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Design of Slender Concrete Columns—Revisited
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Revisions are proposed to Sections 10.10 and 10.11 of the ACI Building
Code to simplify the design of slender columns and to recognize the use of
second-order analyses. These changes are undergoing letter ballot in ACI
Committee 318 and if accepted will appear in the 1995 ACI Code. Major
changes include the listing of a series of EI values for use in second-order
frame analyses, a test for sway and nonsway frames, a flat ¢ value for
stability calculations, new slenderness limits, and the method of combining
and magnifying the nonsway and sway moments.
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The current ACI BuildingCode' provisions for the design
of slender columns were developed in the late 1960s> and
were incorporated in the Code in 1971. Additions to the
Commentary in 1977 and 1983 amplified the calculation of
k factors and the differentiation between braced and anbraced
frames. A major change in 1983 distinguished between sway
and nonsway moments and magnified these separately.

In the last decade, second-order analysis programs have
become widely available. This proposed revision to the slen-
derness provisions gives guidance for the use of such analyses
in column design.

The proposed revision, presented in an appendix to this
paper, has the following major subdivisions:

1. Slenderness effects in compression members—This sec-
tion allows either a general method or a moment magnifier
method for the design of slender columns.

2. Magnified moments—General—This section gives gen-
eral rules applicable in the moment magnifier method given
in Sections 3. and 4. These include values of E and I for use
in frame analyses and a test of whether frames are sway or
nonsway frames.

3. Magnified moments—Nonsway frames—This section
gives rules for designing columns in nonsway frames. Non-
sway frames have been separated to make the application of
the procedures more evident. The major changes are a new
slenderness limit equation and a requirement that the mo-
ments in the bracing elements be magnified.

4. Magnified moments—Sway frames—Major changes in
this section include the method of calculation of the magnified
sway moments and the method by which these are combined
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with the nonsway moments. A stability check under gravity
loads is also required.
The rest of this paper will discuss the individual changes.

SECTION PROPERTIES FOR FRAME ANALYSIS
Traditionally engineers have used the gross moments of
inertia of the columns and beams in frame analyses. With
the advent of second-order analyses as design tools, however,
it is important that the computed lateral deflections closely
resemble the anticipated deflections so that realistic PA mo-
ments are obtained. This requires realistic EI values.
Member stiffness EI values are used for three things in
the proposed code sections on slenderness: (a) in frame analy-
sis, (b) when calculating the effective length factor £, and (c)
in the design of individual columns. Two different sets of EI
values are given. Since the lateral deflections from the frame
analysis are affected by the stiffnesses of all the members in
the structure, the EI values used in frame analysis should
approach the mean values for the individual members. On
the other hand, when dealing with the stability of a single
isolated member the value used should be a safe lower bound
estimate to the EI value for a single column. As a result, the
EI values for columns given in Section 2.1 for frame analysis
are larger than those for member design given in Section 3.3.
The EI values for second-order frame analysis should be
representative of the member stiffnesses immediately before
the ultimate condition. At this stage, parts of the beams, slabs,
and walls will be cracked in flexure. It is too conservative
to base the EI on the cracked moment of inertia because the
beam will not be completely cracked at all sections. Instead
the EI should be back-calculated from the member stiffness,
K = 4EI/l, taking into account the distribution of cracking
along the member. When dealing with a 20-story building
with more than 1000 members and more than 2000 critical
sections, it is not economically feasible for designers to go
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through such calculations, and simplified methods must be
used to compute EI.

Kordina® and Hage* have studied the variation of stiffness
for various types of frame members subjected to gravity load
moments, lateral load moments, and combinations of the two.
Based on these studies, MacGregor and Hage’5 concluded
that a reasonable estimate of EI for second-order analysis
would be based on the ACI value of E, and I = 0.4 I, for
beams and 0.8 I, for columns.

Fig. 1, taken from Hage* shows the variation in the effective
EI for a T-beam as the load level is increased.

Fig. 1(a) considers gravity load moments. The term 1 is
the ratio of the fixed end moment to the nominal moment
capacity of the end of the beam
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For small loads (small W), the effective EI slightly exceeds
E.I, due to the presence of the reinforcement. As 1 increases,
parts of the beam crack and the effective EI approaches
0.4E.I,. Fig. 1 is plotted for one particular cross section.
Similar trends were obtained for other sections including
rectangular sections.

Fig. 1(b) gives the effective EI for beam moments due to
lateral loads. The term W in Fig. 1(b) is the ratio of the end
moment due to lateral loads to the nominal moment capacity.
Again EI approaches 0.4 E.l, as p approaches 1.0. Fig. 1(c)
considers combinations of |l and . Similar graphs are ob-
tained for rectangular cross sections. Hage proposed EI for
beams equal to 0.4E.l,. ‘

Once the effective EI of beams had been obtained, Hage
obtained the value of the effective EI for columns by back
calculating from the lateral deflection of laboratory tests of
reinforced concrete frames. This gave EI = 0.8E.l,.

Furlong® proposed that the EI of T-beams be taken as the
gross EI of the stem but not less than 0.5 E.l, where I, is for
the T-shaped cross section. For lower floor columns he sug-
gested EI = 0.6 El,, for upper floor columns 0.3 E .

Dixon’ back-calculated EI for columns in 13 frame tests
using a second-order analysis program. Based on Hage’s
work, he assumed the EI of the beams as 0.5E.I,. Using this
beam stiffness, the column stiffness which gave the best
conservative estimate of the measured lateral deflections was
0.5 E,.

McDonald® generated moment-end rotation relationships
for T-beams, one-way slabs, and columns. For T-beams with
1.2 percent steel, he found EI ranged from 0.37 to 0.44
E.I,. For one-way slabs with 0.5 percent steel, EI varied from
0.16 to 0.22 E.I,. For columns EI varied from 0.66 to 0.89
E.l,. MacDonald proposed EI values of 0.42 E.I,, 0.20 E.l,,
and 0.7 E., for T-beams, one-way slabs, and columns, re-
spectively.

A strength reduction factor ¢ should be included in the
second-order analysis to account for the variability in the
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Fig. 1—Variation of beam stiffness with load

predicted lateral deflections resulting from simplifications in
modeling the structure and the assumed values of E and I.
Later in this paper a single value of @ = 0.75 is proposed for
use in the moment magnifier equations. This is related to the
probability that an individual column will be understrength.
The variability of the lateral deflections of a frame are related
to the variability of the mean E and I values of all the members
of the frame. Since this is considerably less than the variability
of an individual member in the frame, the ¢ factor applied
to the second order analysis should be closer to 1.0 than that
for an individual member. A value of 0.875 is proposed.
The EI values proposed by MacGregor and Hage’ are
recommended for use in frame analysis and are incorporated
in the proposed revisions. When these are multiplied by ¢ =
0.875 they become:
a. Modulus of elasticity = E. from Section 8.5.1.
b. Moment of inertia
Beams: 0.35 I,
Columns: 0.70 I,
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Fig. 2—Comparison of Eq. (4) with columns having a mag-
nifier of 1.05

Walls—Uncracked: 0.70 I,
Cracked: 0.35 I,
Flat plates and flat slabs: 0.25 I,

c. Area: 1.0 A,

The moments of inertia used in second-order frame analy-
ses must be divided by (1 + B,) in (a) the rare situation when
sustained lateral loads act, or (b) in gravity load stability
checks.

The first value given for walls assumes the walls are
uncracked. If the moments from an analysis based on the
wall moment of inertia equal to 0.8 , indicate the wall will
crack due to flexure, the analysis should be repeated with /
= 0.4 I, in those stories where cracking is expected.

For analyses of service-load deflections, ¢ would generally
be taken equal to 1.0 and the moment of inertia can be taken
as 1.25 times the values given. As a result, the EI values for
computing service-load deflections are 1.25/0.875 = 1.43
times the values given previously.

The Commentary to ACI 318-89, Section 10.11 recom-
mends two sets of EI values for use in calculating the effective
length factor k. For kl,/r less than 60, the Commentary
suggests the use of 0.5 E.I, for beams and 1.0 EJ, for columns
when computing , used to compute k. Reference 9 shows
that this set of EI values is safe but conservative for longer
columns. The use of 0.35 E., for beams and 0.70 E.l, for
columns will give the same values of y and k as 0.5 E./, and
1.0 E.I, and hence is recommended.
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SWAY AND NONSWAY FRAMES

Traditionally, frames have been classified as braced frames
and unbraced frames when evaluating effective length factors.
Since all practical frames deflect laterally under lateral loads
there is no such thing as a truly braced frame. For this reason
the revised slenderness provisions refer to sway and nonsway
frames rather than unbraced and braced frames. A nonsway
frame is defined as one in which the second-order magnifi-
cation of sway moments is 5 percent or less. This is checked
by determining if

_ZPu
Q= Vile )

is equal or less than 0.05 where V, is the lateral shear in the
story and A, is the first-order relative lateral deflection of the
top and bottom of the story due to V... As shown in References
5 and 10, the sway magnifier 3, is approximated closely by
141 — Q) giving rise to the limit on Q of 0.05 for nonsway
frames. The Commentary to ACI 318-89 set a limit of 0.04
on Q corresponding to a 4 percent permissible increase in
sway moments. A slightly more liberal limit is given in the
proposed revisions because the lateral deflection A, is based
on the values of EI given earlier. The 1990 CEB-FIP Model
Code' requires consideration of second-order effects if lateral
deflections result in more than a 10 percent increase in sway
moments.

The Commentary to ACI 318-89 also defined a braced
story as one in which the sum of the lateral stiffnesses of the
bracing elements exceeded six times the sum of the lateral
stiffnesses to the columns. This definition can be unconser-
vative if P, /P.; is high, where P.y is the critical load of
the entire frame.

DESIGN OF NONSWAY FRAMES
Slenderness limit
Section 10.11.4.1 of ACI 318-89 allows the effects of
slenderness to be neglected if

ki, /r < 34— 12M1/M2p 3)

This equation was derived from Code Eq. (10-7), assuming
3, was limited to 1.05. Two things are wrong with this
equation. First, the original derivation was carried out in the
late 1960s using a form of Eq. (10-7) which did not include
the ¢ factor.? As a result, the code slenderness limit corre-
sponds to a magnifier considerably greater than 1.05. Second,
the equation ignores the effect of the axial load level on the
moment maghnification. In the proposed revision, Eq. (3) is
replaced by Eq. (4)

K, _ 25-10(Mi/Mp)

— <
r 'Pu

fAg C))

The shaded bands in Fig. 2 show kl/r values correspond-
ing to a magnification factor of 1.05 for two axial load levels
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for braced hinged columns. Eq. (4) is shown by dashed lines
and Eq. (3) by the broken line. For a column with
f’=3ksi, f,=60 ksi, 2 percent steel, and y = 0.75,
e/h =0.10 corresponds to P, /Af.’ = 0.68 and the balanced
eccentricity corresponds to P, /A.f.’ = 0.27. As a result, the
kL, /r value beyond which a column is classed as slender will
tend to increase compared to the 1989 Building Code.

El equations for slenderness calculations
The EI equations in ACI 318-89 are

Bl = 04 Eclg + Es Ise

1 +Ba) 5)
and
- 04 Elg
(1 +Ba) 6)

Eq. (5) and (6) have been retained, but in the draft they
are multiplied by @ to maintain consistency with the format
of the EI values proposed for structural analysis. For pre-
liminary design of nonsway frames, Eq. (6) could be replaced
with

EI' =025 Eclg ©)

This is equivalent to assuming B; = 0.60. When lateral
load moments govern the design, B, will be zero and Eq. (7)
will be excessively conservative.

Strength reduction factor ¢s

The 1971 and subsequent codes have taken the strength
reduction factor ¢ in the moment magnifier equations equal
to 0.7 or 0.75 for tied and spiral columns. This increases to
0.9 for the pure moment case. These values were originally
derived for axially loaded short columns.

Mirza, Lee, and Morgan'" suggest that for the practical
range of variables for tied columns, ¢ could be taken equal
to 0.80, while for the extreme range of variables, @, should
be between 0.7 and 0.75. A flat value of 0.75 has been used
in the magnifier equations in the proposed revisions. This
remains constant throughout the whole range of eccentricity
ratios e/h and applies to tied or spiral columns alike. To
distinguish it from the regular ¢ factors for columns it has

been called ¢;.

DESIGN OF SWAY FRAMES

In the proposed revisions, the design of sway frames for
slenderness consists of three steps:

1. The magnified sway moments 3,M; are computed. This
may be done in one of three ways which will be discussed
in the next part of this paper.

2. The magnified sway moments 8,M, are added to the
unmagnified nonsway moments M,, “at each end of each
column.

ACI Structural Journal / May-June 1993

M1 =Mins+ dsMis (8)

M2 = Mops+ Mo )

where M; is the larger of the two end moments.

3. If the column is slender and the loads on it are high, it
is checked to see whether the moments between the ends of
the column exceed these at the ends of the column. This is
done using the nonsway frame magnifier 8,,, with P. com-
puted assuming k = 1.0 or less.

This is an extension of the separation of 8, and §, and
nonsway and sway moments proposed by Ford, Chang, and
Breen" and introduced in the 1983 Code. The procedure has
been changed because in most sway frames the possibility
of the maximum moment occurring between the ends of the
column is greatly reduced by the presence of the large dou-
ble-curvature moments due to the lateral loads.

Determination of whether maximum moment is at
the end of the column

In most columns in sway frames, the maximum column
moment will occur at one end of the column, and the third
step listed in the previous section will not be required. It is
useful to have a simple way of determining when this will
occur so that Step 3 is avoided when not required.

Galambos'* has shown that the maximum moment M., in
an elastic beam column loaded with an axial load and end
moments M, and M, is

M. =M} (10)

where

M M
1 +(M2] 2(M2]cosa

sino (1 1)

and o = Pl /EI. 1t will be assumed that stability effects can
be disregarded if M. is not more than 1.05M,, i.e., 8 < 1.05.
Eq. (11) can be solved for the combinations of M;/M, and
o corresponding to & = 1.05. These are plotted with the solid
line in Fig. 3. Combinations of Mi/M, and a falling below
this line can be designed for the second-order end moments
without further magnification. For sway frames the range of
M,\/M; of interest is approximately —0.5 to —1.0, in the double
curvature range. In this region, the solid line may be approxi-
mated by

Ml Pul2

My~ " 5.25E1 (12)

Substituting EI = 0.4E.Ar* and the ACI code value of E,,
and solving for the case of Mi/M,=-0.5 and /" = 8000 psi
(55 MPa) gives
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Fig. 3—Comparison of Eq. (11) for 8 = 1.05 and Eq. (12)

4.
1 < 349
r ’ Pu
Fc'Ag (13)

If I/r is less than this, the maximum moment will be at
one end of the column. The constant in Eq. (13) increases
as Mi/M, approaches -1 and increases as f" decreases. Eq.
(13), with the numerator rounded off to 35, is given in the
proposed revision. :

If I/r exceeds this value, it is necessary to magnify the M>
obtained from Eq. (9). This is done using the nonsway mo-
ment magnifier.

Computation of magnified sway moment

The magnified sway moment 3,M; may be computed in
one of three ways:

a. It may be computed using second-order elastic frame
analysis based on the member stiffnesses given for structural
analysis.

b. Alternately 8,M, may be taken as

Ms > M

sMs =
° 1-0 (14)

This can be shown to be the solution to the infinite series
resulting from the iterative P-A calculation.>'"® Reference 10
shows that Eq. (14) closely predicts the second-order mo-
ments in an unbraced frame until 3, exceeds 1.5.
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c. The third alternative is to use the sway moment magnifier
from the 1989 ACI Building Code.

Sidesway instability under gravity loads

The classical case of sidesway buckling under gravity loads
must be checked for sway frames. This is checked in different
ways depending on which of the three methods was used to
compute O,M;.

When 8,M, is calculated using a second-order elastic frame
analysis, the possibility of sidesway buckling is checked by
analyzing the structure loaded with the factored dead and
live loads plus an arbitrarily chosen lateral load applied to
the frame. The designer is free to choose any lateral load or
set of lateral loads he or she wishes provided the load is large
enough that the increase in lateral deflections due to second-
order effects is distinguishable in the results. Thus, for ex-
ample, the lateral load could be the factored wind loads used
in designing the frame or it could be a single load applied
at the top of the frame. For unsymmetrical frames for which
gravity loads cause a lateral deflection, the arbitrary lateral
load should be applied in the direction that increases the
gravity load deflection. The frame is analyzed twice for this
lateral load, once using a first-order elastic analysis and again
using a second-order elastic analysis, and the ratio of lateral
deflections is computed. If this ratio exceeds 2.5, the frame
is too flexible laterally and hence will be close to failing due
to sidesway buckling. The values of EI used in these analyses
should be divided by (1 +B,) corresponding to the factored
gravity loads.

When 8,M, is calculated using &, = 1/(1 — Q), the test for
possible sidesway buckling is carried out by setting an upper
limit on Q where Q is calculated using XP, for 1.4 dead load
and 1.7 live loads. The shear V, is due to any assumed lateral
loading (the wind loads used in design, for example), and
A, is the first-order relative lateral displacement of the top
and bottom of the story caused by V., computed using EI
values divided by the corresponding (1 + B,) for the grav-
ity-load case. The limit on Q of 0.6 corresponds to a magnified
deflection of 2.5 times the first-order deflection.

When 8,M, is calculated using the traditional sway mag-
nifier equation, the sway magnifier must be positive and
should not exceed 2.5, again with P, based on the ratio of
factored axial loads. For higher &, values, the frame will be
very susceptible to changes in EI, foundation rotations, and
other weakening factors.

SUMMARY
Revisions are proposed to the slender column design pro-
visions of the ACI Building Code to simplify the design of
slender columns and to recognize the use of second-order
analysis. The most significant change concerns the superpo-
sition and magnification of nonsway and sway moments.
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NOTATION
Ag = gross area of cross-section, in.
E. = modulus of elasticity of concrete, psi
Es = modulus of elasticity of reinforcement, psi
EI = flexural stiffness of compression member
e = specified compressive strength of concrete, psi
Iy = moment of inertia of gross concrete section about centroidal axis,

neglecting reinforcement

Ise = moment of inertia of reinforcement about centroidal axis of mem-

ber cross section
effective length factor
flexural stiffness of a beam

o]
non

=~
1}

to center of the joints in the frame

unsupported length of compression member

nominal moment capacity of cross section

smaller factored end moment on a compression member, positive

if member is bent in single curvature, negative if bent in dou-

ble curvature

Mins = factored end moment on a compression member at the end at
which M acts, due to loads that cause no appreciable side-
sway
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W un

length of a compression member in a frame, measured from center

Mis = factored end moment on compression member at the end at
which M; acts, due to loads that result in appreciable side-
sway, calculated using a first-order elastic frame analysis

Mz = larger factored end moment on compression member, always posi-
tive

M2 min = minimum value of M>

M2ns = factored end moment on compression member at the end at
which M acts, due to loads that result in no appreciable side-
sway

Mz = factored end moment on compression member at the end at

which M acts, due to loads that cause appreciable sidesway,
calculated by a first-order elastic frame analysis

Per = critical load of a frame

Py = factored axial load in a column

(] = stability index for a story

r = radius of gyration of cross section of a compression member
Vu = factored shear in a story

w = uniform load on a beam

Ba = a. for nonsway frames, g is the ratio of the maximum factored
axial dead load to the total factored axial load
b. for sway frames, except for gravity load stability checks, Pq is the
ratio of the maximum factored sustained lateral load to the
maximum total factored lateral load in that story
c. for gravity load stability checks of sway frames, Bg is the ratio of
the maximum factored axial dead load to the total factored

axial load

O = moment magnification factor for braced frame

& = moment magnification factor for sway frame

Ao = first order relative lateral deflection of the top and bottom of a
story due to Vi, computed using the specified stiffness values

u = ratio of each moment due to lateral loads to the nominal moment
capacity

n = ratio of maximum end moment due to gravity loads to the nominal
moment capacity

[0} = strength reduction factor

APPENDIX A—PROPOSED CHANGES TO
ACI 318 SLENDERNESS PROVISIONS

1—Slenderness effects in compression members

1.1—Except as allowed in Section 1.2, the design of compression mem-
bers, restraining beams, and other supporting members shall be based on
the factored forces and moments from a second-order analysis considering
material nonlinearity and cracking, as well as the effects of member curvature
and lateral drift, duration of the loads, shrinkage and creep, and interaction
with the supporting foundation. The dimensions of the cross sections used
in the analysis shall be within 10 percent of the dimensions of the members
shown on the design drawings, or the analysis shall be repeated. The analysis
procedure shall have been shown to result in prediction of strength in
substantial agreement with the results of comprehensive tests of columns
in indeterminate reinforced concrete structures.

1.2—1In lieu of the procedure prescribed in Section 1.1, it is permissible
to base the design of compression members, restraining beams, and other
supporting members on axial forces and moments from the analyses de-
scribed in Section 2.

2—Magnified moments—General

2.1—The factored axial forces P, the factored moments M; and M- at
the ends of the column and, where required, the first-order relative lateral
story deflections Ao, shall be computed using an elastic first-order frame
analysis with the section properties determined taking into account the
influence of axial loads, the presence of cracked regions along the length
of the member, and effects of duration of the loads. Alternatively, it is
permissible to use the following properties for the members in the structure:

a. Modulus of elasticity = E. from Section 8.5.1

b. Moment of inertia

Beams: 0.35 I,

i

R

Columns: 0.70 I,
Walls—Uncracked : 0.70 I, ]
Cracked : 0.35 I, |
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Flat plates and flat slabs: 0.25 Ig

c. Area: 1.0 A,

The moments of inertia used in Section 2.1, and Section 4.3 shall be
divided by (1 + Ba) when (a) sustained lateral loads act, or for (b) stability
checks made according to Section 4.5.

2.2—1It is permissible to take the radius of gyration r equal to 0.30 times
the overall dimension in the direction stability is being considered for
rectangular compression members and 0.25 times the diameter for circular
compression members. For other shapes, it is permissible to compute the
radius of gyration for the gross concrete section.

2.3—Unsupported length of compression members

2.3.1—The unsupported length I, of a compression member shall be
taken as the clear distance between floor slabs, beams, or other members
capable of providing lateral support in the direction being considered.

2.3.2—Where column capitals or haunches are present, the unsupported
length shall be measured to the lower extremity of the capital or haunch in
the plane considered.

2.4—Columns and stories in structures shall be designated as nonsway
or sway columns or stories. It is permissible to assume a story within a
structure is nonsway if

_IPA

0= <0.05

where T P, and V,, are the total vertical load and the story shear, respectively,
in the story in question, and A, is the first-order relative deflection of the
top and bottom of that story due to Vi. '

2.5—The design of columns in nonsway frames or stories shall be based
on the analysis given in Section 3. :

2.6—Frames or stories which do not satisfy the definition of nonsway
frames in 2.4 shall be designed as sway frames or stories. The design of
columns in sway frames or stories shall be based on the analysis given in
Section 4.

2.7—Where an individual compression member in the frame has a slen-
derness kl, /r of more than 100, Section 1.1 shall be used to compute the
forces and moments in the frames.

2.8—For compression members subject to bending about both principal
axes, the moment about each axis shall be magnified separately based on
the conditions of restraint corresponding to that axis.

3—Magnified moments—Nonsway frames

3.1—For compression members in nonsway frames, the effective length
factor k shall be taken as 1.0, unless analysis shows that a lower value is
justified. The calculation of k shall be based on the E and 7 values used in
Section 2.1.

3.2—1In nonsway frames it is permissible to ignore slenderness effects
for compression members which satisfy

Ky 25— 12 (MyMy)

r u
fiAg (B)

where M1/M; is not taken less than -0.5. The term M1/M; is positive if the
column is bent in single curvature.

3.3—Compression members shall be designed for the factored axial load
P, and the moment amplified for the effects of member curvature M as
follows

M= SnsMZ
©
where
Sus= Cn 510
1- _P“_
@5 Pc
D)
where @= 0.75
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EI shall be taken as
gy Q2B + Edie

1+Pa

()]
or
£y = QA0Ey

1+Ba G

3.3.1—For members without transverse loads between supports, Cm
shall be taken as

N M]
Cn=06+04—2>04
" M, H)

where My/M is positive if the column is bent in single curvature. For
members with transverse loads between supports, Cm shall be taken as 1.0.
3.3.2-——The factored moment M2 in Eq. (C) shall not be taken less than

M2,min = Pu(0.6 + 0.03h) )

about each axis separately, where 0.6 and 4 are in inches. For members for
which M2 min exceeds M2, the value of Cm in Eq. (H) shall either be taken
equal to 1.0, or shall be based on the ratio of the computed end moment
M1to Mo min. [In Eq. (J) becomes M2,min = Py (15 +0.03h), where 15 and h
are in mm.]

4—Magnified moments—Sway frames

4.]—For compression members not braced against sidesway, the effective
length factor k shall be determined using E and / values in accordance with
Section 2.1 and shall be greater than 1.0.

4.2—The moments M1 and M> at the ends of an individual compression
member shall be taken as

M1 =Mins+ M5 X)

M2 = Mans+ 8sMas @®

where MM, and 8sMa; shall be computed according to Section 4.3.
4.3—Calculation of 3:Ms
4.3.]1—The magnified sway moments &;M; shall be taken as the column
end moments calculated using a second-order elastic analysis based on the
member stiffnesses given in Section 2.1.
4.3.2—Alternatively, it is permissible to compute 8:M; as

M; > M;

&M=
1-0 M)

If 8 computed in this way exceeds 1.5, 8;M; shall be computed using Section
43.1 or 433.

4.3.3—Alternatively, it shall be permissible to calculate the magnified
sway moment 3;M

@sZPc . )

ACI Structural Journal / May-June 1993




where ZP, is the summation for all the vertical loads in a story and ZP, is
the summation for all sway-resisting columns in a story, P, is computed
using Eq. (E) using k from Section 4.1 and EI from Eq. (F) or Eq. (G), and
@5 = 0.75.

4.4—If an individual compression member has

L35
Py

féAg (P)

~

it shall be designed for the factored axial load P, and the moment M.,
computed using Section 3.3 in which M1 and M> are computed in accordance
with Section 4.2, B4 as defined for the load combination under consideration
and k as defined in Section 3.2.

ACI Structural Journal / May-June 1993

4.5—1In addition to load cases involving lateral loads, the strength and
stability of the structure as a whole under factored gravity loads shall be
considered.

a. When 8,M; is computed from Section 4.3.1, the ratio of second-order
lateral deflections to first-order lateral deflections for 1.4 dead load and 1.7
live load plus lateral load applied to the structure shall not exceed 2.5.

b. When 8:M; is computed according to Section 4.3.2, the value of Q
computed using P, for 1.4 dead load plus 1.7 live load shall not exceed
0.60.

c. When ;M is computed from Section 4.3.3, 8; computed using P,
and ZP. corresponding to the factored dead and live loads shall be positive
and shall not exceed 2.5.

In the preceding Cases a, b, and c, B4 shall be taken as the ratio of the
factored sustained axial dead load to the total factored axial load.

4.6—1In sway frames, flexural members shall be designed for the total
magnified end moments of the compression members at the joint.
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