not permitted
in bridge construction.

The basis for both the AREA and the AASHO column formulas is the
secant formula, along with an allowance for accidental end eccentricity
of load (see Chapter 6). The effect of initial out-of-straightness is included,




38 Centrally Loaded Columns

but residual stress and inelastic bending strength are not considered. These
column formulas also include arbitrary effective-length coefficients K of
0.875 and 0.750 for members with pinned and riveted (or bolted) ends,
respectively.

Column formulas specified for light-gage cold-formed steel construction
(A1l) are similar in form to Eq. 2.10 in the short-column range, and are
identical with Eq. 2.20 for the long-column range. In the short-column
range a reduction factor “Q” (Al1l) is introduced as a multiplier in order
to account for loss in effective section owing to local buckling. Q factors
for stiffened plate elements and for unstiffened plate elements are not the
same.

The column formulas in the specifications for aluminum structures of
the ASCE Task Committee on Lightweight Alloys (A21, A22) are based
on the Euler equation and a straight-line approximation to the tangent-
modulus curve in the inelastic range. A uniform factor-of-safety of 1.95
is used for building structures, while the factor-of-safety for bridge
structures is 2.20. Effects of initial out-of-straightness are considered to
be compensated for by use of a conservative estimate for K (2.31).

2.7 Torsional Buckling Strength

Short thin-walled columns of open cross section, and having the shear-
center axis coincident with the centroidal axis, may have a lower critical
load in torsion than in flexure. If the shear-center axis is not coincident
with the centroidal axis, torsional buckling will always be accompanied by
bending. Long columns of compact* cross section, as well as all box-section
columns, need not be investigated for torsional buckling. However, single
angles and tee sections are susceptible to torsional buckling. In the case
of the single angle with equal legs, the local-buckling strength (see
Chapter 3) gives an approximation of the torsional buckling load.

For point-symmetric sections in which the shear-center axis and the
longitudinal centroidal axis coincide, simple expressions give the torsional
buckling stress, which will govern if it is smaller than the Euler buckling
stress. If the ends are free to warp but restrained against relative rotation
about the longitudinal axis, the torsional buckling stress is (Al):

JG | #*C,E
=T, T TIT
The following description of the most general type of displacement

possible during torsional-flexural buckling is taken from the recent paper
by Chajes and Winter (2.29). The general displacements consist of bending

(2.22)

* Compact in the general sense of having relatively small width-thickness ratios for the
component parts of the cross section.

Fig. 2.13. Displacement of cross section durin
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about both principal axes and twisting about the shear-center axis. When
a co]ump buckles in this manner, its cross section undergoes translations
u and.v in the x and y directions and a rotation ¢ about the shear center
gsee Fig. 2.13). Equilibrium of a longitudinal element of a column deformed
in this manner leads to the following differential equations:

ELu"V + P(u" + y,4") = 0 2.23)
ELYY + P(v" + x,¢") = 0 229
Cud™ — (GJ — 1r,2P)¢" — Pxp" + Pyu" =0 (2.25)

All derivatives are with respect to z, the direction along the axis of the
member. Eqs. 2.23 and 2.24 express the equilibrium of the forces tending
to bend an element of the column about the ¥ and x axes respectively
I, and I, are the principal moments of inertia of the section and y, and x.
are tl}e distances between the shear center and the centroid in :he twoo
principal directions. Eq. 2.25 expresses the equilibrium of the forces

o u

Centroid C

N
| "
|

J |sc

| Shear
— center -

g torsional-fl 1 ing.
Ref. 2.29.) exural buckling. (From
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tending to twist an element of the member about the shear-center axis.
In this equation r, is the polar radius-of-gyration of the section about its
shear center and C,, is the torsion warping constant. ‘

Egs. 2.23 to 2.25 hold for an axially loaded column with arbitrary
boundary conditions. They are linear equations based on the assumptions
of small deformations and elasticity, and their solution gives the loads at
which a state of neutral equilibrium is possible. For a member with
completely fixed ends,

u=v=¢=0
u=v=¢=0

and for a member with so-called hinged boundary conditions,

} at z=0,z=1L (2.26)

u=v=¢=0
u”=U”=¢”=O} atZ_O’Z_L (2.27)

Eqgs. 2.23 to 2.25 lead to the following characteristic equation:

ra2(Pcr - y)(Pcr - Px)(Pcr - P¢) - Pcr2 oz(Pcr - x)
- Pcrzxaz(Pcr - y) =0 (228)

whose roots P, are the three possible buckling loads of the member.

For thin-walled sections of constant thickness that are also singly
symmetric, such as a channel or equal-legged angle, the Chajes-Winter
procedure greatly simplifies evaluation of buckling loads. Charts are
presented to indicate whether the section fails in bending alone, in twisting
alone, or in combined bending and twisting. With this determined, simple
formulas together with charts permit rapid determination of the buckling
load. A wide variety of shapes, representing most of the commonly used
cold-formed sections, is covered.

A very complete review of the torsional buckling problem is provided
by Kolibrunner and Meister (2.39), and the subject is also treated by
Timoshenko and Gere (A9) and by Bleich (Al).

2.8 Effective Length of Framed Columns

The determination of the effective-length factor K in Egs. 2.1 through 2.3
and 2.8 through 2.10 will now be considered. Although applicable to both
trusses and continuous frames, the coverage of this section is limited to
those framed columns with no intentional bending moment at or between
the ends as a result of frame action or intermediate lateral loads. (The
beam-column with framed ends is treated in Chapter 6.)

Fig. 2.14 gives theoretical K values for idealized conditions in which the
rotational and/or translational restraints at the ends of the column are
either fully realized or are nonexistent. At the base, shown fixed under
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(a) (b) (c)

Ll dd
| 7| i

(e) (f)

[

Buckled shape of column
is shown by dashed line

~
-
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-

\ /
\ ] /
,;r i Ar Ar ’
Theoretical K value 05 0.7 10 2.0 2.0

Recommended K value

when ideal conditions 1 0.65 0.8
are approximated 0 12 10 | 210 20

“f" Rotation fixed Translation fixed

End condition code ? Rotation free Translation fixed
@ Rotation fixed Translation free

? Rotation free Translation free

Fig. 2.14. 'Eﬂ'ec.tive-length factors K for centrally loaded columns with various
idealized end conditions.

conditions (a), (b), (c), and (e) in Fig. 2.14, the condition of full fixity can
be :dpproached only when the column is anchored securely to a footing for
which the rotation is negligible. Column conditions (@), (¢), and (f) are
approaf:hed when the top of the column is integrally framed to a girder
many times more rigid than the column. Column condition (c) is the same
as (a) except that translational restraint is either absent or minimal at the
top. Condition (f) is the same as (c) except that there is no rotation restraint
at the bottom. The recommended design values of K are modifications of
the ideal values, taking into account the fact that neither perfect fixity nor
perfect flexibility can be attained in practice.

.The K of 2.0 for condition (f) is not by any means the upper limit. In
Flg: 2.15, for example, in which a column hinged at the base is attached to a
flexible beam at the top, with sidesway not prevented, the value of K exceeds
2.0 .and approaches infinity as the beam stiffness approaches zero.
Obviously, the use of a very flexible beam in this situation would not be
acceptable.

The more general determination of X for a compression member as part
of any framework requires the application of methods of indeterminate
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structural analysis, modified to take account of l:he egects tof lz:;alé::i
i i i igidity of the members. Gusset-p

and inelastic behavior on the rigidity o ( :

can be included; for this case Refs. 2.41 and 2.42 provide extenqu gh:rts

for modified slope-deflection equations, and for momel‘lit-dlstr;r: ;(;r:

i tively. These procedures
stiffness and carry-over factors, respec we not

i i i ign, but they can be used to determin
directly applicable to routine design, '
restraizts and resultant modified effective lengths (KL) of the component
members of a framework. . . .

The effective-length factor K (defined in con.nectlon with E(id _2.2) ?2
be determined from the solution of an equaFlon for the buc }ngdo '
compression member with end restraints, provided that the ma.g.mtu ;s fh
these restraints are known or can be appx;o:umated.. Two ?ondmons, 0
for columns of constant cross section, will be considered:

(a) Buckling of a compression member with known rotational (ﬂe;;u:zl)
restraints at its ends, but with no translation at either end (see Fig. 2.16).

E,I

L

Fig. 2.16. Rotational end restraint (no end translation).
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The following equation applies:
(R, + R) + Ij;‘lR" +M"=0 (2.29)
where
R, and R, = rotational stiffness (in units such as Ib-ft per radian) of the

restraints at ends g and b,

M’ = rotational stiffness of the near end of the member with the
far end fixed and no translation at either end:

M = as’ (ET") (2.30)

" = rotational stiffness of the near end of the member with
the far end pinned and no translation at either end:

M" = 45" (ET") (2.31)

S’ and S” are trigonometric functions of E, I, L, and the
applied load P, and are tabulated in ma
(Al, A9, 241, 2.42),

To design a column for a given load and end restraints using Eq. 2.29, one
selects a trial cross section and determines its area and moment of inertia.
The average stress P/A enables determination of E,, and M’ and M" can
then be found. At this stage, Eq. 2.29 would be applied to test the trial

section. If a check is obtained, the section is satisfactory. If not, a new trial
section is selected and the procedure is repeated.

M

ny references

(b) Buckling of a compression member with known rotational and
translational restraints at both ends (the translational restraints may be
replaced by an equivalent restraint at one end only) (see Fig. 2.17). For
this case, Eq. 2.29 applies with the exception that M’ and M"a
by the more complex expressions M’ and M
rotational stiffness of the near end of the memb

re replaced
respectively, representing
er with the far end fixed

E,I

Fig. 2.17. Rotational and translational end restraint.
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and pinned, respectively, but with the near end translationally restrained
by a linear spring. Equations are as follows:

=M [(1 S +2’(1 hs C)] (2.32)

Fr _ agn 27
M =M [7(1 FO+ (- C)] (2.33)

where

.o T, — P/L

T T+ T
T, = translational stiffness of the spring at a (in units such as pounds

per inch),
, _ElT.q PL?

T =25 [SS (1+C) - EJ] (2.34)

— translational stiffness of member ab under action of a transverse
force at a, and
C = carry-over factor modified for effect of axial load (see, for example,
Refs. 2.41 and 2.42).

The application to design would again be by trial and error, with
repeated selection of trial cross sections until Eq. 2.29, modified as just
noted, is satisfied.

The calculation of the effects of frame restraint on column behavior by
the foregoing briefly sketched procedure is too complex for design use.
Application to design can be simplified by the use of charts, derived by
similar methods, which provide a direct approximation of the effective-
length factor K (2.35, 2.36, 2.40).

In triangulated truss frameworks, loads are usually applied only at the
joints, producing only axial loads in the members if the joints are hinged.
Deflections of the joints are owing, then, to the axial deformations of the
members under load and are, therefore, relatively small. On the other
hand, if the joints are welded or heavily bolted or riveted, some secondary
bending is induced. The effect of secondary distortions on the buckling
strength of truss members is usually small and can be neglected in the
buckling analysis.

If every member in a truss were designed to minimum weight, buckling
stresses in compression members and yield stresses in tension members
would be approached at the same level of live load. On this basis, no
restraint would be supplied at the joints, and K would be unity for com-
pression chords and the equivalent lengths would be equal to the full
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Lateral bracing

Main truss
Fig. 2.18.

distance between panel points. In a roof truss of nearly constant depth
where a single compression chord of constant cross section is used for thc;
full length of the truss, K may be taken as 0.9. In a continuous truss, K may
be taken as 0.85 for the compression chord connecting to the joint where
the chord stress changes from compression to tension.

When the magnitude of stress in the compression chord changes at a
su!)panel point that is not braced normal to the plane of the main truss
(Fig. 2.18), the effective-length factor for chord buckling normal to the

plane of the main truss can be approximated from the two compressive
forces P, and P,, as follows:

_ P
K =075+ 0255 (2.35)

where P, < P;.

Web members in trusses which are designed for moving live-load
systems may be designed with K = 0.85. This is because the position of
llve' load which produces maximum stress in.the web member being
fies1gned will result in less-than-maximum stresses in members framing
into it., so that rotational restraints will be developed. K should be taken
as unity for web members in a truss designed for a fixed load system,
where maximum stress occurs in all members simultaneously.

The design of vertical web members, U,L;, of a K-braced truss (Fig. 2.19)
should be based on the length KL. Web-member buckling occurs normal
to thg plane of the truss, and Eq. 2.35 again applies. P, is to be taken as
negative in Eq. 2.35, since it is tension. When P, and P, are numerically
equal, Eq. 2.35 yields a value of K = 0.5.
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S

B
Tension

1
Compr.

L, K-truss

Fig. 2.19.

For buckling normal to the plane of a main truss, the web-compression
members should be designed for K = 1 unless detailed knowledge of the
make-up of the cross frames (perpendicular to the truss) is available. For
example, with cross frames of Type 1 (Fig. 2.20) it is satisfactory to take
K = 0.8, and for Type 2 it is satisfactory to use K = 0.7, provided that
the top and bottom lateral bracing systems are adequate to prevent joint
translation. Where translation of the cross frames is possible, a more exact
analysis of web-member stability should be undertaken.

In the case of redundant trusses, there is a reserve strength above the
load at initial buckling of any compression member. Masur (2.37) has
reviewed developments on this subject and established upper and lower
bounds for the ultimate load of buckled members of elastic redundant
trusses.

For more accurate evaluation of the effective length of columns in
nontriangulated continuous frames, two convenient alignment charts
(2.30) were prepared by L. S. Lawrence for incorporation in the Boston
Building Code. These charts (see Fig. 2.21) provide a rapid means of
estimating effective column lengths in continuous frames in which side-
sway is either prevented (Fig. 2.21a) or not prevented (Fig. 2.215). The
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Fig. 2.21. Alignment charts for effective length of column in continuous frames. (Courtesy of Jackson & Moreland

Division of United Engineers & Constructors, Inc.)
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charts are based on the assumption that all columns in the framework
reach their individual critical loads simuitaneously. The equations upon
which these alignment charts are based are as follows:

Sidesway prevented:
4 (K Tz M\ T @meEn K =1 (236

Sidesway not prevented:

G GB(”/K)2 - 36 _ 71/K
A6(GA + Gg)  tan(a/K) 2.37

These equations can be derived from Eq. 2.29, using Eqgs. 2.30 and 2.31
when sidesway is prevented, and Eqs. 2.32 and 2.33 when sidesway is not
prevented.

In Fig. 2.21 the subscripts 4 and B refer to the joints at the two ends of
the column section being considered. G is defined as

I./L,
G = %I ;L (2.38)

in which 3 indicates a summation for all members rigidly connected to
that joint and lying in the plane in which buckling of the column is being
considered, I, is the moment-of-inertia and L. is the corresponding
unbraced length of the column section, and I, is the moment-of-inertia
and L, the corresponding unbraced length of the girder or other restraining
member. I, and I, are taken about axes perpendicular to the plane of
buckling.

For a column base connected to a footing by a frictionless hinge, G is
theoretically infinite but should be taken as 10 in design practice. If the
column base is rigidly attached to a properly designed footing, G approaches
a theoretical value of zero but should be taken as 1.0. Other values may be
used if justified by analysis.

The girder stiffness /L, should be multiplied by a factor when certain
conditions at the far end are known to exist. For the case with sidesway
prevented (Fig. 2.21a), the appropriate multiplying factors are as follows:*

1.5 for far end of girder hinged, and
2.0 for far end of girder fixed against rotation

* These factors can easily be verified if it is kept in mind that the girder rigidity
assumed in Eq. 2.36 is 2EI/L for symmetrical buckling (no sidesway) and 6EI/L (in
Eq. 2.37) for antisymmetrical buckling (sidesway).

e e LTS
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For the case with sidesw i
faton ay not prevented (Fig, 2.21b), the multiplying
0.5 for far end of girder hinged, and

0.67 for far end of girder fixed

COII]-IS?:‘;zﬁntigeterTiqe(}il GlA and Gy for a column section, K is obtained by

a straight line between the appropriat i

o G, S ine betwee prop 1ate points on the scales

o 2nd 0,?73. ple, in Fig. 2.21a if G, is 0.5 and Gpis 1.0, K is

Ch:? ex;mple will now be presented to illustrate the application of the
Tts of Fig. 2.21. The columns of the frame shown in Fig. 2.22 will be

Iustrative Example 2.1

lAll ccf)lumns of. Fig. 2.22 are oriented with their webs parallel to the
51 ane o the. drawing, and are sufficiently braced normal to their webs so
at KL/r with respect to the strong axis controls.

(R) 12W 27 (R) 12w 27 (H) i
= Sidesway not
. B2 prevented
2 = 5
— [32] — K
][O &||S 5180
© @ © =
(H) 14W <3
0 |’ 1aw30 (R} 14W 30 yof
— —F WY Sidesway
B4 BS V(R prevented
0 w
w0 (3] -
—~l < il 1 ETs) ™ [t 1
4|3 L]0 2o =
© © bt =
i 4 ‘

L 96" l 140" , 156" ]

—

(R)=Rigid connection
(H)=Hinged connection, that i's, not specifically designed for continuity

Fig. 2.22.
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Beam I,/L, (in.?) Column I/L, (in.?)

Bl: 204.1/168 = 1.215 Cl: 30.3/132 = 0.230
B2: 204.1/186 = 1.097 C2: 109.7/132 = 0.831
B3: 289.6/114 = 2.540 C3: 30.3/102 = 0.297
B4: 289.6/168 = 1.724 C4: 30.3/138 = 0.220
B5: 289.6/186 = 1.557 C5: 30.3/138 = 0.220

C6: 109.7/138 = 0.795

For any particular column, let G, = G for upper end, and GB. = G for
lower end. For 6W<15.5, r = 2.56 in.; and for 8W~31, r = 3.47 in.

0.230

Column Cl1: GA = m = 0.189
0230 +0220 _ o
G = (0.5)(2.540) + 1.724 ~
0.831
= : = 0.471
Column C2: Gi = 1315 7 e5a00n -~ Y
0.831 +0.795  _ se
Os = 1724 + 067155 _
Columns C3and C4: G, = 10.0
GB = 1.0
0.230 + 0.220
Column C5: Gy = (5)2.540) + 1.724 0.081
GB = 1.0
) 0.831 +0.795  _ ..
Column C6: Gr = 1724 + @oya55) - O3
Gs = 10.0

Allowable Axial Stresses in ksi for Columns Made of Steels Having Yield Points
as Indicated (Based on AISC Specification (A13))

K determined from
Basedon K = 1 Fig. 2.21
Column| K Ljr | KL|r|{ 36 ksi | 50 ksi | 100 ksi* | 36 ksi | 50 ksi | 100 ksi*
Cl 1.06' | 51.6 | 54.7 | 18.20 | 24.10 | 40.76 | 17.93 | 23.60 | 39.10
C2 1.181 | 38.0 | 44.8 | 19.35 | 26.11 | 47.51 18.80 | 25.14 | 44.30
C3 1.89' | 39.8 [ 75.2 | 19.21 | 25.86 | 46.68 | 15.88 | 19.95 [ 26.39
C4 0.86% | 53.9 | 46.4 | 18.00 { 23.74 | 39.51 18.66 | 24.90 | 43.37
Cs 0.652 | 53.9 | 35.0 | 18.00 | 23.74 | 39.51 19.58 | 26.51 | 48.86
C6 0.782 | 39.8 1 31.0 | 19.21 | 25.86 | 46.86 | 19.87 | 27.03 | 50.56

! From Fig. 2.21b. 2 From Fig. 2.21a.
* Not included in AISC Specification.
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Note that for the first three columns (C1, C2, and.C3), in which the
effective length is greater than the actual length, it becomes increasingly
more unsafe to disregard this difference as the yield point of the steel
increases. Conversely, for the last three columns (C4, C5, and C6), where
the effective length is less than the actual length, it becomes increasingly
more uneconomical to disregard this differénce as the yield point of the
steel increases.

It has been shown in some applications that the matter of effective
length is of little or no importance in the design of framed columns, while
in other instances it may become a paramount factor. For structural-grade
steel columns (o, in the vicinity of 36 ksi) with slenderness ratios less than
about 60, the critical buckling load for a fixed-end column (type (a), Fig.
2.14) is within 10% of that of a pinned-end column (type (d), Fig. 2.14).
Thus, the introduction of K-values has only a minor effect on building
columns having small L/r ratios. The same 109; differential is found for
columns of higher-strength steels (o, of 50 to 60 ksi) having L/r ratios less
than about 50, and for columns of heat-treated high-strength alloy steels
(oy in the neighborhood of 100 ksi) having L/r ratios less than 35.

For aluminum alloy columns the Ljr value corresponding to a 10%
differential between fixed- and hinged-end column strength varies from
about 40 for the higher-strength alloys (o, about 50 ksi) down to 30 for
those of lower strengths (o, about 30 ksi).

The difference in buckling loads for columns in the hinged- and fixed-end
conditions increases steadily as the slenderness ratio rises. The strength of a
fixed-end column may be 1009 greater than that of the hinged-end column
at an L/r of about 100 for steel columns and 70 for aluminum alloy
columns. Thus, the use of K-values results in appreciable economies for col-
umns having large slenderness ratios. The increasing sensitivity of columns
to end restraint as L/r increases suggests the desirability of giving careful
attention to end-restraint conditions when the members are slender.

2.9 Columns of Variable Cross Section

Important examples of variable cross section columns include tapered
columns, such as derrick booms; and stepped columns, for which both
the cross section and the load are variable, such as are found in mill
buildings with crane runways. These are designed not by routine formulas,
but on the basis of special structural analyses which may be aided by
specially prepared charts or tables. A very complete compilation of such
charts and tables is provided in Refs. 2.39 and A2. In certain cases,
numerical procedures (2.43) may be applied. Charts giving the critical
elastic buckling load for tapered columns of various cross section have also
been developed (2.46).
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Caution must be used in estimating allowable loads for variable-
section columns if the proportional limit is exceeded at stresses produced
by the allowable load multiplied by the design factor-of-safety. ;n spch
cases the tangent-modulus effect will vary along the column, resulting in a
problem solvable by numerical methods (2.43, 2.44).

2.10 Lateral-Bracing Requirements

Structural bracing as discussed herein has as its purpose the maintenance
of alignment of compression members, so as to permit them to develop
maximum strength. Good initial alignment of structural cqmponents
obtained by high-quality fabrication will minimize the forces in braces.
Sporadic experimental and analytical studies tend to confirm the correct-
ness of usual practice, which is to design transverse braces for 29 of th.e
maximum compressive axial force in the compression element that is
being braced. For a general study of the bracing problem, reference should
be made to the report by Winter (2.47). _
Bracing must have rigidity as well as strength. If strength requirements
are met, rigidity will usually be sufficient, but braces must be securely'
anchored. For example, braces should not be attached to a structure

equivalent to that being braced unless the whole assemblage is trussed in -

order to prevent concurrent buckling. The pony truss, tr'ea;ted.in C.hfs.p.ter
7, illustrates procedures for the determination of requisite bracing rigidity.

2.11 Columns under Dynamic Loading

Columns may sustain loads in excess of critical values when the 1(?ads are
impulsive and of short duration. This is a subject of increasing interest,
although outside the scope of this Guide. A review of early work has been
presented by Hoff (2.5); and an investigation by Housner and Ts‘o (2.45)
gives detailed response calculations for triangular-pulse loads and includes
the effects of shear and rotatory inertia.
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Chapter Three

Compression Member Details

3.1 Introduction

This chapter takes up the design criteria needed in connection with local
behavior of plate, bar, or tubular elements of columns, and the design of
local elements to withstand shear forces developed as a result of eccentricity
of load, lateral load, or column curvature.

The structural significance of local buckling may be quite different
from the significance of general buckling of a column. Buckling, in the
case of a centrally loaded column, is a departure from a perfectly straight
configuration under constant load in the elastic range, or under increasing
load in the inelastic range. Because of initial imperfections and/or residual
stresses, actual column strength will be less than the theoretical buckling
load; but this load is nevertheless a reasonable criterion for column
design.

In the case of plates and hollow cylinders, the theoretical buckling
load is not necessarily a satisfactory basis for design since this load may
be either much too small or much too large, respectively. For example, a
plate loaded in uni-axial compression, with both longitudinal edges
supported, will develop transverse tensile forces after buckling that
provide post-buckling support. Thus, additional load may be applied
without serious structural damage. Initial imperfections in such a plate
may cause bending to begin below the buckling load, and yet the plate,
unlike an initially imperfect column, may sustain loads greater than the
theoretical buckling load. For a plate loaded in shear, with tensile stress
always a part of the stress condition at loads less than the buckling load,
there is an initial restraint against buckling, and the post-buckling bonus
in strength is even greater (see Chapter 5, Plate Girders). In the case of a
thin-walled hollow cylinder, however, buckling is followed by the develop-
ment of transverse compressive stresses which cause a precipitous decrease
in strength from the buckling load. Thus, in this case, initial imperfections
may reduce the maximum load much below the buckling load, a condition
opposite to that of a plate with supported edges. Theoretical buckling

56
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loads have been evaluated for plates and cylinders under a great variety of
idealized conditions (see Refs. Al, A2, A9, A10, and A23).

Local strength analyses of the component parts of a column are
important to the economical design of the complete column. To minimize
the weight of a metal column, the effective L/r must be kept as small as
possible in order that the material can be used at the greatest possible
permissible stress. This is increasingly true as we turn to the use of higher-
strength steels, as is obvious from the fact that all slender steel columns
have the same Eulerian strength regardless of the yield strength of the
material.

The length of any member is determined by the structural function, but
the designer can select a cross section that will provide the largest possible
radius-of-gyration without encroaching on clearance requirements or
unduly increasing the cost of manufacture. The largest radius-of-gyration
is obtained by placing material as far as possible from the centroid. For a
given cross-sectional area, this means that the material will become
thinner and thinner as the column size increases, for any particular type
of cross section. This leads ultimately to such thin walls for any given
column cross section that limiting width-thickness ratios must be invoked
to keep the local buckling strength greater than the allowable stress.
Alternatively, local post-buckling strength can be utilized at the expense
of some loss in effective cross section available for general column strength.
In some cases, in order to place the material as far as possible from the
neutral axis (especially when only a small load is to be carried and the
total area is small), angles, channels, or I-shaped sections are used, with
lacing or batten plates to hold them straight. Such lacing bars and batten
plates are not load-carrying elements, but function primarily to hold the
load-carrying portions of the column in their correct relative positions and
to provide points of intermediate support for each separate element of the
built-up column. Thus, lacing bars and batten plates are economical only
if the resulting increase in permissible stress for the load-carrying elements
leads to a reduction in cost that exceeds the added expense of the lacing or
battens.

3.2 Cross Section Types of Solid-Wall Columns

Closed-section columns such as those illustrated in Figs. 3.1a, b, ¢, and d
are particularly efficient since they have approximately equal strength
and rigidity in all directions, exactly so in the case of the hollow cylinder, a.
Type b may be fabricated by welding four plates, and is also available in a
range of sizes as a mill product. Closed column sections such as q, b, ¢, and
d have great torsional rigidity, and the flat-plate elements of the latter
three have effective longitudinal edge support. Towers of suspension
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bridges and other similar free-standing columns of monumental pro-

(k)

portion frequently utilize multicell closed sections as illustrated in d,
incorporating longitudinal stiffeners and requiring diaphragms to maintain
cross-sectional shape. Wide-flange or similar type open sections are
commonly used in buildings and in trusses (Figs. 3.1e, f; and g). Type A
(two halves spot-welded together) is used (All) for cold-formed steel
sheet fabrication. The lipped edge stiffener increases the flange strength
with respect to local buckling.

Another common cold-formed shape is the hat section, i. Types j and k
illustrate the symmetric arrangement of structural angles to create a
column section that can be assumed as centrally loaded provided the end
connections have no more than nominal eccentricity.

Columns having appreciable end eccentricity should be designed as
beam-columns using procedures suggested in Chapter 6. If, however, end
eccentricity is only nominal, columns can be designed as centrally loaded.
Generally speaking, all of the cross sections except /, m, and n may be
designed on the basis of a single column formula for the centrally loaded
condition, provided that local or torsional buckling does not occur at a
lower load than the one given by Eq. 2.10.

Although increasing design use is being made of post-buckling strength,

(R)

Fig. 3.1. Solid-wall column types.
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the need for rigidity or the desire to avoid a wavy surface may make it
preferable to take local buckling into consideration. In the design of
light-gage metal columns, a local-buckling reduction factor should be
applied to modify the otherwise-permissible column stress for those cases
in which the ultimate stress of the column exceeds the local-buckling
stress of one or more of the plate components. In the AISI Specification,
this reduction factor is designated as “Q.”* The problem of design for
local buckling will be considered before discussing some of the special
design problems pertinent to the various shapes.

3.3 Plate Thickness Requirements as Determined by Critical Stress

If increasing compression forces are applied to opposite edges of a flat
plate, a critical stress will be reached at which it will buckle out of its
plane. Such a critical stress may be in either the elastic or inelastic range,
and is similar in concept to the critical stress (Eq. 2.2) for the perfect bar.
For the plate as well as the bar, small imperfections and residual stresses
may cause initial bending of the plate at a load less than the buckling load.
In 1891 Bryan (3.1) presented the analysis of the elastic buckling stress
for a rectangular plate simply supported along all edges and subjected to a
longitudinal compressive load. The elastic buckling strength of a long
plate segment is primarily determined by the plate width-thickness ratio
b/t, and by the restraint conditions along the longitudinal boundaries.
The following equation from Bleich (A1) may be used to approximate the
critical buckling stress of a flat-plate segment in a long column under
uniform compressive stress (that is, under central load) in either the elastic
or inelastic range:
n2EV7q
o = k| ot =t G-D
In this equation, 7 = E,/E, and b and ¢ are as indicated in Fig. 3.2, The
value of k in Eq. 3.1 is determined by the longitudinal boundary conditions,

-as shown in Fig. 3.2.

The introduction by Bleich (A1) of the factor V7 into Bryan’s equation
to adapt it to stresses above the proportional limit is a conservative
approximation to the solution of a complicated problem. Reference to
more elaborate theories, as well as more complete information on k
factors, can be found in a number of references (3.2, 3.3, Al, A2, A9, A10,
and A23). Recent research by Haaijer and Thiirlimann (3.4, 3.5) has given
special attention to the problem of inelastic local buckling of steel plates,
with reference to the effect of the initial strain-hardening range of the
material.

* See Ref. All, Sec. 3.6.1.




60 Compression Member Details

'XRRXRARITRY
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having width b and -

various edge conditions 1/\
as tabulated below
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Description of b
Case edge support k. ll< - ;i
~a= e PP v
1 Both edges simply supported 4.00 o== -
2 '
2 One edge simply supported, 5.42 /Al = _’t —
the other fixed B
. Wt
3 Both edges fixed 697 F—=== =
t
4 One edge simply supported, 0425 <=—__
the other free P b P
B t
5  One edge fixed, the other free 1277 =
Section A-A

Fig. 3.2. Coefficients k for Eq. 3.1.

When the column cross section is composed of various connected
elements (see Fig. 3.1) a lower bound of the critical stress can be determined
by assuming, for each plate element, a simple support condition for each
edge attached to another plate element, or a free condition for any edge
not so attached. The smallest value of the critical stress for any particular
plate element will usually be less than the actual strength, because of
restraint supplied by the adjacent elements.

Critical stresses have played an important role in determining permissible
width-thickness ratios for plate elements of columns and girders used in
steel construction. In some bridge and building specifications (A6, A7,
A13) the basic design requirement with respect to local buckling has been
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that the yield point should be reached prior to elastic buckling. For
example, consider an outstanding element of an A36 steel compression
member. Assume (conservatively) that there is no rotational restraint
along the supported edge (kp;, = 0.425—see Fig. 3.2) and assume elastic
behavior (y = 1). Then, equating the buckling stress found from Eq. 3.1
to the yield point of the steel,

(0.425)7%(29,000)
(12)(1 — 0.3%(b/1)*
from which b/t is found as 17.6.* If this b/t ratio is exceeded, elastic
buckling of the outstanding plate element will occur. However, this b/t
value is not necessarily a conservative basis for design, since residual
stresses and initial imperfections will have their greatest strength-reducing
influence precisely at the b/t ratio found in this manner. AISC practice
in steel design limits b/t for outstanding elements to (b/f)yax = 3000/V :,,,
and for elements supported along both edges to (/) max = 8000/V @, .t

For centrally loaded columns, a different basis for the design of local
plate elements has been described by Bleich (Al):

To prevent premature failure of compression members by local buckling,
the cross section should be selected so that the individual plates offer the
same or larger resistance to local buckling as the whole member presents to
primary column buckling. )

This statement permits b/t to increase with increasing KL/r, a practice
different from that used in the United States for the design of heavy steel
columns. An example of the Bleich procedure is provided by the German
Buckling Specification, which specifies, for an outstanding element of a
column having KL/r > 75,

(brr) =02 (KTL)

while for KL/r < 75, the maximum permitted b/t is 15. Other criteria for
design of plate-column sections can be found in this specification, which
has been made available in English translation by Column Research
Council (A18).

The inelastic buckling strength of a plate can be approximated con-
servatively by determining an equivalent column slenderness ratio, KL/r,
which can then be substituted either in a column strength formula to
obtain an estimated critical plate stress, or in an allowable column stress
formula to obtain a local allowable plate stress. This equivalent KL/r is

* It may be noted that the largest 5/t ratio of any commonly rolled steel angle is

(6 — 0.156)/0.312 = 18.7, for the 6 x 6 x 15 size.
T See Ref. A13, Sec. 1.9.1 and Sec. 1.9.2.
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obtained by equating the critical column stress (Eq. 2.3b) to the plate
buckling stress (Eq. 3.1),

() = (2 e (3 (32)
T /equiv k t

‘When 7 is very small, the critical stress is near the yield. poi.nt' and.is
insensitive to changes in KL/r; and when n approaches unity, it is satis-
factory to assume that n''* = 1. Taking Poisson’s Ratio as 0.30 (an
approximate value applicable to any of the structural metals), and

plt =1,
B -2 (3.3)
(7 equiv B \/% t

Eq. 3.3 provides a conservative basis for calculatiqg either tl.le 'collumn
strength or design stresses in accordance with buckling-stress limitations.
It can be applied to columns made of high-strength ste?ls or nonferrous
alloys. Formulas which can be reduced to Eq. 3.3 are given in the Alcoa
Structural Handbook (A19). . .

The application of Eq. 3.3 to a steel plate problem will now be illus-
trated. Determine the buckling stress of a long uniformly compressed
plate 25 x } in. in cross section, with simple edge supports, made of steel
having a yield strength of 50 ksi.

From Fig. 3.2, &k =4.0.

From Table 2.3, the buckling strength of this plate is estimated to be
35.1 ksi. _

The possibility of interaction between local and general buckling has
been considered by Bijlaard and Fisher (3.6). They conclude:

The interaction effect is negligible for box sections, as indicated by both
theory and experiment...the same conclusion applies to t.he com'mon
sizes of H and channel sections, but not to sections for which torsional
instability is an important factor, such as the T and angle shapes.

This conclusion is based on the small-deflection theory of plate buckling
and the fact that, for most structural columns fabricated from pl‘ates or
shapes, the lengths between nodes for primary and local.b}lcklmg are
decidedly different. However, if columns are designed to fail in the post-
buckling range, such interaction may be pronounced and must be
considered (3.7).

In plastic design of steel columns, beam-colum.ns, and beams, local
buckling usually must be inhibited until the material passes through the
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plastic stress range and begins to strain harden. Haaijer and Thiirlimann
(3.4, 3.5, A25) have developed rules for proportioning steel plate elements
in plastic design. More recently, Lay (3.8) has reported on the effect of
local plastic buckling on beam-column and frame behavior. Fora simplified
analysis, we can assume that 7 = E,/E in Eq. 3.1, where E, is the slope
of the stress-strain curve at the onset of strain hardening (see Fig. 1.1).
Then, solving Eq. 3.1 for b/t, and putting o, = o,, the following is

obtained:
B )" S
t)mex \E 12(1 — »¥g,

or, introducing £ = 29,000 ksi and v = 0.30,

(zé)m <1/ L\c/,_i—_ (3.4)

If E, is assumed as 1300 ksi, Eq. 3.4 agrees well with b/t ratios currently
(1966) specified for plastic design (A13). Experimentally determined
values of E,, are usually less than 1300 ksi, but research and tests (A25)
have proven the acceptability of the specified b/t ratios.

3.4 Effective Flat-Plate Width-Thickness Ratios Based on
Post-Buckling Strength*

The economic use of material in any situation requires that permissible
stresses be as large as possible. Since the permissible stress in a column
decreases with increasing KL/r, it is obvious that the KL/r should be kept
as small as possible. Since the length of a column is governed by the
geometry of the structure, the column radius-of-gyration should be as
large as possible. In the case of moderately heavy loads this is accomplished
by concentrating the material at the periphery of the cross section and,
where necessary, joining it by lacing bars or perforated cover plates. For
light loads, however, such column cross sections are uneconomical and
the use of thin material with only part of the column cross section con-
sidered effective may be desirable. This leads to the “effective-width”
concept, which utilizes the post-buckling strength of the plate. The
effective-width concept is advantageous not only for long columns carrying
small loads, but also for columns that have the dual function of supporting
loads and acting as walls, partitions, or bulkheads. Under the effective-
width concept, only certain portions of the plate width are considered to
be effective in carrying loads after the local-buckling stress has been
exceeded. These effective plate regions are adjacent to stiffeners or at

* Sec. 3.4 is based in large part on a summary of existing information prepared
especially for Column Research Council by Jombock and Clark (3.9).
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corners where two or more joined plates stiffen one another. At such
locations the plate yield strength will either be approached or actually
will be reached before the member fails. ‘

The effective-width concept is currently used in several specifications.
The 1962 edition of the Specification for the Design of Light-Gage Cold-
Formed Steel Structural Members (A11) and the suggested specifications
for structures made of aluminum alloy 6061-T6 of the ASCE Task
Committee on Lightweight Alloys (A21, A22) make use of effective-width
concept. The AISC Specification (A13) tacitly allows the use of an effective
width in the design of compression members having plate elements with
b/t ratios greater than the stated permissible values.*

The effective-width concept seems to have had its origin in the design
of ship plating (3.10). It had been found that longitudinal bending
moments in ships caused greater deflections than those calculated using
section properties based on the gross area of the longitudinal members.
More accurate deflections could be calculated by considering only a strip
of plate over each stiffener having a width of 40 or 50 plate thicknesses as
effective in acting with the stiffeners in resisting longitudinal bending.

The advent of all-metal aircraft construction provided another oppor-
tunity for the use of the effective-width concept, since it was advantageous
to consider some of the metal skin adjacent to stiffeners as being part of
the stiffener in calculating the strength of aircraft components. Light-gage
steel buildings also provide useful applications of stiffened-sheet con-
struction. A discussion of the effective-width concept as applied to light-
gage steel design has been prepared by Winter (A12).

Tests by Schuman and Back (3.12) of plates supported in V-notches
along their unloaded edges demonstrated that, for plates of the same
thickness, increasing the plate width beyond a certain value did not
increase the ultimate load that the plate could develop. It was observed
that wider plates acted as though narrow side portions or “effective load-
carrying areas” took most of the load. Newell (3.13) and others were
prompted by these tests to develop expressions for the ultimate strength
of such plates. The first to use the effective-width concept in handling this
problem was von Kdrmdn (3.14). He derived an approximate formula for
the effective width of simply-supported plates and, in an appendix to his
paper, Sechler and Donnell derived another formula based on slightly
different assumptions. Subsequently, many other effective-width formulas
have been derived, some empirical, some based on approximate analyses,
and some based on the large-deflection plate bending theory, employing
varying degrees of rigor.

Von Kdrmdn (3.14) developed the following approximate formula for

* See final paragraph, Sec. 1.9.1 of Ref. A13.

3.4 Effective Flat-Plate Width-Thickness Ratios 65

p}ate effective width, based on the assumption that two strips along the
sides, each on the verge of buckling, carry the entire load:

b, = [\73(1*—”?—;?) @]t 3.5

Combining Eqgs. 3.5and 3.1, for k = 4 (simple edge supports), the formula
suggested by Ramberg, McPherson, and Levy (3.15) is obtained (see Fig.

3.3 for notation):
b, [o,
3 =3 3.6)

e

As a result of many tests and studies of post-buckling strength, Winter
(3.16) suggested in 1947 the formula for effective width that has been
adopted in the AISI Specifications for light-gage cold-formed steel (A11):

b, JE E (t
T=19/2 [1 - 0475 /2 (5)] 3.7

or, alternatively, in the form of Eq. 3.6,

b, _ /;; Oc
=/ [1 ~ 025 a—c] (3.8)

e

Eqs.'3.7 and 3.8 are basically the same as Egs. 3.5 and 3.6, respectively,
but include a correction coefficient determined from tests and reflecting
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the total effect of various imperfections, including initial deviations from
planeness.

In the calculation of the ultimate compression load for plates supported
along the two unloaded edges, o, can be taken equal to the compressive
yield point for steel; and for aluminum alloys, magnesium alloys, and
stainless steel, o, is taken as 0.7 times the yield strength,* except that when
the buckling stress o, exceeds 70%, of the yield strength, the load capacity
shall be taken as bto. and the effective width need not be calculated.

When a plate is supported along only one longitudinal edge, the post-
buckling strength is only slightly greater than the critical stress. In this
case, although an effective width is not explicitly used in the AISI
Specification (A11), the post-buckling strength is nevertheless relied upon
to justify a reduced factor-of-safety against initial local buckling. The
practical consequence in thin-gage cold-formed metal construction has
been the development of shapes having lipped stiffeners along the outer
edges.

Since the effective-width concept has been well developed in current
specifications and commentaries (All, A21, A22, 3.11), it is suggested
that reference be made thereto for further information on the subject.
There appears to be no basic reason why the principle should not be
extended into other specifications.

Jombock and Clark (3.9) list fourteen effective-width formulas, along
with their sources, and discuss the assumptions upon which they are based.
They suggest that the results of these comparisons can be summed up as
has been done by Gerard (3.17): “Of all the theories shown, Equation
(3.6, herein) apparently gives the best fit to the test data and is still pre-
dominantly conservative throughout the range of the data.” For ease of
application, there seems to be little advantage in any of the other formulas.

3.5 Circular Pipe or Tube Columns

The hollow cylinder provides the most efficient cross-sectional shape for
columns having equal lateral restraint in all directions normal to the
column axis. The diameter of such a column should be as large as possible,
with the additional requirement that d/t (see Fig. 3.4) should be small
enough to assure that premature failure by local buckling will not occur.
A distinction between manufactured tubes, extruded or drawn to close
tolerances, and welded or riveted fabricated tubes, will be made subse-
quently, along with the corresponding differences in recommended
allowable stress.

Tubes may be classified as short, medium length, and long, with limits
to be defined hereinafter. The local-buckling strength of very short

* Determined by the offset method.
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Fig. 3.4.

perfect tubes depcnd§ primarily on L/d. In the case of medium-length
tubes? the local-blfcklmg strength is primarily a function of d/t. For long
tubes,. locgl-bucklm.g failure should be avoided so that general column
?ucklmg is the .prlmary. problem. Medium-length tubes are the most
requently used in practice; and for these the theoretical local-buckling
stress, l?ased on the small-deflection theory solution of Donnell’s equation
(3.18), is:

S f (.9

T Rt '
where @

C=[3(1~-+)]""2 %06 when »=03

and R and ¢ are defined in Fig. 3.4. The medium-length tube solution

defined by Eq. 3.9 applies for values of Z
: e reater than 2,
given by Batdorf (3.19), & an 2.85, where, as

L2
=g VI-# (3.10)

. Expe'rlments show that as d/t increases, failure usually occurs at a stress
mc_reasmgly lower than that obtained from Eq. 3.9. This is because
res1c}ual stresses and/or small irregularities in shape have an extremel

detrimental effect on the compressive strength of cylindrical tubes Tube}sl
are rflade of many different materials and by a variety of forming.and/or
yveldmg pro.cesscs. Therefore, the value to be used for the coefficient C
in Eq. 3.9 will depend to some degree on the tube manufacturing process,

and should be based on recomm i
endations made i
e ould | by the particular
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The AISI Specification (All) is primarily applicable to slender
manufactured steel tubes, and it provides restrictions on d/t to eliminate
the possibility of local buckling. By this specification the ratio d/t for a

cylindrical tubular member in compression or bending shall not exceed
3300/0,, where o, is in ksi units. The allowable unit stress for a centrally
loaded tubular column is then determined from the applicable column

2000

formula on the basis of KL/r, with the factor Q equal to unity.
For manufactured aluminum alloy tubes, the Alcoa Structural Handbook

(A19) presents the following formula for equivalent slenderness ratio:

1800

IR (S T

The equivalent KL/r value found from this formula is then substituted

1600

into the appropriate column design formula to obtain the allowable stress
for the particular R/t. For more complete design information on aluminum
tubes in compression, bending, or torsion, including the effects of welding,
reference should be made to the report by Clark and Rolf (3.11).

1400

Eq. 3.13
(Elastic range)

To fill the need for design criteria for fabricated tubular steel com-
pression members having large d/t ratios, Egs. 3.12 and 3.13 for inelastic
and elastic buckling, respectively, are presented here for the first time.
These are based on about forty tests carried out by Wilson, Newmark,

1200

0 36 < gy <42
430<a, <36
a 24<0y <30

and others (3.20, 3.21) at the University of Illinois, in which the d/t ratios
varied from 68 to 1980. In ;he inelastic range,

1000

Eq. 3.12
(Inelastic range)

cylindrical steel columns compared with Wilson tests (University of Illinois

H

S k\éﬁ\

Ty
39 ksi

27 ksi

600

where A= %
Vo,
and B= 1208
Vo,
This KL/r value must be substituted into the appropriate column design
or strength formula to obtain the allowable or critical stress respectively ;o s ‘
87 |

for the particular column d/t value. The constants 4 and B in Eq. 3.12

400

A

N

have been chosen to make the curve corresponding to this equation
intersect the point (d/t = 3300/0,, ¢ = o,), where d/t = 3300/0, will be
recognized as the maximum AISI value mentioned previously. In the
elastic range, the critical (not allowable) stress is

200

is introduced
Bulletins 255 and 292).

AIS! maximum 9, if
no transition curve

8000 ] 3 =] =]
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Fig. 3.5. Ultimate-strength formulas for fabricated
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The agreement between these two formulas and the Wilson test results
is indicated in Fig. 3.5. The stresses shown for Eq. 3.12 were obtained
by substituting the equivalent KL/r values into Eq. 2.2. In the inelastic
range, the column strength is affected by the yield point of the material,
which in the case of the Wilson tests ranged from 24 to 42 ksi. In Fig.
3.5, the test results are grouped under three band designations: 27, 33,
and 39 ksi, all +3 ksi. Equation 3.12 is plotted for o, = 27 ksi and
o, = 39 ksi. For large d/t ratios, values of ¢, from the Fig. 3.5 curves
are approximately 75% greater than those obtained using Eq. 3.9 of
the first edition of the CRC Guide. This latter equation is, therefore,
overconservative.

Further inspection of the Fig. 3.5 curves shows them to be unconserva-
tive by about 309 with respect to one Wilson test point, and over-
conservative by from 20 to 40 %, with respect to a number of other points.
It should also be noted that the curves of Fig. 3.5 would be, in general,
overconservative for tubes which are manufactured without appreciable
residual stress and to close manufacturing tolerances. Usually, however,
manufactured tubes (as contrasted with fabricated tubes) will have dft
ratios less than the AISI maximum, in which case no reduction is needed
for d/t and the full allowable column stress can be used. In the case of
fabricated tubes, the allowable stress should be determined on the basis of
either Egs. 3.12 and 3.13, or of the allowable column stress, whichever
yields the lowest value.

It should be noted once more that Eq. 3.13 provides an empirical
estimate of the maximum or the failure stress. To obtain the allowable
stress a factor-of-safety must be introduced.

If a tubular column has its ends sealed against moisture and air, no
internal corrosion protection is necessary. Pipe columns are sometimes
filled with concrete, providing composite construction, the design of
which is covered by specifications for reinforced concrete. Kloppel and
Goder (3.22) have reviewed a considerable number of tests of this type of
column.

3.6 Box-Section Columns

The box section made of solid plates provides efficiency second only to
that of the circular pipe or tube column discussed in Sec. 3.5. The box
column is particularly well suited to fabrication by welding and is also
available as a standard mill product. Its torsional rigidity is comparable
to that of a circular tube of similar area and wall thickness, so that
torsional buckling is not a problem. Diaphragms should be provided at
ends, at points of load application or support, and at other intermediate
points, to ensure preservation of the original cross-sectional shape. Where
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Fig. 3.6. gla;eabuckﬁng coefficient k, for side # of rectangular box column (from
ef. 3.23).

all-welded construction is used, the box section can be completely sealed
so that no interior corrosion protection is needed.

Fig. 3.6 shows a chart developed by Kroll, Fisher, and Heimerl (3.23)
for evaluation of k for rectangular box sections. The same chart is given
in Fig. 7 of Ref. 3.2 and Fig. 5¢ of Ref. 3.3, Part II.

In Fig. 3.6, for b/h < 1 and #,/t, < 1, the buckling parameter &, can
be conservatively approximated by the- following empirical relationship:

—7_15(n)? b
=17-% (tb) [0.4 + Z] (.14)
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The buckling parameter k,, whether determined by Fig. 3.6 or by l?q.
3.14, may be introduced into Eq. 3.3, giving the equivalent KL/r for which
the buckling stress of the column is approximately equal to that of the
plate.

3.7 Wide-Flange Shapes

Wide-flange shapes are often used as columns because of their low
fabrication cost and ease of framing to other members. T}'1e5e shapes are
usually hot-rolled, but they can also be mad.e up of two th.m-wall_channel
shapes spot-welded together as shown in Fig. 3.14. Heavier sections can
also be built-up by welding or riveting various structural shapes and/or
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Fig. 3.7. Plate buckling coefficient k., for wide-flange columns (from Ref. 3.23).
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plates together, as shown in Figs. 3.1f and 3.1g. The wide-flange shape
has been widely tested as a column and is the basis for most of the
available data for basic column strength curves.

The lower bound for local buckling stress of a wide-flange section can
be obtained by determining the critical stresses separately for the web and
the flanges, assuming that the web is simply-supported along its two edges
by the flanges (Fig. 3.2, Case 1) and that each flange-half has one edge
simply-supported and the other free. The web or flange element with the
lowest critical stress will tend to buckle first, but will be restrained by the
other element. Conservative specifications can be written by using such a
lower-bound critical stress for a member and the corresponding b/! ratios
for its elements (see the procedure described on page 60). A more accurate
analysis of the interaction between web and flange is provided by the
chart of Fig. 3.7, in which the critical stress for the wide-flange section is
given in terms of web thickness and width, for various ratios of b,/b, and
t,/t. This chart is given in Ref. 3.23. This chart, and many others that are
similar, will also be found in Refs. 3.3 (Part II) and A23.

3.8 Tee Sections

If both the flange and the stem of a tee strut are adequately connected
at the ends so that the load is substantially central, the designer can apply
the full allowable stress for a centrally loaded column. If, however, the
tee is attached by fasteners or welds along the outer face of its flange
(line AA, Fig. 3.8), it must be considered as eccentrically loaded, and
should be designed as a beam-column (see Chapter 6).

Fig. 3.8.
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Tees used as columns are likely to be weak with respect to torsional
buckling. The torsional buckling stress can be approximated conservatively
by omitting the last term of Eq. 2.22, giving

0 =22 (3.19)

I,
If the tee center-of-twist is restricted to an axis not coincident with the
shear center, and if the ends are restrained against rotation, the critical
stress will be greater than that given by Eq. 3.15, in which case Ref. Al

may be consulted.

3.9 Stiffened Flat-Plate Elements

The compressive strength of a plate element can be increased by increasing
the thickness of the plate, but a more economical procedure is to employ
longitudinal and/or transverse stiffeners.

The buckling coefficient k for a stiffened plate (Fig. 3.9) depends on the
following parameters:

_ EL
Y=bD

A,
=%
a—g
=3

where I, = moment-of-inertia of stiffener about web-face axis
A, = cross-sectional area of stiffener
D = Er3/[12(1 — v%)]
Values of plate buckling coefficient k in terms of y, 8, and « are given in
Ref. 3.24 for the case of a plate stiffened by one, two, or three longitudinal
stiffeners dividing the plate into two, three, or four equal panels, re-
spectively. Seide and Stein (3.25) studied the case of a plate stiffened by an
indefinitely large number of longitudinal stiffeners. Their solution can be
applied without significant error to a plate having four or more stiffeners.
For a stiffened plate where the stiffener spacing is uniform and equal to d
(see Fig. 3.9), there is an optimum stiffening such that the elastic local-
buckling strength will be the same as that of an unstiffened plate with a
width-thickness ratio d/t. However, if the post-buckling strength of the
subpanels is to be achieved, a stiffness exceeding that optimum is required.
Tables in Ref. A23 give the required value of y for plates having one
transverse stiffener and for plates having three equal and equidistant
transverse stiffeners.
For a plate having (j — 1) transverse stiffeners that divide the plate
into j panels, the required stiffness for each stiffener varies. For this
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problem, Klitchieff (3.26) has given the following formula for the required
value of y for the stiffener of maximum stiffness:

_ @ = DG — 1) — 22 + 1)* + g
Y 2j[5j2 +1-— leaa ﬁ ] (3-16)

where

(12

J

.For a combination of longitudinal and transverse stiffeners, Ref. 3.3

gives {igures showing the minimum value of y as a function of « for various
comb{nations of equally-stiff longitudinal and transverse stiffeners. When
there isa large number of stiffeners in both directions having equal spacing
and stiffness, the panel can be treated as an orthotropic plate. Formulas
for design of longitudinal and transverse stiffeners for aluminum alloy
plates in compression are given in Ref. A19.

St.iﬁ'eners of open cross section (the most common type) have negligible
tor§10nal stiffness and will, if they have optimum bending stiffness, provide
a simple edge support for the subpanel plating. Closed-section stiffeners
on .the other hand, provide partial or full fixation of subpanel p]ating’
owing to their considerable torsional rigidity; and as a result, reduce the’
unsupported subpanel width.

3.10 Angle Struts

D?uble-angle struts (Fig. 3.10) can be designed as centrally loaded columns,
using the full allowable stress, when end connections are designed to
produce central loading. To achieve this condition, the gusset plate for
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the strut of Fig. 3.10b must be in the y-y plane. Double angles must be
adequately stitched together so that minimum slenderness ratios L,/r, for
a single angle between stitching will not exceed a suitable proportion of
the minimum slenderness ratio of the complete strut. Proportions of 2/3
or 3/4 have proven satisfactory in practice for this purpose.

As in the case of the tee strut, the double-angle strut of Fig. 3.106
should be designed as an eccentrically loaded column if it is attached on
plane A-A. Such a strut should also, of course, be checked for buckling
about the y—y axis under concentric loading.

Single-angle struts are used only for lightly loaded secondary members.
The best guide for design -of such members is probably found in present
design practice. Their strength is somewhat dependent on the rotational
stiffness of the end connections. If attached by rigid end connections to
rigid members, the single-angle strut can be considered as concentrically
loaded. For less adequate end conditions the effective end eccentricity is
uncertain, and such struts should be designed for a conservative fraction
of the allowable stress for a centrally loaded column (see, for example,
Refs. A18 and A24).

3.11 Open-Web or Open-Flange Shapes

The use of open-web or open-flange columns (involving laced, battened,
or perforated plates) requires consideration of local shear. Shear flexibility
also affects the buckling strength of the column, but generally this is a
very minor effect.

Shear in a column arises principally from the following three sources:

(a) Lateral load, resulting from wind, dead weight, or other causes.
(b) Slope, due either to accidental curvature or to that developing
during the buckling process.

3.11 Open-Web or Open-Flange Shapes 7

(¢) End eccentricity of load, introduced either by the end connections
or by fabrication imperfections.

The shear from (a) should always be calculated and added to the semi-
empirical allowance for shear caused by (b) and (c). Cause (b) is increasingly
important in slender columns, and cause (c) in short columns.

Typical allowances for column shear in specifications are plotted in Fig.
3.11. The AASHO-AREA shear allowances (A6, A7) for steel columns
give rather large weight to shear caused by accidental end eccentricity in
short columns, whereas the German Buckling Specifications (A18) and
aluminum alloy specifications (A21, A22) emphasize the shear resulting
from slope in the bent column. This difference accounts for the two broad
groups of curves in Fig. 3.11. The increased shear allowance for aluminum
columns results from the lower modulus of elasticity, which causes larger
;ieformations and, therefore, larger transverse components of the axial
oad.

The failure of the first Quebec Bridge in 1907 pointed to the importance
of transverse shear strength in compression chords, and bridge design
practice in this country today reflects the lessons learned from that
failure and the extensive research that followed. A descriptive review of
past column failures has been presented by Wyly (3.27), who concludes

0.10
0.08
Aluminum alloys
German
(Refs. A21, A22) /' 1\ 4114 (1952)
0.06 Carbon structural stee’l A
7
Q / P
P German |-
0.04 AASHO (1961) DIN 4114 (1952) //‘ )
; N High-strength steel | ngh-:trfngth/, 7
steel -,
002 [~ T
S A / AASHO (1961)
AISC (1963) AREA (1963)
Carblon structurall steel JCarbon strulctural steel
0
0 20 40 60 80 100 120 140
L
r

Fig. 3.11. Specification allowances for shear in centrally loaded columns.
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that about three-fourths of recorded failures of laced structural cplumns
have resulted from local weakness rather than from general buckling.

3.12 Laced Columns

Laced columns are open-web members in which one or more plan.e5 of the
column consist of triangular truss frames. The diagonal lacing !aars
(acting either in tension or compression) must be designeq for the specified
shear. The effect of the lacing in increasing shear deflections and th'ereby
reducing the general buckling strength of the column has befen rev1'ewed
and evaluated in standard references (Al, A9). A conservatlve. estm‘late
of the influence of 60° or 45° lacing as generally sp?,ciﬁed in bridge
design practice can be made by modifying the effectlv?-length factor

(b)

Fig. 3.12. Laced columns.

3.13 Columns with Perforated Plates 79

K (determined by end-restraint conditions) to a new factor K'* as
follows:

KL ) R 300
fOl‘—r—>40. K' =K l+(KT/I")2

3.17)
for I—ié < 40: K’ =1.1K

Such a modification will have little effect on the estimated strength of
short columns.

Conservative bridge design practice (A6, A7) requires that the slender~
ness ratio of the portion of the flange included between lacing-bar con-
nections (sublength L, of Fig. 3.12) be not more than 40 nor more than
two-thirds of the slenderness ratio of the member. German Buckling
Specifications (A18) simply require that the L/r of this portion of the
flange shall not exceed 50.

The lacing bars and their connections must be designed to act either in
tension or compression, and the rules for general column design are
pertinent to them as well. In exceptional cases, such as very large members,
double diagonals can be designed as tension members and the truss system

completed by compression struts as indicated by the vertical dashed lines
of Fig. 3.12b.

3.13 Columns with Perforated Plates

A study by White and Thiirlimann (3.28) provides a digest of earlier
investigations at the National Bureau of Standards (3.29, 3.31) and gives
recommendations for design of columns with perforated cover plates.

The following design suggestions for columns with perforated plates
are derived from both the White-Thiirlimann study and from AASHO
Specifications (A6).

1. The perforations may have the form of two semicircles connected
with straight sides, or they may be elliptical or circular. For the first two
cases, the long axis should be in the direction of the column axis.

2. The clear distance between perforations should be not less than the
distance between the nearest lines of longitudinal fasteners, i.e., (c — a) > d
in Fig. 3.13a. '

3. The net section of the column (defined as the section at the perfora-
tions) should be used in computing the axial rigidity AE and the column
moments-of-inertia about the x and y axes. .

4. If the slenderness ratio a/r, (length of perforation divided by radius
of gyration of flange—see Fig. 3.13) is 20 or less, and also no greater than

* Based on Eq. 339 of Ref. Al, p. 174.
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Fig. 3.13. Column with perforated web plates.
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one-third of the column slenderness ratio L/r., the appropriate specifica-
tion column stress, applied to the column net section, can be used to
determine the permissible load.

5. For columns built-up of plates (Fig. 3.13), the net area of each web at
the perforation should be sufficient to resist 1 /n times the transverse shear
force, where n is the number of perforated plates. Perforated plates
designed in accordance with rule (2) need not be checked for shear
introduced as a specified percentage of the column load.

6. The transverse distance from the edge of a perforation to the nearest
line of longitudinal fasteners, divided by the plate thickness, i.e., the b/t
ratio of the plate adjacent to a perforation (see Fig. 3.13), should conform

to minimum specification requirements for plates in main compression
members.

3.14 Columns with Batten Plates

The batten-plate column has greater shear flexibility than either
the laced column or the column with perforated cover plates; hence, the
effect of shear distortion must be taken into account in calculating the
effective length of the battened column. Such columns are not permitted
by current United States specifications for bridges and buildings. However,
small television and radio towers are frequently made of battened columns,
and some specifications permit such columns for secondary applications.

Bleich (A1) gives the following approximate formula for the effective
length of a battened column:

L [TRE o

where L/r is the slenderness ratio of the column as a whole and Ly/r, is the
slenderness ratio of one chord center-to-center of battens (see Fig. 3.14a).
Bleich shows that the buckling strength of a steel column having an L/r of
110 is reduced by about 109, when L,/r, = 40, and by greater amounts
for larger values of L,/r,. Most specifications place an upper limit on L,/r,;
for example, a British specification (3.30) has the following requirements:

In battened compression members in which the ratio of slenderness
about the y-y axis (axis perpendicular to the battens) is not more than 0.8
times the ratio of slenderness about the x—x axis, the spacing of battens
centre-to-centre of end fastenings shall be such that the ratio of slenderness
Ijr of the lesser main component over that distance shall be not greater than
50 or greater than 0.7 times the ratio of slenderness of the member as a
whole, about its x-x axis (axis parallel to the battens).

In battened compression members in which the ratio of slenderness about
the y~y axis is more than 0.8 times the ratio of slenderness about the x—x




82 Compression Member Details

Q
o= q - '___4___2_____‘
ML o
1 [ | ] i
o fe— o |

e 1 | ! I
| 1 h L7 ! !
| : | |
! 1
! ] I |

A--J- ot I 5 41 B g ;101..,
' ——
| f { L, i " 1A
| I f | . t
| H 1NN
| I. : z L
i | T
c : | :
1 | : :
1 | Q
! [ L |
| LAl
Lo ____{I‘ _____ i Y £t
(b)
|
¢ |
|
| 1
| ::§
N | i
"\""J ! L'v‘—
Yy
SN =
N
N
N N
x i X
5 \
< NN
y

(@)
Fig. 3.14. Battened column.

axis, the spacing of battens centre-to-centre of end fastenings shall be such
that the ratio of slenderness //r of the lesser main component over that
distance shall be not greater than 40 or greater than 0.6 times the ratio of
slenderness of the mcmber as a whole about its weaker axis.

The design of both the individual chords and the batten connections of
a battened-plate column should take account of the local bending resulting
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from specified shear forces, shown acting longitudinally and transversely

on the free-body portion of the column shown in the dashed rectangle
(Fig. 3.14b).

Each group of fasteners between the batten plates and the chords
should be designed to resist the following moment:

M, = % (3.19)

where Q = shear as indicated in Fig. 3.11 plus shear due to any transverse
loading

L, = distance center-to-center of battens
n = number of parallel planes of battens (two in Fig. 3.14)

The maximum combined bending and direct compression stress in each.
individual chord at line AA of the column shown in Fig. 3.14 should not
exceed the maximum permissible stress for a zero-length column. For this
calculation, the chord bending moment should be taken as

=L
T2

These combined stresses are not secondary stresses and therefore cannot
be neglected.

3.15 Miscellaneous Details

Because of the complexity of the subject, many aspects of good column
design practice are too complicated to be covered herein. Important
topics not covered include spacing of fasteners in built-up columns, design
of column splices, and design of column anchorages. United States
specifications (A6, A7, All, Al3) give requirements for such column
details.

Some examples of poor practice in design of: column support details
which, in some cases, have contributed to column failures, are shown in
Fig. 3.15. In Fig. 3.15a, the cross-framed angles between the two bar
joists are intended to prevent rotation of the upper ends of the columns,
thus adding to their capacity to resist wind loads; but the moment con-
nection between the top of the column and the structural tee is inadequate,
since slotted holes are provided for a field-bolted connection. In Fig.
3.15b, the column acts simply as-a restraining spring to the rocker which
may become unstable at a fraction of the load that the supporting column
will carry. In Fig. 3.15¢, Section B-B shows a column inadequately
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Fig. 3.15. Examples of faulty design of column-support details.

supported with respect to weak-axis bending. The effective length of this

column is more than twice the distance from the top of the beam to the

base of the column. Many other examples could be given.
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Chapter Four

Laterally Unsupported Beams

4.1 Introduction

The compression flange of a beam or girder may have (1) continuous
lateral support, (2) bracing at intermediate points, or (3) less frequently,
no intermediate lateral supports. In the latter two cases, the beam may
fail in combined twist and lateral bending of the cross section in a
phenomenon known as “lateral-torsional buckling.” It is also important
to check the lateral-torsional buckling of members under their own dead
load during handling, erection, and immediately after installation, when
braces are either absent or different in type from the permanent ones.

A review of early tests involving lateral buckling has been prepared
by Procter (4.1). The earliest paper to which he refers was published in
1854 by Fairbairn, who made beam tests and suggested correctly that
improved buckling strength would result if the compression flange were
rolled both thicker and wider than the tension flange. Later tests of steel
beams by Burr (1884), Marburg (1909), and Moore (1910) provided
experimental evidence that led to design formulas wherein the allowable
stress was a function of the L/r ratio of the compression flange.

The first theoretical solution for elastic buckling of a beam of rectangular
cross section was presented by Prandtl (4.2) in 1899 for a number of load
and support conditions. An independent solution at about the same time
was made by Michell (4.3) for the case of the simply supported beam under
constant bending moment. The earliest solution for lateral buckling of an
I-beam was made by Timoshenko, who published papers on this subject in
Russian and German between the years 1906 and 1910. These and other
early developments are reviewed by Timoshenko (A4, A9) and by Bleich
(A1), whose readily available works provide a complete account before
1951, when Column Research Council initiated the first of a number of
investigations made in connection with the development of this Guide.
These investigations have been reviewed for CRC by Clark and Hill
(4.6), and much of the following material is abstracted from their review.

Elastic buckling theory for several types of loading and beam cross
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sections has been confirmed by tests of both steel and aluminum alloy
members. The aluminum beams tested include symmetrical I-beams under
unequal end moments (4.7) and under a concentrated load at the center of
the span (4.8), and channels (4.8), zees (4.9), and unsymmetrical I-sections
(4.10) under uniform bending moment. Tests of carbon structural steel
beams subjected to concentrated loads on the top flange at the two quarter
points have also demonstrated the validity of elastic buckling theory (4.12).

The general problem of lateral buckling of thin-walled open cross
sections has been studied by Goodier (4.13). In a CRC-affiliated project,
Austin and associates (4.14) have studied the effect of varying degrees of
end restraint on the I-beam buckling problem.

A qualitative insight into the nature of the elementary beam buckling
problem can be gained by considering Fig. 4.1, where a straight rectangular
beam is shown loaded by end couples in the plane of maximum resistance.
The beam is supported vertically and held against twisting at each end. A
segment at the left end is shown in a hypothetical bent and twisted con-
figuration, with vectorial representation of the equilibrating moment that
must exist at the cut section a distance z from the left end. It is seen that
if the beam twists, there is induced a lateral bending moment M, 8 (approxi-
mate for small deflections); and concurrently, if the beam bends laterally,
there is induced a torsional moment M,6. Thus, at a critical beam
buckling load, when the laterally deflected beam is in equilibrium under
loads or moments that cause bending in the major principal plane, the
buckled configuration involves both lateral bending and twisting, since
either of these configurations induces the other.

Rolled I, wide-flange, and channel sections are very efficient and strong

% A ‘_‘ %
M, (
A z
’ Ends A and B are free to rotate abot_:t )
x and y axes but are held against twisting

=

z
\ M,=Msn0~M0 _
]

16,

M,

y

Fig. 4.1. Torsion (M,) and lateral bending moment (M,) induced during lateral-
torsional buckling by uniform bending moment M,.
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when loaded through the shear center in a plane parallel with the web.
These same sections are weak in lateral bending and in torsion, and these
weaknesses accentuate the design problem that arises when they are not
supported laterally. Combined bending and torsion may also be a problem
if the sections are not loaded through the shear center; and biaxial bending
is introduced if the load is not parallel with the web. In this Guide only
the problem of lateral-torsional buckling will be considered. However,
steps taken by the designer to improve resistance to lateral-torsional
buckling will also improve the resistance of the beam to the other two
conditions.

The strength of a laterally unsupported beam of relatively short length,
like that of a corresponding column, will be determined by inelastic
rather than by elastic behavior. Like the short column, the short beam
may be expected to develop the full yield strength of the material. Bleich
(A1) has pointed out that it is possible to obtain a lower limit to the
theoretical buckling stress in the inelastic range by substituting the tangent
modulus E, (corresponding to the maximum stress in the beam) for the
elastic modulus E in the elastic buckling formula. Tests on aluminum
alloy beams have shown that this substitution gives a close approximation
to the experimental buckling stress when the bending moment is constant
along the length (4.6, 4.7). Tests of aluminum alloy beams (4.7) subjected
to unequal end moments, with the ratio of the end moments varying from
1.0 to —1.0, showed critical stresses varying from 8 % below to 39 % above
the values calculated by the method suggested by Bleich.

An approximate method of estimating the effect of plastic action on the
buckling strength of beams and girders is to assume that the relationship
between elastic and inelastic buckling strength is the same for beams as it
is for columns. The inelastic buckling strength of beams can then be
estimated from a column curve. This procedure is applicable to both steel
and aluminum alloy members, for which the tangent-modulus buckling
curve has been verified by tests on both columns and beams (4.15). In the
case of steel, the tests by Hechtman, Hattrup, Styer, and Tiedemann 4.12)
are in good agreement (generally conservatively so) with the predictions
of the basic column-strength curve given in Fig. 2.6.

This hypothesis amounts to the extension of Table 2.3 to cover beam
as well as column buckling. In the first edition of the Guide, this approach
was compared graphically with test results. Galambos (4.20) has evaluated
this procedure by comparison with his theoretical solution, as shown in
Fig. 4.2, which applies to I-shaped sections.

The widespread adoption of plastic design has created the need for
criteria for lateral buckling and lateral bracing when plastic hinges are
developed within a beam. Theoretical and experimental work on lateral
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bracing requirements in plastic design, with consideration of such effects
as moment gradient, partial yielding, end fixity, and the effect of yielding
on St. Venant torsion, is summarized on pages 51 to 62 of Ref. A25. Lee
(4.18) has reviewed the literature, from the study by Neal (4.17) of the
partially yielded rectangular bar to the experimental and theoretical work
of Lee and Galambos (4.19, 4.20) on the wide-flange section. Baker, Horne,
and Heyman (see pages 236 to 248 of Ref. A7) have reviewed the problem
of inelastic lateral instability in relation to plastic design, covering
primarily British research.

In the design of a beam without lateral support, various alternatives
should be considered:

1. Use of a box-girder section. This will usually eliminate entirely the
problem of lateral buckling.

2. The use of boxed flanges (see Fig. 4.3). This will improve not only
the lateral-buckling resistance, but also the local-buckling strength of
both the flange and web.

3. If an open section is used, concrete encasement. This will increase
the beam’s torsional resistance by several hundred percent and will
greatly improve the lateral-buckling characteristics.

Basic to any of the foregoing is the study of the behavior of the rectangular
cross section, to which attention will first be given. Special attention will
also be given to wide-flange sections, and to design recommendations in

1.0

0.5

Fig. 4.2. Ultimate moment capacity of SWF31 beam (4.20).
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Fig. 4.3. Girder section with boxed flanges.

the first edition of the Guide that led to the 1961 and 1963 revisions of the
AISC Specification (A13).

Simplified formulas will be presented for buckling of wide-flange
sections that are not symmetrical about the major axis. Nylander (4.16)
has provided an extensive treatment of this problem and also has con-
sidered the instability of continuous beams. Solvey (4.23) has summarized
solutions for a great variety of end-restraint and load-distribution
conditions.

4.2 Rectangular and Box-Girder Sections

The solution of the lateral-buckling problem for the rectangular beam
deserves first attention because it is simple and can be used directly in the
design of box girders. Because of their inherent lateral stability, box girders
should be used where long and/or heavily loaded spans must be designed
without lateral bracing,.

For a rectangular section subjected to uniform bending moment as
shown in Fig. 4.1, the critical moment is

M, = % VJGEI, @&.1)
For a solid rectangular cross section of usual structural proportions, an

accurate formula for the torsion constant J is

3
= ‘% — 0.21¢ 4.2)
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The greatest error in Eq. 4.2 is for the square cross section (for which no
lateral-buckling investigation would be needed). The error in J for the
square is about 129, on the conservative side. For a rectangular section
having a d/t ratio of 1.5, the error drops to 1.59; and rapidly approaches
zero as dft increases further.

Eq. 4.1 can be converted to an equation for critical stress by substitut-
ing it into the bending-stress formula. The result is

o = %4: - 75 VIGH, 4.3)
The following value for (I,),;, accounts for the added stability induced
by downward deflection (4.3):

I)us = L[ =177 )

For rectangular beams or box sections having a depth of more than twice
the width, the resulting increase in 7, is small. In any event (as noted in
Ref. Al), Eq. 4.4 should not be applied to cambered members.

Eq. 4.1 can be used for box girders of rectangular cross section. The
following close approximation of the torsion constant J, based on Bredt’s
theory (4.4) for thin-walled box sections (see Fig. 4.4a), can be used in
Eq. 4.1:

J= 44*  2b%d®
T (ds b d 4.5)

sttt

where A is the total area within the middle planes of the plates making up
the box periphery.

The elastic lateral-buckling stress of box girders of usual proportions is
far above the yield point, in which case failure will be by inelastic lateral
buckling. The inelastic lateral-buckling strength of a beam can be approxi-
mated from the basic column strength for any structural metal (see Table
2.3). This approach was validated in the case of the I-beam by Galambos
(4.20), as shown in Fig. 4.2, and was suggested by Bleich* for the more
general beam-column problem. It is also used by the Aluminum Company
of America.t Thus, replacing o, and KL/r in Eq. 2.2 by o,, (clastic
buckling stress for the beam) and (KL/r)equiv, T€spectively,

(ﬁ“) e 4.6)
I /equiv Oep

* See Ref. Al, p. 130.
T See Ref. A19, p. 115.
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Fig. 4.4a. Box-girder cross section.

From Eq. 4.3 o,, can be determined and substituted in Eq. 4.6; or,
alternatively, KL/r can be read directly from Table 2.2, entering the table
with o, as the argument.

Another alternative would be to replace G in Eq. 4.3 by its equivalent

E
20 + )

If v (Poisson’s ratio) is taken as 0.318 (a compromise between 0.30 for
steel and 0.33 for aluminum alloy), the introduction of Eq. 4.3 into Eq.

4.6 yields:
(E) _ [5.1LS, .
r equiv ‘\/J—Iy (4'7)

This equation is applicable to rectangular or box sections made of either
steel or aluminum alloy. The approximation introduced for Poisson’s
ratio has much less effect than does the normal variation in mechanical
properties of the materials. It should be noted that L in this equation refers
to the laterally unbraced length and is not necessarily the full span between
vertical supports.

Egs. 4.6 or 4.7 can be used in the design of less conventional sections
such as illustrated in Fig. 4.3, in which there are local closed or boxed-in
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regions which make the torsional resistance of the section relatively large.
In such an application it would be necessary to provide intermittent
vertical stiffeners to assist the web in maintaining the shape of the complete
cross section.

An example will illustrate the application of Eq. 4.7 and demonstrate
the great resistance of the box section to lateral-torsional buckling.

Example 4.1

Consider a 50-ft unsupported length of box girder having the cross
section shown in Fig. 4.4b subjected to pure bending about the strong
axis. Neglect the effect of end restraint and determine the critical buckling
stress for girders made of the following materials:

(a) Structural steel ASTM A36,
(b) High-strength steel having 50-ksi yield point, and
(¢) Aluminum alloy 2014-T6.

¢
Plane of loads —

Y y

1

357

r

10~

Fig. 4.4b.
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The following are readily calculated:
I, = 10055 in.*
I, = 956 in.*
S, = 543.5in.?
By Eq. 4.5,
2, 2
J = 20.5)%(36) = 2870 in.*

= 9.5/T + 36/05

Then, by Eq. 4.7, the maximum bending stress in the box girder at the
lateral-buckling load will be approximated by the compressive strength of
a centrally loaded column with a slenderness ratio of

KL _ [G.I)600)(543.5) _
(r )eqm */ V/(2870)(956) 37

Now, from Table 2.3, the maximum (i.e., extreme-fiber) bending stresses
at which the girders of the three materials will buckle laterally are found as
follows:

Material Lateral-Torsional Buckling
Stress (ksi)
Structural steel ASTM A36 349
High-strength steel 50-ksi
yield point 479
Aluminum alloy 2014-T6 49.5

The simplicity and the generality of this procedure are self-evident.
The example demonstrates that the strength of a laterally unsupported box
beam is not usually governed by lateral buckling, but by either local
buckling or the yield stress of the material, the latter of which is closely
approached in each of the foregoing cases. Local buckling should be
studied as a separate problem.

In the design of box girders, there is little need to tabulate various
effective lengths as determined by end restraint and loading conditions,
since stress reduction below the full allowable values in bending is hardly
ever needed.

4.3 Doubly Symmetric I-Shaped Beams and Girders—Introduction

I-shaped or wide-flange sections are designated as “open” in contrast
to the “closed” box-girder section. The torsional rigidity and strength of
an open section is but a small fraction of that of a box beam made of the
same amount of metal. Thus, the open section is peculiarly susceptible to
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lateral buckling. Nevertheless, the wide-flange beam is one of the most-
used members in bridge and building construction because of its economy
and availability, its ease of framing and fabrication, its high bending and
shear strength in the plane of the web, and the fact that it is usually not
inconvenient to support the compression flange laterally. The plate girder
also finds wide use, although built-up box girders are often used for long
laterally unsupported members under lateral and/or torsional load
conditions, such as crane girders.

In the case of rolled beams of long span, Eq. 4.3 (divided by an appropri-
ate safety factor) could be used as the basis for a design formula. However,
as the spans get shorter and the beams deeper, the resulting design would
become increasingly conservative since there is an added resistance to
twisting provided by the lateral bending rigidity of the flanges. An under-
standing of this added resistance requires a study of nonuniform* torsion.
In uniformt torsion, which occurs when equal and opposite torsional
couples act at the unrestrained ends of a prismatic open-section member,
there is warping or tilting of all cross-section rectangular elements whose
center lines do not pass through the center of twist. In the case of the wide-
flange shape under uniform torsion, the center of twist and the centroidal
axis are coincident, and the flanges warp freely. In nonuniform torsion
(which occurs, for example, when a wide-flange beam buckles laterally),
the warping of the flanges is partially restrained and longitudinal stresses
arise. Bending moments and shears are thus developed in the flanges,
adding appreciably to the torsional resistance.

In the following sections, three different methods of lateral-buckling
strength calculation are described. Each of these, within appropriate
limits, can be used as a basis for specification design formulas by
introduction of the desired factor-of-safety. The three methods are as
follows: '

Method A, the “basic” design procedure (Sec. 4.4). This requires the
use of torsion constants, but gives the most accurate design and greatest
economy over a wide range of member proportions. The formulas are
more complex than those required in methods B and C.

Method B, the single-formula simplified design procedure (Sec. 4.5).
This is less accurate than Method A, but does not require the use of torsion
constants.

Method C, the double-formula simplified design procedure (Sec. 4.6).
This is less accurate than either Method A or Method B. The lateral-

* See Ref. A9, pages 251-258.

t Commonly termed “St. Venant torsion,” St. Venant having been first to develop °

the general theory.
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buckling strength is the maximum value obtained from two different
formulas. One of these is written in terms of L/r, and the other is expressed

in terms of Ld/A,. This double-formula approach has been adopted in the
AISC Specification (A13).

4.4 Method A: The Basic Procedure for Doubly Symmetric I-Shaped
Beams and Plate Girders

Equation 4.8 closely approximates the elastic buckling stress for I-beams
and wide-flange sections, or doubly symmetric plate girders, when such
members are loaded by end couples in the plane of the web, or by trans-
verse loads applied at the centroidal axis in the plane of the web. The
fundamental relationship can be expressed in terms of the critical moment
M, previously determined by Eq. 4.1 for the rectangle, and the Euler
column load, P,,, for buckling in the weak direction, as follows:

C | h?
Oc = Tg—; M2 + 1 P,? 4.8)

M, = KLL V' JGEI,

where

_ w2E],
Fo = &y

and C; is a coefficient that depends on load distribution and on end
conditions, and K is the effective-length factor for column buckling in the
weak plane of bending. Alternate forms of Eq. 4.8 are given by Egs. 4.9a,
4.9b, and 4.9c (which give identical numerical results): '

G WVEIyGJJl + m2q?

[« ) = Sx ( KL) ( KL)z (4. 9a)
_ Cw VELGT J mCE

% = R, 1+ TERLY (4.9b)
_ CymELh J (KLD)%JG

6, = ISAKLY: KL)? 1 + CE (4.9¢)

In Eqs..4.9b and 4.9¢, C, is the torsional warping constant, which can
be determined for any shape,* while q in Eq. 4.9a is an alternative version

applicable only to the I-shaped section and equal to (#/2)V ELJJG. C, for
an I-shaped section has the value mL/4. C, is listed for aluminum

* See p. 120 of Ref. A1 where Cy is listed as T for various shapes.
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structural shapes in Ref. A19 where it is denoted as C,; while a is given for
rolled wide-flange and I-shapes in Ref. 4.25.

The torsion constant J can be approximated as >(bt3/3) for all shapes
made up of rectangular components. Accurate formulas for J for com-
monly rolled shapes are given in Ref. 4.24. Values of J are listed for
rolled steel wide-flange and I-shapes in Ref. 4.25 as K; and are listed for
aluminum alloy shapes in Ref. A19.

In Egs. 4.9a and 4.9b, the value of the radical approaches unity in the
case of very shallow and/or stocky beams and girders and the St. Venant
torsional resistance is dominant; whereas, for deep and/or thin-walled
girders, the radical in Eq. 4.9c approaches unity and the resistance of the
compression flange to buckling largely governs.

In Eqgs. 4.9 it is assumed that load is applied along the beam centroidal
axis. If load is placed on the top flange of the beam there is a tipping
effect which reduces the critical load; and conversely, if load is suspended
from the bottom flange there is a stabilizing effect which increases the
critical load. The applicable equations are:

Bottom- )
flange o,

load
Cl‘l'f\/EI GJ 2a2 C21ra
L T S.KD) [A/l (KL)? G2+ 1)+ KL] (4.10a)

Top-
flange o,
load )

or

3\

Bottom-
flange o,
load L

Cym EIh[ Jl L op s KD 2] (4.10b)

Top- 2S,(KL)? 2 T

flange o,
load )

For more convenient application, Egs. 4.10 can be written in the
following form:

5 7 Tk
o, = G4 VIJVEG ‘/ngL VEG @.11)
_ E 18,000 for E = 29,000 ksi
*VEG = i 6500 for E = 10,600 ksi
Rl 6100 for E = 10,000 ksi
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where the constant C, is given by

C’““] 4.12)

21+ Gy iy + 0 =

In Egs. 4.10 and 4.12, the minus sign in the bracketed term is used for
load on the top flange, and the plus sign for load on the bottom flange.
For load at the centroid, or for end-moment loading, C, = 0.

Values of coefficients C, and C, for Eqs. 4.8, 4.9, 4.10, 4.12, and 4.25 for
certain loading conditions are given in Fig. 4.5, which is based on informa-
tion reported by Clark and Hill (4.6). Values of C, in Eq. 4.12 for a variety
of loading conditions are charted in Fig. 4.6, which is based on Eq. 4.13
and on data taken from Fig. 4.5. C, and C, depend on load distribution,
end restraint, and on the tipping or stabilizing effect due to the position of
the load vertically with respect to the centroidal axis. Winter (4.5) developed
expressions for the critical load as a more general function of vertical
position.

When no transverse loads are carried between lateral braces, as in Fig.

Loadi )

Case end rTs‘tr:'i:’P Bending-moment End restraint® '
about x axis diagram aoutyaxis | X | € |G
P’ w

Wi None 10 | 113 | o4s
8 ; W Full 05 | 097 | 029
/@, 21 b d_iwe None 10 | 130 | 155

. =W Ful 05 | 086 | o&2

I P, | & None 10 | 135 | 055

. 1 Ful 05 | 107 | o042

i
a” iP g 2 L None 10 | 170 | 142
x T I Ful 05 | 104 | 084
2 PL
N LF Tf W None 10 | 104 | 042
4 2 4

©

®@ |66 |6

y
® '%LE%Z MII]]]]H]IHH]]IH]]]]]] None 10| 10| o

* All beams are restrained at each end against rotation about the z axis and displacement
in the x and y directions.

¥ C2=0 when load is applied at beam centroidal axis. For load applied at top or bottom
flange, use appropriate signs in Eqs. 4.10 and 4.12.

Fig. 4.5. Values of coefficients in Eqs. 4.8, 4.9, 4.10, 4.12, and 4.25.
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Fig. 4.6. Values of coefficient C, (see Eq. 4.12).
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M( ‘>m

Fig. 4.7. Beam or beam segment with no loads between points of lateral bracing.

\4 \4

4.7, C; =0 and C, is given conservatively by the following equation,
presented by Salvadori (4.27):

C, = L.75 — 1.05« + 0.3«? (4.13)

where « is the algebraic ratio of the smaller to the larger end moment.
C, isin no case to be taken as greater than 2.3. (C; = 2.3 when « < —0.46.)
Cases of special interest are as follows:

Moment K C,;
Uniform moment 1 1.0
Moment zero at right end 0 1.75

End moments inducing reverse curvature —0.46 to —1 2.3

End restraint about the y-y axis is not usually present in practice. It
cannot be assumed present in a continuous beam where alternate unbraced
spans could buckle in opposite lateral directions. K of 0.5 is a limiting
idealization which may be of use as a basis for determination of values of
C, and C; for values of K between 0.5 and 1.0. .

In the case of the simple cantilever beam having complete fixity about
both axes at the supported end, K = 1 and C; can be taken conservatively
as 1.3 for a concentrated end load, and as 2.05 for a uniform loading.

If the buckling stress, calculated from Eqs. 4.8, 4.9, 4.10, or 4.11, is
greater than the proportional limit (which is assumed to be ¢,/2 in the
case of steel), the inelastic buckling stress should be found from Table 2.3
on the basis of the equivalent column KL/r determined by substituting
the calculated buckling stress into Eq. 4.6 as o, (see Fig. 4.2 for validation
of this procedure).

In plate girders, the torsion constant J may be computed as 3(bt%/3)
for all rectangular component parts. In this summation, the total thickness
T of multiple-plate sections may be used between bounding weld or
fastener lines, but the thickness ¢ of the individual plates must be used for
portions outside such lines. This procedure was originally suggested by
de Vries (4.11) and has been validated by Chang and Johnston (4.28).
However, if the rivet or bolt pitch exceeds the distance required to provide
clamped “integral” action, the component plates will tend to twist
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individually between fastener lines and the “integral” torsion constant
(designated as J;) must be multiplied by a reduction factor to obtain the
“effective” torsion constant J.

The critical fastener pitch p’ is approximately

pP=A+T 4.14)

where A is the diameter of the rivet or bolt head and T the total thickness
of the several plates that are riveted or bolted together. If the actual
pitch p is greater than p’, the effective torsion constant J can be found as
follows:

1= [t o) (4.150)
where  J; = integral torsion constant
and = (’%)(1 - }V—ﬁ) " (@4.15b)

where b = width of flange

N = number of component plate thicknesses in flange
(including flange angles)

Eqgs. 4.15 are simplifications of formulas given in Ref. 4.28, and are not to
be considered as precise relationships, but rather as empirical formulas
that approximate a highly complex condition. In any event, great accuracy
in calculation of the torsion constant is not important, since the buckling
of deep plate girders with intermittent lateral support is governed primarily
by EI, rather than JG. (See Example 4.3.)

Two examples will demonstrate the basic procedure for determining
the lateral buckling strength for wide-flange rolled shapes and for built-up
plate girders.

Example 4.2

A 30W-108 simply supported steel beam of ASTM A36 material carries
a uniform load on the top flange and is laterally unsupported throughout
its span of 22 feet. The end connections are riveted web angles which do
not effectively restrict rotation about the beam cross-section axes. The
clearance between the column faces and the beam ends is sufficient to
permit beam-end warping. Find the permissible bending stress in the beam.
From Ref. 4.25, torsion constants for a 30W-108 are found as:

J=535in.*
= 117.7 in.
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Hence

SR
I

[

+H
[
e
£
W

From the AISC Manual,

e = 299.2in.2
From Fig. 4.5, for Case 1,
K =10
C, =1.13
C;, =045

By Eq. 4.12 (or from Fig. 4.6), C, can be found:

Cy = 1.13W[J 1 + (0.4457)%(1 + 0.45%) — (0.45)71(0.445)] = 4.26
Then, by Eq. 4.11,

_ (4.26)(18000) V/(135.1)(5.35)
%e = (299.2)22)(12)

Since 26.1 ksi is above the assumed maximum elastic buckling stress of
0,/2, the equivalent column KL/r for this condition is determined by Eq.
4.6 (or from Table 2.2):
(E_l_,) - 29000
r Jequv 26.1
and, referring to Table 2.3 for KL/r = 104.7, the column inelastic
buckling stress is found to be 23.6 ksi. This stress should then be divided

by the factor-of-safety appropriate to the pertinent specification, giving
the allowable bending stress in the beam.

= 26.1 ksi

= 104.7

Example 4.3

The riveted plate girder of A36 steel shown in Fig. 4.8 has elastic
constants listed below, and spans 75 ft, carrying equal concentrated
vertical loads at the one-third points. Lateral and torsional bracing is
provided at the one-third points. The middle one-third of the girder is
under pure bending moment. Assuming (conservatively) that no bending
constraints are introduced at the one-third points, determine the critical

stress.
I, = 282,600 in.*

I, = 2102in.*
S, = 5514in.®
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Fig. 4.8. Section of riveted or bolted plate girder.

J,=Zé;—3

Sections 1

Horizontal flange portion between
outer gage lines 2)(12.5)2)°*(}) = 66.7

Sections 2

Horizontal flange portion outside of
outer gage lines @3.75(1)3R3F) = 5.0

Sections 3

Vertical portion of flange angles and

web between gage lines of angles Q)(5)2.533F) = 521
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Sections 4
Extremities of angles @@ (1)@

Sections 5
Web between outer gage lines of angles  (88.5)(3)%(3) 3.7

Integral torsional constant J, = 132.8 in.*

5.3

The rivet pitch in the central one-third of the girder is assumed to be
12 in. The critical pitch for full integral action (Eq. 4.14) is

. pP=1+2=3in
and from Eq. 4.15b,

9 1.2
c_-1—6(1 "T) ~0.39

Solving Eq. 4.15a,

o 1-039 \, PYOR
J= (T—(T%(O-Z?)) J; = 0.68(132.8) = 90.3 in.

The torsion bending constant is

_h [EI, 915 [2.6 x 2102

9=3NGI =2 N o3 - 8in
For the unbraced center girder segment of 25 ft,
a 378
Iy - %

Since the girder in the length under consideration carries uniform moment,
C,; = 1 and C; = 0. Then, from Eq. 4.12,

C, = n[V1 + n%(1.26)%] = 12.87
and by Eq. 4.11, the critical bending stress is found:

_ (12.87)(18,000) V/(2102)(90.3)
% = (5514)(300)

Since this value exceeds the assumed proportional limit of o,/2 = 18.0 ksi,
it is evident that buckling will occur in the inelastic range rather than in
the elastic range. Therefore, by Eq. 4.6, the buckling stress for the girder
will be equivalent to that of a column having a slenderness ratio of

KL\ _  [25000 _
(—r—)equlv -7 61.1 = 684

* If the integral torsion constant J; = 132.8 had been used in the computation, a
critical stress of 61.8 ksi would have resulted. This illustrates the fact that in the case
of intermittently supported deep girders, the contribution of the torsion constaht J to
the lateral-buckling strength is negligible.

= 61.1 ksi*
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and from Table 2.3, for ASTM A36 steel, the buckling stress is found as
o, = 30.7 ksi

By way of comparison, the AREA Specification (A7) allows

F = 20,000 — 6 F"’ = 20,000 — 6(15.0)2 = 18,650 psi
giving, in this particular instance, a factor-of-safety of 1.65. Of course,
no general conclusions should be drawn from this single comparison, as
the factor-of-safety using the L/b formula will vary considerably as the
span, loading condition, and girder cross section vary.

4.5 Method B: The Single-Formula Simplified Procedure for Doubly
Symmetric I-Shaped Beams and Plate Girders

Rolled I-shaped sections that are used as laterally unsupported beams
usually have a depth of about twice the flange width and a web thickness
of about two-thirds the flange thickness. Using these as typical proportions,
the following approximate formulas for section properties result:

2A4r,2

S, = 7 A = area of cross section
I, = Ar? L = distance between lateral sup-
ports
J = 0.274¢2 r, = radius of gyration about web
axis
h = 0.95d d = beam depth
_h [EI,  147dr, _ .
a=5J36~ t = flange thickness
2 = di -
C, = h? I, = 0.2264r,2d? h = dls’fance between flange cen
4 troids

If the condition of pure bending is assumed with no warping restraint
at the ends of the beam (C, = K = 1 per Eq. 4.13), the following simplified
formulas are obtained upon substitution of the above parameters into
Egs. 4.9a and 4.9c:

3.06 ?
5 = Ld/rf J1+2148 (%’))2 (4.162)
_ 142E @’
R J 1+ 0.0466 LR e (4.16b)

In each of these equations it can be seen that two parameters, L/r,
and djt, govern the result.
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Fig. 4.9. Curves of C,/(C, for pure bending) versus a/L. The curves are numbered
the same as those in Fig. 4.6.

If either Eq. 4.16a or 4.16b were used in a specification, other load and
restraint conditions could be evaluated by means of a multiplier that
would be a function of a/L. Such correction factors have been plotted in
Fig. 4.9, based on the plotted data of Fig. 4.6.

Eqgs. 4.16a and 4.16b give o, = 30.7 ksi for the beam of Example 4.2
under pure bending moment. From Fig. 4.9, with

a 147 x 29.82 x 2.06

L= o070 x4 - °0%
a correction factor of 0.78 is obtained for the case of uniform load on the
top flange with beam ends not restrained about the vertical axis (Curve
1A), giving an elastic buckling stress of 0.77 x 30.7 = 23.9 ksi, as
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compared with 26.1 ksi from the more exact procedure of Example 4.2.
Proceeding as before, the equivalent column KL/r for o,, = 23.9 is found
from Eq. 4.6 to be 109.4, giving an inelastic buckling strength of 22.5 ksi
by Table 2.3. This value corresponds closely to the value of 23.6 ksi
determined in Example 4.2.

4.6 Method C: The Double-Formula Simplified Procedure for Doubly
Symmetric I-Shaped Beams and Plate Girders

In the case of shallow and/or thick-walled beams, the radical of Eq.
4.16a can conservatively be taken as equal to unity, giving the following
approximate formula* for the case of pure bending:

_ 3.06E

% = Ldjr.t

Similarly, from Eq. 4.16b, in the case of deep and/or thin-walled beams,
a satisfactory approximation for the case of pure bending is

14.2F

(4.17a)

g, = m (4.17b)
These two equations give identical results when

L_464?

r, t

Since either equation gives a conservative estimate for the special case of
uniform bending momentand simple end supports (see Case 6, Fig. 4.5),
the larger value of o, should be chosen. Under this premise, it is evident
that the following rule will apply:

4.17a (greater
Use Eq. . g
se Eq { 41 7b} when Ljr, is { less } than 4.64(d|t)

For example, for the beam of Example 4.2,

L_(2x12)
R 206 1282

whereas 4.64(d/t) = 4.64 x 29.82/0.760 = 182.1. Thus, 128.2 < 182.1 and
by the previous rule, Eq. 4.17b is indicated, giving o, = 25.1 ksi for the
case of pure bending. (Eq. 4.17a would give a spurious value o, = 17.7
ksi.) This value can be converted to that for uniform top-flange loading
by multiplying by the factor 0.78, obtained from curve 1A of Fig. 4.9
where a/L = 0.45, giving a value of 19.6 ksi for the elastic buckling
strength. This corresponds to an inelastic buckling strength of 19.5 ksi as

* A similar approach, in terms of b instead of ry, is the basis for Formula 5 of
Ref. A13.
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obtained from Table 2.3 for an equivalent column KL/r = 121; and 19.5
ksi is conservative in comparison with the “exact” value of 23.6 ksi
obtained in Example 4.2.

In the case of application to light-gage steel members, as covered by the
AISI Specification (All), Eq. 4.17a is not needed and the following
equation is applicable to sections having strong-axis symmetry:

o — 2.29Ed?
© (L),
For most light-gage I shapes, r, = 0.384, in which case Eq. 4.18 reduces
to the following equation similar to Eq. 4.17b:
o = 16E
)

The allowable-stress formula for I-shaped sections by the AISI
Specification (A11) is:

(4.18)

4.19)

280,000,000 , .

which embodies a factor-of-safety of 1.66 with respect to Eq. 4.19 with
E = 29,000,000 psi. These specifications also require use of a transition
stress curve in the inelastic range, as follows:

Fo= 5 Ff - [sor0t00m 1(&) @.21)
» =5 F¥ = | 557,000,000] |1, :

where F¥ is the basic allowable design stress. When Lj/r, is less than
10,050/F¥, F, = F¥.

The AISC Specification (A13) uses a double-formula procedure for
determining the allowable bending stress of an unbraced beam. This
specification stipulatest that the allowable compression F, on extreme
fibers of rolled shapes, plate girders, and built-up members having an axis
of symmetry in the plane of the web (other than box-type beams) shall be
the larger value computed by the following formulas, but not more than
0.600,:

L/r)?
F, = [1.0 - 2(052)01] 0.600, 4.22)
12,000,000

where L is the unbraced length of the compression flange in inches, r is
the radius-of-gyration about the web center line of a tee section com-
prising the compression flange plus the upper one-sixth of the web, A4, is

t See Ref. A13, Formulas (4) and (5).
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the area of the compression flange, C, is a moment-gradient factor given

by Eq. 4.13, and
C,=x /i—E (4.24)

v

The following stipulations are also made: (1) C, is to be taken as unity
when the bending moment at any point within the unbraced length L is
larger than that at both ends of this length; and (2) when L/r in Eq. 4.22
is less than 40, this equation need not be applied. This latter exemption
introduces a discontinuity in the allowable bending stress ranging from
2.0%; to 4.6 ; (depending on the value of C,) for steel having a yield point
of 36 ksi. The discontinuity is larger for steels of higher strength.

4.7 Summary with Respect to Design Formulas for Doubly Symmetric
I-Shaped Beams and Plate Girders

1. Equation 4.11 provides an accurate basis for analysis and can be
used conveniently if the constants C,, J, and a (or C,) are available.

2. When torsion constants J and a are not readily available, the buckling
stress for beams in pure bending can be approximated by using either Eq.
4.16a or Eq. 4.16b. For load conditions other than pure bending, the cor-
rection factors plotted in Fig. 4.9 can be used.

3. If equations simpler than Egs. 4.16a and 4.16b are desired, the
greater result obtained from Eqgs. 4.17a and 4.17b can be used.

4. For doubly-symmetric girders having shapes or proportions sub-
stantially different than those of rolled beams, Eq. 4.8 or Eq. 4.11 is
recommended.

5. If the buckling stress is greater than 50 % of the specified yield stress
in the case of steel, or greater than about 609 of the specified yield stress
in the case of aluminum alloy, an equivalent column slenderness ratio
should be determined by Eq. 4.6, or by reference to Tablez§.2, and the
inelastic buckling stress is then found from the appropriate basic column
strength values of Table 2.3. Alternatively, the equivalent slenderness ratio
can be used in column design formulas to determine the allowable stress
directly.

4.8 Girders Symmetrical about the y—y Axis but Unsymmetrical about
the x~x Axis

This type of girder is sometimes required in situations where lateral loads
are applied to one of the flanges. Such a flange is therefore made stronger
with respect to lateral loads than the other flange.

Egs. 4.8 and 4.10 are special cases of a more general equation which, as
Clark (4.6) has shown, gives accurate solutions for either doubly or singly
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symmetric girders under a wide variety of load and end restraint con-
ditions:

. =, ny ~  Cul. . GIRLP
o = C g [Cot + Coi+ | (Cag + Cupp + e (1 + FEL)]
(4.25)

The following parameters in or related to Eq. 4.25 have not been defined
heretofore:

S, = section modulus for compression,
j=e+ o f YOR + %) dA, (4.26)
2Ix A

g = distance from the shear center of the girder to the point of
application of transverse load (positive when the load is below the
shear center, otherwise negative),

C3 = coefficient dependent on girder loading and end restraint, but
pertinent only for girders unsymmetrical about the x—x axis since
J is zero for those symmetrical about this axis.

e = distance from centroid of girder cross section to the shear center
(positive if the shear center lies between the centroid and com-
pression flange, otherwise negative).
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Fig. 4.10 (see legend on next page).
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Fig. 4.10. Parameters pertinent to Eq. 4.24 for lateral buckling of singly symmetric
I-shaped sections.

C, and C; are coefficients for various load and end restraint conditions,
and have been given in Fig. 4.6. Figure 4.10 shows notation and formulas
for the various girder section properties required in connection with
Eq. 4.25.

For the case of uniform bending moment, g = 0 and C; and Cj are
equal to unity (4.6). If j is assumed to be equal to e, as an approximation,
Eq. 4.25 becomes the same as a solution by Hill (4.10), as follows:

o, = c:[g)z [e + J e + %" (1 + %Kg)] (4.29)

Eq. 4.29 has been checked against Eq. 4.25, the exact solution for girders
having a wide range of proportions, and is found to give conservative
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values for the buckling stress when the compression flange is larger than
the tension flange, but too-high values when the reverse is true.

For the tee shape the shear center is at the intersection of the middle
planes of the flange and web. Thus C, = 0, and for the case of pure
bending with the flange in compression, with K and C; both equal to
unity and C, = 0, Eq. 4.25 yields

m2EI GJL?
o = Schf [1 + Jl + agar (4.30)

For the tee section, the expression for j (Eq. 4.26) is also simplified,
since A, = e and A, and I, are zero. The result is

4 2
—h+ % [”’ 2 -k (10 + A+ "4—’"’)] 4.31)

Winter (4.5) has also derived a simplified equation for the unsymmetrical
I-section in pure bending. His solution gives values of o, that are too high
when the compression flange is larger than the tension flange, but in good
agreement when the tension flange has the greater area. Winter’s solution
can be obtained from Eq. 4.25 by replacing the quantity j by the expression
h(I, — L)[21,, to give:

_ a°Ed [ 4GJ(KL)
% = 2S(KL)? [l° kA LU+ e ] (4.32)

Since the “exact” solution is bracketed by the approximate solutions of
Hill and Winter, a better result than either of these two, quite close to the
exact, can be obtained by averaging the two:

O =

mELd [e L J 2e _ 4GI(KL
SSRD [- +Jl+m+ dZEI] (4.33)

For the special case of the rectangular-shaped flange, with the area of
the compression flange greater than that of the tension flange (as is usual
in this type of design problem), an equation of the following type has been
found to give good (and generally conservative) agreement with the exact
solution:

5.75E
% = Wiy [os

In this equation, r,. and ¢, refer to the compression flange. It may be noted
that the parameters of this equation are similar to those of Eqgs. 4.16 for
doubly symmetric sections.

(Lfry)?
075 + {30 t)z] . > 4)  (439)
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In Eq. 4.34, o, is independent of the amount of tension-flange area.
Nevertheless, over the extreme range of sections that has been used as a
basis for comparison of various formulas by Clark and Hill (4.6), Eq. 4.34
gives results generally as good as, or better than, the more complex
approximate formulas.

A paper by Nylander (4.16) may be referred to for additional material on
unsymmetrical sections.

4.9 Doubly Symmetric Girders with Variable Flange Area

A single-web plate girder with variable cross section will usually have
lateral support that is not continuous, and the lateral-buckling design
check must refer to a segment in which the cross section can be assumed
constant. However, during construction and prior to erection of lateral
bracing, or in some other situation wherein no lateral support is provided,
a lateral-buckling design check may be needed for the girder as a whole.
This can be obtained by using the following approximate equation:

Cow = T J L mn (4.35)

max :
where o, is the critical stress for a girder of variable cross section and o,
is that for a girder having a constant I equal to I,,,, found either by the
basic Eq. 4.11 or by simplified Eqs. 4.16. Eq. 4.35 is an empirical simplifica-
tion of the results of preliminary studies by Austin in which an idealized
loading was assumed of a type that would produce, at every cross section,
the same maximum fiber stresses in the flanges. The proposed approximate
design equation is simpler and more conservative than similar proposals
made in Great Britain (4.26).

4.10 Channels and Special Shapes

If a laterally unsupported channel section is both loaded and supported
by vertical forces that pass through the centroid of the channel, it will twist
as well as bend, except for the special case wherein the loads act normal
to the plane of the web, causing bending in the weakest direction. For
loadings other than the special case, the channel is subjected to combined
bending and torsion.

If, however, such a channel is loaded and supported by forces that pass
through the shear center, it will bend without twisting. If, further, the
loads are parallel to the plane of the web, bending will be in this plane and
lateral-torsional buckling may be a problem if lateral support is absent.

It is usually not practicable to place uniform loading on a channel in
such a way that it acts through the shear center, without at the same time
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providing continuous lateral as well as rotational support and thus
eliminating the buckling problem. However, if an otherwise laterally
unsupported channel has concentrated loads brought in by other members
than frame into it, such loads can be considered as being applied at the
shear center, provided that the span of the framing member is measured from
the channel shear center and the framing connections are designed for the
moment and shear at the connection. The end connections of the channel
must provide effective support at the shear center.

Referring to Fig. 4.11, the distance from the middle plane of the channel
web to the shear center is

ch?
e = a3 (4.36)
The warping and torsion constants are, respectively,
I cle — o)
Co= "t [1 - = (437)
J =z 3(2bt2 + ht,®) (4.38)

Hill (4.9) has shown that the use of critical-stress formulas derived for
an I-shaped section will give results for a channel that err by no more
than 6 ;. However, the error is on the unsafe side.
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It is recommended that Eq. 4.3 be used as a simple procedure for
determining the allowable bending stress for the unsupported region
between loads for a rolled channel section used as a beam loaded through
fairly rigid connections that eliminate torsion, as just described. This
equation neglects the stabilizing effect of warping rigidity, and is thus not
applicable to thin-walled sections where this effect is of primary importance.

Alternatively, if a more precise determination is desired, Eq. 4.8b, which
includes the effect of warping constraint, can be used. Modifications for
load, end restraint, and inelastic behavior can then be made as outlined
for I-shaped beams (see Sec. 4.4).

In the case of the Z section, if concentrated loads are brought in by
framed members which prevent lateral deflection, and which are designed
to resist the forces resulting from the tendency toward transverse deflection,
the permissible stress with respect to lateral buckling can also be computed
using Eq. 4.3. In this case, the minimum principal moment-of-inertia
should be used in place of I,, since lateral buckling always tends to occur
about the weakest bending axis. The torsion constant J is identical with
the value for a channel as given by Eq. 4.35.

Design information for buckling of compression flanges of many light-
gage special sections is presented in the AISI Design Manual, Light Gage
Cold-Formed Steel (see Refs. A1l and A12). This information is based on
research by R. T. Douty (4.21).

4.11 Types of Lateral Support

Continuous lateral support is the type supplied by a positively attached
continuous floor, roof, or similar system. Embedment of the top flange
will also provide such continuous lateral support.

Winter’s studies (4.30) provide simple methods for determining
minimum requirements for lateral support, continuous or intermittent,
both for columns and for beams.

If the compression flange of a beam or girder is supported at inter-
mediate points by special lateral braces or framed beams, the unsupported
length should be taken as the distance between such points, and this
length should be used in the determination of the permissible bending
stress. Both the strength and the rigidity of lateral braces must be adequate.
Lateral braces permit higher allowable design stresses in a beam because
they induce higher modes of buckling. Thus, a laterally braced beam
loaded to failure in buckling will usually develop node points in the
buckled configuration at the lateral support points. For a perfectly
straight and ideally loaded beam, the design requirement for a lateral brace
is rigidity, not strength, as no calculable stress is induced in the brace. If,
however, either initial curvature or misalignment of loading is assumed in
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a beam, then a calculable force is induced in the lateral brace and a larger
rigidity of the brace is required than for the perfectly straight and ideally
loaded beam.

On the basis of a study of a number of hypothetical initial-curvature
and load-misalignment conditions, Zuk (4.29) confirms the customary
practice of designing each lateral support for 2%, of the total compressive
force that exists concurrently in the compression flange of the laterally
braced beam or girder. He also believes that braces designed for such
forces will necessarily have sufficient rigidity to prevent the beam or girder
from buckling in a lower mode. Recent studies by Lay (4.22) have
demonstrated the correctness of this rule as extended to plastic design.

4.12 Effect of Concrete Encasement

If a laterally unsupported, doubly symmetric I-shaped beam is encased
within a rectangular section of minimum-strength concrete (as might be
done for fireproofing) that is properly held in place by mesh reinforce-
ment, the beam resistance to lateral buckling will usually be increased
sufficiently to allow design to the working stress that is permitted for full
lateral support.

For example, consider a 24179.9 beam 500 in. long that is encased in
a 26 x 9in. cross section of concrete. Assume that the concrete has
a compressive strength of only 1000 psi, and a modulus of elasticity of
one-thirtieth that of steel. If the beam were unencased, the critical
stress by Eq. 4.17 would be 10.1 ksi, corresponding to a critical bending
moment of 1756 kip-in. The critical moment for a 26 x 9 in. rectangular
plain-concrete beam of the same length is 6.0 times this value even for the
minimum-strength concrete assumed. Thus, it is safe to state that any
concrete-encased steel beam can be expected to reach its yield stress prior to
lateral buckling. (The concrete should, as noted, be held in place with
mesh reinforcement.)
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Chapter Five

Plate Girders

5.1 Introduction

This chapter deals with the buckling and ultimate strength of plate girders,
as influenced by the behavior of the principal component parts, i.e., the
web, the flanges, and the stiffeners. The design of these parts for girder
loadings both below and above the buckling load of the web will be
considered. Post-buckling concepts have already (1966) been introduced
into specifications for design of girders for buildings (including light-gage
metal structures), but not yet into specifications for design of highway
girders, railway girders, or mill-building girders subjected to fatigue
loading,.

The buckling strength of a plate-girder web that has regularly spaced
transverse stiffeners is augmented by its capacity for truss-like behavior.
The action of such a girder web loaded beyond its buckling strength can
be compared with that of the web members of the early form of bridge
truss shown in Fig. 5.1. The double diagonals in each panel of this truss
are designed only for tension, and the vertical web members carry only
compression, so that under a uniform load those diagonals shown as
dashed lines would be in compression and their contribution to the shear
resistance of the web would be neglected (although each would, in fact,
contribute its small buckling load). Thus, for a plate girder having an
adequately stiffened web, the shear resistance between any two transverse
stiffeners will be the sum of (1) the shear buckling strength of the web and
(2) the vertical component of the web yield strength in direct diagonal
tension. This latter is sometimes termed “tension-field” strength.

That the classical buckling theory underestimates the carrying capacity
of plate girders has been recognized for a long time, and it is for this
reason that many specifications employ a low safety factor with respect
to web buckling for plate girders. The evaluation of the ultimate carrying
capacity of plate girders has been studied by many investigators, some of
whom tried to overcome the shortcomings of the small-deflection buckling
theory by employing the large-deflection theory. When lateral deflections
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Fig. 5.1. Truss with tension diagonals.

of the web exceed its thickness, membrane stresses (which are neglected in
small-deflection theory) develop and produce a stable state of equilibrium
at loads above the buckling load. Large-deflection theory considers both
bending and membrane stresses in predicting the post-buckling behavior
of web plates, and has validity only when the web-panel framing can
support the induced reactions.

Because of the complexity of the large-deflection theory, only a few
cases have been solved. Solutions for a square plate and for an infinitely
long plate subjected to the action of shearing forces along the edges have
been obtained by Bergmann (5.26) and by Skaloud (5.27). This theory
has not been extended to the inelastic range. Since collapse of a web panel
is associated most often with the plastic stretching of the web and the
collapse of the framing (flanges and stiffeners), neither of the foregoing
theories is able to predict the actual load-carrying capacity of plate girders.

Extensive studies, both analytical and experimental, have been made by
Basler and Thiirlimann (5.28 through 5.40) to study the post-buckling
behavior of the web and the framing. This work led in 1961 to a more
realistic basis for the design of plate girders in building construction (A13).

For plate girder web design to be economical, stiffeners must be used.
Stiffeners may be transverse and/or longitudinal. Transverse stiffeners
increase the resistance of the web to shear buckling, but are not efficient
in increasing resistance to buckling in bending unless they are very closely
spaced. Longitudinal stiffeners placed in the compression zone of the web
effectively increase its resistance to buckling due to bending.

A combination of both transverse and longitudinal web stiffeners is
often used. Knowledge of stiffener behavior is not complete and further
investigations in this area are needed in order to determine the effect of
details, of initial imperfections, of loads in direct bearing on flanges, and
end support details for tension-field webs.

Girders with tubular flanges and with closed stiffeners possess a high
ultimate strength compared with conventional girders and are discussed
briefly in this chapter. AASHO, AREA, and AISC specifications are also
discussed, Finally, a brief discussion of possible further developments is
given. The long list of references by no means covers all of the available
material on plate girders.
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" 5.2 Web Buckling

The theoretical buckling loads of plates under a wide variety of idealized
conditions of loading and edge support have been determined. In the
small-deflection buckling theory, the following assumptions are made:

1. The thickness of the plate is small compared with its surface
dimensions,

2. The plate is perfectly plane prior to loading, and

3. The plate deflections are small in comparison with the plate thickness.

The following notations will be used throughout this chapter:
d = over-all depth of the girder,
d, = girder depth between flange centroids, and

h = clear depth of the girder web between supporting flange com-
ponents.

In a simply supported plate girder, the web can be considered as sub-
jected to pure shearing stresses close to the supports, to pure bending at
the center, and to combined shear and bending at intermediate locations.
Equations for the stress in a rectangular plate at the buckling load in pure
shear, in pure bending, and in combined shear and bending can be written
in the same form as Eq. 3.1 for the buckling strength of a plate under
uniform compression:

T, ks pure shear (5.1a)
w2E \/7_7 .

g, =<k, 20 = A2 pure bending (5.1b)

T¢y O k. combined shear and bending  (5.1¢)

In these equations k;, k,, and k. are buckling coefficients that depend
on the plate boundary support conditions and on the aspect ratio « = a/h,
where a is the plate length and 4 its width; and 4 = E,/E, where E, is the
tangent modulus of the material.

Figure 5.2 gives values of the buckling coefficient k, for plates subjected
to pure shear for three conditions of edge support. Source data for the
curves are as follows:

1. Plate simply supported on four edges. Solutions developed by
Timoshenko (5.1), Bergmann and Reissner (5.2), and Seydel (5.3) are
approximated by Eqgs. 5.2a and 5.2b:

k, = 4.00 + 5%“3;—" forae <1 (5.2a)
ks = 5.34 + t—-go fore > 1 (5.2b)
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Fig. 5.2. Buckling coefficients for plates in pure shear.

2. Plate clamped on four edges. In 1924, Southwell and Skan 5.9
obtained k, = 8.98 for the case of the infinitely long rectangular plate
with clamped edges. For the finite-length rectangular plate with clamped
edges, Moheit (5.5) obtained

5.6

k, = 8.98 + ) (5.3)
3. Plate clamped on two opposite edges and simply supported on the other

two edges. A solution for this problem has been given by Iguchi (5.6) for
the general case, and by Legget (5.7) for the case of the square plate.
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Figure 5.3 gives values of the buckling coefficient k, for plates
subjected to pure bending. The sources of the data are as follows:

1. Plate simply supported on four edges. Timoshenko (5.8) computed
the values of k, as plotted in the lower curve of Fig. 5.3. This curve
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Fig. 5.3. Buckling coefficients for plates in pure bending.
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consists of several branches, all of which are tangent to the minimum
value k, = 23.9 at integer multiples of « = %. It is a common practice to
use this minimum value of k, for plates with « > 0.67.

2. Plate simply supported on loaded edges and clamped on the other edges.
Nolke (5.9) obtained the results plotted in the upper curve of Fig. 5.3,
where the branches are tangent to the minimum value k, = 39.6 at integer
multiples of « = 0.47. For plates having « > 0.47, k, = 39.6 is a satis-
factory approximation.

The portion of the web plate close to the intermediate support of a
continuous plate girder or at the support of a cantilever section is subjected
to combined shearing and bending stresses. For a plate simply supported
on four sides, Timoshenko (5.10) obtained a reduced k. value as a function
of 7/z, for values of « = 0.5, 0.8, and 1.0, where = is the actual shear-
ing stress and 7, is given by Eq. S5.la. This problem was also solved
by Stein (5.11) and by Way (5.12), whose results for four values of «
are plotted in Fig. 5.4. Chwalla (5.13, 5.14) suggested the following
approximate interaction formula, which agrees well with the graphs of

Fig. 5.4:
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Fig. 5.4. Buckling coefficients for plates in combined bending and shear.
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where ¢ and = are the actual stresses, and o, and 7. are the buckling

stresses, for pure bending and pure shear respectively.

5.3 Plate-Girder Tests Compared with Buckling Theory

Many investigators have tried to check the small-deflection buckling
theory by means of tests. In 1907 Lilly (5.18), in the conclusion to his
experimental investigations, commented that it is very difficult to deter-
mine the buckling load experimentally. In reporting experiments with
aluminum alloy girders, Moore (5.19) stated that well-defined buckling
loads generally cannot be obtained experimentally and that the theoretical
load required to cause the web plate to buckle bore little relation to the
ultimate load-carrying capacity of the girder. Sparkes (5.20) showed that
plate girders can function as normal load-carrying structures at stresses
well beyond the lower critical shear stress obtained theoretically. Wastlund
and Bergmann (5.21, 5.22) came to similar conclusions and stated that the
ratio of the ultimate load to the theoretical buckling load increases as web
slenderness increases. Rockey (5.23) showed by tests that the buckling of
the web is not a sudden phenomenon which results in immediate failure
of the girder. In addition, Rockey stated that since buckling does not result
in any sudden marked change in the load-carrying characteristics of the
girder, there is no justification in employing a high factor-of-safety with
respect to the theoretical buckling loads when designing plate-girder webs.

Massonnet (5.24) also emphasized that there is no significant change in
behavior at critical load, and that it is difficult to determine the critical load
experimentally. Moreover, Massonnet stated that the failure by buckling
of a web panel surrounded by rigid framing is usually associated with the
plastic stretching of the web or with the failure of the framing, and further
that these phenomena occur only at a load considerably in excess of the
theoretical critical load.

From tests on riveted steel girders, Vasahelyi and others (5.25) concluded
that because of unavoidable initial curvature in the web, it starts to deflect
laterally as soon as it is loaded; and that the deflection does not become
disproportionately large even when the girder is loaded beyond its
theoretical elastic buckling load.

This limited discussion covers only part of the experimental research in
this area, but it is nonetheless extensive enough to indicate the following
important conclusions:

1. It is not possible to obtain precise experimental checks of small-
deflection buckling theory in plate-girder tests.

2. Small-deflection buckling theory furnishes a safe but often over-
conservative design. If the web is adequately supported, it will carry
stresses substantially exceeding theoretical buckling stresses.
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Allowable stresses based on girder reserve strength in the post-buckling
range may be high enough to require evaluation of the effects of repeated
load. Research is underway on this subject, with recent progress reported
by Corrado, Mueller, and Yen (5.41). More research is also needed
regarding the behavior of thin webs in unsymmetrical girders, such as

might be used when a floor system participates as part of the compression
flange.

5.4 Ultimate Strength in Bending

It has been shown (5.32, 5.37, 5.38) that when a plate girder is subjected
to bending and the web plate has buckled, the web burdens the compression
flange with that portion of the bending moment that it cannot resist. Thus,
the plate girder does not fail in bending until its compression flange fails.
The buckling of the compression flange can be classified into three modes:
(1) vertical buckling, (2) lateral buckling, and (3) torsional buckling (see
Fig. 5.5).

(1) Vertical Buckling. When a plate girder develops curvature of the
compression flange, transverse flange forces develop, which cause a uniform
compressive stress o, on the upper and the lower edges of the web (see
Fig. 5.6). A conservative estimate of the vertical buckling stress can be
obtained by Eq. 3.1, taking k conservatively as 1:

mE
= T2 = )
Thus, compression-flange failure in the vertical direction will occur if the
web-slenderness ratio A/t,, is high, and it is evident that this kind of failure
can be avoided by setting an appropriate upper limit for A4/t,,.

O, = 0O,

©)

Wzzzzrarg, L 7]

®

Fig. 5.5. Three modes of compression-flange buckling.
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Fig. 5.6. Web stresses induced by girder bending.

To prevent vertical web buckling when the flange has no appreciable
bending stiffness in the vertical direction, as is usually the case for welded
girders, it is necessary that the applied force be smaller than the resisting
force; i.e., from Fig. 5.6, assuming the girder depth as A,

m2E

2¢;
ofA, T dx < (m)twdx

from which, approximately, vertical web buckling will not occur if

h mE AN 1

i< A=) (32) ) 9
Since the ratio of web area to flange area is usually more than 0.5 for plate
girders, a conservative value of 0.5 for 4,/A4, can be assumed for establish-
ing an upper limit for A/t,. If every flange fiber reaches yield stress before
web failure, then o; = o, and ¢; & (o, + ogc)/E. Making these substitu-
tions in Eq. 5.6, and taking » = 0.3, the following web-slenderness
requirement for prevention of vertical web buckling is obtained:

h 0.48E
E < \/oy(oy + UBC)

(5.7)

where o, = yield stress

ope = maximum residual compressive stress

This critical web-slenderness ratio agrees fairly well with the test observa-
tions of structural carbon steel girders by Basler and Thiirlimann (5.37,
5.38). However, later studies indicate that the web ratio given by Eq. 5.7
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is probably ultraconservative for high-yield-strength, quenched-and-
tempered alloy-steel girders. In fact, research still in progress (1966) at
Lehigh University suggests that higher ratios may also be safe for structural
carbon steel. When the flange itself possesses vertical rigidity, such as in
the case of riveted girders with flange angles, Eq. 5.7 is conservative since
it does not take account of such rigidity. If camber is introduced, the
vertical stress may be neutralized, or even reversed, depending on the
amount of deflection, which introduces further conservatism into Eq. 5.7.
If external load is applied directly at a point where there are no transverse
stiffeners, the web must be further checked for local crippling and overall
failure, as will be discussed later.

(2) Lateral Buckling. This subject was discussed in detail in Chapter 4.
For deep beams, such as plate girders, the buckling resistance is furnished
mostly by the compression flange, and the lateral-buckling stress has been
shown by Basler (5.32) to be very near that of a column whose effective
cross section is composed of the compression flange and one-sixth of the
web:

_ w2E,
%= @y

A /i
where r= 1T 34,

and the flange moment-of-inertia I, is taken about the web axis. Eq. 5.8

(5.8)

“provides a conservative estimate of the bending stress at which a deep

beam will buckle laterally. The column strength curves proposed in
Chapter 2 can be used to determine the girder buckling stress in either the
elastic or the inelastic range. For deep beams of steel,

2 —_
%o % for0 < A < V3 (inelastic) (5.9a)
v
% _ 3}5 for A > V3 (clastic) (5.9b)
v

where

A 1Lyz _ L[S E A0
wr T I;

It should be noted that L is the unbraced length of the compression flange
and not necessarily the full length of the girder.

(3) Torsional Buckling. If all rotational flange restraint contributed by
the web is neglected, the girder torsional-buckling problem reduces to the
problem of buckling of a long flange plate hinged along its centerline and
subjected to edge compression at its ends. This problem has been specifically
considered in Chapter 3, wherein reference should be made to Eq. 3.1 and
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Case 4 of Fig. 3.2. In the inelastic range, if the transition curve for steel
proposed by Haaijer and Thiirlimann (5.17) is used, the torsional-buckling
strength curve for steel beams will be

? =1 —0.53(A — 0.45)% for 0.45 < A < V2 (inelastic)
v (5.10)
O¢

for A > V2 (elastic)

A= o _ b [12(1 — V),
o, 2t 0.42572

The girder compression flange should be made as wide as possible to
increase its lateral rigidity and consequently its lateral-buckling strength;
but if this is done to excess, the flange plate will fail in torsional buckling
prior to the onset of lateral buckling. In order to eliminate torsional
buckling as a primary cause of failure, the critical stress of the flange plate
given by Eq. 5.10 should exceed the critical lateral-buckling stress given by
Eq. 5.9. Thus, for steel,

1
Pt

gy

where

L > 0B b for by > 52

by " V1 + L (4,/4) ¥ t (5.11)
L. ——————40—————(00261ﬁ - 045)0'63 o5

by~ VI+ 3 A\ 1

These correlations between b,/t, and L/b, are plotted in Fig. 5.7. As in-
dicated in the figure, the condition

b, L

— < —_— .

:, 12 + 5, (5.12)
would exclude the possibility of primary failure in torsional buckling for
girder sections under uniform bending. Alternatively, a tubular or boxed-
flange section could be used to eliminate the possibility of torsional
buckling.

5.5 Ultimate Strength in Shear

The practical importance in design of the post buckling strength of the
beam web plate has been recognized for many years and was utilized
in aircraft wing design in the 1930s. Before web buckling occurs, the
shear stress is equivalent to equal tensile and compressive stresses
which act at 90° to each other and at 45° to the girder axis. After web
buckling, the compressive stress remains approximately constant because
of the inability of the web to carry additional compressive stress, while
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Fig. 5.7. Condition for torsional flange buckling.

the tensile stress increases as additional loads are applied. This results in
part of the shear load being carried by the normal shear action, and the
remainder by a truss-type action in which the web acts as the diagonal
tension members, the flanges act as chords, and the vertical stiffeners act
as compression posts.

Van der Neut (5.42) has reviewed the applications of post-buckling
theory in aircraft design. Wagner (5.43), in 1931, was the first to develop
the diagonal-tension theory. Wagner’s work was applicable to some early
aircraft aluminum alloy girders with extremely thin webs, where the web
buckled at a fraction of its ultimate load. However, for most practical
girder designs the web buckling load is far from being negligible, and
Wagner’s theory is too conservative. Kuhn and others (5.44, 5.45, 5.46),
working in aircraft design, developed the so-called *“incomplete diagonal-
tension theory.” In recent work at Lehigh University, Basler (5.33, 5.38)
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derived the ultimate shear strength of plate girders utilizing the combined
beam-action and diagonal-tension field theories. The ultimate web shear
strength V, is the sum of two parts designated as beam action V., and
tension-field action V,:

Vo=V, + V, (5.13)

The beam action can be increased up to a limiting value and remains
constant thereafter. This limiting value is determined by the critical shear
stress according to linear buckling theory:

V, = htr, (5.14)

If the flanges are simple rectangles (as in the case of welded girders) they
offer negligible resistance against vertical deflection and they will not
provide anchorage for the tension field. In such a case, the anchorage must
be provided by the vertical stiffeners and effective portions of the web.
Thus, from Fig. 5.8,

V, = oit,ssin ¢ (5.15)
If we express s as a function of a, h, and ¢, then for maximum V, (i.e.,
aV,lo¢ = 0), the tension-field angle ¢, is equal to one half the angle of
the panel diagonal with the horizontal. The tension-field angle ¢, will,
therefore, vary from a maximum approaching 45° for extremely close
stiffeners to a minimum of zero for unstiffened webs (no tension field). By
taking a free-body diagram of a portion of the web as indicated in Fig.
5.9, the increase AF, in the flange force can be found from the requirement
of equilibrium in the horizontal direction:

AF; = }o,at, sin 0 (5.16)

a
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Fig. 5.8. Plate-girder panel. (Aspect Ratio « = a/h)
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Taking moments around point O,
Vs = }a,at, sin 6 tan 0 5.17)

Finally, the requirement of equilibrium in the vertical direction yields the
stiffener force as

F, = }oh? g (1 = cos ) (5.18)
where
o = afh
B = ht,

6 = tan~! (h/a)
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The critical shear stress 7, and the tensile stress o, exist simultaneously in
the tension band of the web; hence, the magnitude of o, is limited by the
fact that unrestricted yielding of the tension band will occur when the
combination of o, and 7, becomes equivalent to the yield stress ir‘l simple
tension. Since yielding in this case will occur only for a state of stress
between the two extremes of simple tension and pure shear, the yield
criterion may be taken approximately as
2ty (5.19)
oy Ty
Substituting Eqs. 5.19 and 5.17 in Eq. 5.13, the ultimate shear strength is
given by

Vi = htyre + %«:,,(1 - }c)at,,, sin 6 tan 6 (5.20)
v

where « and B are as previously defined, and
sin 8 = 1/VT + o?

tan 8 = hja
V, = ht,r, = full plastic shear strength of the web
Ty = cr,,/\/g

Dividing Eq. 5.20 by the expression for ¥V, gives

5=2+Va ’ﬂ_L_
y V1 + o2

Vo 7 2
Note that the critical buckling stress 7, according to the small-deflection
theory is given by Eq. 5.1. Eq. 5.21 can be written in the form

oy [7c 1 — 77, ]
= | ey 5.22
1 R w rvier 62

The first term within the brackets represents beam action and the second
term is the contribution of tension-field action. As the numerator
(1 — 7,/7,) of the second term shows, tension-field action starts only
after beam action is fully developed. For stocky webs with 7./r, & 1,
beam-action shear can be carried to yielding, and therefore no tension-field
action will take place. In such cases, the second term is negligible.

(5.21)

Ty

5.6 Ultimate Strength in Combined Bending and Shear

The shear strength as determined in Sec. 5.5 makes no use of the flange
as an anchor for the tension field. Therefore, the ultimate shear strength
should not be reduced by the presence of a bending moment as long as the
flanges alone are able to carry this moment. Hence, it is only that small
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part of the bending moment which is assigned to the web that leads to an
interaction. The pertinent moments are as follows:

Flange moment: M; = o,dA; (5.23a)
Yield moment: M, =o0,d(A, + }4.) (5.23b)
Plastic moment: M, = o0,d(A; + }4,) (5.23¢c)

V and M can be nondimensionalized by expressing the shear force in
terms of the ultimate shear force V,, and the moment in terms of the yield
moment M,.
Since there will be no reduction in the ultimate shear strength as long
as the flanges alone are able to carry the bending moment, then
Vv M M
— =1, for0 < — !
V. M, = M,
If there were no shear present, the maximum moment that could be carried

under the most favorable circumstances (disregarding strain hardening)
is the plastic moment M,, i.e., for

|4 M
v.=% u "

EE l'ﬁa

Therefore, only those bending moments in the range between M, rand M,
will aﬁ'ect shear-carrying capacity. Basler (5.34) suggested the use of the
following interaction curve for this range:
V 2 M - Mf
(Vu) + M, M, 1 (5.24)
Substituting values of M, and M, from Eqs. 5.23a and 5.23c,

_ Lt AN — (ofr)]
YT T+ WAy

(5.25)

The presence of shear has a beneficial aspect on girder strength because
the shear forces always imply a moment gradient and, therefore, only a
short girder portion is subjected to the maximum moment. To check the
lateral stability of the compression flange, the effect of moment gradient

can be evaluated by means of Eq. 4.13. Thus, Eq. 5.9 can be modified
to give

a. A2

= =1-— 0 <A< V2

0’1‘ 4C1

o, C, _ (5.26)
o= x> V2¢1
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where
A=l£‘\/€_y=£ ‘u(A!+Aw/6)
wr w I,
and
C; = 1.75 — 1.05¢ + 0.3«?
- 046 < k < +1

where « is the ratio of the smaller to the larger end moment of a longi-
tudinal girder segment laterally braced at each end and free from interspan
loads.

5.7 Use of Transverse Stiffeners to Increase Buckling Load

For web plates subjected to pure shear, Moore (5.48), in 1942, attempted
to find the minimum stiffener flexural rigidity needed to produce a nodal
line in a slightly buckled web. He proposed the following formula for
optimum relative stiffness of stiffener and web:

14
Yo = @Ik (5.27)
EIl, flexural rigidity of stiffener

where v, = 5 = gexural rigidity of corrésponding web portion

I, = optimum moment-of-inertia of stiffener, and
3
D= 1—2—(?1—1’2) = web-plate flexural rigidity.

To derive this empirical formula, Moore arbitrarily introduced small
stiffener deflections. He also showed that when the panel is operating
below the buckling stress, there is no evidence to support the practice of
designing the vertical stiffeners as columns. For the same problem, Stein
and Fralich (5.49) derived theoretical values of the theoretical plate-
buckling coefficient k for different values of y for three stiffener spacings,
namely h, 0.5k, and 0.2k, assuming the web plate to be simply supported
at all four edges.

Theoretically, k continues to increase as y increases. However, for
practical purposes there is an optimum value y, beyond which the increase
in k is small. Bleich (5.50) derived from three curves presented by Stein
and Fralich an approximate equation for the buckling coefficient k as a
function of y and A/a, from which the optimum value y, was found as

yo = 4{7(5)2 - 5} (5.28)

Kleemen (5.51) extended Stein and Fralich’s work to allow for the effect

of torsional rigidity of the stiffeners. However, the torsional rigidity of the
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usual open-section stiffener is so small that its effect on web stiffness can
be neglected.

Rockey (5.52) obtained from an experimental investigation the following
empirical formulas for the optimum value y,:

2
Yo = 27.75(2) — 7.5 for double stiffeners (5.29)
h 2
Yo = 21.5(5) — 1.5 for single stiffeners (5.30)

Rockey recommends the use of these empirical formulas only when the
thickness of the attached stiffener leg is equal to or greater than the
thickness of the web plate.

In the practical range of stiffener spacing there is considerable divergence
among the various recommendations. Hartmann and Clark (5.8) have
discussed these differences in relation to design with aluminum alloys

(A20, A21, A22).
5.8 Transverse Stiffeners in Tension-Field Design

In a tension-field web each stiffener must act as a compression strut. From
Egs. 5.18 and 5.19, the stiffener force at ultimate load is found as

Fsshtwa(l—ﬂ)g[l———“—] .
v 7/ 2 V1 + a2 (5:31)
Dividing by ¢, the required stiffener area at ultimate load is obtained as
1 T o?
(- D oL, .
3 . @ i (5.32)

This stiffener-area requirement is needed to supplement the requirement
which calls for the necessary rigidity. Massonnet (5.53) found, on the
basis of his early experiments in which the load was increased to the point
of rupture, that for the stiffeners to remain practically straight almost up
to the rupture load of the girder, the optimum relative-stiffness factor Yo
should be multiplied by a factor of 20. Further studies by Massonnet and

Skaloud (5.54, 5.55) showed that a multiplying factor of only 3 was
adequate.

5.9 Use of Longitudinal Web Stiffeners to Increase Web Buckling Strength

For web plates in girders subjected to pure bending, longitudinal stiffeners
increase the web buckling strength. Madsen (5.56) verified this experi-
mentally in his investigation of the buckling characteristics of box girders.
Chwalla (5.13, 5.14), in 1963, was the first to investigate the influence of a

5k
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longitudinal stiffener on the buckling strength of a rectangular simply
supported plate. He examined the case where the stiffener was placed at a
distance of one-quarter the web depth from the compression flange
(aspect ratio a/h equal to 0.8). Chwalla did not obtain a general solution
in terms of the aspect ratio.

Massonnet (5.57) presented, in 1941, the first general solution for the
buckling strength of a rectangular plate having a longitudinal stiffener
at one-quarter depth from the compression flange. He derived relation-
ships between k, 8, y, and o for a longitudinally stiffened plate simply
supported at all four edges, where

area of stiffener A4,
= —————— =
area of web ht,,

_ flexural rigidity of stiffener  EI

flexural rigidity of web  — D& "4

. a
« = aspect ratio of panel = W

The maximum value of k was found to be 101. This value is obtained when
the horizontal stiffener has sufficient rigidity to cause a nodal line to form.
Bleich (Al) derived from Massonnet’s curves the following approximate
expression, for « < 1.6;

Yo = (12.6 + 508)c? — 3.4c8 (5.33)

Dubas (5.58, 5.59) presented a general solution for plate buckling for
the case where all web edges are simply supported and the stiffener is at
one-fifth the web depth from the compression flange. The maximum value
of k was found to be 129. Rockey and Legget (5.56) studied the case of a
longitudinal stiffener at the one-fifth-depth position, at the one-quarter-
depth position, and at mid-depth, assuming the unloaded web edges
(corresponding to those supported by the girder flange members) to be
rigidly clamped against rotation. Figure 5.10 shows the value of y,
required to develop the maximum k values of 129.4 (Dubas) and 142.6
(Rockey and Legget) when the unloaded web edges are simply supported
and clamped, respectively, and the stiffener is at the one-fifth-depth
position. The comparison shows the effect of clamped longitudinal edges
on the required stiffener flexural rigidity, for web panels with the maximum
buckling coefficient k.

Mitchell (5.60), Stiissi, and Charles and Pierre Dubas (5.61, 5.62, 5.63)
have shown that the longitudinal stiffener at one-fifth the depth from the
compression flange is the most beneficial when all edges are simply
supported.
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Fig. 5.10. Curves for longitudinally stiffened plates.

Hampl (5.64) examined the case of a plate having a longitudinal stiffener
at mid-depth, and found that this position is not effective in increasing the
buckling resistance of the plate under pure bending. KlSppel and Scheer
(5.65) provided a solution for the case when there are two longitudinal
stiffeners, placed at either one-third or one-quarter of the web depth from
both flanges. Only a small increase in the buckling coefficient k is obtained
by using such a symmetrical placement of stiffeners. For such cases each
stiffener will have an influence on the other, and no accurate rules exist for
determining the dimensions of the stiffeners. However, according to
Massonnet (5.24), when two or more horizontal stiffeners are used in the
same panel, each stiffener can be designed as if it were alone.

If a stiffener with a rigidity less than that corresponding to y, is used,
the web buckling coefficient k will be less than the maximum. In all of the
references given previously, the authors provide curves showing the
relation between k and y for various values of alh and 8. However, a
detailed study carried out by Massonnet (5.24), in which he considered
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both material and fabrication costs, showed that rigid stiffeners are
generally the most economical. ' ‘
While the optimum location of longitudinal stiffeners for pure bending
in a simply supported panel is at the one-fifth-depth position from the
Table 5.1
Optimum Stiffener Relative Rigidity for Various Web Conditions

Web aspect . . L
Web condition ratiop Optimum stiffener relative rigidity

¥

=0

e

za

¥ v,= 2.4 +1848
a<05 ‘yo=(12+926) (ax-0.3)
%h * a>05 with maximum value
v,= 16 +20048
v s
v.=387+51+(8.82+77.68)
Szaclh °
E Vs Al Z 03zas v,=125 (04 +(1+68)a?)*

|

1 v2h L 05¢a%2 7,=540’ Qa+25a’~a’-1)

-

Lt = 2(1-3. 9a%-11a®
1 " l 05£af2 | y,=72a%(1-33a+39a%-11a%)

———

* A simpler formula used in aluminum alloy specifications (A.21) gives nearly the
same result.
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compression flange, this is not the case for web panels subjected to
combined bending and shear. For pure shear the optimum location of a
longitudinal stiffener is mid-height of the web. Massonnet (5.24) gives the
optimum location of a rigid stiffener for various ratios of web shear to
bending stress (v/a). However, it should be kept in mind that the primary
function of longitudinal stiffeners is to make the web fully effective in
resisting bending stress.

The transverse deflection of a stiffener is proportional to the transverse
force acting on it, but the transverse deflections of the web plate are
restrained by membrane stresses which act in the middle plane of the plate
and which increase progressively with load. Thus, the stiffener is at a
disadvantage in comparison with the plate. This phenomenon was
observed by Massonnet (5.22), who suggested that for a stiffener to remain
practically straight up to the web collapse load, it must have a relative
rigidity y equal to ny,, where values of the optimum relative rigidity vy, are
as given in Table 5.1. Massonnet’s tests showed that the value of n depends
mainly on the location of the stiffener, and he suggested the following
values for design purposes:

Distance between Longitudinal Stiffener Value of
and Compression Flange n
’ 3
: 4
. 6
: 7

5.10 Combination of Transverse and Longitudinal Stiffeners

Rockey (5.67) investigated the case of a web subjected to pure shear and
reinforced by both transverse stiffeners and a central longitudinal stiffener.
He found that if the transverse stiffeners have a relative rigidity equal to
the optimum value of y,, then the optimum relative rigidity for the
longitudinal stiffener is
h 2
Yoi = 11.25(2)

Rockey found also that the weight of longitudinal and transverse stiffeners
required to achieve a given web buckling stress can be as little as 509 of
the stiffener weight required when only transverse stiffeners are used.




142 Plate Girders

Combinations of transverse and longitudinal stiffeners other than those
investigated by Rockey have not been studied. If the web is reinforced
by one or more longitudinal stiffeners, its ultimate strength is considerably
improved. In such cases the transverse stiffener rigidity must be greater
than that specified heretofore, so that it will remain straight until this
increased ultimate strength is obtained. Massonnet and Skaloud (5.54,
5.55) proposed the concept of an “equivalent web,” having a thickness .
which is determined from the condition that the buckling stress of the
equivalent web without longitudinal stiffeners must equal the buckling
stress of the given web of thickness ¢, with longitudinal stiffeners. The
equivalent thickness ¢, is to be used for the design of the transverse
stiffeners, and this results in greater rigidity.

5.11 Stiffened Plates under Combined Bending and Shear

Little has been published on the design of stiffeners for webs subjected to
combined stresses. Milosavljevitch (5.68) dealt with the case of transverse
stiffeners at the one-third points of a panel and a longitudinal stiffener
at one-fourth the depth from the compression flange. Massonnet (5.24)
analyzed the case of a panel reinforced by a median vertical stiffener, and
found that the optimum relative rigidity of a stiffener assumed to be rigid
is never greater than the optimum value for either bending alone or for
shear alone. Young and Landau (5.69) proposed that in a girder subjected
to combined shear and bending, the necessary flexural rigidities of the
horizontal and vertical stiffeners for the separate stress conditions should
be calculated, and then combined to find the requisite section.

Wittrick (5.70) has provided charts to calculate the buckling stress of a
plate subjected to any combination of shear and longitudinal compression.
These charts can be used to find the buckling stress of a web panel bounded
by both vertical and horizontal stiffeners. He found that only small errors
will be involved if the nonuniform longitudinal compression loading is
replaced by an equivalent uniform compression.

5.12 Stiffener Details

The moment-of-inertia of double stiffeners is taken about the centerline
of the web plate, and that of single stiffeners is usually taken about the
surface of the web plate in contact with the stiffener. According to
Massonnet (5.24) the latter assumption favors the use of single stiffeners,
but this preference should be limited to design levels below the buckling
load, for which levels bending stiffness rather than column action is the
criterion. Massonnet recommends taking the moment-of-inertia of the
single stiffener about the neutral axis of the cross section composed of
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thf: stiffener and an effective web width of 20¢,, as shown in Fig. 5.11. For
tl;x;opurpose, Bleich (A1) recommends the use of an effective web width
of 30z,,.

In post-buckling design, the stiffener axial force resulting from the
tension field is applied in the plane of the web, thus loading the single
stiffener eccentrically. For this reason, a single stiffener will not be as
efficient as a double stiffener in carrying the compression load, and the
single stiffener would need to be larger in cross-sectional area than the
double. Basler (5.31) recommends as a minimum that the area be 2.4 times
larger in the case of a single plate, and 1.8 times larger in the case of a single
equal-legged angle with one leg flat against the web.

Basler (5.33) also recommends that the axial force F, in the stiffener be
developed over a distance of one-third of the web depth, in order to provide
for possible variations in shear flow.

Welding to the tension flange will reduce fatigue strength and may also
be objectionable with regard to brittle fracture. In addition, it is expensive
to fit a stiffener against both flanges. Both disadvantages can be overcome
by fitting stiffeners to the compregsion flange only, and by leaving clearance
at the tension flange. In test girders used by Basler (5.29, 5.38) and.others,
a clearance of 1 in. was left between the stiffeners and the tension flange.
During the tests, no movement of the tension flange with respect to the
stiffeners was observed until after the ultimate load was reached. It was
concluded that stiffeners can be cut short of the tension flange without
impairing girder strength. Basler suggested that this clearance should not
be more than four times the web thickness. However, Basler (5.38)
prescribed that stiffeners should always be fitted to the compression flange.
In the case of single stiffeners, a substantial weld should be provided to
the compression flange as a safeguard against flange torsion; and in the
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case of double stiffeners, a nominal weld is needed to guard against flange
rotation due to accidental transverse loads.

5.13 Other Considerations

The uitimate strength of a plate girder in bending is determined primarily
by the flanges rather than by the web. When shear governs, the ultimate
strength depends primarily on the web, and it is obvious that a tension
field will develop in the web regardless of whether or not it is initially
perfectly plane. These considerations show that initial web out-of-flatness
has little effect on girder strength. Basler (5.30) recommends that this
imperfection be ignored. Attempts to correct out-of-flatness by means of
spot heating will introduce residual stresses and embrittlement.

As mentioned by Basler (5.31), loads in direct bearing on the flanges can
introduce two hazards in cases where proper web stiffeners are absent.
The resulting bearing pressure on the web can cause local web yielding
followed by web crippling. Alternatively, the web may collapse as a result
of overall buckling.

The vertical buckling problem due to transverse loading resulting from
girder curvature was discussed in connection with Eq. 5.5. The transverse
(vertical) normal stress induced by direct loads on the flange are less
conducive to buckling, since the stress decreases almost linearly from the
top to the bottom boundary. Thus & in Eq. 5.5 can be taken as 2 if there is
no flange restraint to the web plate, and as 5.5 when the flange fully
restrains the web (both values are approximate).

Considering now the case where web stiffeners are used, and assuming
that they do not carry any load in direct bearing, then

mE
12(1 = v)(a/t,)
A conservative estimate of £ = 4 is obtained if o, is assumed to be constant
over a depth equal to the distance between stiffeners.

For an approximately square web panel, the stresses just given can be
combined to give approximate buckling stresses as follows:

(5.34)

o, =k

(a) Loaded edge clamped, others simply supported:
4h? m2E
o, = (55 + F) [m] (5.35a)
(b) All edges simply supported:
4h? m2E
o= (2 + ) [ =] (.350)

Note that when 4 > a, Eq. 5.35a approaches Eq. 5.34. If the applied load
is acting as a concentrated load, it may be converted into an equivalent
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Fig. 5.12. Girder end-post analysis.

transverse uniform stress o, by dividing it by the area at, if a < A, and
ht, if h < a. Some conservatism is desirable in applying the foregoing
rules, since no account is taken of the added effect of the longitudinal
compressive normal stress, which is also conducive to buckling.

In the end panel of the web, there is no continuing web plate to serve
as an “anchor” for a tension field. One way to handle this problem is to
use a shortened stiffener spacing for the end panel, such that the computed
average working shear stress does not exceed 7./N, where N is the factor-of-
safety. This will eliminate the possibility of the development of a tension
field in the end panel. An alternative choice is to supply an end post
strong enough to resist the tension field. This can be done by carrying the
top flange around the end of the girder, or by welding a separate plate to
the end (see Fig. 5.12).

If for simplification the angle of inclination ¢ of the tension field is
assumed to be 45°, then the vertical force in the end post from the tension
field is equal to ¥ — ¥, (where ¥, is given by Eq. 5.14) and the horizontal
force is of the same magnitude. Then the maximum bending moment to
which the end post is subjected is equal to ¥, 4/8. This moment will
produce compressive and tensile forces equal to ¥, 4/8e in the end plate
and in the bearing stiffener, respectively. The bearing stiffener will be
adequate since the added force is tension, while the end plate must be
made strong enough to resist the compressive force.

5.14 Plate Girders with Tubular Flanges and Stiffeners

Since the collapse of a girder is usually associated with the plastic stretching
of the web or with the failure of the web frame (flanges and stiffeners), the
ultimate strength of a plate girder can be increased by using tubular
flanges and stiffeners. This was proposed in Germany by Dornen (5.75),
who did not emphasize the increase in the stability of the flange but
considered the main advantage to be reduction of the web depth.
Bornscheuer (5.76) showed that tubular stiffeners are greatly superior to
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Fig. 5.13. (@) Tubular flanges. (b) Tubular stiffeners.

the usual type because of their very high torsional rigidity. They also
provide the flange with greater bending stiffness vertically and thus induce
a more favorable orientation of the tension field.

Tubular sections can be formed using large angles or semicircular
elements (Fig. 5.13). Tests carried out by Massonnet (5.77) on the
tubular type of plate girder showed their excellent behavior, even with
web slenderness ratios A/t,, as high as 500. Evidently, the only deterrent to
the use of such girders is the cost of fabrication.

5.15 Design Trends and Research Needs

Shanley (5.87) has traced the evolution of plate girders in the aircraft
industry, starting with buckling-resistant design and going full circle
through utilization of both post-buckling strength in direct compression
and tension-field web strength in the design of wing girders; and returning
finally, in the case of high-speed aircraft, to buckling-resistant design for
functional reasons and, in certain cases, in order to obtain the minimum
weight-strength ratio.

There seems to be a place for the application of both buckling-resistant
and post-buckling strength analysis and design. In both railway (A7) and
highway (A6) bridge design practice, buckling-resistant girder design is the
rule. Localized stress concentrations and web wrinkling may occur as a
result of tension-field design, and when these are superimposed on the
more readily calculable stresses due to bending and shear, acceleration
of fatigue failure is a possibility. This has retarded acceptance of post-
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buckling strength concepts in bridge specifications. For the same reason,
tension-field design is presently not accepted in the design of crane
runway girders in mill buildings.

The use of longitudinal stiffeners to permit large web depth-thickness
ratios was pioneered in the design studies of Moisseiff and Lienhard (5.15),
sponsored by the aluminum industry. Longitudinal stiffeners were intro-
duced into specifications for traveling-crane design (5.47) in 1942, and
subsequently into highway bridge design specifications (A6) and into
specifications for aluminum alloy structures (A20, A21, A22),

The utilization of post-buckling-strength concepts in the aircraft
industry and in industrial applications of light-gage metals has resulted
primarily from use of thin material as a partition, deck, skin, or roof
element. When structural strength is also needed, as is usually the case in
such applications, the functional use is dual and the material provides
both strength and effective space separation. In the AISI Specification
(A11), post-buckling strength and tension-field action have not been
utilized for thin beam webs because of the unsuitability of the necessary
transverse stiffeners in this type of light-gage construction.

As recounted herein, steel building specifications in both Canada (Al5)
and the United States (A13) were quick to adopt buckling strength
combined with partial tension-field action as the basis for plate-girder
design, as proposed by Basler and Thiirlimann. Both of these specifications
have been supplemented by commentaries which explain the manner in
which the experimental and analytical research has been interpreted and
applied.

Research is underway, and more is needed, to study the fatigue strength
of all-welded girders designed on the basis of tension-field action. Studies
are needed to determine the degree to which closed-tube or box-flange
design can improve the effectiveness of the tension field.

The development of metal and combination metal-and-concrete
composite bridge deck and girder units, usually involving what has been
termed “orthotropic construction,” opens the need for a wider knowledge
of web behavior when the member cross section is unsymmetrical, and
tensile stresses resulting from bending are predominant over most of the
section depth.

References

5.1 Timoshenko S., “Einige Stabilitiitsprobleme der Elastizitédtstheorie,”
Zeitschr. f. Math. u. Physik, Vol. 58 (1910), p. 337.

5.2 Bergmann St. and Reissner H., “ Uber die Knickung von Rechteckigen
platten bei Schubbeanspruchung,” Zeitschrift f. Flugtechnik u. Motor-
luftschiffahrt, Vol. 23 (1932), p. 6.




!

//.

4

148 Plate Girders

5.3 Seydel, E., “Uber das Ausbeulen von rechteckigen isotropen oder
orthogonalanisotropen Platten bei Schubbeanspruchung,” Ingenieur
Archiv, Vol 4 (1933), p. 169.

5.4 Southwell R. V. and Skan S., “On the Stability Under Shearing Force
of a Flat Elastic Strip,” Proc. Roy. Soc., A., 105 (1924).

5.5 Moheit W., ‘“‘Schubbeulung rechteckiger Platten mit eingespannten
Riéndern,” Thesis Techn. Hochschule Darmstadt, Leipzig (1939).

5.6 Iguchi S., “Die Knickung der Rechteckigen Platte durch Schubkrifte,”
Ingenieur Archiv., Vol. 9 (1938), p. 1.

5.7 Leggett D. M. A., “The buckling of a square panel in shear when one pair
of opposite edges is clamped and the other pair is simply supported,”
R. & M. No. 1991, A.R.C. Tech. Rep. (1941).

5.8 Hartmann, E. C. and Clark, J. W., “The U.S. Code,” Symposium on
Aluminum in Structural Engineering, Inst. of Struct. Engs. and Alu-
minum Federation, London (1963).

5.9 Nolke, K., “Biegungsbeulung der Rechteckplatte,” Ingenieur Archiv.,
Vol. 8 (1937), p. 403.

5.10 Timoshenko, S., “Stability of the Webs of Plate Girders,” Engineering,
Vol. 138 (1934), p. 207.

5.11 Stein, O., *“Stabilitiit ebener Rechteckbleche unter Biegung und Schub,”
Bauingenieur, Vol. 17 (1936), p. 308.

5.12 Way, S., “Stability of Rectangular Plates Under Shear and Bending
Forces,” J. Appl. Mech. ASME (Dec., 1936).

5.13 Chwalla, E., ““Beitrag zur Stabilitdtstheorie des Stegbleches vollwandiger
Tréger,” Stahlbau, Vol. 9 (1936), p. 81.

! '5.14 Chwalla, E., “Die Bemessung der waagrecht ausgesteiften Stegbleche

vollwandiger Triger,” Prel. Publ. of the IABSE, 2nd Congress, Berlin-
Munich (1936), p. 957.

5.15 Moisseiff, L. S. and Lienhard F., “Theory of Elastic Stability Applied
to Structural Design,” Trans. ASCE, Vol. 106 (1941), p. 1052.

5.16 *Haaijer, G., ‘“Plate Buckling in the Strain-Hardening Range,” Trans.
ASCE, Vol. 124 (1959), pp. 117.

5.17 Haaijer, G. and Thiirlimann B., ‘“‘Inelastic Buckling in Steel,” Trans.
ASCE, Vol. 125 (1960), p. 308.

5.18 Lilly, W. E., “The Design of Plate Girders,” Chapman and Hall, Ltd.,
London (1907).

5.19 Moore, R. L., “Observations on the Behavior of Aluminum Alloy Test-
Girders,” Trans. ASCE, Vol. 112 (1947), p. 901.

5.20 Sparkes, S. R., “The Behavior of the Webs of Plate Girders,” Welding

Research (Dec., 1947), p. 4.

5.21 Bergmann, S. G. A. and Wastlund G., “Buckling of Webs in Deep
Steel I-Girders,” Publ. Intern. Assoc. Bridge and Structural Eng., Zurich
1947.

Note: References marked with an asterisk are not cited in the text of
Chapter 5.

References 149

5.22 Bergmann, S. G. A. and Wistlund, G., “Buckling of Webs in Deep
Steel 1-Girders,” Instn. of Str. Eng. and Br. Building Rep., Stockholm,
1947,

5.23 Rockey, K. C., *“Stability Problems Associated with the Design of Plate
Girder Webs,” Civil Eng. and Public Works Review, Vol. 47, 556, 557,

558 (1952), Vol. 48, 559 (1953). '

5:24 Massonnet, C. E. L., “Stability Considerations in the Design of Steel
Plate Girders,” Trans. ASCE, Vol. 127, Part II (1962), p. 420.

5.25 Vasahelyi, D. D., Taylor, J. C., Vasishth, N. C, and Yuan C. Y.,
“Tests of a Riveted Plate Girder with a Thin Web,” Trans. ASCE, Vol.
126, Part II (1961), pp. 550.

5.26 Bergmann, S. G. A., “Behaviour of Buckled Rectangular Plates under
the Action of Shearing Forces,” Instn. of Str. Eng. and Br. Building
Rep., Stockholm (1948).

5.27 Skaloud, M., “Design of Web Plates of Steel Girders with Regard to the
Post-Buckling Behavior (analytical solution),” Str. Engr., Vol. XL, No.
12 (Dec., 1962), p. 409.

5.28 Thiirlimann, B., *“Strength of Plate Girders,” Proc. National Eng.
Confer., AISC, 1958.

5.29 Basler, K. and Thiirlimann, B., “Plate Girder Research,” Proc. National
Eng. Confer., AISC, 1959.

5.30 Basler, K., “Further Tests on Welded Plate Girders,” Proc. National
Eng. Confer., AISC, 1960.

5.31 Basler, K., “New Provisions for Plate Girder Design,” Proc. National
Eng. Confer., AISC, 1961.

5.32 Basler, K. and Thiirlimann, B., “Strength of Plate Girders in Bending,”
Trans. ASCE, Vol. 128, Part II (1963), p. 655.

5.33 Basler, K., ““Strength of Plate Girders in Shear,” Trans. ASCE, Vol. 128,
Part II (1963), p. 683.

5.34 Basler, K., “Strength of Plate Girders Under Combined Bending and
Shear,” Trans. ASCE, Vol. 128, Part II (1963), p. 720.

5.35 *Yen, B. T. and Basler, K., “Static Carrying Capacity of Steel Plate
Girders,” Highway Res. Board Proc., Vol. 41 (1962).

5.36 *Basler, K. and Thiirlimann, B., “Carrying Capacity of Plate Girders,”
Publ. Intern. Assoc. Bridge and Structural Eng., Prel. Publ. 6th Cong. V16
(1960).

5.37 Basler, K. and Thiirlimann, B., “Buckling Tests on Plate Girders,”
Publ. Intern. Assoc. Bridge and Structural Eng., Prel. Publ. 6th Cong. V17
(1960).

5.38 Basler, K., Yen, B. T., Mueller, J. A., and Thiirlimann, B., “Web
Buckling Tests on Welded Plate Girders,” Welding Res. Council Bull.
Series No. 64 (Sept., 1960).

5.39 *Basler, K. and Thiirlimann, B., “* Literature Survey on Stability of Plate
Girders,” Lehigh Univ. Fritz Eng. Lab. Rep. No. 251.1 (Dec., 1957).

5.40 “Design Recommendations for Plate Girders,” Lehigh Univ. Fritz Eng.
Lab. Rep. 251-22 (Mar., 1961).




150 Platé Girders

5.41 Corrado, J. A., Mueller, J. A, and Yen, B. T., “Fatigue Tests of Welded
Plate Girders in Bending,” Lehigh Univ. Fritz Eng. Lab. Rep. No. 303.9
(May, 1965). .

5.42 van der Neut, A., ‘“Post-Buckling Behaviour of Structures,” Advisory
Group of Aeronautical Research and Development Rep. 60 (1956).

5.43 Wagner, H., “Flat Sheet Metal Girder with Very Thin Metal Web,”
NACA Tech. Memo. Nos. 604, 605, 606 (1931). )

5.44 Kuhn, P. and Peterson, J. P., *“Strength Analysis of Stiffened Beam
Webs,” NACA Tech. Note No. 1364 (1947).

5.45 Kuhn, P.,Peterson, J. P., and Levin, L. R., *‘ A Summary of Diagonal Ten-
sion, Part 1, Methods of Analysis,” NACA Tech. Note No. 2661 (1952).

5.46 Kuhn, P., Peterson, J. P., and Levin, L. R, *“ A Summary of Diagonal Ten-
sion, Part 2, Experimental Evidence,” NACA Tech. Note No. 2662 (1952).

5.47 *Specifications for Electric Overhead Traveling Cranes for Steel Mill
Service, AISE Standard No. 6 (1949).

5.48 Moore, R. L., *“An Investigation of the Effectiveness of Stiffeners on
Shear-Resistant Plate Girder Webs,” NACA Tech. Note No. 862
(1942).

5.49 Stein, M. and Fralich, R. W., ““Critical Shear Stress of Infinitely Long
Simply Supported Plates with Transverse Stiffeners,” NACA Tech. Note
No. 1851 (Apr., 1949).

5.50 Erickson, E. L. and Van Eenam, N., “ Application and Development of
AASHO Specifications to Bridge Design,” ASCE J. Struct. Div., Vol. 83,
ST4 (Jul., 1957). ’

5.51 Kleeman, P. W., “ The Buckling Strength of Simply Supported Infinitely
Long Plates with Trangverse Stiffeners,” R. & M. 2971, H.M. Stationery
Office (1956).

5.52 Rockey, K. C., “The Design of Intermediate Vertical Stiffeners on Web
Plates Subjected to Shear,”” Aeronautical Quarterly, Vol. VII (Nov., 1956),
pp. 275.

5.53 Massonnet, C. E. L., “Essais de voilement sur poutres 4 dme raidie,”
Publ. Intern. Assoc. Bridge and Structural Eng., Vol. 14 (1954).

5.54 Skaloud, M., *“General Report, Design Principles Proposed by M. M.
Massonnet and Skaloud,” Colloque sur le comportement postcritique des
plaques utilisées en construction métallique, Li¢ge (1963).

5.55 Skaloud, M., “Design of Web Plates of Steel Girders with regard to the
Post-Buckling Behavior (approximate solution),” Str. Engr., Vol. XL,
No. 9 (Sept., 1962). ‘ '

5.56 Madsen, 1., “Report of Crane Girder Tests,” Iron and Steel Engineer,
Vol. XVIII, No. 11 (Nov., 1941).

5.57 Massonnet, C., “La stabilité de I’dme de poutres munies de raidisseurs
horizontaux et sollicitées par flexion pure,” Publ. Intern. Assoc. Bridge
and Structural Eng., Vol. 6 (1940, 1941), pp. 233.

5.58 Dubas, C., “Contribution 4 I’étude du voilement des tdles raidies,”
Prelim. Rep. 3rd Congr. Intern. Assoc. Bridge and Structural Engng., Lié¢ge
(1948), p. 129.

References 151

5.59 Dubas, C., *Contribution a 1’étude du voilement des tdles raidies,” Pub.
de Iinst. de statique appliquée (Ecole Polytechnique Fédérale de Zurich),
No. 23 (1946).

5.60 Mitchell, L. H., “The Buckling due to Bending of a Simply Supported
Rectangular Plate with a Long Stiffener,”” Australian Aero Res. Labor-
atories Report, SM 128 (Jun., 1949), p. 1.

5.61 Dubas, C., “Le voilement de 1'ame des poutres fléchies et raidies au
cinquiéme supérieur,” Publ. Intern. Assoc. Bridge and Structural Eng.,
Vol. 14 (1954), p. 1.

5.62 Stiissi, F. and C. and P. Dubas, “Le voilement de I’dme des poutres
fléchies, avec raidisseur au cinquiéme supérieur,” Publ. Intern. Assoc.
Bridge and Structural Eng., Vol. 17 (1957), p. 217.

5.63 Stiissi, F. and C. and P. Dubas, “Le voilement de ’'dme des poutres
fléchies avec raidisseur au cinquiéme supérieur. Etude complémentaire,”
Publ. Intern. Assoc. Bridge and Structural Eng., Vol. 18 (1958), p. 215.

5.64 Hampl, M., “Ein Beitrag zur Stabilitit des horizontal ausgesteiften
Stegbleches,” Der Stahlbau, Vol. 10 (Jan. 15, 1937), p. 16.

5.65 Kloppel, K. and Scheer, J., ““Das praktische Aufstellen von Beuldeter-
minanten fiir Rechteckplatten mit randparallelen Steifen bei Navierschen
Randbedingungen,” Der Stahlbau, Vol. 25 (May, 1956), p. 117.

5.66 Rockey, K. C. and Legget, D. M. A,, “The Buckling of a Plate Girder
Web under Pure Bending when Reinforced by a Single Longitudinal
Stiffener,” Proc. Instn. Civ. Engrs., Vol. 21 (Jan., 1962).

[ 5.67 Rockey, K. C., “Shear Buckling of a Web Reinforced by Vertical Stiffeners

and a Central Horizontal Stiffener,” Publ. Intern. Assoc. Bridge and
Structural Eng., Vol. 17 (1957).

5.68 Milosavljevitch, M., *“Sur la stabilit¢é des plaques rectangulaires
renforcées par des raidisseurs et sollicitées 4 la flexion et au cisaillement,”
Publ. Intern. Assoc. Bridge and Structural Eng., Vol. 8 (1947).

5.69 Young, J. M. and Landau, R. E., “ A Rational Approach to the Design
of Deep Plate Girders,” Proc. Inst. of Civil Engrs. May, 1955, pp.
299-335. '

5.70 Wittrick, W. H., “Buckling of an Infinite Simply Supported Strip under
Combined Longitudinal Compression, Transverse Compression, Bend-
ing and Shear,” Report ARL/SM 234, Department of Supply, Australia.

5.71 *Batdorf, S. E. and Stein, M., *‘Critical Combinations of Shear and
Direct Stress for Simply Supported Rectangular Flat Plates, NACA
Tech. Note No. 1223 (1947).

5.72 *Chwalla, E., “Theorie der einseitig angeordneten Stegblechsteife,” Der
Bauingenieur, Vol. 10 (1937).

5.73 *Rockey, K. C., “Web Buckling and the Design of Web Plates,” Der
Bauingenieur, Vol. 10 (1937).

5.74 *Willers, Fr. A., “Das Knicken schwerer Gestéinge,” Z. angew Math.
Mech., Vol. 21 (1941).

5.75 Dornen, A., Stahlbau-Tagung Stuttgard, Abhandlungen aus dem
Stahlbau, W. Dorn, ed. (1951).




152 Plate Girders

5.76 Bornscheuer, F. W, ““ Contribution to the Calculation of Flat, Uniformly
Loaded Rectangular Plates, Reinforced by a Longitudinal Stiffener,”
(in German), Dissertation, Darmstadt (1947).

5.77 Massonnet, C., Mas, E., and Maus, H., “Essais de voilement sur deux
poutres 4 membrures et raidisseurs tubulaires,” Publ. Intern. Assoc.
Bridge and Structural Eng., Vol. XXII (1962).

5.78 Massonnet, C., Mazy, G., and Tanghe, A., “Théorie générale du
voilement des plaques rectangulaires orthotropes, encastrées ou appuyées
sur leur contour, munies de raidisseurs paralléles aux bords & grande
rigidité flexionnelle et torsionnelle,” Publ. Intern. Assoc. Bridge and
Structural Eng., Vol. XX (1960). ,

5.79* Cook, 1. T., and Rockey, K. C., “Shear Buckling of Clamped and
Simply-Supported Infinitely Long Plates Reinforced by Closed Section
Transverse Stiffeners,” AERQ, Quart., Roy. Aero. Soc., Vol. XIII
(Aug., 1962).

5.80 Budiansky, B. and Connor, R. W., “Buckling Stresses of Clamped
Rectangular Flat Plates in Shear,” NACA, Tech. Note 1559 (1948).

5.81 *Rockey, K. D., “The Design of Web Plates of Light Alloy Plate
Girders,” Fifth Congr. of IABSE, 1956 Prelim. Pub., pp. 609-621; and the
corresponding discussion in the final report of the Congr., pp. 493-502.

5.82 Schmieden, C. and Danzig-Langfuhr, “ The Buckling of Stiffened Plates
in Shear,” U.S. Exper. Model Basin, Translation No. 31 (1936).

5.83 Vasta, J., “The Critical Strength of Flat Plates Loaded in Shear,” U.S.
Exper. Model Basin, Report R-1 (1935).

5.84 *Hopkins, H. G., “The Limit Analysis and Design of Tension Field
Beams,” Office of Naval Res., Tech. Rep. No. 114 (1954).

5.85 *Kerensky, O. A., Fﬂnt, A. R,, and Brown, W. C., “The Basis for
Design of Beams and Plate Girders in the Revised British Standard 153,”
Proc. Inst. Civil Engrs., Vol. 5, No. 2 (Aug., 1956).

5.86 *Longbottom, E. and Heyman, J., ‘“Experimental Verification of the
Strengths of Plate Girders Designed in Accordance with the Revised
British Standard 153: Tests on Full Size and on Model Plate Girders,”
Inst. Civil Engrs., 1956.

5.87 Shanley, F. R., ““Relative Advantages of Buckling-Resistant and Post-
Buckling Structures,” Colloque sur le comportement postcritique des
plaques utilisées en construction métallique, Liége, 1963.

5.88 *Massonnet, C., “ General Report, Present State of Knowledge in the
Field of the Webs of Plate Girders,” Colloque sur le comportement
postcritique des plaques utilisées en construction métallique, Liége, 1963.

5.89 *Rockey, K. C. and Jenkins, F., *“The Behaviour of Web Plates of Plate
Girders Subjected to Pure Bending,” Str. Engr., May, 1957.

. 5.90 Stowell, E. Z., Heimerl, G. J.,, Libove, C., and Lundquist, E. E.,

““Buckling Stresses for Flat Plates and Sections,” Trans. ASCE, Vol. 117

(1952) p. 545.

| Chapter Six

Beam-Columns

6.1 Introduction

The term “beam-column™ denotes a member which is subject simultane-
ously to axial force and bending moment. Bending moment may result
from transverse forces and/or from a known eccentricity of the axial force
at one or both ends. As the bending moment approaches zero, the member
tends to become a centrally loaded column, a problem that has been
treated in Chapter 2. As the axial force approaches zero, the problem
becomes that of a beam, which, for the laterally unsupported case, involves
the buckling and design problems that have been treated in Chapter 4.

The determination of the ultimate strength of a beam-column 'is a
problem in which inelastic action must be considered. If an isolated beam-
column is either laterally supported or bent in its weakest plane, it fails
without twisting; otherwise the lateral-torsional mode of failure must be
considered.

A number of studies and reviews of the beam-column problem have
been sponsored by Column Research Council (6.1, 6.2, 6.3, 6.4). Early
developments, including the work of von Kdrmdn, Ros and Brunner,
Chwalla, Westergaard and Osgood, Jezek, and others, have been reviewed
by Bleich (Al) in a monograph initiated through "Column Research
Council. Sidebottom and Clark (6.6) developed a convenient semigraphical
scheme for determining the deflections and failure loads of eccentrically
loaded columns.

Ketter, Kaminsky, and Beedle (6.7) have presented, and corroborated
by tests, a method for determining the plastic behavior of laterally
supported wide-flange shapes under combined moment and axial force,
including the effect of residual stresses. Galambos and Ketter (6.8, 6.41)
have presented numerically determined interaction curves for the maximum
strength of beam-columns under various end conditions and including the
effect of residual stress, correlating the analysis with earlier tests by
Johnston and Cheney (6.19), Campus and Massonnet (6.20), and Mason.
Fisher, and Winter (6.10).

153
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Most analyses and tests of beam-columns have been concerned with the
isolated member, whereas practical beam-columns are usually a part of a
frame. Recent research has given increasing attention to the behavior of
complete frames and to the effects of end restraint on beam-column
behavior. Studies of framed beam-columns have been stimulated by the
development of procedures for plastic design of structures (A7, A25).
The effect of end restraint on the eccentrically loaded column has been
explored by Bijlaard, Winter, Fisher, and Mason (6.9, 6.10). Ojalvo and
others (6.42, 6.43, 6.44, 6.45) have developed nomograms which permit
matching of compatible moments transmitted between the ends of the
beam-column and the remaining portions of the structure to which the
column ends are attached, in terms of the angular rotation at the joint.
Tests on structural subassemblages by Lay and Galambos (6.40) have
confirmed the general validity of the analytical techniques used in the
aforesaid work. Neal and Mansell (6.24) have applied the same approach
to truss members.

Beam-columns unsupported in the weak direction and subjected to
forces or moments acting in the strong direction are found frequently in
practice. If such a column is short and torsionally strong, as in the case of
a box member, and is subjected to large bending moments, it will bend
essentially in the plane of the applied forces and will develop as much
strength as if it were restrained from deflecting in the weak direction. A
long slender box-column with small bending moments in the strong plane
will buckle in a direction normal to the plane of bending and will behave
essentially the same as if loaded concentrically. For intermediate-length
box-columns, some combination of the two failure modes can be expected.

A torsionally weak beam-column of open cross section (such as a
wide-flange member, a tee, or an angle) is apt to twist as well as bend
during buckling failure. An exception is the case wherein bending moment
is introduced only in the weaker principal plane of the section.

The development of the theory of torsional buckling, with and without
bending, is reviewed in detail by Timoshenko (6.11). Wagner introduced
the initial theory of pure torsional buckling, a special case of the more
general theory of combined torsional and bending failure under central
load, which was later developed by Kappus and simplified by Goodier
(6.12). The general problem of the column of open cross section under
eccentric end load, with the bending moment caused by the eccentric load
assumed to be constant over the length, has also been treated by Goodier
(6.13). Hill and Clark (6.14, 6.15) have found that neglect of moments
resulting from deflections may make a significant difference.

Salvadori (6.16, 6.17) has found the elastic critical loads of obliquely
loaded I-shaped columns (unequal eccentricities at the ends) whose ends
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are free to rotate in the plane of the web and are either elastically restrained
or fixed in the plane parallel with the flanges. Each end is prevented from
twisting around the column axis, and the tendency to twist under central load
is neglected. The solutions are presented in the form of interaction curves.

Nylander (6.18) has found the critical loads for lateral-torsional buckling
of monosymmetrical I-shaped columns (unequal top and bottom flanges)
and tee columns, subjected to eccentric loading in the strong plane and
having simply supported ends.

Instead of determining the buckling load, a lower bound to the strength
of steel beam-columns can be found by calculating the maximum stress due
to (1) bending moment and transverse loading acting in the plane of the
web, and (2) accidental initial imperfections normal to the plane of the
web. It is postulated that failure occurs when the maximum fiber stress
reaches a specified limiting value. Using this approach, Zickel (6.22) and
Thiirlimann (6.21) have studied the stresses which arise in initially twisted
beams, columns, and beam-columns. Nylander (6.18) has derived a
practical design procedure based on a simple solution for the maximum
stresses in a beam with initial deflections. His procedure can be applied to
monosymmetrical and bisymmetrical I-shaped and tee-section columns
with either oblique loading or eccentric loading. Finally, Horne (6.37)
has presented a complete design procedure based upon the limiting-stress
concept. |

When a column of open cross section is loaded eccentrically with respect
to both principal axes, both torsional and bending moments are produced.
The direct stresses due to restraint of warping that accompanies non-
uniform torsion add to the direct stresses caused by bending. Thiirlimann
(6.21), in an extension of the work of Zickel (6.22), has shown that, for
certain loading conditions, the additional stresses due to torsion may be
greater than those caused by bending. He also showed that a large increase
in stress may result from initial twist in a centrally loaded column—
comparable to the effect of the initial eccentricity assumed in the applica-
tion of the secant formula to the design of centrally loaded steel columns.

Two simple approximate methods have been developed for estimating
the strength of beam-columns. The first method is based upon the concept
that the load which produces initiation of yielding in the fibers subjected
to maximum stress provides a lower bound to the failure load. This
method is described in the following section. The second approach is
based upon the interaction formula described in Sec. 6.3.

6.2 Beam-Column Design Based on Load at Initial Yield

The allowable-stress formulas developed for this procedure apply only to
members that fail by bending in the plane of the applied loads, and a
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separate design check has to be made with regard to possible lateral-
torsional buckling. The procedure applies best for material having a linear
elastic stress-strain relationship.

If the initial-yield theory is to be used to calculate the strcngth of
columns with small lateral loads or small known eccentricities, it is
necessary to assume that some wunintentional *‘equivalent” eccentricity
exists, in order that the “initial yield-strength” curve will approach a
proper limit for concentrically loaded* columns. The assumed equivalent
eccentricity includes the effects of all imperfections, such as initial crooked-
ness, nonhomogeneity, and residual stresses. Thus, prior to the recognition
of the importance of residual stress, the secant formula for the eccentrically
loaded column provided a plausible and valuable explanation for the
behavior of centrally loaded columns, and became the basis for the
current AREA (A17) and AASHO (A16) column formulas for both
central (concentric) and eccentric loads. In each of these specifications a
simple parabolic formula provides a satisfactory approximation of the
secant formula for centrally loaded columns having L/r less than 120.

The first step in developing the initial-yield criterion is the -analysis of
maximum combined stress caused by axial load, applied bending moment,
and bending moment due to deflection. The load that causes the maximum
combined stress to reach the yield point is divided by the desired factor-of-
safety to give the working load. The special case of this procedure where
the end loads have equal eccentricities gives the secant formula:

Omax = f: [1 + ( e"c) L J 2 E] ©.1)

where oo, denotes the maximum stress (at midlength of the column), e is
the eccentricity of the applied end loads, and e, is the assumed equivalent
eccentricity representing defects and so forth.

The limiting average stress F, for design use can be obtained from Eq.
6.1 by replacing P with nF,A4 (where n is the factor-of-safety) and o,
with o,, and then solving for F,:

a,ln
[1 + (ec/r® + e.c/r?) sec L/2r V'nF,]E]

= 6.2)

A more comprehensive incipient-yield procedure for the design of
eccentrically loaded columns can be based upon the solution for unequal
end eccentricities. This procedure was presented by Young (6.23) and
was discussed fully by Timoshenko (A9). Ketter (6.41) has shown that
it can be expressed in an interaction equation. An elaborate extension

* In this case the “concentrically loaded” column is one without mtenttonal end
eccentricity.
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of this approach, including consideration of both load eccentricity and
column curvature, with a variety of end loading and restraint conditions,
has been developed by Stephenson (6.25, 6.26) and includes detailed
tables and charts which minimize the inherent difficulties in direct
application of the complex formulas that are involved.

Julian (6.27) outlines a procedure, based on a convenient nomogram,
for finding the maximum fiber stress at any section of a compressed member
with equal or unequal end moments.

A good approximation of the maximum moment in a beam-column can
be found from the following equation:

Mpax = M, +1 _P{;/P (6.3)
where M, and §, are the moment and deflection, respectively, without
regard to the added moment caused by deflection. Eq. 6.3 can conveniently be
written:

_ 1+ ¢P/Pe)
Maes = M, (T2 (6.4)
in which, for a simply supported constant-section member,
w28, El
v="T7 !

If the approximate maximum moment given by Eq. 6.4 is used to determine
the maximum combined stress in a beam-column owing to direct load
and bending, the following formula is obtained:

_ P (1t ) Mc
Umax—A+(l_“) 7 6.5)

where « = P/P,.

Since formulas for lateral deflection 8, under many different loading
conditions are readily available in handbooks, Eq. 6.5 greatly simplifies
calculation of maximum stresses in beam-columns. Values of  for various
conditions can be determined readily and the error, in comparison with
exact analysis, is less than 29 in all common cases. For example, in the
case of a member subjected to concentric axial loads and uniform lateral
loading,

7°[(5/384) (wL*/ED)EI 4072
Y = ORE 1= 384 1 = 0.028
Several common cases, including the foregoing, are presented in Table 6.1.

In a beam-column, the relationship between the axial load and the

maximum combined stress due to axial load and bending moment is, of




158 Beam-Columns
Table 6.1
. . Parameter ¢ in \

Loading Condition Eq. 6.4 and 6.5

Constant moment +0.233

Concentrated lateral
load at midlength —-0.178

Uniform lateral load +0.028

course, nonlinear. Thus, in designing to a desired factor-of-safety.with
respect to a load causing maximum stress equal to yield, it is essential to
calculate this (yield-producing) load and divide it by the fact'or-of-safety.
This same procedure was used in developing the “exact” design formula,

Eq. 6.2, for the eccentrically loaded column. If the approximate formula, -

Eq. 6.5, is used for the same design case (equal end eccentricities e,
M, = Pe, and ¢ = +0.23), the allowable average stress becomes: -

- ay[n 6.6
f=T (l_f_@) e (66)

1 — ne r?

This equation gives results in close agreement with t.ho.se obEained

from Eq. 6.2, within 1% for ne less than 0.80, and within 2.5% for
.80 < ne < 0.95. 4

° 8P(")or the case of the beam-column with uniform total lateralload W = kP,

indicating proportional increase of lateral load W with axial .load P, Fhe
same approach as just given yields the following equation, taking
¢ = 0.028:

F,= i 6.7
@ 1+ 0.028(nFa/ae)] (l_c) (1_,) (g)
1+[ T—wFJs) I8\

Where ¢ = r,El Darwish and Johnston (6.39) have prepared tables based on
Eq. 6.7 for commercially available steels with yield points ranging from 33
to 100 ksi, load ratios k from 0.01 to 0.30, and L/r values from 10 to
200. These tables, with the introduction of suitable modifications of k that
are also given, can be used to obtain approximate solutions for jbeam-
columns having a variety of loading conditions (including eccentric end
loads) and a variety of cross sections. As in the use of the sece_mt formula,
a separate design check is required for lateral-torsional buckling.

The secant formula, adapted for design use by means of chart§ or tables,
is an adequate and economical approach to the design of built-up box-

6.3 Beam-Column Strength in Bending Without Lateral Buckling 159

type compression chords. Such members are not susceptible to torsional
buckling, have unavoidable end eccentricities because of load nonacxiality
or because of secondary stresses, and have relatively thin material that is
likely to buckle at or near (but not significantly below) the yield point. In
this type of application the main defect of the secant formula as used in
bridge specifications lies in the irrational nature of the arbitrary equivalent-
length factors that are introduced. However, the procedure can be applied
more rationally to framed columns if the equivalent end eccentricities are
determined by means of an analysis that includes the effect of axial load
on bending stiffness.

For the limiting case of the centrally loaded column, the secant formula
can provide a reasonable basis for design by the assumption that an
accidental eccentricity exists in all columns. The assumed eccentricity can
be adjusted empirically so that the results obtained from the secant
formula are almost the same as those found by taking residual stress as a
basis for the column strength curve. )

Nevertheless, in summary, four objections to the initial-yield criterion
for beam-column design can be made:

1. It cannot be applied rationally to beam-columns made of a material
with a nonlinear stress-strain curve.

2. The effect of residual stress cannot rationally be taken into account.

3. Design on the basis of initial yield may be over-conservative in
certain cases, for example, for an I-shaped member having large end
eccentricities and subjected to bending about the minor (v-y) axis.

4. For the I-shaped column that is bent about the major (x—x) axis and

is laterally unsupported in the weak direction, a separate lateral-buckling
check must be made.

The interaction formulas now to be discussed provide procedures for
beam-column design that overcome all of these objections to the initial-
yield procedure. In the range where the initial-yield approach is applicable,
they will give about the same results.

6.3 Beam-Column Strength in Bending Without Lateral Buckling

This section deals with interaction formulas for beam-columns that are
subjected to bending in the weak direction, and to beam-columns subjected
to strong-direction bending provided that they are adequately braced
against lateral buckling. Shanley (6.28) has discussed interaction formulas
in considerable detail, and was an early proponent (6.29) of this approach
to design. In Ref. 6.29, Shanley reviews early developments of the design
of columns in the aircraft field.
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The strength of members subjected to flexure combinec.l with com-
pressive axial load can be expressed conveniently by interaction formulas
in terms of the ratios P/P, and M/M,, where .

P = thrust at actual failure,

P, = ultimate load for the centrally loaded column for buckling in
the plane of the applied moment,

M = maximum bending moment at actual failure, and

M, = ultimate bending moment in the absence of axial load.

The following equation is the basis for several such interaction formulas:

P M
=+ — < (6.8)
7t <!

In the elastic range, an approximation of the maximum bendi.ng
moment for beam-columns subjected to bending f9roes Producmg
maximum moment at or near the center of the member is obtained from
Eq. 6.4 by setting = 0:

M,
Myax = TT(-PTTPT) (6.9)
where P = applied axial load,
» P, = elastic critical load for buckling in the plane of applied
moment, and v
M, = maximum applied moment, not including contribution of axial
load interacting with deflections.

Substituting Eq. 6.9 into Eq. 6.8 gives

P M
=t == x1 (6.10)
PMIT-@P S
" For eccentrically loaded columns having equal end eccentricity e at both
ends, Eq. 6.10 takes the following form:

LA L A— 6.1
Pt =@ <! @D

The simpler straight-line interaction formula (Eq. 6.8 with M = M)
has been used in some design specifications. When L/r is large and the
applied moment is small, with maximum moment at or near midl_ength qf
the member, Eq. 6.8 generally overestimates the carrying capacity. This
fact has been demonstrated by tests reported by Hill, Hartmann, and Clark
(6.30, 6.31), and by Mason, Fisher, and Winter (6.10). fl"hert.:fore, the
trend in specifications is toward the inclusion of the amplification factor
1/[1 — (P/P,)], as shown in Egs. 6.10 and 6.11.
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Galambos and Ketter (6.8) present dimensionless interaction curves
for the ultimate strength of typical wide-flange beam-columns bent in the
strong direction and having (a) equal axial-load eccentricities at both
ends, and (b) eccentricity at one end only. Interaction curves are given
which define the initial-yield condition, the maximum load capacity
neglecting residual stresses, and the maximum load capacity considering
residual stresses. Calculations for maximum capacity (in the inelastic
range of bending) involve application of the Newmark numerical procedure
(6.32). The parameters used for the maximum-strength formulas are P/P,
and M/M,, and the interaction formulas take the following form:

M P P\2
AE+BE+C(E) <1 6.12)
where A4, B, and C are empirical coefficients that are functions of L/r and
of the loading condition, and P, is the column axial load at the full-yield
condition (P, = A4o,). The Galambos-Ketter curves are in good agree-
ment with prior tests made at Wisconsin (6.33), Lehigh (6.19, 6.34), and
Liége (6.20).

The AISC Manual Plastic Design in Steel (6.35) and the AISC Specifica-
tion (A13) use a complete tabulation of the Galambos-Ketter coeflicients
of Eq. 6.12 for beam-columns loaded as described in the preceding
raragraph.* ' .

In a third case of strong-direction bending, where a beam-column is
bent in double curvature by moments producing plastic hinges at both
ends, the AISC (A13) recommends a strength formula that can be written

M, P
O.SSE + 7, <1 6.13)
This has the same form as Eq. 6.12, but is independent of Ljr. M, is the
plastic bending moment (M, = Zo,, where Z is the plastic modulus).
Galambos and Prasad (6.46), using the curves that formed the basis for
Eq. 6.12, as well as additional information supplied by Ketter (6.41), have
furnished more complete tables for the ultimate strength of eccentrically
loaded beam-columns for all ratios of M, /M, and for L/r values between 0
and 120. Although presented in nondimensional form, the tables are for
steel with a yield stress of 33 ksi. If it is assumed that the residual stress
has the same distribution pattern over the section and the same proportion
of the yield stress for all steels, the tables can be applied to steels of other
yield points by substituting a modified L/r:

(1:) _L /3
rmod_r ay

* See Ref. 6.35, pages A2 and A3; and Ref. Al3, Tables 5.33 and 5.36.




162 Beam-Columns

6.4 Strength of Laterally Unsupported Beam-Columns

The preceding section pertains to beam-columns that are either bent in
their plane of weakness or bent in their strong plane and laterally supported.
In the case of I-shaped laterally unsupported beam-columns bent in the
strong plane, Hill and Clark (6.15) have found that the following modified
interaction formula is quite satisfactory for both the elastic and inelastic

range:
# P M

0
P, " MIT = (FIP)]
where P = applied axial load,
P, = axial load producing failure in the absence of bending moment,
. = elastic critical load for buckling in the strong plane,

M, = maximum applied moment, not including contribution of
axial load interacting with deflections, and

M, = bending moment producing failure in the absence of axial load.

<1 (6.14)

It should be noted that the terms P, and M, of Eq. 6.14 have essentially
the same meaning respectively as P, and M, of Eq. 6.10, except that in the
case of Eq. 6.14 the possibilities of buckling in the weak plane and of
lateral-torsional buckling are incorporated.

Eq. 6.14 is conservative and shows good agreement with the test results
for eccentrically loaded aluminum alloy columns that fail by lateral-
torsional buckling. The corresponding simpler straight-line interaction
formula obtained by droppfng the magnification factor is

P M,

P, + i <1 (6.15)
This equation gives results with greater scatter and overestimates the
strength of slender members for which the applied moment is maximum
at or near midlength, and where P/P, is large in comparison with M,/M,,,
Campus and Massonnet (6.20) also found that Eq. 6.14 agrees with test
data better than Eq. 6.15 does, and that Eq. 6.15 gives too high an estimate
of strength in some cases.

6.5 Evaluation of Interaction Design Formulas

Interaction formulas have a simple form, are convenient to use, and have
a wide scope of application. Allowable stresses determined from interaction
formulas vary continuously and in a smooth transition from stresses for
concentrically loaded columns at one limit to stresses for beams at the
other.

In building construction, Eq. 6.10, modified to an allowable-stress basis,
is used by both the AISI (A1l) and the AISC (A13), but both permit
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omission of the amplification factor when the ratio of average axial stress
to allowable axial stress in a member is less than 0.15. In plastic design,
Egs. 6.12 and 6.13 are used by AISC (A13) in conjunction with appropriate
tables. Suggested specifications (A21, A22) for design of aluminum alloy
members also call for use of a formula similar to Eq. 6.14; however,
the aluminum specifications recommend a straight-line formula when the
bending moment at the center of the span is not more than one-half the
maximum moment in the span.

In specifications for both railway (A17) and highway (A16) bridges,
secant-type formulas have been retained for design on an allowable-stress
basis, as discussed in Sec. 6.2. .

Allowable-stress interaction formulas for desi gn are essentially empirical
and are devised to give a desired factor-of-safety against some limiting
condition, which may be either excessive deflection or the initiation of
yielding. The nature of an interaction formula obviously depends upon the
expressions chosen to define the allowable stresses F, and F, due to axial
load and bending moment respectively. The allowable compressive stress
F, may be chosen with a suitable factor-of-safety against buckling (taking
into account residual stress) or initial yielding (taking into account
assumed accidental end eccentricities).

6.6 Beam-Columns having Unequal End Moments

When designing a beam-column subjected to unequal end moments, it
may be overconservative to use the maximum of these in an interaction
formula for design of the member, especially where the end moments are
of opposite sign. This is because the interaction formula assumes the
maximum moment to be at or near the center of the span. For cases where
the moment diagram is a straight line (no loads in the span), Massonnet
(6.20) has developed an “equivalent uniform moment” as follows:

M, = VO3(MZ2 + M2 + 04M, M, (6.16)

where M, and M, are the end moments. On the basis of a simpler analysis,
Horne (6.37) recommends the ratios M,,/M, listed in Table 6.2, where M,
is the numerically larger end moment. The AISC (A13) and AISI (Al1)
Specifications concur in the adoption of a still simpler criterion, which can
be expressed as follows:

My _ M,
M, 0.6 + 04 M,

> 0.4 (6.17)

The Massonnet and Horne recommendations and those of the AISC
and AISI Specifications are compared in Table 6.2.
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, Table 6.2, Equivalent Uniform Moment M,

M,/M * +1.0 +0.5 0 -05 | - 1.0‘
M,,/M, by Horne 1.000 0.762 0.565 0.429 0.391
M,,/M, by Massonnet 1.000 0.759 0.548 0.416 Q.447
M., /M, by AISC and

;;ISI 1.000 0.800 0.600 0.400 0.400

* M, = numerically larger end moment.

If the moment diagram is not a straight line, and the maximum moment
is not at the center of the span, a conservative procedure for using Eq. 6.1.6
or Eq. 6.17 is to choose a substitute straight-line moment diagram. that is
external to the actual moment diagram at every point (neglecting the
moment contribution of the axial loading interacting with deflections).
The maximum stress at the end of a beam-column should be checked,
irrespective of what other interaction formulas are used, by use of the
following equation: P p
a b X
7. + F, <1 (6.18)
where F,, and F, are the unreduced allowable stresses for a column and a
beam, respectively.

6.7 Beam-Columns in Biaxial Bending

Adaptations of both the secant formula and the interac':tion.-type. formula
have been applied to beam-columns in biaxial bending in bridge and
building specifications. For example, Eq. 6.10 can be expanded to cover
biaxial bending, as follows: :

P Ma(x-x) Mo(y—-y) < 1 6.19
9 Pt Mool = PlParol T Mgyl — PPl 51 1)

Equation 6.19 neglects torsional moments that are g.ene_.rally'presept in.a
biaxially loaded beam-column and which may require consideration in
the case of open sections. Birnstiel and Michalos (6.47) have ana!yzed the
effect of biaxial moments on-wide-flange sections under axial loading only,
in the inelastic range, including the torsional behavior.

El Darwish and Johnston (6.39) have considered the design problem of
a closed-section column consisting of four point-areas located 'at .the
corners of a square, bent biaxially by transverse loads in the.two p{lnc.lpal
planes of the cross section. The general problem of analysis (.)f t?laxlally
bent beam-columns is exceedingly complex and only a beginning has
currently (1966) been made.
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6.8 Beam-Columns in Frames

Most beam-columns do not occur as isolated, simply supported members,
but as parts of frameworks, which often have rigid connections. In such
cases a rational design procedure should take account of the end restraints
afforded and end loads transmitted by the adjacent framing members,
which may in turn be loaded axially and/or by lateral loads. At the
connection between the beam-column ends and the restraining members,
there is a common value of rotation (assuming continuity), and, in addition,
the member end moments must be in equilibrium. The continuous-frame
problem, in either the elastic or inelastic range, can be programmed for
incremental solution by means of a digital computer.

For structural-grade steel with a yield point of 33 ksi, Ojalvo and others
(6.42, 6.43, 6.44) made use of a concept originated by Chwalla in which the
deflected axis of any beam-column is represented by a portion of a basic
column deflection curve. Charts were developed for finding both the end
moments in the restraining members and the slenderness ratio of the
beam-column, for the fully continuous condition. Companion sets of curves
were prepared for load ratios P|P, 0f0.12,0.2, 0.3, 0.4, and 0.6. The charts
apply specifically to cases where moments are introduced to the beam-
column at its ends. Ojalvo (6.42) shows how the method can be applied
to a member with any set of end moments and end restraints. Levi (A26)
has applied similar procedures to restrained columns with sidesway. Lay
(6.5) has shown how the charts can be generalized and extended to steels of
different yield points. ‘

Many of the important advances in the study of restrained beam-
columns, as reviewed in the preceding paragraphs, have occurred during
the five-year period between the first and second editions of this Guide.
However, general procedures. are not yet available for the design of
restrained beam-columns for any condition of load and end restraint, and
for any cross section, yield point, and so forth. In the absence of such
general procedures, the design procedure for restrained beam-columns
developed by Winter and associates (6.38) can be used. The Winter
approach is simple and conservative, but at the same time considers the
strength afforded by the end restraints of adjacent members.

Eccentrically loaded, end-restrained columns can be designed safely
by replacing the restrained beam-column by an equivalent, hinged-end
beam-column having a length equal to the effective length (between points
of contraflexure) of the real, restrained beam-column, and analyzing this
equivalent beam-column for axial compression plus those portions of the
total joint moment which are resisted by the real beam-column alone. It is
sufficiently accurate to use moment distribution to determine those
portions of the total joint moments which are resisted by the real beam-
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column, neglecting the reduction in effective column stiffness attributable
to the axial force. (This approximation is conservative, since it will result
in an overestimate of bending moment resisted by the column.)

Using this simplified procedure for the design of a rigid frame, the
designer would determine the end moments of each vertical member by
conventional moment analysis, without regard to change of effective
stiffness caused by axial load. He would then dimension the member for
the normal force and the end moments so obtained, using the effective
length KL instead of the real length L in determining the slenderness ratio.
This method is applicable regardless of the particular code provision for
calculating stresses due to combined axial force and bending (secant
formula, interaction formula, and so forth).

For members having real eccentricities (such as truss members with
joint eccentricities and multi-story columns with offset axes) which result
in end moments M,, the designer can calculate the effective eccentricity
e, of each such member framed to a given joint from the results of the
moment distribution analysis, i.e., from the following equation:

M, (I/L),

“ =P, Sy (620
where P, is the axial compression force and (/L), the end rotational rigidity
of the nth compression member; and >(I/L) is the sum of the rigid-
ities of all members connected to the given joint. Each member can then
be designed for simultaneous axial load P, and bending moment M =
P,e,, using the effective length KL for determining the slenderness ratio.

The following outline summarizes the Winter simplified procedure for
design of a restrained beam-column:

1. Select a trial section (using an appropriate approximate method) and
compute the bending stiffness parameter (I/L) for the member;

2. Estimate the effective length of the member, using the charts given
in Fig. 2.21, or any other convenient procedure;

3. Calculate the bending-moment distribution in the frame;

4. Check the trial beam-column selection using the member effective
length;

5. If necessary, repeat the procedure, using other trial sections; and
finally,

6. Check the stresses at the ends of the member to make certain that
they do not exceed the basic allowable values (i.e., with no reduction for
buckling).

The most rational approach to beam-column design is to use the
ultimate strength of the complete frame as the basis for the determination
of permissible working loads, regardiess of whether the allowable-stress or
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the plastic-design procedure is being used. Research is underway (1966),
particularly at Lehigh University, to apply the principles of plastic design
to tier-building frames (6.48). New developments are to be expected in
both the allowable-stress and the plastic-design techniques for restrained
beam-columns. ’
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Chapter Seven

Pony Trusses

7.1 Introduction

A pony-truss bridge is one in which top-chord lateral bracing members
cannot be used (because of vertical clearance or other requirements), so
that the truss compression chords must be braced laterally by the vertical
and diagonal web members.

It may be noted that procedures for the lateral-buckling analysis of the
top chord of a pony truss can also be applied to the lateral buckling of
the compression flange of a plate girder, if the girder tension flange is
braced both laterally and torsionally at vertical-stiffener locations (see
Sec. 7.6).

The compression chord of a pony truss receives elastic lateral support
at the panel points. The design of the compression chord may be based on
the computed buckling load; or, because of initial crookedness and
because of moments introduced by bending of the floorbeams, it may be
based on combined-stress calculations that include the effect of deflection.
The latter approach is a rational one but has not as yet been simplified
sufficiently to make it a practical design procedure. On the other hand,
the buckling-load analysis gives only an upper bound to the actual strength
of the member. Current design rules are based on a semiempirical procedure
in which adequate stiffness of the compression-chord lateral supports is
obtained by designing them for fictitious horizontal loads introduced at
the top-chord panel points normal to the plane of the truss. The buckling
load of the chord with elastic lateral supports at the panel points is then
determined, and the design load is found by dividing this buckling load by
a suitable factor-of-safety.

The development of the buckling-load analysis and to a much lesser
extent the combined-stress procedure will be reviewed in this chapter. The
design of pony truss transverse frames (floorbeams, truss verticals, and
connecting knee braces) has a direct bearing on both procedures. If the
transverse frames are not designed adequately, failure of the compression
chord, and subsequently of the bridge, may result.
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Towards the end of the nineteenth century the failure of several pony-
truss bridges focused attention on the top-chord buckling problem.
Engesser, between 1884 and 1893 (7.1, 7.2), was the first to present a
simple, rational, and approximate formula for the required stiffness, Creq,
of elastic supports equally spaced between the ends of a hinged-end
column of constant section. An equivalent uniform elastic support was
assumed in the Engesser analysis.

Chwalla (7.3) presented a more general solution for the problem of a
column under constant compression and supported on an elastic founda-
tion. He assumed that the ends are supported by rotational elastic
restraints of arbitrary stiffness.

References 7.4 to 7.18 are a succession of reports on later investigations
that provide more general solutions directly related to the pony-truss
problem. These developments are reviewed by Bleich in Chapter 8 of
Ref. Al. The results of these studies cannot be applied readily in practice
because of their complexity.

Hu (7.19), using the energy method, has studied the problem of
elastically supported chords. He considered nonuniform axial forces,
chord cross sections, and variable-stiffness spring supports for both
simple and continuous pony-truss bridges.

Holt (7.20, 7.21, 7.22, 7.23), in work sponsored by Column Research
Council, has presented a method of analysis for determination of the
buckling load of a pony-truss top chord which is essentially “exact” in
that it includes most of the secondary effects which influence the behavior
of the pony truss. In a similar manner, Lee (7.24, 7.25) studied the stability
of pony-truss bridges.

The effect of floor-system deflections on the top-chord stresses was
studied in another CRC-sponsored project by Barnoff and Mooney (7.26).
Experimental work on the primary problem of the instability of elastically
supported columns has been done by Engesser (7.27), Schibler (7.28), and
Lazard (7.29). Tests on models of pony-truss bridges have been conducted
by Holt (7.23) and by Lee (7.24).

7.2 Buckling of the Compression Chord

The buckling problem of the compression chord of a pony truss can be
reduced to that of a column braced at intervals by elastic springs whose
spring constants correspond to the rigidity of the truss transverse frames.
The top-chord axial compression and the top-chord stiffness vary from
panel to panel, and the rigidity of the transverse frames varies from panel
point to panel point, thus complicating the theoretical problem. In addition,
there are secondary factors such as the following:
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1. The stiffening effect of the truss diagonals.

2. The torsional stiffness of the chord and web members.

3. The initial crookedness of the chord and the eccentricity of the
axial load.

4. For nonparallel-chord trusses, the effect of chord curvature.

Engesser’s solution (7.1, 7.2) is based on the following simplifying
assumptions:

1. The top chord, including the end posts, is straight and of uniform
cross section.

2. Its ends are taken as pin-connected and rigidly supported.

3. The equally spaced elastic supports have the same stiffness and can
be replaced by a continuous elastic medium.

4. The axial compressive force is constant throughout the chord length.

Engesser’s analysis can be applied with reasonable accuracy to the case
where the lateral support is supplied by equally spaced springs, provided

that the half wavelength of the buckled shape of the continuously supported

bar is at least 1.8 times the spring spacing; and this will be true if the bar is
stable as a two-hinged column carrying the same axial load and having a
length no less than 1.3 times the spring spacing. Since the flexibility of the
end supports is neglected, the Engesser solution can best be used as a
preliminary design tool with a more accurate subsequent evaluation by
Table 7.1 as hereinafter discussed.

Engesser’s solution for the required stiffness of a pony-truss transverse
frame is
P2l
4EI
where C,q is the elastic transverse frame stiffness at a panel point that
is required to ensure that the overall chord having panel lengths / and
flexural rigidity EI will attain buckling load P,. If the proportional limit
of the column material is exceeded, E should be replaced by the tangent
modulus E,.

Eq. 2.3a for basic column strength can be written as follows for a
column of length /:

Creq = (7 1)

2
El = 5&%’)— (1.2)

Taking /in this equation as the panel length of the pony-truss compression
chord, we can substitute Eq. 7.2 into Eq. 7.1, obtaining the required spring
constant as

2P,

Crea = 3571

(1.3)
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This equation has been shown* to be adequate when the half wavelength
of the buckled chord is no less than 1.8/; and this limiting value corresponds
to a K-factor of 1.3. It is not applicable to short bridges with a small
number of panels.

It should be noted that P, is both of the following:

1. The buckling load of the entire compression chord, laterally
supported by the transverse frames (and assumed to be pin ended).

2. The buckling load of the portion of the compression chord between
the transverse frames (with ends restrained consistent with the factor K).

According to the Engesser theory, the maximum compression-chord
buckling load and the corresponding required spring constant of each
support can be determined as follows for a member of given cross section
having area 4:

1. Determine the critical load P, for the member between spring
supports, using the expression

P, = Ao, (7.9

Obtain o, from an appropriate column strength curve, taking the equivalent
column slenderness ratio as Kl//r, with K = 1.3 and r estimated on the
basis of probable shape and size of member.

2. Determine the spring-constant C.., such that the buckling load of the
chord member as a whole is equal to P,:

Crua = 1.46% (1.5)

It may be noted that Eq. 7.5 follows from Eq. 7.3, taking

P

7.'.2

ke~ aaE ~

The Engesser simplifying assumption of taking the chord ends as pin
connected may result in significantly unsafe errors in Cg, in the case of
short pony trusses. Holt (7.31, 7.32) provides an alternate design procedure
which does not require this simplifying assumption. Holt’s solution for
the buckling load of the compression chord of a pony truss is based on the
following assumptions (see Fig. 7.1):

1. The transverse frames at all panel points have identical stiffness.

2. The radii-of-gyration of all top-chord members and end posts are
identical.

* See Ref. 7.19, p. 275.
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Fig. 7.1. Pony truss and analogous top chord.

3. The top-chord members are all designed for the same allowable unit
stress, hence their areas, and (from 2) their moments of inertia are
proportional to the compression forces.

4. The connections between the top chord and the end posts are
assumed pinned.

5. The end posts act as cantilever springs supporting the ends of the
top chords.

6. The bridge carries a uniformly distributed load.

The results of Holt’s studies are presented in Table 7.1, which gives the
reciprocal of the effective-length factor K as a function of » (the number of
panels) and of CI/P, (where C is the furnished stiffness at the top of the
least-stiff transverse frame).

Table 7.1, where applicable, provides a rapid design aid in checking the
stability of a pony-truss compression chord. The procedure is as follows:

1. Design the floorbeams and web members for their specified loads.

2. Calculate the spring-constant C furnished at the upper end of the
cross frame having the least transverse stiffness.

3. Calculate the value of parameter CI/P,, where P, is the maximum
design chord stress multiplied by the desired factor-of-safety.

4. Enter the table with n and CI/P,, and find the corresponding value
of 1/K for a compression-chord panel, interpolating as necessary.

5. Determine the value of Kl/r for the compression-chord panel (note
that this value of Ki/r is to be applied to all panels).

6. Determine the allowable top-chord compressive unit stress corre-
sponding to this value of Ki/r, using the appropriate column curve or table.

Values of 1/K less than 0.5 (i.e., K > 2) are only of academic interest,
since usual bridge proportions and transverse-frame stiffnesses lead to
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Table 7.1. 1/K for Various Values of Cl/P, and n

n
1/K
4 6 8 10 12 14 16

1.000 3.686 3.616 3.660 3.714 3.754 3.785 3.809
0.980 3.284 | 2944 | 2.806 2.787 2.771 2.774
0.960 3.000 | 2.665 2.542 | 2.456 2.454 2.479
0.950 2.595

0.940 2.754 2.303 2.252 2.254 2.282
0.920 2.643 2.146 | 2.094 2.101 2.121
0.900 3.352 | 2.593 2.263 2.045 1.951 1.968 1.981
0.850 2.460 2.013 1.794 1.709 1.681 1.694
0.800 2.961 2.313 1.889 1.629 1.480 1.456 1.465
0.750 2.147 1.750 1.501 1.344 1.273 1.262
0.700 | 2.448 1.955 1.595 1.359 1.200 1.111 1.088
0.650 1.739 1.442 1.236 1.087 0.988 0.940
0.600 2.035 1.639 1.338 1.133 0.985 0.878 0.808
0.550 1.517 1.211 1.007 0.860 | 0.768 0.708
0.500 1.750 1.362 1.047 | 0.847 0.750 | 0.668 0.600
0.450 1.158 0.829 0.714 0.624 0.537 | 0.500
0.400 1.232 | 0.886 | 0.627 0.555 0.454 0.428 0.383
0.350 0.530 | 0.434 | 0.352 0.323 0.292 0.280

0.300 | 0.121 0.187 0.249 0.170 | 0.203 0.183 0.187
0.293 0

0.259 0

0.250 0.135 0.107 | 0.103 0.121 0.112
0.200 0.045 0.068 0.055 0.053 0.070
0.180 0

0.150 0.017 0.031 0.029 | 0.025
0.139 0

0.114 0

0.100 0.003 0.010
0.097 0

0.085 0

values of 1/K reasonably near 1.0, and this results in economical use of
material.

Hu (7.19) developed the curves shown in Fig. 7.2. These curves give the
stiffness of the compression-chord transverse supports that is required to
make each panel of chord buckle as one half wave. Hu assumed that both
the flexural rigidity (EI) and the axial force (P) of the compression chord
vary as a symmetrical second-degree parabola along the chord length.
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Fig. 7.2. Effect of variation in compression chord on transverse stiffness requirements.

Hu’s results for a chord of constant section ((EI)ena/(EI)miaaie = 1.0
in Fig. 7.2) can be compared with Holt’s work for 1/K = 1 (first line of
Table 7.1) for the cases n = 4, 6, and 8, which were considered by both
investigators. Hu’s results give stiffness requirements approximately 79,
less than those of Holt for n = 4, and 59 greater for n = 6 or 8. Thus,
the results are in reasonable agreement, even though the procedures are
somewhat different.

Hu (7.19) also studied the effect of the variation of C.. caused by
parabolic variation of the length of the pony-truss verticals, and the
effect of parabolic variation of C,eq. In both cases the value of C,eq Will be
less than that for the case where C,q has the same value at each transverse
frame.

Because of the uncertainties involved in the analysis of pony-truss top
chords, it is reasonable to require a factor-of-safety for overall top-chord
buckling somewhat greater than that used for designing hinged-end
columns.

The transverse-frame spring-constant C that is actually furnished can
be determined for the frame loaded as shown in Fig. 7.3 by means of the
following equation:

E

R2[(h/31.) + (b/21,)]

The first term within the denominator brackets represents the contribution
of the truss vertical, and the second term represents the contribution of the
floorbeam. Thus, the contributions of the top-chord torsional strength
and the web-diagonal bending strength to the frame stiffness are neglected

o

(7.62)
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Fig. 7.3.

in' this equation. It is evident that if the floorbeam is very stiffin comparison
with the truss vertical, the frame stiffness is approximately
_ 3EI
=5 (7.6b)
When the two chords tend to move in the same direction, the stiffness C

will be greater than that given by Eq. 7.6a; therefore, C as found from
Eq. 7.6a is always the lower bound.

7.3 Effect of Secondary Factors on Buckling Load

The consideration of secondary factors involves procedures which require
a large amount of computation. Most of these procedures use the usual
nfxethods of indeterminate structural analysis to set up a system of
simultaneous, linear, homogeneous equations. The stability criterion is
that the determinant of the coefficients of this system of equations must
vanish.

Holt (7.21) considered the following secondary factors in his analysis:

1. Torsional stiffness of the chord and the web members.
2. Lateral support given to the chord by the diagonals.

h3. Effect of web-member axial stresses on the restraint provided by
them.

4. Effect of nonparallel-chord trusses.

. 5. Error introduced by considering the chord and end posts to be a
single straight member.

Holt’s analyses show that the error introduced by neglecting all of these
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factors is quite small, and that satisfactory results in calculating the
compression-chord buckling load can be obtained by assuming that the
chord is a straight elastically braced column whose length is the total
length of the chord and end posts. These conclusions are in agreement
with those reached by Schibler (7.30), who finds that the torsional stiffness
of the top chord and the support furnished by the web diagonals increase
the chord buckling strength only slightly.

7.4 Top-Chord Stresses due to Bending of Floorbeams and to Initial
Chord Eccentricities

The compression chord of a pony truss will be displaced laterally at some
panel points as a result of live load on the bridge, and because of initial
crookedness and unintentional eccentricities of the chord. Such lateral
deflections will, of course, reduce the maximum load capacity of the chord
(and of the bridge), just as end eccentricity and initial curvature will reduce
the compression strength of any column.

Design procedures that take account of such imperfections are not
presently available. It is difficult to take them into account, because of
both the complexity of the necessary calculations and the lack of knowledge
with regard to probable initial imperfections. The calculations involve the
top-chord stiffness in both bending and torsion.

Holt (7.23) has developed an empirical procedure for estimating
bending moments in the top chord and end posts that is in agreement
with his test results. He recommends that the end post be designed as a
simple cantilever beam to carry the axial load combined with a transverse
load of 0.59% of the axial load, applied at the upper end. Tentatively, a
value of 1% should probably be used, in line with German specifications.*

7.5 Design Procedures

In the design of half-through truss spans, AASHO Specificationst require
that “The top chord shall be considered as a column with elastic lateral
supports at the panel points. The critical buckling force of the column, so
determined, shall exceed the maximum force from dead load, live load
and impact in any panel of the top chord by not less than 50 percent.”
Thus, a load factor of 1.5 is considered adequate, and this is less than that
required by the same specification in the determination of allowable
compressive stresses in hinged-end columns.} This is presumably justified
on the basis that all pony-truss top-chord compression members cannot
be stressed simultaneously up to the same proportion of critical buckling
load. However, it seems evident that in cases where maximum compressive
* See Ref. A18, Vol. I, Sec. 12.1.

t Ref. A16, Art. 1.6.70.
1 See Ref. A16, Int. Spec. 7(62), Art. 1.4.2.
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stress may occur simultaneously in the entire length of the compression
chord, the safety factor should be higher than that used for general column
design, rather than lower.

Ge'rman Buckling Specifications* base the design of pony-truss com-
pression chords on the Engesser solution for the buckling load, with the
recommendation that K be kept the same for all panels and between limits

of 1.2 and 3.0. The formula for required transverse-frame stiffness is
given as:

Cooy = 20 P
rea = 3] .7
For Kn = 1.3, Eq. 7.7 gives very nearly the same result as Eq. 7.5, which
is to be expected since both equations are based on Engesser’s solution.
For design of the web verticals, the AASHO Specification reads:t
“The vertical truss members and the floorbeams and their connections in
half-through truss spans shall be proportioned to resist a lateral force of
nof less than 300 pounds per linear foot, applied at the top-chord panel
points of each truss.” The German Buckling Specifications} specify a
.transverse force in either direction of 1/100K,, times the compressive force
in the adjacent chords, increased by the impact coefficient, for intermediate
frames. K, is the average of the K values for all panel-length compression
chords. For end frames the same applies, except that K,, is omitted.
The problem of the lateral stability of a pony-truss compression chord
will now be illustrated by means of a design example, using, in part,
AASHO Specifications (A16).

Design Example 7.1 (see Fig. 7.4)

Consider a pony truss that has 12 panels of 13 ft 4 in. for a span of 160 ft.
The transverse frame is shown in the sketched cross section. The 27W-84
floorbeams are required by bridge deck loads. The top chord is a 10-in.-
square box section, with wall thickness to be determined by design
requirements for a maximum compressive stress of 360 kips (dead load,

live load, and impact). The verticals are 10W* rolled sections.

The approximate properties of the compression-chord cross section
are as follows:

Area: A = 4td = 40t in.?
.. Ad? .

Moment-of-inertia: I = < = 670t in.*

Radius-of-gyration: r = d = 4.08 in.

6
* See Ref. A18, Vol. II, Sect. 12.12.

T Ref. Al6, Art. 1.6.70.

T See Ref. A18, Vol. I, Sec. 12.1.
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By AASHO requirements, the lateral force to be resisted at the upper
panel points is

0.3 kips/ft x 13.33 ft = 4 kips*

The maximum moment in the transverse frame will be at the joint of the
web vertical and the floorbeam, and is

M = 4 kips x 120 in. = 480 kip-in.

Assume that the maximum tension in the web vertical due to the bridge
load is 24 kips in the region where the compression chord is most highly
stressed. Taking r as approximately 0.42d, and the allowable stress as
20 ksi due to combined bending and direct stress, the required cross-
sectional area of the vertical is

_ 1 Mc\ 24 4 (480 x 5)/(4.2)?
=7 (P + W) = 2

Try a 10W33, for which 4 = 9.71in.2 and 7 = 170.9 in.* The I of the
floorbeam is 2825in.%, and from Eq. 7.6a the transverse-frame spring
constant is:

A = 8.0in.2

29000
1202[120/(3 x 170.9) + 360/(2 x 2824.8)]

Assuming the factor-of-safety against buckling to be 2.0 (only 1.50 is
required by AASHO), the compression chord must be designed for a

C=

= 6.76 kips/in.

* By the German specifications (Ref. Al18), assuming K, = 1.3, the maximum
lateral force would be 360 kips/130 = 2.77 kips.

7.6 Plate Girder with Elastically Braced Compression Flange 181

buckling strength of P, = 2.0 x 360 kips = 720 kips. By Eq. 7.5, the
buckling load of the chord as a whole will be 720 kips provided that C is
no less than (1.46 x 720)/160 = 6.57 kips/in. Since the actual C has been
found to be 6.76, this requirement is met.

Taking the effective length to be 1.3/, as assumed in Eq. 7.5, the effective
slenderness ratio of each panel length of the compréssion chord is

Kl _ 1.3 x 160
r = T 408

Using the AASHO formula for pin-ended columns of A36 steel, the
allowable compression is

fo = 16000 — (0.39)(51)? = 15.0 ksi
The required chord area for a 360-kip load is, therefore,

_ 360 -
A —-157)—24.0m.

Since A = 40¢, the required wall thickness of the compression chord is
readily found as

t = %) = 0.60 in. Use $-in. wall thickness

As a more accurate alternative and preferred procedure to the use of
Eq. 7.5, Ki/r can be determined from Table 7.1. Using the actual supplied
C, and the value of P, = 720 kips,

Cl _ 6.76 x 160
B, = T 720

Entering Table 7.1 in the column for n = 12 panels and C//P, = 1.50, 1/K
falls between 0.800 and 0.850. The interpolated value is 1/K = 0.81, or
K = 1.23. The slenderness ratio of the chord between panel points is then

Kl _ 1.23 x 160
ro 4.08

which is very close to the value of 51 found previously. The allowable
compressive stress and the required wall thickness are not appreciably
different from the previous values; however, it should be kept in mind
that for bridges having less than 10 panels, C., as found by Holt’s
procedure (Table 7.1) may be appreciably greater than the value found by
the Engesser method. ’

= 51

= 1.50

= 48.2

7.6 Plate Girder with Elastically Braced Compression Flange

Although most of the research and references presented herein concern
the pony-truss bridge, the design recommendations that have been given
are also applicable to the design of plate girders with elastically braced
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compression flanges. Such girders will customarily have full-depth vertical
stiffeners serving the dual function of web stiffener and top-flange transverse
support. The lack of girder-web diagonal members does not invalidate the
comparison, since no advantage was taken of web diagonals in the pony-
truss design derivations. In applying the design procedures to girders, the
girder top flange, including one-sixth of the web area, should be introduced
in place of the top chord of the pony truss.
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Technical Memoranda of Column Research Council

Technical Memorandum No. 1: The Basic Column Formula*

The Column Research Council has brought out that it would be desirable to
reach agreement among engineers as to the best method for predicting the
ultimate load-carrying capacity in compression of straight, prismatic, axially
loaded, compact members of structural metals. It was proposed that Research
Committee A of the Council be assigned the problem of reporting on the
correctness and desirability of the tangent-modulus column formula. This
formula involves simply the substitution of the tangent modulus, E,, for E in
the Euler formula. This formula may be written

P_ K,
A~ (KLjr)?

where P = the ultimate load (Ib),
A = the cross-sectional area (sq in.),

E, = the compressive tangent modulus (slope of the compressive stress-
strain curve) of the material in the column at the stress P/4 (Ib
per sq in.),

r = least radius-of-gyration of cross section (in.),
L = the length of the column (in.), and
K = a constant depending on end conditions:
K = 2 for one end fixed and the other end free,
K = 1 for both ends simply supported,
K = 0.7 for one end fixed and the other end simply supported,
K = 0.5 for both ends fixed.

For materials which exhibit upper and lower yield points in compression, the
lower yield point is to be considered as the limiting value of P/A.

Information and reference to literature supporting the foregoing statement
will be made available on request to the Secretary of the Column Research
Council.

It is the considered opinion of the Column Research Council that the
tangent-modulus formula for the buckling strength affords a proper basis for
the establishment of working-load formulas.

* Issued May 19, 1952.
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The column formula presented here differs in form from the familiar Euler
formula only in that the tangent modulus-of-elasticity is substituted for the
ordinary modulus-of-elasticity. There is, however, a great practical difference
between the two formulas, for, whereas the Euler formula can be solved
directly for the average stress corresponding to any given slenderness ratio, the
tangent-modulus formula cannot. It is not the intention to advocate the use
of the tangent-modulus formula in design, but rather to propose it as the basis
for relating the compressive stress-strain properties of the material to the
column strength of the material. The formula furnishes the information for
approximating to the average stress in terms of the ratio of slenderness, for
any type of centrally loaded column under consideration, by making suitable
assumptions with respect to such items as accidental eccentricity, initial
curvature of member, residual stresses, and variation in properties of the
material.

Technical Memorandum No. 2: Notes on Compression Testing of Metals*

It is desirable to have compressive stress-strain curves of material from as
many different sources as possible, together with the usual identifying tensile
properties obtained from specimens adjacent to specimens used for determining
the compressive stress-strain curves. In order that the compression specimens
and the tension specimens be as nearly as possible equally representative of
the material, the cross sections of compressive specimens in general should be
the same as those of the adjacent tension specimens.

Specimens taken from a flange with parallel faces or from the web of a
rolled shape or from a plate should be rectangular in cross section. They
should be machined only on the two cut sides and on the ends. In a thin
specimen, however, which requires lateral support to prevent premature
buckling, it is permissible to remove just enough material from the supported
faces of the specimen, if necessary, to make them plane.

The ends of compression specimens should be plane and normal to the
longitudinal axis of the specimen. The ends should be parallel within close
limits. In most cases this requirement necessitates the turning or grinding the
ends.

In general, compression specimens should be no longer than necessary to
accommodate a compressometer or strain gages and leave between each end
of the specimen and the adjacent end of the gage length a length of specimen
equal to the greatest cross-sectional dimension. The compressometer should
meet specifications for ASTM class A extensometers,} which limit the error
in indicated strain to +0.00001 in. per in. In order to obtain a representative
stress-strain curve, the gage length should be not less than the greatest cross-
sectional dimension; and in order to keep the specimen short, the gage length
should not exceed twice this dimension. If the length of a rectangular specimen
is more than about 4.5 times the length of the shorter side of the rectangle or of

* Reprinted from the ASTM Bulletin, July 1956, pp. 61, 62.
1 1965 Book of ASTM Standards, Part 30.
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Fig. B1. Test specimen.

a circular specimen more than 4 times the diameter, difficulty may be expected
in avoiding premature bending (column action), and special precautions must
be taken to prevent excessive bending.* Referring to Fig. Bl, the following
relationships summarize the above requirements for a member of rectangular
cross section:

G
G
L

VIV Vil
Q=™ <

45t s + 2b
where G = gage length,

b = width of specimen,

L = length of specimen, and

t = thickness of specimen.

The dimensions of each test specimen should be given. The specimens should
be measured with a micrometer reading to 0.001 in. Nominal dimensions
should not be used.

Both ends of a compression specimen should bear on smoothly finished plane
surfaces. The bearing blocks should be made of or faced with suitably hard
material such that the faces of the blocks will not suffer permanent deformation
during the test. The blocks should be at least as thick as the smallest cross-
sectional dimension of the specimen and should project beyond the area of
contact a distance at least half as great as the smallest cross-sectional
dimension.

Precautions should be taken to insure uniform distribution of strain over the
cross section and to prevent relative rotation of upper and lower surfaces
throughout the test. The following are suggested methods:

(1) Capping with a thin layer of plaster of Paris between the upper bearing

* For rectangular specimens see ASTM Methods of Compression Testing of
Metallic Materials: (E 9-61).
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block and the head of the testing machine. While the plaster is setting, a load
should be maintained that will bring those machine surfaces into contact that
will normally be in contact at higher loads.

(2) Use of a subpress loaded through a push rod acting at the lower end of a
hollow plunger.

(3) Use of bearing blocks which will permit adjustment for parallelism of
bearing surfaces.*

The deviation in strain of one gage from the average of all gages at 509 of
the estimated yield strength of the material should be no more than + 5%,

Adjustable bearing blocks cannot be depended upon to compensate for
tilting of the heads of the testing machine during loading of the specimen and
should be used only if appreciable relative tilting of the heads does not occur.
If a spherical bearing block is used, it should be at the upper end of the
specimen (for specimens tested with the axis vertical). It is desirable that the
center of the spherical surface lie in the flat face which bears on the specimen.
It is important that the center of the spherical surface be placed close to the
axis of the specimen, so that the eccentricity of loading may not be great
enough to overcome the friction necessary to rotate the block.

If the length of the specimen does not exceed the maximum recommended
Iength (4.5 or 4 times a cross-sectional dimension for a rectangular or a circular
specimen, respectively), strains should be measured with an averaging com-
pressometer or with two strain gages mounted opposite each other. In the case
of longer specimens tested without lateral support, reasonable certainty of
uniform distribution of strain can be obtained only with the use of not fewer
than two strain gages on the wide sides of a rectangular specimen, four gages
on a square specimen, or three on a circular specimen. Strains measured on
only one gage length are usually unsatisfactory. The stress-strain curve should
extend from zero stress and strain to values for which the ratio of stress to
strain is at least as low as 0.7E or to a strain of at least 0.01 in. per in., whichever
results in the larger strain.

Since the properties of the material are a function of the rate of loading, if
the loading is continuous, the rate of loading should be recorded. Com-
pressive stress-strain curves should be plotted with stress as ordinate and strain
as abscissa to as large a scale as the accuracy of the data justifies. The individual
values of stress and strain should also be reported. When applying the above
procedures to material which is suspected of showing a.considerable variation
in properties, the specimens should be taken from a sufficient number of
locations to define the extent of the variation in properties.

Determination of Typical Stress-Strain Curve from a Number of Individual
Stress-Strain Curves. It is assumed that the compressive stress-strain relation-
ships of enough specimens will be determined so that all variations of the
material likely to be submitted under a given specification will be represented,
The yield-strength values determined from the individual tests should be

* See Fig. 1in ASTM Methods of Compression Testing of Metallic Materials:
(E 9-61).
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Fig. B2. Typical compression stress-strain curve of a high-strength aluminum alloy.

presented in the form of a distribution plot in \yhi’ch the pe'rcent of ‘thel t?tt:;
number of tests for which the yield strength is within a certain range is plo
against the average value of the range. o ‘ "
gSeveral different methods can be used for obtaining a typical st;essh§t?1ir;
curve from a number of individual stress-strain curves. One metho ;ancws-
fairly simple and has had considerable use is described generally as follows:
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initial modulus line.

3. For any appropriate yield-strength value, a typical stress-strain curve

can then be plotted by adding the offset values to the strain consistent with the
elastic-modulus value,

Figure B2 shows a typical compression stress-strain curve of a high-strength
aluminum alloy. Lines have been drawn tangent to this curve at different
values of stress P/ 4. The slopes of these lines define the corresponding tangent,
modulus, E,* essential to the determination of the basic column strength.t

Technical Memorandum No. 3: Stub-Column Test Procedure;

THE STUB-COLUMN TEST
Definition

A stub column is a column whose length is sufficiently small to prevent failure

as a column, but long enough to contain the same residual stress pattern that
exists in the column itself.

Application

Column strength may be expressed as a function of the tangent modulus
determined from the stress-strain relationship of the stub column test.

Hence, a stub column test is an important tool in the investigation of the
strength of columns.

* Convenient and accurate techniques are available for determining the tangent
modulus; one such technique is described in NACA TN 2640, ““Interaction of Column
and Local Buckling in Compression Members,” by P. P. Bijlaard and G. P. Fisher.

T See “The Basic Column Formula,” Technical Memorandum No. 1, Column

whereas about the weak axis, the strength is a function, approximately, of the cube
of the tangent modulus. F urther, the tangent modulus theory will give a conservative
estimate of column strength. For other shapes, such as box shapes, there is no direct
or simple relationship. (Refer to Chapter 2, Section 2.3. Ed)
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The difference between the Young’s modulus and the tangent modulus at
any load level, determined from a compression test on the complete cross
section, essentially reflects the effect of residual stresses. This may be realized
when one considers that the cross section, hitherto completely elastic under
load, becomes elastic-plastic at the proportional limit. The presence of
residual stresses in the cross section implies that some fibers are in a state of
residual tension while others are in a state of residual compression. The fibers
in a state of residual compression are the first to reach the yield point under
load.

The difference between the behavior of a column free of residual stresses
and one containing residual stresses lies in the fact that both the tangent
modulus and the effective moment-of-inertia are greater for the column free of
residual stresses. On the other hand, the behavior of a stub column reflects
only the effect of residual stresses on the tangent modulus;* the reduction of
the moment-of-inertia due to plastification has no effect on the behavior.
Under load, some parts of the cross section will yield before others, leading
to a decrease of the effective moment-of-inertia and hence in the strength of
the column, since those portions of the cross section which have yielded play
no further role in strength consideration, provided the effect of strain hardening
is neglected.

Therefore it may be seen that the residual-stress distribution in the cross
section, through its influence on the effective moment-of-inertia, supplies the
connecting link between the strength of a column and the tangent modulus
of the stress-strain relationship of the stub column.

References

Extensive literature exists to show that residual stresses are, indeed, the major
factor contributing to the strength of axially loaded, initially straight, columns,
and that a conservative value for this strength may be specified in terms of the
tangent modulus determined from the results of a stub-column test. (See pp.
53-54 of this CRC Guide for most of these references. Ed.)

STUB-COLUMN TEST PROCEDURE

1. Object

To determine the average stress-strain relationship of the complete cross
section by means of the stub column.

2. Preparation

(a) The stub-column length should be cut a distance at least equal to the
section depth away from flame-cut sections. The presence of any cold-bending
yield lines would modify the resulting stress-strain relationship.

* When the cross section is free of residual stresses, the tangent modulus coincides
with Young’s modulus.
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(b) The length of the stub column should be
2d + 10”, or, 2d + 25 cm, or, 3d minimum
20r,, or, 5d maximum
where d = depth of section
’ r, = radius-of-gyration about weak axis

(c) The ends of the stub column are to be milled flat and perpendicular to
the longitudinal axis of the column.*

(d) The thickness of flanges and webs, and the length and area of the
stub column should be measured.

3. Gaging

Mechanical dial gages or electrical resistance gages should be used, although
tpe use of dial gages over a comparatively large gage length is to be preferred
since they provide a better average for the cross section.

The dial gages should read to 1/10,000 inch when read over a 10” gage
length, or to 1/1000 inch when used between base plates over the complete
length of the stub column.t Where it can be demonstrated that electrical
resistance gages give the same results, they may be used instead of dijal gages.

The gage length should be placed symmetrically about the mid-height of the
stub column. At least two gages in opposite positions should be used and the
average of the readings taken. Corner gages over the complete column length
are used for alignment; mid-height gages are used for the measurement of
stress-strain relationship. When four mid-height gages instead of two are
used, the corner gages may be dispensed with. (This is possible with the
flange tips of an H-shape.)

Figure ‘B3 gives typical gage arrangements for a structural shape.

For uniformity, the following gaging procedure for H-shapes is advised:

(a) Four 1/1000-inch dial gages over the complete length of stub column
at the four corners; to be used for alignment. ’

(b) Two 1/10,000-inch dial gages on opposite sides over a 10” gage length
at .the mid-height; to be used in the determination of the stress-strain relation-
ship. The points of attachment for the gage length are to be at the junction of
the flange and web, to afford freedom from local flange crippling. When early
local flange crippling will not occur, four 1/10,000-inch dial gages over 10”
gage length at mid-height may be clamped to each flange tip; alignment
corner gages are nct then needed.

(‘f) The specimens are whitewashed before testing. Flaking of the mill scale
during testing gives a general idea of the progress of yielding.

* The ‘alignment is greatly simplified when the tolerance across the milled surface is
+0.001 inch (+0.02 mm).

1 A length of 25 cm. would correspond to the 10” gage length. Dial gages used on a
25 cm. base should read to a precision between limits of 1/10,000 cm. and 1/4,000 cm.
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4. Set-Up

The specimen should be set up in the testing machine so that it rests between
flat bearing plates. These plates should be thick enough to ensure a uniform
distribution of load through the specimen.

Alignment is achieved preferably hy the use of Special beveled bearing
plates, or else by the use of spherical bearing blocks which are fixed by wedges
after alignment to prevent rotation.

The test set-up is shown in Fig. B4.

5. Alignment

The alignment should be carried out at a range of loads less than the pro-
portional limit. For rolled H-shapes of mild structural steel, this limit is about

1/2 of the predicted yield load; for welded shapes, the limit may be as low as

1/4 of the yield load.

The alignment is carried out by noting the variation of strain at the four
corners of the specimen. The variation of individual strains at the four corners
should be less than 5% from their average at the maximum alignment load.

Gages for alignment
and/or stress-strain
relationship

Gages for determination
of stress-strain relationship

Gages for alignment
% 7 ol
)< Gages for determination
I of stress-strain relationship
Iz 4'
Gages for determination
of stress-strain relationship
and for alignment
(a)

Fig. B3. Position of gages for alignment and testing.
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/H. box of round shape

r‘/Base plate
/2, frames at 10” gage length

&

1 Corner rods and 1/1000-inch
{le— dial gages for alignment

(b) 1/10,000-inch dial gage for
determination of stress-strain
relationship

DoweJs, tack welded
(on both flanges)

1/10,000-inch dial gage,

over 10” gage length (for
determination of stress-

strain relationship)

1/10,000-inch dial gage,
over 10” gage length (for
determination of stress-
strain relationship and
for alighment)

Fig. B3 (concluded).
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Testing machine sensitive crosshead

P

Beveled bearing Spherical
plates bearing Wedges :o

block preven

rotation

Flat bearing
plate

Stub column

Flat beanng

.~ Dplate

W}WWWW . WWVWTWWW

Fig. B4. Stub column set up for testing.

Alignment at very low loads is unsatisfactory. The alignment should consist of
about ten increments up to the maximum alignment load.

To check that the load is below the proportional limit, the stress-strain
relationship may be plotted during the test and its linearity observed. It is
inadvisable to exercise this control by observing the whitewash for yielding
of the mill scale, indeed this method is unsatisfactory since it indicates
yielding at a load value in excess of the actual proportional limit as indicated
by the plotted stress-strain relationship.

6. Testing

The stress-strain curve should be constructed from as many experimental
data points as possible. To this end, the load increment in the elastic region
should be at about 1/30 of the expected yield load. After the proportional
limit the load increments should be reduced so that there are sufficient data
points to delineate the “knee’” of the stress-strain curve.

The proportion limit* will be marked by the beginning of the deviation of
the stress-strain relationship from the linear behavior, and the development
of yield lines (made clearly visible by whitewash) will indicate the progress
of yielding. This is further covered in Item 10.

After the onset of yielding, readings should be recorded when both load
and strain have stabilized. The criteria used to specify when data may be
recorded depend on the type of machine used for testing. This is explamed
further below in Item 7.

* It is assumed that the residual stresses are symmetrical and constant in the
longitudinal direction, so that the proportional limit does not indicate localized
yielding.
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To ensure correct evaluation of the yield level and other compressive
properties, the test should be continued until one of the following conditions
is satisfied:

(a) For an immediate drop in load due to buckling, the test should be
continued until the load has dropped to about 502/ of the load at the predicted
yield level.

(b) For a specimen that exhibits a plastic region of considerable extent, the
test should be continued until the load has dropped to about 80% of the load
at the predicted yield level.

(c) For a specimen that strain hardens without apparent buckling, or which
strain hardens without a plastic range, the test should be continued until the
load is about 25%; above that at the predicted yield level, for mild steel.

The load and strain at all critical levels should be recorded. This is further
outlined in Item 9.

It may become necessary to remove some of the mechanical gages before the
completion of the test to prevent damage due to local buckling.

7. Criteria for Stabilization of Load

Standard criteria should be followed for the recording of test data when the
load is greater than the proportional limit. The choice of the criterion will
depend upon the type of testing machine, either hydraulic or mechanical.
That is,

(a) With a mechanical testing machine, the criterion is for no further
decrease of load, and

(b) With a hydraulic testing machine, the criterion is for no further move-
ment of the sensitive cross head, with the loading valve closed, provided the
machine does not leak. (When leakage is suspected, the criterion is a simulation
of that used for a mechanical testing machine: that is, for no movement of the
crosshead controlled by the loading valve, the load is allowed to stabilize
until there is no further decrease of load.)

Load Crosshead |-
movement
L . Asymptote
Asymptote
! ! ! 1 ] 1 !
Time Time
(a) (b)

Fig. BS. Yield criteria.
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These criteria are best used by plotting the load change, or cross-head
movement, on graph paper, and noting the value corresponding to the asymp-
tote. See Fig. BS.

The test data are recorded when

(a) The asymptotic load is approached, with the load criterion, or
(b) The asymptotic cross-head movement is approached, with the cross-
head movement criterion.

Readings should not be recorded until the asymptote is definite. Experience
will indicate the time intervals required, but three-minute intervals are usually
satisfactory. The cross-head movement should be measured by a 1/10,000-inch
mechanical dial gage.

8. Evaluation of Data
The following methods may be used for the evaluation of the test data:

1. Plot the test data during the test to detect any inconsistencies.

2. Translate the test data to those of stress versus strain (from a knowledge
of the exact cross-sectional area), and plot to an enlarged scale for the stress-
strain relationship.

3. Determine the tangent-modulus curve from the stress-strain relationship.
This is best determined by use of a strip of mirror; the mirror is held normal
to the curve and a line drawn along the mirror. The normal is determined
from the continuity of the stress-strain relationship and its mirror image at the
tangent point considered.

9. Data to Report

The following information should be obtained from the stress-strain relation-
ship given by a stub-column compression test:

(a) Young’s modulus-of-elasticity
(b) Proportional limit

(c) Yield strength

(d) Yield stress level

(e) Elastic range

(f) Elastic-plastic range

(g) Plastic range

(h) Onset of strain hardening

(i) Strain-hardening range

(j) Strain-hardening modulus

The occurrence of local buckling, and any other phenomena during the test,
should be recorded.
The stress-strain diagram is shown in Fig. B6.

10. Definition of Terms
The above terms should be defined and measured as follows:

(a) Young’s Modulus, E, is the ratio of stress to strain in the elastic range.
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Fig. B6. The stress-strain diagram.

(The method of measuring is defined by ASTM Standard E 111-61 (1961),
“Determination of Young’s Modulus at Room Temperature.’)

(b) Proportional Limit, o,, is the load corresponding to the strain above
which the stress is no longer proportional to strain. It is best measured by the
use of an offset of 10 micro in./in.

(c) Yield Strength is “ the stress, corresponding to the load which produces
in a material, under the specified conditions of the test, a specified limiting
plastic strain.” This is the definition of ASTM Standard A370-64 (1964), and
an offset of 0.29 is suggested. (The yield-strength criterion is normally used
when there is yielding without constant stress.) (For stub-column stress-strain
curves, the yield stress level is mainly used, as it is a more representative
value; it is an average value in the plastic range.)
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(d) Yield Stress Level, oy, is the stress corresponding to a strain of 0.57%.
This stress will usually correspond to the constant stress under yield when the
stress-strain relationship is such as shown in Fig. Bé6a.

(e) Elastic Range may be defined as the increment of strain between zero
strain and the strain at the point A in Fig. B6a.

(f) Elastic-Plastic Range is the increment of strain corresponding to the
increment of stress between the proportional limit and the first value of stress
equal to the yield-stress level.

(g) Plastic Range may be defined as the increment of strain between the
elastic range and the onset of strain hardening.

(h) Onset of Strain Hardening may be defined as the strain corresponding
to the intersection on the stress-strain curve of the yield stress level in the
plastic range with the tangent to the curve in the strain-hardening range. This
tangent is drawn as the average value in an increment of 0.002 in./in. after the
apparent onset of strain hardening.

(i) Strain-Hardening Range is the range of strain after the plastic range
where the cross section no longer strains at a constant or near-constant stress.

(j) Strain-Hardening Modulus is the ratio of stress to strain in the strain-
hardening range. It is measured as the average value in an increment of
0.005 in./in. strain after the onset of strain hardening.

Appendix C

Computer Analysis and Design

Since 1960, when the first edition of the Guide appeared, electronic digital
computers have come into common use in the field of structures, and they are
being used increasingly in the field of column analysis and design.

Computers can be used to great advantage in two types of structural
engineering problems: those presenting analytical difficulties which result in
excessively lengthy and burdensome calculations, and those which must be
solved a great number of times with changes in some parameters. The problem
of column analysis and design falls usually, but not always, into the second of
these categories. Computer programs have been written which allow the
designer to analyze columns under a variety of boundary and loading con-
ditions, including those which involve some of the fairly complicated formulas
of the preceding chapters. Computers have also been used to solve column
design problems in accordance with a number of different specifications.

In computer-aided design, the computer can be made to obtain the minimum-
weight column. A common procedure is to arrange all available sections in
order of increasing cross-sectional area (i.e., weight) and to begin the design
analysis with the lightest. The computer can then automatically analyze and
check successive sections until one is found which meets all criteria. The
advantage of this method is that-the first section satisfying the design criteria
is the lightest. (The remainder of the list need not be investigated because none
of the remaining sections is lighter.)

Elsewhere in the Guide, solutions to certain buckling problems have been
presented. There are, of course, many additional problems of this type where
the exact solution is either unknown or is very complicated. Such problems,
as has been stated, can be attacked using numerical procedures (such as energy
methods, finite-difference methods, numerical integration, and methods of
successive approximations) in combination with the digital computer. Examples
of buckling problems for which solutions have not been presented in the Guide,
and which are amenable to computer analysis, are as follows:

1. Buckling loads of columns of nonuniform cross section having various
end restraint conditions.
2. Buckling loads of columns carrying axial loads applied at the ¢nds and
also at several points along their length.
201
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3. Buckling loads of columns carrying distributed axial loads along their
length.

4. Buckling loads of columns carrying dynamic axial loadings.

5. Lateral-torsional buckling loads of beams and compression members
having variable cross section.

6. Problems involving beam-columns having uniform or nonuniform cross
section and various end restraint conditions.

7. Problems involving beam-columns supported at the ends and elastically
supported at intermediate points, carrying distributed axial loads.

8. Critical loads of complicated frames.

9. Buckling coefficients of plates and shells.

The following references, and also general references Al and A9, may be of
use in connection with computer analysis of buckling problems:

Cl  Newmark, N. M., “Numerical Procedure for Computing Deflections,
Moments and Buckling Loads,” Trans. ASCE, Vol. 108 (1943), p.
1161.

C2  Salvadori, Mario G., ““Numerical Computation of Buckling Loads by
Finite Differences,” Trans. ASCE, Vol. 116 (1951), p. 590.

C3 Salvadori, Mario G., ‘“Lateral Buckling of Eccentrically Loaded
I-Columns,” Trans. ASCE, Vol. 121 (1956), p. 1163.

C4 *“Digital Computer Solutions of the Dynamic Column Buckling Equations,”
by E. Sevin, Conference Papers, First Conference on Electronic Compu-
tation, ASCE, Kansas City, Missouri (1958), p. 237.

C5 Zar, M,, and Beck, C. F., *“Computer Design of Structural Steel for
Buildings,” Conference Papers, Second Conference on Electronic Com-
putation, ASCE, Pittsburgh, Pennsylvania (1960), p. 35.

C6 Anaston, George P., “Optimum Design of Transmission Towers,” Con-
ference Papers, Second Conference on Electronic Computation, ASCE,
Pittsburgh, Pennsylvania (1960), p. 69.

C7 Sylvester, R. ]., and Foll, R. R., “Computer Solutions to Linear Buckling
Problems,” Conference Papers, Second Conference on Electronic
Computation, ASCE, Pittsburgh, Pennsylvania (1960), p. 429.

C8 Galambos, Theodore V., and Ketter, Robert L., “Columns Under
Combined Bending and Thrust,” Trans. ASCE, Vol. 126, Part 1 (1961),
p. 1.

C9 Brandt, G. Donald, ““Area Properties from Coordinates,” ASCE J.
Struct. Div., Vol. 88, No. ST3 (Jun., 1962), p. 197.

C10 Renton, John D., ““Stability of Space Frames by Computer Analysis,”
ASCE J. Struct. Div., Vol. 88, No. ST4 (Aug., 1962), p. 81.

C11 Welch, E., “Computer Solutions for a Beam-Column of Non-Uniform
Cross-Section,” Symposium of the Use of Computers in Civil Engineer-
ing, Lisbon, Portugal (1962), p. 3.1.

C12 Ojalvo, M., and Levi, V., “Columns in Planar Continuous Structures,”
ASCE J. Struct. Div., Vol. 89, No. ST1 (Feb., 1963), p. 1.
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C13 Schmit, Lucien A., and Morrow, William M., *‘ Structural Synthesis with
Buckling Constraints,” ASCE J. Struct. Div., Vol. 89, No. ST2 (Apr.,
1963), p. 107.

C14 Birnstiel, Charles, and Michalos, James, * Ultimate Load of H-Columns
under Biaxial Bending,” ASCE J. Struct. Div., Vol. 89, No. ST2 (Apr.,
1963), p. 161.

C15 Yang, Cheng Y., Hansen, Robert J., and Reinschmidt, Kenneth F.,
““Dynamic Response of Elastic-Viscous-Plastic Columns,” ASCE J. Eng.
Mech. Div., Vol. 89, No. ST3 (Jun., 1963), p. 43.

Cl16 Bailey, Herbert R., ‘“Dynamic Bending of Elastic Columns,” ASCE J.
Struct. Div., Vol. 89, No. ST4 (Aug., 1963), p. 95. !

C17 Sherbourne, A. N., ‘““Numerical Methods in Bending and Buckling of
Plates,” ASCE J. Struct. Div., Vol. 89, No. ST4 (Aug., 1963), p. 137.

C18 Beck, C. F., and Zar, M., ‘‘Steel Column Design for Multistory Rigid
Frames,” ASCE J. Struct. Div., Vol. 89, No. ST4 (Aug., 1963), p. 537.

C19 Stevens, Leonard K., and Schmidt, Lewis C., ¢ Determination of Elastic
Critical Loads,” ASCE J. Struct. Div., Vol. 89, No. ST5 (Dec., 1963),
p. 137.

C20 Hauck, George F., and Lee, Seng-Lip, * Stability of Elasto-Plastic Wide-
Flange Columns,” ASCE J. Struct. Div., Vol. 89, No. ST6 (Dec., 1963),

p. 297. ]
C21 *“Bibliography on the Use of Digital Computers in Structural Engin-

eering,” Progress Report by Task Group, Subcommittee on Publications,
Committee on Electronic Computation, Structural Division, ASCE;
ASCE J. Struct. Div., Vol. 89, No. ST6 (Dec., 1963), p. 461.

C22 Johnston, Bruce G., “Buckling Behavior Above the Tangent Modulus
Load,” Trans. ASCE, Vol. 128, Part I (1963), p. 819.

C23 Gere, James M., and Carter, Winfred O., **Critical Buckling Loads for
Tapered Columns,” Trans. ASCE, Vol. 128, Part 1I (1963), p. 736.

C24 Prawel, Sherwood P., Jr., and Lee, George C., ‘‘Biaxial Flexure of
Columns by Analog Computers,” ASCE J. Eng. Mech. Div., Vol. 90,
No. EM1 (Feb., 1964), p. 83.

C25 Lee, S. L., and Hauck, G. F., “Buckling of Steel Columns under Arbi-
trary End Loads,” ASCE J. Struct. Div., Vol. 90, No. ST2 (Apr., 1964),
p. 179.

* Contains a comprehensive list of texts on numerical methods.
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