SECONDARY MOMENT AND
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CONCRETE BEAMS |

Explains the 1971 ACI Building Code provisions for moment
redistribution in continuous prestressed concrete beams. Emphasizes,
by means of examples, when the secondary moments due to

prestress force are to be included in determining the uitimate

capacity of continuous beams.
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The subject of moment redistribu-
tion in prestressed continuous beams
has received careful study® for
beams with concordant cables®, but
not for those with non-concordant
cables. In the latter case, what hap-
pens to the moment produced by

prestressing (the secondary moment) -

in the plastic or elasto-plastic stage
has become a subject of much dis-
cussion %:3), ‘

The purpose of this paper is to
bring up the serious nature of the
problem, particularly in the light of
the 1971 ACI Building Code. The
existence of secondary moments in
the post-elastic range will be clari-
fied. One simple and conservative
solution is suggested, but no exact
method is proposed.

1971 ACI Building Code® limits
the percentage of moment redistri-
bution in prestressed concrete con-
tinuous beams in Sect. 18.12, some-
what similar to that for conventional

* A concordant cable is so located ‘to pro-
duce a line of compressive force in the
concrete at each section that coincides
with the center of gravity of the steel
(c.g.s.).
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reinforced concrete in Sect. 8.6. In
addition, it states;, “The. effect of mo-
ments due to prestressing shall be

neglected when. calculating the de--

sign moments.” In the 1971 Code
Commentary®™ to Sect. 18.12, it is
further explained, “The * secondary
bending moments produced by the
prestress force in a non-concord-
ant tendon disappear at the capac-
ity at which, due to plastic hinge for-
mation, the structure becomes stati-
cally determinate. Therefore, the de-
sign load moments at the critical sec-
tions of a continuous prestressed
beam are only those due to dead and
live loads.”

The above statement on the disap-
pearance of secondary moments,
while correct by itself if propetly in-
terpreted, has been quite mislead-
ing to many engineers, especially
when taken together with the limita-
tions on moment redistribution.

It is well known that secondary
moments are produced by prestress-
ing a continuous beam with a non-
concordant c.g.s. line. It is also well
known that when plastic hinges form
in a continuous beam, converting it
into a statically determinate struc-
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ture, the moments in the beam can
be computed, taking into account
only the external dead and live loads
and the moment capacity at the criti-
cal sections. To these moments, the
secondary moments due to prestress-
ing need not be added. In fact,
whether or not to add the secondary
moments will yield the same load
carrying capacity for the beam, if
complete moment redistribution can
take place.

It has been stated!®, “Linear
transformation of the c.g.s. line does
not change the ultimate load-carry-
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ing capacity of a continuous beam.”
This means a non-concordant c.g.s.
line can be linearly transformed in-
to a concordant c.g.s. line without
changing the ultimate load capacity.
Since this beam will now possess a
concordant c.g.s. line, it will have no
secondary moment. This phenome--
non led to the statement in the ACI
Building Code Commentary that the
design (ultimate) load moments are
only those due to dead and live
loads. '

All of the above, however, is predi-
cated on full moment redistribution
with complete development of plas-
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Fig. 1. Beam elevation for Example 1
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Fig. 2. Beam section for Example 1

© tic hinges. If redistribution is not
permitted at all, i.e., if the beam is
considered to be totally elastic, then
the elastically computed secondary
moments due to non-concordant ca-
bles are obviously there and should
not be neglected. However, the
Code and its Commentary seem to
say that in calculating the design
moments, full moment  redistribu-
tion is not permitted and secondary
moments must be neglected at the
same time. This interpretation will
lead  to grossly incorrect answers,
which could be conservative or non-
conservative.

Since the problem cannot be
easily discussed in formulas, which
could become quite lengthy and
complicated, the nature and magni-
tude of the problem will be illustrat-
ed by two examples.

EXAMPLE 1

Consider a two-span continuous
beam, Figs. 1 and 2, prestressed
with a non-concordant parabolic
c.g.s. line and bonded tendons; beam
properties are:

1 Sectlon properties

A, = 1440 in.?

I = 253340 in.t
Y = 12 in.

y» = 36in.

S, = 21,100 in.3
Sy = 7,030 in.?

2. Steel properties |

A, of tendons = 4.0 in.2
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Ultimate strength of steel
f. =250 ksi
Eﬂectlve prestress fge =150 ksi
Total effective prestress
F.,=600k.

3. Concrete properties
Ultimate compressive strength
f, =5ksi
Tensile stress at crackmg =
6V/f, = 424 psi

4. Secondary moments and reactions

With the c.g.s. line located as
shown, it can be determined by in-
spection® that the C-line under
prestress alone can be located by lin-
early transforming the parabolic
c.g.s. line 28 in. upward at center
support, and 14 in. upward at mid-

span. This results in a net eccentri- -

city of 36 in. up at center support
and 18 in. down at midspan. The
secondary moment due to the effec-
tive prestress is

600 x 28/12 = 1400 k. ft.

over center support, and 700 k. ft. at
midspan. Each end reaction due to
prestressing is
1400
80

and the corresponding secondary re-
action at center support is

2 X 17.5 = 35 k. downward

=175k upward

To simplify our discussion
throughout this example, we will
consider the controlling +M at mid-
span simultaneously with the —M
over center support. It is realized
that, to get an accurate computation
of the utlimate load, the exact loca-
tion of controlling +M away from
midspan should be considered. .

5. Balanced load due to prestressing
Since the parabolic c.g.s. has an
effective sag of
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CM=fS=

h=324+8/2=36in. =3 ft.

uniform load balanced by prestress
is

_8Fh _ 8x600x3
w_.—L—Z_———SO — =295k /ft.
Thus, under an external load of 2.25
k./ft., the beam has a uniform com-
f = 600,000 _ =417 psi

T 1440
along its entire length. Internal mo-

ment = 600 X i = —400 k. ft. over

pressive stress o

.-center suppoit and 600 >< T = 1600

2
k. ft. at midspan.
6. —M section at center support
To obtain zero tension at top fiber,
it is necessary to negate the precom-
pression of 417 psi by an additional
moment,

417 x 21,100 _

which corresponds toa uniform load

of

SM _ 8Xx736
== = fe.
W=7 0% =092k./
Adding this to the balanced load of
2.95 k./ft., we have

wyp = 0.92 4 2.25 = 3.17 k./ft.

which is the total uniform load pro-
ducing zero tension at top fiber over
center support. The internal moment

= —736 — 400
=—1136 k. ft.

To obtain a top fiber tension of
424 psi, additional uniform load can
be computed by direct proportion-
ing from the above 0.92 k./ft.

424
0. 92 X o 17

=093 k./ft.

Thus, the total uniform load at

. cracking is
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wyr =317+ 0.93 = 410 k. /ft.
and internal moment

= =1136 - 736 X 55 424

417
= —1880 k. ft.

To obtain ultimate moment ca-
pacity with A, =4.0 in®, b =12 in,,
and d = 44 in., compute

| 4

pP= m = 0.756%

which indicates an over-reinforced
section. Using 1963 ACI Code

~M, = 0.25f, bd*
=025 x5 x 12 X
= —2490 k. ft.

Since no moment redistribution is
permitted for this over-reinforced
section, the elastic moment over the
center support, —M = wl.2/8, must
be used for calculating the ultimate
load capacity. If, as per 1971 ACI
Code, moment due to prestressing is
neglected, we will have an ultimate
uniform load

8 M,

L

8 x 2420
802

= 3.03k./ft.

4
12

Wy =

. Note that this is less than wr = 4.10

k./ft. at start of top fiber cracking,
and even less than wy=3.17 k./ft.
under zero tension, This is obviously
an incorrect answer as a result of the
above interpretation of the 1971 ACI
Code. The mistake results from the
inconsistent assumption that, on the
one hand, the beam is elastic under
external load while, on the other
hand, it is not elastic under the effect
of prestress.

If it is agreed that secondary mo-
ments do exist, since the beam still
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Fig. 3. Ultimate load capacity assuming full moment redistribution

‘behaves elastically, then the ultimate
load capacity should be computed
including the effect of the secondary
moments. If secondary moment due
to effective prestress is used, we
have

W, = 8 (Mult._+ Msec.)
L2

__ 8(2420 + 1400)
80¢
= 478 k. /ft.

which is correct if no moment redis-
tribution takes place.

7. +M section at midspan
To obtain zero tension at bottom
fiber, additional moment is

417 X 7030
M =S = 15500
=4k fe

which for +M =wL?/16 at mid-
span, means a uniform load of

b 1M 16 x 244
TTLE T T80

= 0.61 k./ft.

wyr=0.61 + 295 =286 k./ft.

Internal moment = 1600 4 244
= 1844 k. ft.

‘To obtain a bottom fiber tension of
424 psi, additional uniform load is

* computed

_ 494
w =061 % = =062 k./ft.

wr = 2.86 + 0.62 = 3.48 k. /ft.
aad internal moment

— 1844 + 244 x 24

417
= 2092 k. ft.

To obtain ultimate moment capac-
ity with A, =4.0.in%, b =120 in,
and d = 44 in., we have

-4
p= 100 < 44 0.076%

Using 1963 ACI Code
fou =11 (1 —-0.5p E)

fe
= 250 (1 — 0.5 X 0.00076 X %)

= 245 ksi
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M, = Afaud (1 —06p fﬂ)

fa
=4 X245 % 44 .
% (1 — 0.6 X 0.00076 X 2;;5)
= 3520 k. ft.

As far as the ultimate moment ca-
pacity of this section is concerned,
neglecting both moment redistribu-
tion and the secondary moment, i.e.
simply using elastic moment coeffi-
cients, we would have a theoretical
ultimate load of ‘

16M
Wr = —12— .

_ 16 x 3520
T80
= 8.80 k./ft.

If the secondary moment of —700
k. ft. produced by prestressing still
exists, it must be deducted from the

w, (full redisitribution)

wy, (no redisﬁi.)

\Y’ possible plastic behavior
A

A cracking

wy (no redistri,

no Msec) .
o}

w (k/ft)
t
@

3250 k. ft. to give a theoretical ulti-
mate load of
o= 16(3520 — 700)
= 802

=7.05k./ft.

again assuming elastic moments,
with no moment redistribution.

8. Ultimate load capacity with full

moment redistribution

If full moment redistribution were
possible, whether to include second-
ary moments does not make any dif-
ference. This is shown by the follow-
ing two simple calculations; illustrat-
ed by Fig. 3 for this two-span con-
tinuous beam. The left half, Fig. 3
(a), assumes no secondary moments.
Corresponding to —M = —2420 k.ft.
and +M = 3520 k. ft., the load ca-
pacity is

. = 8(3520 + 1210)
‘T 80°
=591k./ft.
/¢
aw
s
/ //w,u(fullj
2 A redistri.)
+F (possib\a plastic
« behavior

€/
balanced ° * g
e,
e
Ino
See) \
1 1 1 ~ P . 1 |
-3000 -2000 -1000 0 1000 2000 3000 4000
-M at center support + M at midspan
(k/f1) (k/ft)
Fig. 4. Load and moment relationships for Example 1
January-February 1972 13



Table 1. Loads and moments for critical conditions (Example 1)

Stress and Over center At midspan
loading support
condition —M (k. ft.) | wp (k. /ft) +M (k. ft) " | wp (k. /ft)
Prestress only 41400 0 + 700 0
Balanced load . — 400 2.25 +1600 2.25
| @ Zero tension —1136 3.17 +1844 2.86
S gl| Cracking at
-‘g s 424 psi —1880 410 42092 3.48
15 Ultimate—no
© redistribution —2420 4.78 4-3520 7.05
Ultimate—full : :
redistribution —2420 5.91 +3520 5.91
o0 Prestress only 0 0 0 0
c A
| = | Ultimate—no .
| @ S| redistribution —2420 3,03 43520 8.80 .
| & Ultimate—full
z redistribution —2420 591 43520 5.91

The right half, Fig. 3(b), considers
secondary moments, —M = 1400 k.
ft. and +M =700 k. ft., and the load
capacity is

8 [ 9890 + 2420~|2r 1400]
Wy = — 802
=591 k./ft.

This simple phenomenon justifies
the ACI Code Commentary that the
secondary moments disappear, but it
should be emphasized that this is
true only at full moment redistribu-
tion. If the elastic moments are not
fully redistributed, then the second-
ary moments must also remain.

9. Summary of load and moment re-
lationships
The above values of critical mo-
ments and corresponding uniform
load intensity are now summarized
in Table 1 and plotted in Fig. 4.
Along the Y-axis of Fig. 4 is plotted

14

“the uniform load w. Along the X-axis

are the —M over center support and
the +M at midspan. The solid lines
show the actual elastic moments pro-
duced by external loads including
the effect of prestressing (Mec). The
dotted lines show the elastic mo-
ments, without considering the effect
of prestressing (these, of course, do
not represent the actual internal mo-
ments, but are plotted for the pur-
pose of comparison).

Now let us look at Fig. 4 and try
to visualize the actual ultimate load
capacity. Let us assume that second-
ary moments do remain, and let us
use elastic moments with no redistri-

bution at all, the ultimate load is -

w, =4.78 k./ft. Then let us assume
full moment redistribution, the ca-
pacity is w, =591 k./ft. (with or
without secondary moments). For
this particular example, because of
the high value of p = 0.756% for the
—M section, plastic hinging action
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Fig. 5. Beam elevation for Example 2

cannot easily develop, and w, is
probably only slightly higher than
4.78 k./ft. However, if this section is
not so highly over-reinforced, some
hinging action will develop and mo-
ments will be redistributed. Thus,
wy will fall between 4.78 and
5.91 k./ft. It can be shown that the
ultimate load capacity will not fall

.below 4.78 k./ft., since the +M sec-

tion is very much under-reinforced
in this beam.

The cracking of the —M and +M
sections starts at points D and D’ re-
spectively. Since the +M section
will crack first (at w =348 k./ft),
its moment will be gradually redis-
tributed to the —M section starting
at point E. Then when the —M sec-
tion also starts to crack, moments
will be redistributed back to the
+M section. Hence, the load-mo-
ment curve will follow the dotted
line EDB, approaching point B as
a limit, if full redistribution is
achieved. If moment redistribution is
not complete, this dotted line will
not end at point B, but at some point
between A and B, It is just not
possible for this line to dip down-

~ward toward point C, as an improper -
interpretation of the 1971 ACI Code

would indicate.
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EXAMPLE 2

In order to illustrate a different sit-
vation, when neglecting sécondary
moments can result in a mistake on
the non-conservative side, we will
now discuss another 2-span continu-
ous beam, Figs. 5 and 6. This beam
is the same as the one in Example 1,
except with the section upside down,
changing into an inverted T-section.
The section properties for the beam
in Example 1 can be reversed and
used for this section and will not be
listed again.

1. Secondary moment and reactions

It can be shown that the second-
ary moment at center support due to
a prestress of 600 k. is

8 —_ —
600 x i 400 k. ft.

- cg.c. _ B __L_
R e o — R

Fig. 6. Beam section for Example 2
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400

Secondary exterior reaction=§0—

= 5k. downward.

2. Balanced load due to prestressing |

Effective parébolid sag

h=8 +§2% = 94 in.
_ 8Fh
W=7tz
8% 600 X (24/12)
= 302
= 150k /ft.

Thus under an external load of
150 k./ft., the beam has a uniform

compressive stress of 417 psi along

its entire length. Internal moment
= 600 x% = ~1600 k. ft. over cen-
ter support, and 600 % 18—2 =400 k. ft,
at midspan.

3. —M section at center support
Using calculations similar to Ex-

ample 1, the following critical mo-

ment and load values are obtained.

For zero tension at top fiber, addi-
tional moment is

7030 X 417 _
_8M_ 8x 244 _

wyr =0.30 + 1.50 = 1.80 k./ft.

Internal moment = —244 — 1600 =
—1844 k. ft.

For tension = 424 psi at top fiber

wr=180+031=211k./ft

Internal moment = —1844 — 248 =
—2092 k. ft. ‘

Ultimate moment capacity = 3520
k. ft. (from Example 1). If no mo-
ment redistribution is permitted and
secondary moment neglected, the
ultimate load capacity is

16

8M _ 8 x 3520
L7~ 80
If the secondary moment of —400
k. ft. is considered, actual capacity
left for load-carrying is 3520 — 400 =
3120 k. ft., which, with no redistribu-
tion, yields

_ 8% 3120

T 802

=440k /ft.

LW, =

=3.90k./ft.

This indicates that neglecting sec-
ondary moment gives a non-con-
servative value of 4.40 k. /ft. for this
beam.

4. +M section at midspan

For zero tension at bottom fiber,
additional moment is

e 417 x21,100

M -——-ftSt — '—12,0T _— 736 k. ft'
_16M _16X736 _ . o,

W = = g = 1.84 k. /ft.

wy =150 + 1.84 = 3.34 k./ft.
Internal moment = 400 + 736
=1136 k. ft.

For ultimate moment = 2420 k. ft.,
neglecting secondary moment, (con-
sidéring only this section)

16 % 2420

u = TR0

If secondary moment of —200 k. ft. is
considered

_16(2420 + 200)
Wu= 80°

=6.05k./ft.

5. Ultimate load capacity with full
moment redistribution

Similar to Example 1, it can be
shown that, assuming full moment
redistribution, the ultimate load ca-
pacity is

_ 8(2420 + 3520/2)

W, < =523 k./ft.
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Table 2. Loads and moments for critical conditions (Example 2)

=655k /ft.

Stress and Over center At midspan
loading support
-condition Mk ft) | wplk./ft) | +M(k ft)] wypk./ft)
Prestress only — 400 0 — 200 0
Balanced load —1600 1.50 + 400 . .1.50
W | Zero tension —1844 1.80 +1136 334
g g| Crackirg at
‘w=| 424 psi —2092 2.11 41884 5.21
[ = .
S Ultimate—no
redistribution —3520 3.90 4-2420 6.55
Ultimate—full
redistribution —3520 5.23 +4-2420 5.23
wo | Prestress only 0 0 0 0
= g Ultimate—no
@ <| redistribution —3520 4.40 42420 6.05
& |Uitimate—full .
redistribution —3520 5.23 +2420 5.23

which value is good whether or not
the secondary moments are consid-
ered.

6. Summary of load and moment
relationships

The above values of critical mo-.

ments and corresponding uniform
load intensities are now summarized
in Table 2 and plotted in Fig. 7,
similar to Fig. 4. From Fig. 7 it can
be observed that:

a. Point C is higher than Point A
indicating that if secondary mo-
ments are neglected, a mistake is
made on the non-conservative
side.
b. When cracking starts at Point
D, moment redistribution will be-
gin. Depending upon the devel-
opment of both +M and —M
hinges, the ultimate load capacity
© may fall anywhere between Point
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A and Point B.

c. The + M section may pick up
more moments than indicated by
the elastic values, owing to hing-
ing at the —M section. The
amount of redistribution is subject
to further study.

This example thus shows that ne-
glecting secondary moments may
vield a non-conservative result.

DESIGN METHOD

An approximate method for de-
termining the ultimate load capacity
of a continuous beam is proposed,
based on a load-balancing approach
which takes into account the second-
ary moments produced by the ulti-
mate prestress. For convenience, this
method will neglect moment redis-
tribution caused by plastic hinging
action.

This method assumes that, for un-
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Fig. 7. Load and moment relationships for Example 2

bonded tendons, the ultimate stress
capacity of the steel is at 1.20 X ef-
fective prestress (the coefficient 1.20
can be modified as required). It is
further assumed that cable eccentri-
cities in the elastic stage will be used
for calculation. Hence, the load bal-
anced by ultimate prestress is 1.20
X load balanced by the effective pre-
stress. This load-balancing approach
conveniently takes into account the

effect of secondary moments at ulti- -

mate load. This method is quite ac-
curate for unbonded tendons whose
stress is more or less uniform along
their length. For bonded tendons,
high stresses are concentrated at
points of hinging, and this method
may not be accurate enough.

This method is applied to the
above two examples.

Example 1

Under effective prestress, the bal-
anced load is

Wha1 = 2.25 ](/ft

and the internal moments are
18

—/M =.—400 k. ft. over center
support

’ +M = 1600 k. ft. at midspan

If ultimate prestress is 1.2 X effec-
tive prestress, the balanced ultimate
load is

Wy = 2.25 X 1.2 =270 k./ft.

" and the corresponding internal mo-

ments are

~M = —400 x 1.2 = —480 k. ft.
over center support

+M = 1600 x 1.2 = 1920 k. ft.
at midspan ‘

The moment capacities left for loads
above the balanced load are (since
ultimate —M capacity = —2420 k. ft.,
and +M capacity = 3520 k. ft.)

—2420 + 480 = —1940 k. ft.
over center support -

3520 — 1920 = 1600 k. ft.
at midspan

Obviously, —M controls, and addi-
tional load is

PC! Journal

_8M _ 8x 1940
YETET T a0

Total load capacity at ultimate is
w=243+ 270 =513 k./{t.

As would be expected, this is slightly
higher than the 4.78 k./ft. value pre-
viously obtained when considering
the secondary moments produced by
effective prestress.

=243 k./ft.

Example 2

Similarly to the above, load bal-
anced at ultimate prestress is

Wpay = 1.50 X 1.2 =1.80 k. /ft.

while the corresponding internal mo-
ments are

—M =1600 x 1.2 = —1920 k. ft.
over center support

+M =400 1.2 =480k ft.
at midspan

Moment capacities left to carry addi-
tional load

—M = -3520 + 1920 = —1600 k. ft.
+M = 2420 — 480 = 1940k ft,

Again, —M controls, and the addi-
tional load above balanced load is

_ 8M _ 8x 1600
LT 802

Total load capacity at ultimate js

w = 2,00 + 1.80 = 3.80 k. /ft.

This is slightly lower than the 3.90
k./ft. value previously obtained
when considering the secondary mo-
ments produced by effective pre-
stress. This is correct, because in-
creasing the secondary moments by

=2.00 k./ft.

20% decreases the load capacity, in

this case.

This method is a conservative ap-
proach, since it neglects moment re-
distribution completely. It takes into

January-February 1972

account the secondary moments due
to prestress without calculating for
them. It correctly considers the sec-
ondary moments to increase instead
of disappear at ultimate capacity. If
it is desired to consider moment re-
distribution in the plastic range, ad-
justments can be best made by con-
sidering the load added beyond the
balanced load. It should be noted
that, under the balanced load, the
beam has no curvature nor deflec-
tion anywhere.

CONCLUSIONS

A review of the above leads to the
following conclusions with respect
to continuous concrete beams pre-
stressed with non-concordant cables.
While teé and inverted-tee sections
are used in the examples, rectangu-
lar or other sections will obviously
follow similar reasoning. In fact, the
following will apply generally to
statically indeterminate structures
prestressed with non-concordant ca-
bles.

1. If elastic moments are used to
compute ultimate load capacity of a
continuous prestressed beam, sec-
ondary moments produced by pre-
stressing shall definitely be included
in the calculations.

2. If plastic moments with full
moment redistribution are used to
compute ultimate load capacity of a
continuous beam, then secondary
moments may be either neglected or
included, since the results will be the
same.

3. If plastic hinges do not fully
develop, then ultimate load capacity
will lie between the two values com-
puted in Items 1 and 2 above. The
exact capacity can be determined by
theoretical analysis, taking into ac-
count the moment-curvature rela-
tionships of the entire beam up to

19



" the ultimate load, although this is

not presented in this paper.

4. Approximate but conservative
methods can be devised to consider
the effect of secondary moments at
ultimate load, but to neglect moment
redistribution. This can be con-
veniently done using a load balanc-
ing approach.

5. More analytical and experi-
mental research ‘should be carried
out concerning the plastic behavior
of prestressed concrete continuous
beams with non-concordant cables.
However, it is abundantly clear that
Sect. 18.12 of the 1971 ACI Building
Code, if interpreted to neglect
secondary moments when full mo-
ment redistribution does not occur,
could lead to erroneous results.

REFERENCES

1. Guyon, Y., “Statically Indeterminate
Structures in the Elastic and Plastic
States,” General Report, First Congress
FIP, 1953. :

. Mattock, Alan H., discussion of “Pro-

posed Revision of ACI 318-63: Build-
ing Code Requirements for Reinforced
Concrete,” ACI Journal, Sept. 1970,
Vol. 67, No. 9, p. 710.

. Bondy, Kenneth, “New ACI Building

Code (ACI 318-70),” Atlas Engineering
Newsletter, March 1970, pp. 3-4; June
1971, pp. 2-5.

. “Building Code Requirements for Rein-

forced Concrete (ACI 318-71),” Ameri-
can Concrete Institute, Detroit, Michi-
gan, 78 pp.

. “Commentary on Building Code Re-

quirements for Reinforced Concrete
(ACI 318-71),” American Concrete In-
stitute, Detroit, Michigan, 96 pp.

. Lin, T. Y., “Design of Prestressed Con-

crete Structures,” John Wiley & Sons,
Inc., New York, New York, Second Edi-
tion, 1963, 614 pp.

. Lin, T. Y., “Strength of Continuous

Prestressed Concrete Beams Under Stat-
ic and Repeated Loads,” ACI Journal,
June 1955, Vol. 26, No. 10, pp. 1037-
1059,

Discussion of this paper is invited. Please forward your comments to PCl Headquarters
by May 1 to permit publication in the May-June 1972 issue of the PCl JOURNAL.

- 20

PCI Journal



