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Abstract : The ACI standard 318-02 permits the use of a moment magnifier approach for the design of slender composite steel-concrete

columns. This approach is strongly influenced by the effective flexural stiffness (EI), which varies due to the nonlinearity of the concrete

stress-strain curve and the cracking along the column length among other factors. The EI equations given in the ACI code are approximate

when compared to the EI values computed from the axial load-bending moment-curvature relationships. This study was undertaken to

determine the influence of a full range of variables on EI used for the design of slender, tied, composite columns in which steel shapes are

encased in concrete, and also to examine the existing ACI EI equations. Approximately 12,000 isolated square composite columns, each

with a different combination of specified properties of variables, were simulated and used to generate the stiffness data. The columns

studied were subjected to short-term ultimate loads and equal and opposite end moments causing symmetrical single curvature bending

about the major axis of the encased steel section. A new nonlinear equation for El was then developed for use in design of slender

composite columns subjected to major axis bending and is proposed as an alternative to the existing ACI EI equations.
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Introduction

The American Concrete Institute building code ACI 318-02

(2002) permits the use of a moment magnifier approach for com-

puting the second-order moments in slender composite columns.

This approach was introduced into design practice to eliminate

the need for extensive calculations, based on the solution to a

differential equation, to compute second-order bending moments

in columns, and is influenced by the critical buckling load (P,.).

The computation of P. is strongly influenced by the effective

flexural stiffness (EI), which varies due to the nonlinearity of the

concrete stress-strain curve, creep, and cracking along the height

of the column. The EI expressions given in ACI 318-02 [2002,

Eq. (10-21) and Eq. (10-12)] for composite columns are quite

approximate when compared to values derived from the axial

load, bending moment, and curvature (P-M-^)) relationships. In

addition, the ACI EI equations currently in use were developed

for reinforced concrete columns subjected to high axial loads and

were simply modified, without any further investigation, for use

in composite column design (Mirza and Tikka 1999a).
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This study was undertaken to determine the influence of a full

range of variables on the short-term effective flexural stiffness

(El) of slender, tied, composite columns in which the bending

moment was applied about the major axis of the steel section

encased in concrete: to examine the existing expressions for El; to

develop and propose a refined expression for EI; and to compare

the proposed expression for El with the current ACI expressions

for such columns. Approximately 12,000 isolated composite col-

umns were simulated to generate the stiffness data to study the

effects of a number of variables that affect the effective flexural

stiffness. Each simulated column had a different combination of

cross section, geometric, and material properties. The columns

bent about the major axis of the encased steel section in sym-

metrical single curvature in braced frames subjected to short-term

loads. The moment magnifier approach specified in the ACI code

was developed for these types of columns. The effects of different

loading conditions, end restraints, and lateral supports are ac-

counted for in the ACI code through the use of the equivalent

uniform bending moment diagram factor (Co,), effective length

factor (K), and sustained load factor (Rl). The columns studied

are graphically represented in Fig. I and were chosen because the

errors in CM,, K, and Rd would not affect the accuracy of the EI

expression developed later in this paper.

A nonlinear EI equation is proposed for computing the flexural

stiffness of composite columns subjected to bending about the

major axis of the encased steel section. Statistical evaluations of

parameters affecting the flexural stiffness show that the variability

of the proposed equation is less than one-third of that associated

with the current ACI EI expressions for the design of slender

composite steel-concrete columns. A graphical design aid devel-

oped for computing EI from the proposed equation is also

included in this paper.
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Fig. 1. Type of composite column studied: (a) free-body diagram of
pin-ended column in symmetrical single-curvature bending; (b)
forces on column; and (c) bending moment diagram (M„=eP„)

Method Used for Evaluating Theoretical Flexural
Stiffness

ACT 318-02 permits the use of a moment magnifier approach to

compute the maximum bending moment (Mmax), which includes
second-order effects, occurring along the height of a column

Mmax=Mc=8nsV2=CJ 1M2>M2 (1)

where 8,,,=moment magnifier for columns that are part of braced

(nonsway) frames; M2=larger of the two factored end moments

(MI and M2) computed from a conventional elastic frame analysis

and is always taken as positive; C,n=equivalent uniform moment

diagram factor; and 8I=moment magnifier for the same columns

when subjected to axial load and equal and opposite (equivalent)

end moments causing symmetrical single curvature bending. For

this study All and M2 are equal and opposite causing symmetric

single curvature bending; therefore, C,,=1.0.

Chen and Lui (1987) explain that the moment magnifier 61 for
pin-ended columns subjected to end moments can be derived

from the basic differential equation governing the elastic in-plane

behavior of a column and is reproduced in the following equation

2(1 - cos kf)

sin` kf

where =column length; and k=lowest eigenvalue solution to the
basic differential equation of equilibrium

(3)

where P„=factored axial load acting on the column; and
P,,.=Euler's buckling strength for a pin-ended column which is
given by

Tr2EI
Pc, =

f-
(4)

For design purposes, the ACT 318-02 has adopted the simplified
and widely accepted approximation of Eq. (2)
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81 = 1^ (2)

8{ = P (5)
-"

P,.

where P,= critical load and is computed as

Ir2EI
P" (Kf)2 (6)

For this study, however, the effective length factor K= 1.0 and P,.
is reduced to Euler's buckling strength equation [Eq. (4)] for a

pin-ended column.
The moment magnifier method defined by Eqs. (1), (5), and

(6) is described graphically in Fig. 2, which shows the relation-

ship between the cross section axial load-bending moment
strength interaction diagram and the column strength interaction

diagram for pin-ended columns in symmetrical single curvature
bending. Fig. 2 shows that, for a given axial load P,,, the column

end moment M2 at point A is multiplied by 61 to obtain Mmax at

point B. The current El expressions used by ACT 318-02 were
developed for use with Eqs. (1), (5), and (6).

I

Development of Theoretical Stiffness Equation Used
for this Study

The bending moment relationship (secant formula) for a pin-
ended slender column subjected to equal and opposite end

moments is given by Timoshenko and Gere (1961) as

M, = M, sec
(2 NP,r/

(7)

where M,,=design bending moment that includes second-order
effects; M2=applied column end moment calculated from a con-

ventional elastic analysis; P„=factored axial load acting on the
column; and Per=Euler's buckling strength [Eq. (4)]. For the pur-

pose of analysis, M,. and M, are replaced by the cross section
bending moment strength M, and the overall column bending

moment strength M,.or, respectively. Substituting Euler's buckling
strength [Eq. (4)] into Eq. (7), then rearranging, simplifying, and

solving for EI gives the following expression for the theoretical

- Mc,2ol
or M2 or M max

Bending Moment

Fig. 2. Schematic composite cross section and column (member)
ultimate axial load-bending moment interaction diagrams



flexural stiffness of a pin-ended column subjected to symmetrical

single curvature bending

EI,h =
P/,f

(8)
M",

) ] 2

Mc//i

The computations of the terms P,,, M,.,, and M,or used in this
expression were based on the cross section and column axial
load-bending moment (P-M) interaction diagrams explained in
the following section . A full derivation for EI,1, is documented by

Mirza (1990).

Computations of Theoretical Cross Section and
Slender Column Bending Moment Resistances

The strength of a composite cross section was represented by an
axial load-bending moment interaction diagram, similar to the one

shown in Fig. 2. A strain-compatibility and force-equilibrium so-
lution was used to generate the moment-curvature curves for dif-

ferent levels of axial load acting on the composite cross section.
The maximum bending moment M_ from the moment-curvature

curve for a given axial load level P„ defined one point on the

cross section strength interaction diagram. When the moment-
curvature curves were completed for the desired axial load levels,
the maximum bending moment for each axial load level was

stored to define the entire interaction diagram for the cross sec-

tion. Forty-eight points (axial load levels) were used to accurately
define the entire cross section strength interaction diagram.

The strength of a slender pin-ended composite column sub-
jected to end moments producing symmetrical single curvature

bending was also represented by an axial load-bending moment

interaction diagram, as shown in Fig. 2. The column bending

moment capacity M,.01, or the end moment M2, for a given axial

load was calculated using a numerical iterative procedure that
computed second-order bending moments and deflections along

the length of the column by incrementing the end moments until
the maximum moment along the length of the column reached the

maximum moment on the cross section moment-curvature curve

for the given axial load. The column axial load strength P„ and

the corresponding computed value of Mco1 represented one point

on the column P-M interaction curve (Fig. 2).
Newmark's method (1943) was used to determine the equilib-

rium configuration for a given combination of axial load and end

moments that were applied to the column. The column was sub-
divided into segments or stations of equal length for which initial

deflections were assumed based on the applied end moments. The
first-order moments, and the second-order moments caused by

slenderness effects, were computed and summed at each station.
The curvature corresponding to the total moment at each station

was retrieved from the cross section moment-curvature curve for
the given axial load level in order to define the distribution of

curvature along the column length. The conjugate beam method

was then used to compute the deflection at each of the stations in
an iterative manner. If the computed deflections and the initial

deflections were within the prescribed limits of 0.05%, an equi-
librium solution had been obtained. If not, the computed deflec-

tions were substituted for the assumed deflections and the process
was repeated until the deflections converged. The end moments

were then incremented equally and the process was repeated until

the maximum bending moment (M,,,ar) calculated along the length

of the member reached the maximum moment on the cross sec-
tion moment-curvature curve for the axial load under consider-

ation. The maximum end moment M,01 (M2) corresponding to M,.,

(M,,,ur) for each axial load level was stored to define the entire

interaction diagram for the slender column. The number of points

(axial load levels) used to define the slender column interaction

diagram ranged from approximately 32 points, for f1h=30, to 45

points, for f/h=10. The computed values of M,., and M,,,1 for

each column (with f and P,A for given e/h ratios) were then used

directly in Eq. (8) to compute the theoretical El.

The major assumptions used in determining the axial load-

moment-curvature (P-M-f) relationship, M,., and M,.,,,, were:

(1) strains between concrete, structural steel, and reinforcing steel

were compatible and no slip occurred; (2) the strain was linearly

proportional to the distance from the neutral axis; (3) concrete

and steel stresses were functions of strains; (4) the confinement of

the concrete provided by lateral ties and the structural steel sec-

tion was considered; (5) the effects of residual stresses in the steel

section were included; and (6) the strain hardening of steel was

neglected. Note that previous studies by Mirza and Skrabek

(1991, 1992) show that the effects of strain hardening become

significant for short columns (f 1h=0) when el h> 1 and for long

columns (f/h>20) when elh>4.

A composite column cross section was assumed to consist of

three materials [Fig. 3(a)]: concrete, structural steel, and longitu-

dinal reinforcing steel. The concrete was divided into three types:

unconfined concrete outside the lateral ties, highly confined con-

crete between the steel section web and flanges, and partially

confined concrete inside the lateral ties but outside the influence

of the steel section. The boundary between the partially and

highly confined concretes was described by a parabola, as sug-

gested by Mirza and Skrabek (1991). The steel section was sub-

divided into two parts, the web and the flanges, to account for

differences in residual stresses. Therefore, six different stress-

strain curves were used to represent the materials in the cross

section, which was divided into strips and elements as shown in

Fig. 3(b).

A modified Kent-and-Park stress-strain relationship (Park et al.

1982) was used for concrete in compression. The ascending por-

tion of the curve was described by a second-order parabola, and

the descending branch of the curve beyond the maximum strength

was described by a straight line. The slope of the descending

branch for unconfined concrete depended on the concrete

strength. For the partially confined concrete, the slope of the de-

scending branch was affected by the concrete strength as well as

the level of confinement provided by the lateral ties. For the

highly confined concrete, the slope of the straight line was arbi-

trarily assumed to be zero due to the confinement provided by the

partially confined concrete on one side and the steel section web

and flanges on the remaining sides. The assumed zones of con-

crete confinement are shown in Fig. 3. Concrete in tension was

represented by a linear, brittle stress-strain relationship with the

maximum tensile strength represented by the modulus of rupture.

An elastic-plastic stress-strain relationship was assumed for

both the structural and reinforcing steels. A linear distribution of

the residual stresses was assumed for the web and flanges of the

steel section. The expression suggested by Young (1971) to com-

pute the residual stress at the flange tips was combined with the

expression suggested by Galambos (1963) for computing the re-

sidual stress at flange-web junctures. Further details are docu-

mented in earlier studies (Mirza and Skrabek 1991, 1992) and

will not be repeated here.
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Fig. 3. (a) Details of composite cross section used and (b)
discretization of one-half composite cross section used for computing
theoretical strength

Experimental Verification of Theoretical Strength
Procedure

To test the accuracy of the strength procedure, the strengths com-
puted by the theoretical model were compared to the strengths of

30 physical tests available in the literature. These tests were con-
ducted on composite columns for which the bending moment in

symmetrical single-curvature was applied about the major axis of
the encased steel section and were taken from Johnson and May

(1978), Morino et al. (1984), Procter (1967), Roik and Mangerig
(1987), Roik and Schwalbenhofer (1988), and Suzuki et al.

(1984). The ratio of test to computed strengths for the 30 com-
posite columns (elh=0.ll to 1.06, Oh=3.8 to 28.9, p„=0.0 to
0.8%, p,,.=4.2 to 14.5%) ranged from 0.84 to 1.18 with an

average value of 1.02 and a coefficient of variation of 9%.

The frequency histogram of the strength ratios for these speci-
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Fig. 4. Probability distribution of ratios of tested to theoretically
computed strengths of 30 composite column specimens subjected to
symmetrical single curvature bending about the major axis of the
encased steel section

mens is plotted on the inset of Fig. 4. The cumulative frequency

curve of the strength ratios for the same data is plotted also in

Fig. 4 on a normal probability paper and is compared with a
normal probability distribution using the same average value and

coefficient of variation as those obtained from the test data. Based
on the plots of Fig. 4 and statistics of strength ratios given on the

inset of Fig. 4, it can be assumed that the strength ratio of com-
posite columns subjected to symmetrical single curvature bending

is normally distributed with an average value of 1.02 and coeffi-
cient of variation of 0.09. This indicates a good correlation be-

tween the theoretical model and composite column test results.
Furthermore, an earlier study (Tikka and Mirza 2004) also found

this strength model to be reasonably accurate for physical tests
conducted on 146 reinforced concrete columns subjected to com-

bined axial load and symmetrical single curvature bending.

Simulation of Theoretical Stiffness Data for
Columns Studied

Approximately 12,000 isolated composite steel-concrete columns

subjected to bending about the major axis of the encased steel
section were simulated for this study. Each column had a different

combination of specified properties. The specified concrete

strengths ff., longitudinal reinforcing steel ratios p,,, and structural
steel ratios pss listed in Table 1 represent the usual ranges of these

variables used in the construction industry. All columns had rein-
forcing steel with a specified yield strength f,,,, of 414 MPa
(60 ksi) and 13 mm (0.5 in.) diameter lateral ties spaced at
280 mm (11 in.) and conforming to ACI Building Code sections

10.16.8.3-10.16.8.5. The structural steel sections with three dif-
ferent specified yield strengths f,,,, were used. The clear concrete

cover on lateral ties was held constant at 38 mm (1.5 in.) for this

study. Five slenderness ratios f/h were chosen to represent the
range of f/h permitted by ACI 318-02, clause 10.11, for columns

in braced frames. Table I shows that eleven end eccentricity
ratios elh ranging from 0.05 to 1.0 were used. Note that
for concrete buildings e/h usually ranges from 0.1 to 0.65 (Mirza

and MacGregor 1982). The overall dimensions of the composite
cross section were held constant at 560 mm X 560 mm

(22 in. X 22 in.) because a previous parametric study concluded
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Table 1. Specified Properties of Composite Columns Studied

Number of

Properties Specified values specified values

f' MPa (psi) 27.6; 34.5; 41.4: 55.2 4
(4000; 5000; 6000; 8000)

f.s MPa (psi) 248;303;345
(36,000; 44,000; 50,000)

p,.,. (percent) 1.09; 1.96; 3.17

3

Structural Section p„ (percent) 6

steel

W 310 x 253 10.33

W310X 179 7.29

W310X107 4.36

W250 x 167 6.80

W250 X 101 4.13

W200 X 100 4.07

flh 10; 15; 20; 25; 30 5

elh 0.05; 0.1; 0.2; 0.3; 0.4; 0.5; 11
0.6; 0.7; 0.8; 0.9; 1.0

Note: The number of simulated composite columns subjected to major

axis bending equals (4 X 3 X 3 X 6 X 5 X 1 I =) 11,880 with each column

having a different combination of specified properties shown above.

Overall dimensions of the concrete cross section were 560 X 560 mm

(22 X 22 in.) with lateral ties 13 mm (0.5 in.) in diameter spaced at

280 mm (11 in.) center-to-center, clear cover to lateral ties 38 mm

(1.5 in.), and specified yield strength of reinforcing steel bars

f,.,,. 414 MPa (60 ksi). Imperial equivalents of the steel sections noted

above are W 12 X 170, W 12 X 120, W12 X 72, W 10 X 112, W l O X 68, and

W8 X 67, respectively.

that the overall cross section size was not a major variable for
investigating the reliability of strength and stiffness of composite

columns (Mirza 1989).
The theoretical EI for each of the columns studied was com-

puted from Eq. (8) using MeS from the cross section strength
interaction diagram and Meal from the slender column interaction
diagram.

Examination of ACI Stiffness Equations

ACI 318-02 [2002, Eq. (10-21) and Eq. (10-12)] permits the use

of Eqs. (9) and (10) for calculating the effective flexural stiffness
(EI) of slender composite columns

0.2E I,
EI=(1+Rd)+Esh.r (9)

0.4Eelg
El= (10)

(1+ft)

where El and Es- moduli of elasticity of concrete and steel; Ig and
I,,=moments of inertia of the gross concrete cross-section and the

structural steel section taken about the centroidal axis of the com-
posite column cross-section; and (3d=the sustained load factor

taken as the ratio of the maximum factored axial dead load to the

total factored axial load (for the type of column studied) and is
always positive. For short-term loads, (3d=0, and Eqs. (9) and

(10) are simplified to Eqs. (l l) and (12), respectively

F
LL

15
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In= 11880
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Elth / Eldes

2.5 3.0

Fig. 5. Comparison of ACI stiffness equations with theoretical
results: (a) Eq. (11) [ACI 318-02, Eq. (10-21)] and (b) Eq. (12) [ACI
318-02, Eq. (10-12)].

El = 0.4E,19 (12)

Note that in Eqs. (9)-(12), E, was taken as 200,000 MPa

(29,000,000 psi) and Ee was computed from 4,700\ '. f,, MPa

(57,000tif,',psi), as specified in ACI 318-02.

Eqs. (11) and (12) were compared with the theoretical EI

values computed from Eq. (8) for all simulated composite col-
umns. The results of these comparisons are plotted in Figs. 5(a

and b), respectively, which show histograms and statistics of the
ratios of theoretical EI to ACI design EI (El,h,/Elde,). Stiffness
ratios (EI,h/EIde,) greater than one signify that EldeJ is conserva-
tive, and values of EIg,IElde, less than one indicate that Eld,J is
nonconservative.

Fig. 5 shows that, on the average, the stiffness values obtained
from both ACI equations are less than the theoretical values and

are generally conservative. However, the relatively high coeffi-

cients of variation obtained for both of these equations [22% for
Eq. (11) and 26% for Eq. (12)] indicate that, for a significant

number of columns studied, the ACI EI deviated substantially
from the corresponding theoretically computed EI. These inaccu-

racies are the consequences of both ACI equations [Eqs. (11) and

(12)] using a constant value of the coefficient (0.2 or 0.4) as-

signed to EJ5 as well as ignoring the contribution of longitudinal
steel bars to the effective flexural stiffness, and of Eq. (12) also
ignoring the contribution of structural steel section to the effective

flexural stiffness, regardless of different parameters that affect the
strength of slender composite steel-concrete columns. It is evident

from histograms shown in Fig. 5 that there appears to be a need
for modification in the existing ACI EI equations for the type of

columns studied. Similar conclusions were reached by Mirza and
Tikka (1999a,b).

Development of Proposed Equation for Short-Term
Effective Flexural Stiffness

The EI of a slender composite steel -concrete column is signifi-
EI = 0.2EeIe + E,I„ (11) cantly affected by cracking along its length and by inelastic be-
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havior of the concrete and structural and reinforcing steels. EI is,

therefore, a complex function of a number of variables that cannot
be readily transformed into a unique and simple analytical expres-

sion, such as Eqs. (11) and (12). In this study, the proposed stiff-
ness equation was developed through the following steps: (1) a

format of the proposed EI equation was selected that included

variables affecting EI significantly; (2) a multiple linear regres-

sion analysis of the generated theoretical EI data was conducted

to evaluate coefficients related to some of the variables included
in the proposed EI equation; and (3) the proposed El equation was

then finalized by curve fitting to one-percentile values of the gen-
erated theoretical stiffness data. This procedure was used since

the objective was to develop a more accurate but relatively simple
EI equation.

Format of and Variables Used for Proposed Effective
Flexural Stiffness Equation

As pointed out previously, the inaccuracies in Eq. (11) are intro-
duced because the contribution of the longitudinal reinforcing

bars is ignored and because a constant value of the coefficient

equal to 0.2 is assigned to E,lg regardless of different parameters

that affect the stiffness. The variables used for the development of
the EI equation proposed in this study were divided into two

groups: (1) variables affecting the contribution of concrete (E,Zg)

to the overall effective stiffness; and (2) variables affecting the
contribution of structural steel (E,1,,) and of longitudinal reinforc-

ing steel (E,1,.,) to the overall effective stiffness. Therefore, a
modified version of Eq. (11) is proposed that takes the form

EI = aeEe (Ic - I„) + a,,E,I,, + ar,EsIr, (13)

where a,, a,,, and dimensionless reduction factors (effective
stiffness factors ) for concrete , structural steel, and longitudinal
reinforcing steel , respectively; and 1,.,= moment of inertia of the
longitudinal reinforcing steel bars taken about the centroidal axis
of the composite cross-section . The reduction factor a, represents
the effects of several variables that influence the contribution of
concrete to the overall column stiffness and can be a linear
or nonlinear function of these variables. Therefore , Eq. (13) can
be developed as a linear or nonlinear equation . If a,_ is taken
as a linear function of x, and x, and assumed to be equal to
(ak+a1x1+azx, ), Eq. (13) becomes

E1=(ak+a,x,+a,x,)E,(Ig-I„)+a„E,I„+ar,Eslr, (14)

where ak is a constant (equivalent to the intercept of a simple
linear equation) and the remaining a values are dimensionless

factors corresponding to independent variables x1, x,, E,I,,, and

E,I,.,.
Earlier studies (Mirza and Tikka 1999a,b) investigated a large

number of variables and concluded that only a few variables had
significant effects on the contribution of the concrete part of the

cross section to the stiffness of slender composite columns. A
correlation analysis of the theoretical EI data simulated for this

study indicated that elh or elh combined with f/h have the most
significant effect on the contribution of concrete to the stiffness of

slender composite columns. Similar findings were reported by
Mirza (1990) and Mirza and Tikka (1999a,b). Hence, Eq. (14)

will assume the following form

e f
EI= U 1 h+a,h^E(IQ I„)+a,,Eslss+a.,Eir (15)

To simplify the analysis of the theoretical stiffness data,
Eq. (15) was nondimensionalized by dividing both sides by

The nondimensionalized linear equation for EI is

EI e f E 1,,, E,Ir,
=ak+a, +a,a„ +ar

Ee(Ig - IS,) h -h Ec(lg - I,s) E,.(Ig - I„)

(16)

Note that E, and E, values in Eq. (16) were taken the same as

would be used by a designer and are given after Eq. (12).

Regression Analysis of Theoretical Stiffness Data

A multiple linear regression analysis of the simulated theoretical

stiffness data was conducted using Eq. (16). The El values in

Eq. (16) were taken from the simulated theoretical flexural stiff-
nesses computed from Eq. (8), and coefficients ak, a,, a,, a,,,

and a,, were computed from the regression analysis. The accu-

racy of an EI regression equation was based on the multiple cor-

relation coefficient R,, an index of the relative strength of the

relationship, and the standard error Se (a measure of sampling

variability). An R, value equal to zero signifies no correlation, and
R,=±1.0 indicates 100% correlation; R,. values greater than +1.0

and less than -1.0 are not possible. The smaller the value of Se,

the smaller is the sampling variability of the regression equation.

Note that S, in this study was computed for ak. The correspond-

ing regression equations are

e
El = 0.332-0.202 e + 0.0028 h Ee(Ig - I„) + 0.818E,I,,

E1=(0.388-0.202e E,.(I9 -1,,)+0.818E,1„+0.802E,Ir,

(n =1] 880;R, = 0.959;Se = 0.054) (18)

Both Eqs. (17) and (18) show that as the elh ratio increases, there

is a corresponding decrease in El for a column. This is expected,

because an increase in el h means a corresponding increase in
bending moment and in the outer fiber tension stresses, resulting

in more cracking of the column. Eq. (17) also indicates that as the

f/h ratio increases, there is an increase in EI. Mirza (1990,) sug-

gests that this is perhaps because the cracks are likely to be more

widely spaced in a longer column with more concrete in between
the cracks contributing to the stiffness of the column. Note that

the theoretical procedure used in this study assumes that the con-

crete between the cracks does not provide additional stiffness in
the cracked element(s) of a column. The coefficients a,,, and a,,

related to E,I,, and E,Ir, in Eqs. (17) and (18) are less than unity

and represent "softening" in stiffness due to the elastic-plastic
nature of the stresses developed in the structural steel and longi-

tudinal reinforcing steel bars near ultimate load.

Proposed Design Equation

The regression analyses of the theoretical stiffness data described
in the foregoing section were used to estimate values of coeffi-

cients related to some of the variables that affect the flexural
stiffness of composite columns. Eqs. (17) and (18) show a con-

stant value of a,,=0.818 and a,,=0.802. Hence, a value of 0.8 for

both a,, and a,., appears to be a reasonable approximation and
was used for developing a more "refined" El equation through
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ac Computed from
Eq. (21) One-percentile

0.5

0.4+

0.3+
U

0.2+

0.1 +

nn

0
0.0 0.2 0.4 0.6 0.8 1.0

End Eccentricity Ratio h)

Fig. 6. Comparison of Eq. (21) with theoretically computed average

and one-percentile values of a, for composite columns subjected to

e/h ranging from 0.1 to 1.0 (n= 1080 for each e/h value plotted)

curve fitting to the simulated theoretical stiffness data. Substitut-

ing 0.8 for as, and ar, in Eq. (13) yields the following expression

EI = a,.Ec(Ig - I„) + 0.8E,(I,., + I,,) (19)

where a, is a function of elh, or elh combined with flh, depend-

ing on whether one (e/h) or both (e/h and f/h) of these variables

are included in the analysis. Solving Eq. (19) for a,. gives the

following equation

EI - 0.8E,(I,, + I„)

EJIX - I„)
(20)

Again, E, and E, values in Eq. (20) were taken the same as given

after Eq. (12).
The theoretical values of a, were computed for all simulated

columns for which e/h ranged from 0.1 to 1.0 by substituting the

theoretical EI values obtained from Eq. (8) into Eq. (20). The
averages (open square symbols) and one-percentiles (solid square

symbols) of a,. values so computed are plotted against the end

eccentricity ratio in Fig. 6. The plots in Fig. 6 indicate that a

nonlinear equation for a, is needed to fit the data.
A widely accepted and reasonable practice is to use either the

five-percentile or one-percentile values for the development of
design equations. A nonlinear equation for a,. was visually fitted,

with the aid of a spreadsheet, as close as possible to the one-

percentile values of a,. shown in Fig. 6. Using only e/h initially

as a variable, the following equation for a, was obtained

e/ 1 )
a^=0.5-3.5- (21)

1+9.Sh

In Fig. 6, Eq. (21) is superimposed on the plots of theoretical
values of a, As expected, Eq. (21) shows an excellent agreement

with most of the one-percentile values of theoretical a,., but is a
conservative representation of the average values of theoretical

a,..
In Eq. (17), the value of the coefficient a2 associated with f/h

is 0.0028. The coefficient a, was rounded to 0.003 and then used

to modify Eq. (21) for including the effect of f/h. Based on a

statistical analysis of the theoretical a,. values for all simulated

columns in which e/h ranged from 0.1 to 1.0, the following equa-

tion was selected for a,:

e
a.=0.47-3.5-

e

f
+0.003- (22)

1+9.5h

It is interesting to note that Eq. (22) reduces to Eq. (21) at

f/h=10.
Substituting a,. from Eq. (22) into Eq. (19) gives the following

expression for EI

1 f
EI = 0.47 - 3.5

e
- + 0.003- E,. (h - I,,,)
h e h

1 +9.5-
h

+ 0.8E,(l,, + 1,.,) (23)

Eq. (23 ) is the proposed design expression for short-term EI

of slender composite steel -concrete columns under major axis

bending and is subject to the following limitations : e/h--0.1;

f/h_- 30 ; p,.,%I%; and p ,% 4%. When e/h is less than 0.1, use

e/h=0.1 in Eq. (23). Note that this limitation on e/h was

not included in statistical analyses of stiffnesses or stiffness

ratios obtained from Eq. (23 ), and is presented later in Figs. 7-10

and 12.
A comparison of stiffnesses from the proposed design equation

[Eq. (23)] with theoretical stiffnesses [Eq. (8)] for all simulated

columns is shown in Fig. 7 . Note that Eye, and El,1, plotted

in Fig. 7 have been nondimensionalized by dividing them by

E,(Ig-I„). As expected , Eq. (23) produced reasonable correlation

with the theoretical EI values.

Analysis and Discussion of Simulated Results

Frequency histograms and other statistical data presented in this

section were prepared for the stiffness ratios (EI,h,IEI,1,) using

different design equations. For computing the stiffness ratio, El,1,

was taken as the simulated theoretical stiffness while EId,,, was

1.5
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Coeff. of Variation = 0.07
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Fig. 7. Comparison of Eq. (23) with simulated theoretical EI data
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Fig. 8. Probability distributions of stiffness ratios computed from
data for all composite columns (n= 11,880)

computed from one of the ACI design equations [Eq. (11) or (12)]
or from the proposed design equation [Eq. (23)].

Overview of Stiffness Ratio Statistics

The frequency histogram and statistics shown in Fig. 7 were
prepared using the proposed design equation [Eq. (23)]. A com-

parison of the histogram in Fig. 7 with those in Fig. 5(a and b)

plotted for the ACI design equations can be summarized as
follows:

1. The coefficient of variation of stiffness ratios for the pro-
posed design equation is significantly lower-over 68%

lower-than the values obtained from the ACI design
equations.

2. The average stiffness ratios for the ACl design equations

tend to be more conservative than that for the proposed de-

sign equation. However, the one-percentile stiffness ratios

obtained for ACI design equations and for the proposed
design equation are approximately the same.

These trends are more clearly seen by comparing cumulative
frequency curves of stiffness ratios for the proposed and ACI

design equations plotted on a normal probability paper in Fig. 8.

The curves in Fig. 8 were prepared from the data for all of the
columns studied. These curves indicate that the proposed design

equation produces the least variable results for the columns stud-
ied, whereas ACI design equations produce stiffness ratios that

are, in a large number of cases, significantly higher than 1.0. The
same conclusions can be reached by comparing the histograms of
stiffness ratios plotted on the inset of Fig. 8.

Effects of Major Variables on Stiffness Ratios

The effects of the end eccentricity ratio (e/h), axial load ratio
(P„1Po), slenderness ratio (f/h), and longitudinal reinforcement
ratio (pr,) on the average and one-percentile values of stiffness
ratios (EI,h/EI,1,,) obtained from ACI and proposed design equa-
tions [Eqs. (11), (12), and (23)], are shown in Figs. 9(a-d), re-

spectively. Note that Po in this study was defined as the unfac-
tored pure axial load strength of a cross section and was
computed from Po=0.85f"'(Ac-A,,-A,.,)+f5 .55A„+f1,,.5A5.,, where
A c, A,,, A,., = areas of the gross concrete cross section, of the struc-
tural steel section, and of the longitudinal reinforcing steel bars.

Each of these figures were plotted from the data for all 11,880
columns studied. Following are conclusions that can be drawn
from these figures.

1. The average and one-percentile stiffness ratios for the pro-

posed design equation [Eq. (23)] are not significantly af-
fected by e/h, P„/P55, f/h, and pro, whereas such values for
the ACI equations [Eqs. (11) and (12)] are significantly

affected by most of the same variables. This is expected for

the ACI equations, because the ACI equations, particularly
Eq. (12), do not include most of the variables studied.

2. The average stiffness ratios for the ACI design equations are

very high in some cases. The ACI simple equation [Eq. (12)]

produces the lowest one-percentile stiffness ratios over
almost the entire range of f/h studied as well as for
e l h > 0.4. These trends for the ACI design equations are
expected because the ACI expressions were developed origi-
nally for reinforced concrete columns subjected to low-end
eccentricities and were applied to composite column design

with some modification [Eq. (11)] or no modification

[Eq. (12)].
3. The proposed design equation computes the effective flexural

stiffnesses close to the theoretical values. The average and
one-percentile values for the proposed design equation are

above 1.0 and 0.85, respectively, for almost all of the cases
studied.

The histograms and related statistics of stiffness ratios at each
value of e/h studied are examined in Fig. 10 for the proposed
equation. Fig. 10 clearly demonstrates that the end eccentricity

ratio has virtually no affect on the histograms and related statistics
of stiffness ratios for individual e/h values ranging from 0. 1 to
1.0. This indicates that the proposed design equation adequately
addresses the effect of e/h. Note that similar plots prepared using
the ACI equations [Eqs. (11) and (12)], but not presented here,
demonstrated substantial effects of the end eccentricity ratio.

Stiffness Ratios Produced by Proposed Design
Equation for Usual Columns

The end eccentricity ratio elh for columns in concrete buildings
usually ranges from 0.1 to 0.65 (Mirza and MacGregor 1982). In

a survey of 22,000 columns conducted in the late 1960s by

MacGregor et al. (1970), 99% had a slenderness ratio f /h -- 20.
Therefore, those columns for which e/h=0.1, 0.2, 0.3, 0.4, 0.5,
0.6, or 0.7 and f /h =10, 15, or 20 were defined as usual columns
for this part of the study.

The average and minimum values of the stiffness ratios
(EI1h/EId0,) computed using Eq. (23) are plotted against e/h in
Fig. 11(a) for f/h=10 and in Fig. 11(b) for f/h=20. The one-
percentile values are not plotted in these figures because the

sample size for each point plotted ranges from 36 to 108 with
minimum values representing 2.8 to 0.9 percentiles, respectively.

Figs. 11(a and b) show that for almost all columns plotted, the
minimum values exceed 0.85, and the average values are above
1.0.

Based on Fig. 11, the following conclusions appear to be

valid for usual composite steel-concrete columns subjected to
major axis bending (elh=0.1 to 0.7, f1h=10 to 20, and
p,o=4.2 to 10.3%):

I. The proposed design equation [Eq. (23)] does not introduce

significant variations in stiffness ratios due to changes in el h,
flh, and p,,; and

2. The average and minimum stiffness ratios produced by
Eq. (23) may be taken as at least 1.0 and 0.85, respectively.
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f /h=20 (for each combination of e/h and p, ratios plotted, n=108 when ps = 4.2%; n=72 when p,.,. = 7.0%; and n=36 when pss = 10.3%)

Stiffness Reduction Factor for Proposed Equation

MacGregor (1976) suggested that the one-percentile strength ra-

tios can be used to estimate the resistance reduction factors. The
one-percentile stiffness ratios computed using the proposed El
equation [Eq. (23)] were 0.88 for all columns studied (Figs. 7 and
8). In addition, the plots investigating the effects of variables on

stiffness ratios shown in Fig. 9 indicate that, in almost all cases,
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the one-percentile values of stiffness ratios produced by Eq. (23)

exceed 0.85. Hence, a stiffness reduction factor (^K=0.85 is pro-

posed for use when computing the factored critical buckling

strength using the proposed EI equation [Eq. (23)] for composite

columns subjected to bending about the major axis of the encased

steel section. This value of (^K is higher than the 0.75 currently

specified in ACT 318-02 (2002), which was originally computed
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Fig. 12 . Ratios of theoretically computed strengths to the strengths calculated from the moment magnifier approach using: (a) and (c), Eq. (11);
and (b) and (d), Eq. (23) (n= 1,080 for each of the eleven e/h ratios studied, and n=2,376 for each of the five f/h ratios studied)
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by Mirza et at. (1987) for reinforced concrete columns subjected
to short term loads using the ACI 318-02 Eq.(10-11) with Rd=0.

Comparison of Column Strengths Based on ACI and
Proposed Effective Flexural Stiffness Equations

Because EI is an intermediate step in the process of strength

design of slender columns, the ultimate strengths of all 11,880
composite columns used in this study were computed from the

moment magnifier approach using the ACI and proposed EI equa-
tions [Eq. (1l) and Eq. (23)] and compared to the theoretically

simulated strengths of the same columns. Hence, for the strength

ratios (Pth...lPde,) plotted against e/h and f/h in Fig. 12, Ptneo.
was taken as the theoretically simulated strength, whereas Pd,S

was computed from the moment magnifier approach using either
Eq. (11) or Eq. (23). Note that the strength ratios and related

statistics shown in Fig. 12 are based on unfactored strengths with

k =4K=1.0 in all cases.
Figs. 12(a and c) show a large spread in strength ratios when

the current ACI EI equation [Eq. (H)])] is used in the moment
magnifier approach. These strength ratios tend to become more

scattered and more conservative at lower e/h and higher f/h

ratios. On the other hand, Figs. 12(b and d) show that the scatter

in the strength ratios almost disappears when the proposed EI

equation [Eq. (23)] is used in the moment magnifier approach and
the strength ratios appear to be independent of e l h or 0h.h. The

strength ratio statistics computed using the ACI EI equation
[Eq. (11)] and the proposed EI equation [Eq. (23)], shown in

Figs. 12(a and b), respectively, also indicate that the proposed EI
equation produces far more accurate results than does the current

ACI El equation. This is expected because elh and flh are both

included as variables in Eq. (23).

Design Application for Columns in Frames
Subjected to Sustained Loads

The effects of sustained loads on the stiffness of composite col-

umns can be accounted for by applying the sustained load factor

(3d to Eq. (23) in a similar manner, as currently done in ACI

318-02 (2002)

ac I s
EI = + 0.8E (1„

(l + R d)

in which a,. is computed from

(24)

e 1 f
at.= 0.47-3.5h 1 +9.5 e +0.003h 1 --0

-
h

Eq. (24) is the proposed design expression for slender composite

columns subjected to sustained loads and is subject to the follow-

ing limitations: e /h % 0.1; f /h < 30; p,,--4%; and p,.,--]%.

When e/h is less than 0.1, use e/h=0.1 in Eq. (24). In Eq. (24),

e is the larger end eccentricity=M,/P,,; f = unsupported height of
the column; and E,, E,, and Rd values are the same as those given

in ACI 318-02. For short-term loads ([3d=0), Eq. (24) reduces to

Eq. (23).
The effects of moment gradient and end restraints on columns

in braced frames are accounted for in the ACI moment magnifier
approach through the use of the equivalent uniform moment dia-

gram factor C,,, and the effective length factor K. Typical columns
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Fig. 13 . Graphical solution of a,. [Eq. (22)] for composite columns

in braced frames would have C,, factors between 0.6 and 1.0 and
K factors ranging from approximately 0.8 to almost 1.0. The col-

umns in this study were pin-ended and subjected to equal and
opposite end moments causing symmetrical single curvature
bending, with C,, =K= 1.0 (Fig. 1), and represent the most critical
condition for columns in braced frames. It is suggested that, for

the design of composite columns subjected to major axis bending,
the existing ACI design equations for El [Eqs. (9) and (10)] be
replaced by Eq. (24). It is also suggested that a design aid, similar
to Fig. 13, for graphical evaluation of a, be placed in the com-
mentary of ACI 318-02 to speed up the design process. Note that

the proposed EI equation was developed from member strengths
at ultimate loads and is suitable for that purpose. It should not be

used in its current form for pushover analyses or for serviceability
calculations, as the equation has not been tested in these areas.

At a glance the proposed EI equation may look cumbersome.
Additionally, it could be argued that the determination of e/h
values from a conventional (first-order) structural analysis may

not be accurate enough to justify the additional complexity of Eq.
(24). However, if Fig. 13 is employed, the proposed equation is

no more complicated than the current ACI El equations [Eqs. (9)
and (10)]. Furthermore, the use of a spreadsheet will greatly sim-

plify computations regardless of whether the ACI EI equation or
the proposed EI equation is used.

Conclusions and Recommendations

This paper presents a statistical evaluation of the parameters that
affect the flexural stiffness El of slender tied composite steel-

concrete columns in which steel shapes are encased in concrete.
The columns were subjected to short-term loads and equal end

moments causing symmetrical single-curvature bending about the
major axis of the encased steel section. The existing ACI 318-02

equations were examined and a new nonlinear equation for EI
[Eq. (24)] was developed from the simulated data. A stiffness

reduction factor (^K=0.85 is proposed for the new equation. A

graphical design aid to speed up computations is also included in
this paper.

The results presented in this paper show that the overall vari-
ability of the proposed design equation is far lower than that

obtained using the current ACI expressions. In addition, the pro-
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posed EI equation is not subject to significant variations due to

effects of variables investigated. Note that the proposed EI equa-
tion was developed from member strengths at ultimate loads and
is suitable for that purpose.

Notation

The following symbols are used in this paper:

Ag,Ar„ A,,. = area of gross concrete cross-section, of
longitudinal reinforcing steel bars, and
of structural steel section;

C,,, = equivalent uniform bending moment diagram
factor;

E, E, = moduli of elasticity of concrete and steel;
EI = effective flexural stiffness of column;

Elite,. = flexural stiffness of column computed from
design Eqs . ( I1), (12), and (23);

EI,t, = theoretical flexural stiffness of column

f1rs,

computed from Eq. (8);

end eccentricity= M21P„=M, ,1/Pu;

specified compressive strength of concrete;

specified yield strength of reinforcing steel
bars and of structural steel section;

h = overall thickness of cross section perpendicular
to the axis of bending;

moment of inertia of gross concrete cross

section, of longitudinal reinforcing steel
bars, and of structural steel section taken about

centroidal axis of composite cross section;
K = effective length factor;

k = lowest eigenvalue solution to basic differential

equation of equilibrium;
f = unsupported height (length) of member

(column);

M = bending moment;

M,. = design bending moment, which includes

e

f:.

second-order effects;

bending moment resistance of member
(column) and of cross section;

maximum bending moment acting along the
column length;

smaller and larger of factored moments

applied at column ends;

Mmax

Mr,M2

n = number of data points;

P = axial load;
Pe = critical load of column, Eq. (6);

Pe.r = Euler's buckling strength or critical load of a
pin-ended column, Eq. (4);

Pdes = column axial load strength computed from

moment magnifier approach;
P00 = unfactored pure axial load strength of

Prneor =

composite cross section;
theoretically computed axial load strength of

column;
P„ = factored axial load acting on column;

Re, Se = multiple correlation coefficient and standard
error;

X, x2 = independent variables used for regression

analyses;
ae,arr,a,, = dimensionless stiffness reduction factors for

concrete, for longitudinal reinforcing steel,

and for structural steel, respectively;
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0.k =

aI ,a, =

a dimensionless constant;

dimensionless factors corresponding to
independent variables xi, x2 (or e/h, c/h);

Ra ratio of the maximum factored axial dead

load to the total factored axial load;

0u deflection of column at midheight;

8u,. = moment magnifier for columns that are part

of braced (nonsway) frames;
81 = moment magnifier for columns subjected to

Prs, Ks
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