CONFINING REINFORCEMENT FOR
CONCRETE COLUMNS
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AssTRACT: Previously derived stress-strain relationships for compressed concrete
confined by various quantitics and arrangements of transverse reinforcement are
used in cyclic moment-curvature analyses of a range of reinforced concrete columns
to derive design charts. The design charts permit the enhanced flexural strength
of conlined columns to be obtaincd. They also permit the quantities of transverse
reinforcement required to achicve particular curvature-ductility factors in the po-
tential plastic-hinge regions of reinforced concrete columns to be determined. The
column scction is considered to have reached its available ultimate curvature when
cither the moment resisted has reduced to 80% of the ideal flexural strength, or
the strain encrgy absorbed in the transverse reinforcement has reached its strain
cnergy absorption capacity, or when the logitudinal steel has reached its limiting
tensile or compressive strain, whichever occurs first. Refined design equations to
determine the quantities of transverse reinforcement required for specified ductility
levels are derived on the basis of the design charts. The equations are an improve-
ment on the current provisions of concrete design codes.

INTRODUCTION

Transverse reinforcement in reinforced concrete columns provides con-
finement to compressed concrete, prevents premature buckling of com-
pressed longitudinal bars, and acts as shear reinforcement. The quantities
of transverse reinforcement present in columns designed for seismic resis-
tance should ensure ductile behavior during severe earthquake loading.

In the seismic design of moment resisting frames of buildings it is possible
to use a strong column—-weak beam approach to reduce the likelihood of
plastic hinging in columns during a major earthquake. The extent to which
the occurrence of plastic hinges in columns can be eliminated depends on
a number of factors, including the ratio of the flexural strength of the
columns to that of the beams. In general, it is impracticable to totally
eliminate the likelihood of some yielding of columns occurring in moment
resisting frames of buildings (Park and Paulay 1975). Also, columns forming
part of bridge piers can be deliberately designed to develop plastic hinges
during a major earthquake. It is evident that all columns in structures de-
signed for seismic resistance should be detailed for sufficient ductility to
sustain the likely inelastic displacements at the design level of seismic loading
without significant degradation of strength.

The present paper describes background-research results and an analytical
procedure developed to derive refined design charts and equations for the
quantities of transverse reinforcement required for concrete confinement to
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achieve specified ductility levels in the potential plastic-hinge regions of
columns. The derived equations more accurately reflect the influence of the
significant variables than current code equations. Also, the enhancement

o [N £ -~ + hyy cuarca roin.
of the flexural strength of columns due to confinement by transverse .h\,...
< . «
m i i i norted in more detail elsewhere
forcement is considered. This work is reported in more

t e
(Watson and Park 1989; Zahn et al. 1986).

AC! AND NEW ZEALAND CODE EQUATIONS

The special provisions for seismic design in Chapter 21 of ACI 318-89
and the sesmic design provisions of the New Zealand Concrete Design Code
(NZS 3101) give equations for the design of transverse reinforcement for
the confinement of columns in potential plastic-hinge regions. The ACI
code equations are based mainly on a philosophy of preserving the ultimate
load-carrying capacity of concentrically loaded columns after spalling of the
cover concrete, rather than emphasizing the required ultimate curvature
deformation of eccentrically loaded columns. The New Zealand code equa-
tions are based on earlier Structural Engineer Association of California
(SEAQC) equations (**‘Recommended lateral forces™ 1975), but have a New
Zealand derived modification factor that takes into account the influence
of the level of axial compressive load on the available ultimate curvature
of columns. That modification factor was found from theoretical monotonic
moment-curvature analyses (Park and Sampson 1972: Park and Norton
1974; Park and Leslie 1977) using conservative stress-strain curves for con-
fined concrete.

REFINED APPROACH BASED ON MOMENT-CURVATURE ANALYSIS

Approach o ' o

The logical approach for the determination of the quantity of contlnln_g
reinforcement required in the potential plastic-hinge region of a column is
to ensure that the column section has a satisfactory cyclic moment-curvature
relationship up to the desired level of ultimate curvature. In a refined anal-
ysis, included as variables would be the level of axial compressive load on
the section, the longitudinal-reinforcement ratio, the cyclic stress-strain re-
lationship for the longitudinal reinforcement, and the cyclic stress-strain
relationships of the cover concrete and of the confined core concrete as a
function of the transverse reinforcement. A difficulty with such analyses in
the past has been the lack of comprehensive data on the cyclic §tress-stra{n
relationships for concrete confined by various arrangements of transverse
reinforcement. In recent years. however, a great deal of laboratory research
has been conducted in many countries that has resulted in a better under-
standing of the stress-strain behavior of confined concrete. The research in
New Zealand has been summarized elsewhere (Priestley and Park 1984,
1987, Park and Paulay 1990).

Stress-Strain Model for Confined Concrete .
Mander et al. (1984, 1988a, 1988b) analyzed the results of concentric load
tests conducted on large reinforced concrete columns confined by either
spirals or circular hoops, or by rectangular hoops with or without cross ties.
Typical results are idealized in Fig. 1, which compares the longitudinal stress-
strain curve of well-confined concrete with the curve for identical, but un-
confined concrete. The passive lateral confining pressure exerted by the
transverse reinforcement on the core concrete when the transverse strains
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FIG. 2. Confining Stresses Provided by Different Arrangements of Transverse
Reinforcement

in the concrete become significant results in the core concrete being placed
in a state of triaxial compression, thus enhancing the compression strength
and causing a more ductile post-peak stress-strain behavior. Eventual frac-
ture of the transverse reinforcement limits the useful ultimate longitudinal
compression strain of the confined concrete. However, for volumetric ratios
of transverse reinforcement typical of well-confined columns designed ac-
cording to seismic design codes, longitudinal compression strains of the
confined concrete in the range of 0.02-0.08 at the stage of fracture of the
transverse reinforcement are generally obtained.

Mander et al. (1984, 1988a, 1988b) have developed a model for the stress-
strain curve of confined concrete based on experimental results. In the
model, the effective lateral confining stress in each direction, exerted on
the concrete core by the transverse reinforcement at the vield strength, is

given by
fi = k.f, (1)

where f; is the confining stress calculated as in Fig. 2 and k, is a confinement
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FIG. 3. Stress-Strain Curves Given by Mander et al. (1984, 1988a, 1988b) for Spi-
raily Contined Concrete with Various Levels of Effective Lateral Confining Stress

effectiveness coefficient that takes into account the arching of the concrete
pbetween the transverse and longitudinal reinforcement. The coefficient k,
was defined by Mander et al. (1984, 1988a, 1988b) as the ratio of the area
of effectively confined core concrete to the area of concrete within the
centerlines of the peripheral hoop or spiral. For sections with equal effective
lateral confining stress in each direction, the ratio of the compressive strength
of the confined concrete f'. to the compressive strength of unconfined con-
crete f., is given by
ff‘ =225 \/1 + 7.944’— - 2.0f—,’ - 1.25 (2)
f('() ft'() f(‘()

Fig. 3 shows examples of stress-strain curves given by the model for spirally
confined concrete with various levels of effective lateral confining stress.

Stress and strain at the peak stress for confined concrete (fics £cc) and at
the peak stress for unconfined concrete (f,, £.,) in the model are related
by the parameter
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where R = an experimentally determined value (Mander et al. 1984, 1988a,
1988b). Strain rate is taken into account in the model by using values for
the control parameters f/,, &, and the modulus of elasticity of the concrete
E.. which correspond to the relevant strain rate.

Relationships for the cyclic stress-strain behavior of concrete are also
given by the model. It is assumed that the monotonic stress-strain curve
forms an envelope for the cyclic stress-strain branches. Fig. 4 shows typical
stress-strain curves for cyclic compressive loading in the inelastic range.

Ultimate Concrete Compressive Strain
The ultimate longitudinal concrete compressive strain of confined con-
crete is defined in the present study as the longitudinal strain when the
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FIG. 4. Cyclic Compressive Stress-Strain Behavior of Confined Concrete

transverse reinforcement first fractures, since that event results in a sudden
reduction in the confinement of the concrete. Mander et al. (1984, 1988a,
1988b) have proposed an energy-balance method to predict the longitudinal
concrete compressive strain at the stage of fracture of the transverse rein-
forcement. The energy-balance method reflects the principle that the lateral
expansion of the core concrete at large compression strains is passively
resisted by the confining steel, which has to follow that expansion, thus
absorbing strain energy. The increase in strain energy capacity of the com-
pressed concrete due to confinement is assumed to be provided by the strain-
energy capacity of the transverse reinforcement.

The ultimate longitudinal concrete compressive strain is calculated by
equating the strain energy stored in the transverse reinforcement at fracture
to the sum of the strain energy stored in the concrete as a result of the
confinement (given by the shaded area of Fig. 1 multiplied by the volume
of confined concrete) and the strain energy required to maintain the yield
of the longitudinal reinforcement. If the strain energy accumulated in a
hoop or spiral bar over a number of curvature cycles in the inelastic range
has reached the strain-energy absorption capacity of the transverse bar,
causing it to fracture, the section may be considered to be at an ultimate
limit state, since the concrete is no longer effectively confined.

Stress-Strain Model for Steel Reinforcement
Stress-strain curves for typical reinforcing steel measured during mono-
tonic loading tests, such as shown in Fig. 5, can be idealized into an elastic
region, a yield plateau, and a strain-hardening region, as shown in Fig. 6.
Mander et al. (1984) found that the stress-strain curve in the strain hard-
ening region (e,, < g, < ¢,,) can be predicted with good accuracy by

P
. £, — €,

fi=fu— (fu = ) ( — ) 4)
\ su — €

where ¢, = steel strain; e, = steel strain at commencement of strain hard-

ening; ¢,, = steel strain atf,,. f, = steelstress; f,, = ultimate tensile strength
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of steel; f, = yield strength of steel; E,, = strain-hardening modulus of
steel; and’

_ Eo T €sn (5)
F= ESh <fsu - fv)

Strain rate is taken into account by using values for the control parameters

al te.
rrespond to the relevant strain ra ' o
th;}\t/lgﬁderi):t al. (1984) have also proposzd_a %:gncrillfmodzlrigoursp;;aféggu;%
i i ior i ted in Fig. 7, for v g
clic stress-strain behavior illustra g , I :
trteI?nngrcing steel at any strain level. Envelopes of stress-strain behavior are
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380 MPa (S5 ksi)] Reinforcing Steel (Mander et al. 1984): (a) with Unsymmetrical
Strain Cycles; (b) with Symmetrical Strain Cycles

provided by a skeleton branch curve identical to the monotonic stress-strain
relationship. To cope with the inelastic cyclic behavior illustrated in Fig.
7(a), it is necessary to shift the strain origin to account for previous inelastic

excursions. Fig. 7 shows some experimental curves compared with the an-
alytical predictions.

Moment-Curvature Analysis

Theoretical cyclic moment-curvature relationships for reinforced con-
crete-column sections can be calculated using well-known theory (Park and
Paulay 1975), which assumes that plane sections before bending remain
plane after bending. In the present study. the stress-strain relations for
confined and unconfined concrete developed by Mander et al. (1984, 1988a,
1988b) were used to determine the compressive stress distribution in the
core concrete and the cover concrete, respectively, for a given extreme fiber
compression strain. The cover concrete is assumed to cease carrying a load
when the spalling strain €, 18 reached (see Fig.1).

To compute the moment-curvature relationship for a given column section
and axial-load level, it is convenient to divide the section into a number of
discrete laminae, each having the orientation of the neutral axis (Park and
Paulay 1975). The longitudinal steel reinforcement may be replaced by an
equivalent thin tube with equivalent wall thickness to give the same total
area of longitudinal reinforcement, or considered as a discrete number of
bars of reinforcing steel. Fig. 8 shows the idealization of a square section.
Note that the concrete laminae each contain an area of core concrete and
cover concrete, for which different stress-strain relations apply as earlier.
A similar approach is used for circular sections. The stress-strain model for
the longitudinal steel derived by Mander et al. (1984) was used in the present
study. The moment-curvature relationships for a column section can be
traced by increasing the extreme fiber concrete compression strain and
satisfying the equilibrium conditions.

The energy-balance approach can be used to calculate the stage of first
fracture of the transverse reinforcement. However, the value of the ultimate
longitudinal concrete compression strain when first fracture occurs for a
column section under eccentric loading exceeds the value predicted for
concentric loading. This is because the area of concrete subjected to
compression stress is normally less than the full core area, and the average
strain over the compression stress block is only a half of the maximum.
Consequently, for a given extreme fiber compression strain, the strain en-
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used in the present study.

DESIGN CHARTS FOR FLEXURAL STRENGTH AND DUCTILITY

i ment-Curvature Analysis '
Cyglgolrln?)uter program for cyclic moment-curvature analysis developed by

Mander et al. (1984) was used by Zahn et al. %19863) to der:zecgfsﬁr:lscharts
¢ : ility of reinforced concre .
for the flexural strength and ductili A IS e
i i i Its demonstrated that the pea
Comparison with experimental resu . e bl
Kperi -curvature loops for column sections wi
experimental moment-curva o n se¢ s ol b
i 2ssion- > ¢ predicted reasonably _
low axial compression-load levels cou pred: abl 1l by
simple ;nonot(?nic moment-curvature analysn_z.usmghn:obnotc};l:llcckiit;‘;szis(;rsgl
5 > te, providing that bar 1
models for the steel and the concrete, ir buckling did not
itionz tion that was not accounte .
cause additional strength degrada _ accol b2 o
is axial compression load level was high,
analysis. However, when the axia e i o
ifi joration at large curvatures with cychc g
nificant moment deterioration at ‘ Joading ap
i - ture analysis unconservative. b ,
d to make monotonic moment-curva _ e
Fte\?vrzfs decided to use cyclic moment-curvature theory in the derivation of

the design charts (Zahn et al. 1986a).

Definition of Ultimate Curvature . L

A sequence of four identical cycles of}:mposgq bcnciilnge(r:l?irssréti,régtg);;k

S al magni in both the positive and negc lirections.

curvatures of equal magnitude in t ) and tive directions.

as stand: hich the available curvature-ducnlity fac
was adopted as the standard by whi i urvature-ductility factor
1 ; e measured in seismic g
forced concrete-column sections cou . ' :

Of'rl"et:E column section is considered to have reached its a'vaillag.le ultimate

curvature when one of the following limit conditions is reached:

1. The moment resisted at either the positi1ve or nlegativetﬁ)zzfnt(hoefstelﬁi?st
. here M, = ideal flexural streng .
cycle has reduced to 0.8M,, w ‘= 1 of the section.
i the transverse steel a
2. The strain energy accumulated in the : :
the four cycles has become equal to its strain-energy absorption capacity.

1805



3. The tensile strain in the longitudinal reinforcing steel has exceeded
g5, Where g, = strain at the ultimate tensile strength.
4. The compression strain in the longitudinal compression steel has ex-

ceeded ¢, where €,,. = strain when significant inelastic buckling occurs

The curvature at the first of these imi iti : i
defined.as. the available ultimate curvfaotl\lxl;ehgn.t conditions to be reached s
For limit condition 4, the limiting compre“ssion strain in the steel rein-
forcement ¢, can be shown to be a function of the s/d, ratio, where s =
center-to-center spacing of transverse reinforcement along the 7longitudina]
bar; and d, = diameter of the longitudinal bar. Values for ¢, were derived

by Zahn et al. (1986). The buckling model illustrated in Fig. 9 was used

and it was derived that
s E,
a4 =15 /E: (6)

where E, = reduced modulus; and f,,. = buckling stress

required to control bar buckling can be obtained fr%)m (6) gir\rfgrel tvt?elus?rheg/scit-,
strain cusve for the steel and either the compressive strain €, or compressive
stress f,,. at buckling. Fig. 10 shows the result for a typiczllll“batch of Grade
380 [f, = 380 MPa = 55 ksi] deformed steel bars (manufactured by Pacific
Steel, Ltd.. Auckland, New Zealand) calculated by Zahn et al.” (1986a)
using the monotonic stress-strain relation for the steel. Two cases are plotted
in Fig. 10. For case 1, the specified yield strength, average ultimate tensile
strength, and average strain-hardening modulus were used. For case 2, the

[]
N
Reinforcing
DGF,;zidb s
2N
o im
3NN
ffectively
etrecuvery [ fENCOed | ¥
confined '_-'j-.', QQCQEIe
concrele S K

ARN

H _
{,

FIG. 9. Model for Buckling of Compression Reinforcement

(disintegrated)

Hoop or
spiral bar

1806

T T T T T T T T T T T T T T
1.6 GRADE 380 A
;:::“‘\§> STEEL ]
r | (fy: SSkS// h
1.4 + N
> - 4
\U L |
uj‘ - \C\O\y n
1.2 Adopted NG ]
AN
— \ —
— N m
o J N B G T S LNy
2 4 6 8 10 12

S/db

FIG. 10. Ratio of Theoretical Buckling Stress to Yield Strength for Typicai Steel
Reinforcing Bar (Zahn et al. 1986a).

average yield strength, average ultimate tensile strength, and lowest strain-
hardening modulus were used. The curve used for limit condition 4 in this
column analysis is also shown in Fig. 10.

It was found in the analysis that limit condition 3 was not critical, and,
for close spacing of transverse reinforcement, limit condition 4 did not
govern. Thus, limit conditions 1 and 2 were used to define the available
ultimate curvature. These two limit conditions are illustrated in Figs. 11 and
12. For the column section in Fig. 11, the available ultimate curvature b,
is governed by moment deterioration to 0.8M, at the end of four cycles to
+ ¢, without fracture of the hoop steel occurring. For the column section
in Fig. 12, the available ultimate curvature is governed by hoop fracture at
the end of four cycles to = ¢,, without the moment reducing to 0.8M.,.

It is not known before the analysis commences whether four cycles to a
particular curvature peak &p.. actually produce an ultimate limit state as
defined previously. However, the available ultimate curvature can be de-
termined by an iterative process. The section is analyzed for the standard
sequence of four cycles to a first estimate of &, If an ultimate limit
condition is not reached, the entire cyclic analysis is repeated for improved
estimates of ¢, until an ultimate limit-state condition is reached, indicating
that the final value of &, is equal to the available ultimate curvature ¢,

In these moment-curvature analyses, no explicit limitation was imposed
on the maximum concrete compression strain. Some previous definitions
for available ultimate curvature have included a limit on the concrete
compression strain. However, it is considered that the limit conditions de-
scribed give an improved measure of the available ultimate curvature of the
section. Numerous column tests have shown that very high compressive
strains are tolerated by well-confined concrete [e.g., Priestley and Park
(1984, 1987); Mander et al. (1984, 1988a, 1988b); Zahn et al. (1986a)].

Definition of Ideal Flexural Strength and Maximum Moment

In Figs. 11 and 12, M, is the ideal flexural strength and M, is the
maximum moment resisted during the four cycles. Note that M ..« could
occur anywhere along the hysteresis loops, for example at one of the cur-
vature peaks.

1807



‘ Cover at left
face spails
< M, '——Lv o |

Mome nt
ﬁ
4

1
i
.% J
[ — B
| *
[ Curvature
M - 08M |
I ~ Stffening due to
o ; closure of crack
p [
No theoretcal hoop Mmax > M

fracture has occurred Cover ot right

foce spails

FIG. 11. Theoretical Moment-Curvature Relation for Reinforced Concrete-Column

Section lllustrating Case Where i i i
cooon Il g Moment Deterioration Governs Available Ultimate

‘ _Cover at feft

/ face spotls
My |-

Moment

Curvature

M 20.8M, Stiffening due to
closure of crack
L
Theoretical — e Mmox > Mi
hoop fadure Cover gt noht

foce spalis

FIG. 12. Theoretical Moment-Curvature Relation for Reinforced Concrete-Column

Section llustrating Case Wh ]
vature 9 ere Hoop Fracture Governs Available Ultimate Cur-

mqlilint‘}:&present study,htfée ideal flexural strength M, is defined as the
maximum moment reached in the initial (positive) half ¢
> {positivej half cycle before

(le_lfrfvaturte at the section exceeds 5¢,. where é, = yield gurvature Ttvivlg
ifterent cases are illustrated in Fig. 13. In case’ '

nt .13, se 1, the moment drops after
Lt'ledspd.llmg of the cover concrete and rises only very slowly (due tg strain
ardening of the tensile steel) with further increase in curvature., so that at
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a curvature of 5, the moment has not regained the maximum value attained
before the spalling of the cover concrete. In that case, M;, is given by that
maximum moment. Case 1 is typical for columns with a low axial load and/
or a relatively small amount of transverse steel. Also, columns with a rel-
atively large thickness of cover concrete are likely to belong to that category.
Case 2. on the other hand, is typical for columns with a relatively small
thickness of concrete cover, with a high axial load, and that are heavily
confined. The spalling of the cover concrete makes little difference to the
resisting moment, so that it rises considerably after spalling of the cover
concrete. M, is then assumed to be given by the moment calculated when
the curvature has reached 5b,.

Definition of Yield Curvature
The yield curvature ¢, is defined, as shown in Fig. 13, by the extrapolation
of the straight line joining the origin with the point (d,, M,), so that

_ oM
M,

where ¢, and M/ = curvature and the corresponding moment calculated at
the instant when the steel closest to the tension face of the section is yielding
or when the extreme fiber concrete compression strain reaches 0.002, which-
ever applies first. This dual definition of the first-yield point was preferred
to the conventional steel-yielding criterion, because in columns with high
axial loads the tension steel normally does not yield before the section has
lost a considerable percentage of the flexural stiffness.

b, )

Material Properties Assumed in Design Charts

The compressive strength of unconfined concrete in columns f,, was as-
sumed to be 85% of the cylinder strength fi. This reduction reflects the
scale effects observed when comparing the compressive strength of test
cylinders with that of large-size cast in place columns. In the cyclic stress-
strain model for concrete of Mander et al. (1984, 1988a. 1988b), it was
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TABLE 1. Assumed Values for Parameters of Skeleton Curve for Steel Reinforce-
ment

Grade 275 Steel Grade 380 Steel
Tension Compression Tension Compression
Property curve curve curve curve
m (2) @) 4 (5)
f. (MPa) 275 275 380 380
fiw (MPa) 420 400 615 590
€ 0.022 0.012 0.010 0.006
€5’ 0.20 0.070 0.15 0.060
E, (MPa) 204,000 204,000 204,000 204,000
E,, (MPa) 4,900 6,860 8,800 12,320

aStrain at peak stress f,,, and not the fracture strain (1 MPa = 145 psi).

assumed that ¢, = 0.002, ¢,, = 0.005 for the cover concrete, R = 5, E,
= 5,000Vf. MPa, and f/ = 0.6Vf. MPa, where ¢, = compressive strain
in cover concrete when spalling occurs (see Fig. 13 and f/ = modulus of
rupture of concrete. Also, k, = 0.85 for spirals or circular hoops, and k,
= (.70 for rectangular hoops were assumed.

In the cyclic stress-strain model for steel of Mander et al. (1984), the
parameters shown in Table 1 were assumed for the skeleton curve (Fig. 6).
These were based on average values measured in research projects at the
University of Canterbury in recent years.

Design Charts to Determine Curvature-Ductility Factor

Fig. 14 shows an example of the curvature-ductility design charts derived
by Zahn et al. (1986a) for circular reinforced concrete-column sections. The
chart relates the available curvature-ductility factor &,/db, at the critical
section of the plastic hinge to the magnitude of the effective [ateral confining
stress f acting on the core concrete and the axial load level P/f/A,, where
P = axial compressive load in column; and A, = gross area of column.

Charts were derived for a range of column properties. The chart shown
in Fig. 14 is for a circular section with f/ = 30 MPa (4.35 ksi), f, = f,, =
275 MPa (40 ksi), and mechanical reinforcing ratios of pm = 0.1 and 0.2,
where p, = ratio of area of longitudinal steel to gross area of column and
m = £./0.85f. The thickness of the unconfined cover concrete of the section
is 6% of the overall section diameter.

The charts allow the designer to determine the effective lateral confining
stress f; required for a given reinforced concrete-column section, axial load,
and curvature-ductility factor demand. From the obtained effective lateral
confining stress necessary for a particular situation, it is then possible to
determine the quantity of transverse spiral or hoop steel necessary to provide
that confinement.

From Fig. 14 and other charts, the following general conclusions can be
reached:

« The available curvature-ductility factor &,/d, of columns rapidly
decreases with increasing axial-load ratio P/f/A,.

+ At low axial-load ratios (<0.15) extremely large curvature-ductility
factors are available with only very small quantities of confining
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FIG. 14. Design Chart for Curvature-Ductility Factor for Circular Reinforced Con-
crete-Column Sections

steel. In such cases. the amount of transverse reinforcement required
is not governed by the requirements of concrete confinement.

« The factor that most often governs the ultimate curvature of the
section is the cyclic flexural-strength deterioration, as indicated by
the **0” symbols in Fig. 14. 4 N

« The available curvature-ductility factor for a given confining stress
ratio f/f., is greater for higher mechanical reinforcing ratios p,m.

Design Charts to Determine Flexural Strength

Ff’g 15 shows an example of charts derived by Zahn et al. (1986) to
determine the ideal flexural strength of a circular column with pom = 0.1,
f. = 275 MPa (40 ksi). and f; anywhere in the range from 20 MPa (2,900
psi) to 40 MPa (5.800 psi). The chart gives the ratio M,//_VIL.mlc where M, =
ideal flexural strength taking into account the increase in strength due to
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concrete confinement, but neglecting the effect of steel strain hardening;
and M., = flexural strength of the section calculated using the conven-
tional approach of ACI 318-89 and NZS 3101 assuming that the material
strengths are as specified and that the strength reduction factor ¢ is unity.
The same dimensionless parameters for confining stress f;/f;, and axial-load
level P/f.A, are used as in Fig. 14. It is evident in Fig. 15 that for axial-
load levels P/f/A, of less than about 0.3, the enhancement of the flexural
strength due to concrete confinement is relatively small, but that for higher
axial-load levels, the enhancement of flexural strength due to concrete con-
finement can be very high. For the calculation of the ideal flexural strength
M., including the effect of both concrete confinement and steel strain hard-
ening, an additional factor has to be applied to the M, in Fig. 15 to allow
for the strength enhancement due to strain hardening of the flexural steel.
That factor is more or less independent of the axial-load ratio and can be
taken as approximately 1.10.

The enhancement in flexural strength due to concrete confinement and
steel strain hardening is currently neglected by code provisions for the design
of column sections for flexure and axial load. The enhancement, at least
for concrete confinement. could be taken advantage of in the design of the
longitudinal reinforcement of columns, because it leads to a reduction in
the required area of longitudinal reinforcement if the axial compressive load
is substantial. The enhancement should be included in the calculation of
the design shear forces corresponding to the development of plastic hinges
in columns, so that the greatest likely shear force is obtained.

Design Procedure Based on Design Charts
Zahn et al. (1986a) have developed a comprehensive design procedure
for the flexural strength and ductility of reinforced concrete bridge columns
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based on the design charts. In the procedure, the designer chooses the level-
of-displacement ductility factor and obtains the associated code-recom-
mended—design seismic lateral loading for the bridge substructure. The
required curvature-ductility factor at the plastic-hinge locations in the col-
umns is then calculated from the geometry of the bridge substructure and
the imposed displacement ductility factor. For example, for the cantilever-
bridge column shown in Fig. 16, the relationship between the curvature-
ductility factor ¢, /¢, and the displacement ductility factor p may be ap-
proximated (Priestley and Park, 1984, 1987) as

%;:H - 1) ®)

L, L,
37 (1 0.5 L)

where C = ratio of the elastic flexibility of the system due to the column,
foundation, and bearings to the elastic flexibility due to the column alone;
L = height of the center of mass of the bridge deck above the ground; and
L, = equivalent plastic-hinge length. Test data (Priestley and Park 1984,
1987) has shown that on average

L, = 0.08L + 6d, (9)

where d, = diameter of the longitudinal reinforcing bars. A good approx-
imation for L, is half of one column depth (0.5D or 0.5h).

Next, using the design charts for the curvature-ductility factor (e.g., Fig.
14). the required quantity of transverse reinforcement for confinement is
obtained. Then the longitudinal reinforcement in the columns is calculated
taking into account the enhancement in flexural strength of the column due
to confinement (e.g.. using Fig. 15). Finally, the transverse reinforcement
is checked to ensure that it is adequate for the shear force assuming that
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the plastic-hinge regions have developed their overstrength moment capac-
ity, and that it is adequate to prevent premature buckling of the longitudinal
reinforcement. These design steps may need to be repeated to obtain the
final solution. This design procedure enables a more precise determination
of the quantities of longitudinal and transverse reinforcement required in
bridge columns for adequate strength and ductility.

Comparison of Ductility Charts with Code Equations

Fig. 17 shows a comparison of the quantities of transverse reinforcement
required for the confinement of a typical rectangular column according to
the ACI 318-89 and the NZS 3101 codes with the quantities found for various
$,/d, values from the design charts. Although the comparison in Fig. 17 is
for a particular column, it can be concluded that the quantities of transverse
reinforcement determined using the design charts depends more significantly
on the axial-load level P/f/A, than the equations of the concrete design
E:odes. While the equations of the codes are quite conservative for axial-
ioad levels P/f{A, less than about 0.4, they may be unconservative for higher
axial-load levels, particularly when the quantity of flexural steel in the col-
umn is small. Also, it can be observed that the quantity of confining steel
required depends on the flexural steel content, a factor that is not taken
into account by the code equations. The U.S. code equations are inde-

1814

pendent of the axial-load level and as a result are very conservative at low
axial-load levels and unconservative at high axial-load levels.

REFINED DESIGN EQUATIONS FOR CONFINING REINFORCEMENT

Approach and Parameters Investigated

Watson and Park (1989) have recently used the design charts of Zahn
et al. (1986a) to obtain refined design equations for the quantities of con-
fining reinforcement required in the potential plastic-hinge regions of col-
umns.

The types of column sections investigated and reinforcement arrange-
ments are shown in Fig. 18. The sections were of circular, square, and
rectangular shape. The rectangular sections had an aspect ratio of 1.5 and
bending about both axes was considered.

Table 2 lists the range of parameters investigated. It was considered that
a range of curvature-ductility factors b, /b, from 10 to 20 should cover all
likely cases of design for limited ductility and full ductility. Axial-load levels
PIf.A, less than 0.2 were not investigated, since, for lightly loaded columns,
the role of transverse reinforcement for confinement of concrete is not as
important as that of transverse reinforcement required both for lateral sup-
port of longitudinal bars to prevent premature buckling and for shear resis-
tance. The ranges of concrete compressive strength f/, mechanical rein-
forcing ratio p,m and concrete-cover ratios ¢/h and ¢/ D investigated represent
values typically used in design, where ¢ = cover thickness; # = dimension
of a rectangular column in the direction of bending; and D = diameter of
a circular column.

The yield strength of the reinforcement in the investigation was held
constant at 275 MPa (40 ksi). It was shown in previous studies (see Zahn
et al. 1986a) that changes in the yield strength of the longitudinal reinforce-
ment within the normal range had an insignificant effect on the available
curvature-ductility factor of columns providing that the shape of the stress-
strain curves was similar. It was also shown (Zahn et al. 1986a) that the
stress-strain curves for concrete confined by grades 380 [ fin = 380 MPa (55
ksi)] and 275 [f,» = 275 MPa (40 ksi)] transverse reinforcement are almost
identical providing that the ratio of effective lateral confining stress to con-
crete strength f;/f., and the transverse bar spacing s are similar. That is,
variation of the yield strength of transverse reinforcement, but with yield

b b
i
=
{a] Circular Section (b] Square Section with Overfapping Hoops
b
{c ] Rectangular — b

Section with b/h-'% (d) Rectanglar Section
Overlapping with Overlapping
Hoops. D 9 ©Tra h  Hoops.Bending
Bending about ‘: : K\‘ 2| | about the
the Strong Axis Weak Axis

by =1.5

FIG. 18. Column Sections investigated
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TABLE 2. Range of Parameters Investigated in Development of Refined Design
Equations

Parameter Range
M {2)

b0, 10-20
PiflA, 0.2-0.7
f. [MPa (psi)] 20-40 (2,900-5,800)
pm 0.1-0.4
cth 0.02-0.08
c/D 0.06

force held constant by varying the bar diameter appropriately, does not
change the effectiveness of the confinement.

Effective Lateral Confining Stress
For the circular section shown in Fig. 18(a) and referring to (1) and Fig.
2(c), the effective lateral confining stresses in each direction are

2A vh
sd.

Noting that p, = 4A,/sd, and assuming that k, = 0.85 and f), = 0.85f/ as
suggested by Zahn et al. (1986a), (10) can be rewritten as

fo _ 2

fi= k. (10)

Ps
f c f co

For the square section shown in Fig. 18(b) and referring to (1) and Fig.
2(b), the effective lateral confining stress in each direction is

(1n

-k 3.41A,fn
T sh,

Having p, = 3.414,/sb, and assuming that k, = 0.7 and f!, = 0.85f! as
suggested by Zahn et al. (1986a), (12) may be rewritten as

o, Lot = 1214 2L (13)

f feo
For the rectangular section shown in Figs. 18(c and d), and referring to

(1) and Figs. 2(a and b), the average effective lateral confining stress in the
two directions x and y is

fi = 05(fic + fi) = kebsfon (14)

where p; = 0.5(p,x + p,,). and where for Fig. 18(¢) p,x = S.41A,/sh, and
Py = 3.41A,/sb,, and for Fig. 18(d) p, = 3.41A,/sh,_and p,, = 5.41A4,/
sb.. If k, = 0.70 and f., = 0.85f/, (14) can be rewritten as

p};—h = 1.25% (15)
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fi (12)

Quantities of Confining Reinforcement

The quantities of transverse reinforcement required for the circular, square,
and rectangular column sections shown in Fig. 18 were found from the fil
f., values obtained from the design charts for the range of values of the
parameters listed in Table 2. The following conciusions concerning the in-
fluence of those parameters were reached by Watson and Park (1989).

The quantity of transverse reinforcement required for confinement for a
particular curvature-ductility factor increases significantly when the axial-
load ratio P/f/A, increases. This is because when the axial-load ratio is high,
the flexural strength of columns is more dependent on the concrete com-
pressive strength and stress distribution. As a result, more transverse re-
inforcement is required to provide adequate confinement. Also, when the
axial-load ratio is high the cyclic moment-curvature history used in the
analysis (that is, four identical symmetrical cycles to the ultimate curvature)
leads to greater strength deterioration of the concrete than in the case of
monotonic loading.

The quantity of transverse reinforcement required for confinement in-
creases when the longitudinal reinforcing ratio p, decreases. This is because
when p, is small, the flexural strength of the column is more dependent on
the concrete compressive strength and stress distribution.

The quantity of transverse reinforcement required for confinement in-
creases when the concrete compressive strength increases. This is because
concrete with a high compressive strength is more brittle.

The quantity of transverse reinforcement required for confinement in-
creases when the concrete-cover thickness ratio ¢/D or c¢/h increases. This
is because when ¢/D or c/h is high, the column loses significant flexural
strength when the cover concrete spalls unless the concrete core is ade-
quately confined.

The type of column section has a significant effect on the quantity of
transverse reinforcement required for confinement. To achieve the same
curvature-ductility factor, the quantity of transverse reinforcement required
for circular sections is markedly ditterent from the quantity of transverse
reinforcement required for square and rectangular sections. However, the
quantities of transverse reinforcement required for square and rectangular
sections are not significantly different. This indicates that the square and
rectangular sections investigated in the present study may represent the
wide range of rectangular sections used in design.

Derivation of Equations

It is evident that refined design equations for the quantities of confining
reinforcement required in columns need to be related to the required cur-
vature-ductility factor ¢,/d,, and also to the examined parameters, namely
Pif!A,. fo. pom, ¢/D, or c/h, section type, and f,,. For convenience, the
influence of the relative cover thickness ¢/D or ¢/A is expressed by the ratio
of A /A, in the present study, where A, is the gross area of the column
section and A, is the area of the concrete core.

Fig. 19 shows plots for p, f,,/f; obtained by Watson and Park (1989) from
the design charts for pm = 0.1-0.4, and for the range of other parameters
listed in Table 2, to achieve curvature-ductility factors of either 20 or 10.
The values of p,f,,/f. for circular sections are larger than those for square
and rectangular sections for the same values of p,m, P/f;A,, and ¢/D or
c/h. It was decided therefore. to evaluate only the values of p,f,./f. for
square and rectangular sections, and a section-type factor could then be
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FIG. 19. Required Quantities of Confining Reinforcement in Potential Plastic-Hinge
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pm = 04; (b) b./b, = 10 with pm = 0.1; (¢) ¢,/d, = 20 with pm = 0.4; and (d)
b, /b, = 20 with pm = 0.1.

applied to obtain the values of p,f,,/f for circular sections. Fig. 19 also
shows a significant scatter. However, a suitable linear design equation was
fitted to the results using the procedure to be described.

The 95th percentile and the mean values of p,f,,/f! are shown plotted in
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TABLE 3. Best Fit Equations for 95th Percentile Values of p. f,,./f; for Square and
Rectangular Columns

pm b.ld, = 10 d,/b, = 15 /b, = 20

4 @ 3 {4)

0.1 y = 0.377x — 0.032 y = 0.426x — 0.039 y = 0.497x — 0.053
0.2 y = 0.336x — 0.036 y = 0.387x — 0.048 y = 0.465x — 0.059
0.3 y = 0.302x — 0.038 y = 0.333x — 0.046 y = 0.413x — 0.036
0.4 y = 0.252x — 0.035 y = 0.303x — 0.042 y = 0.372x — 0.050

Note: pm = p,f,/0.85f., y = p.fulfi, and x = PIfiA,.

Fig. 19. Other 95th percentile values were calculated for the resuits, and
the best fit linear equations of p,f,,/f. as a function of P/flA, for pm =
0.1,0.2, 0.3, and 0.4, and for $,/d, = 10, 15, and 20, were determined by
the method of least squares. The values obtained are shown in Table 3,
where y = p.fou/fl; and x = P/f!A,. The values for the coefficients in the
equations in Table 3 were analyzed. Writing

p.sfvh - AP

fe  fiA,
it was found that for a wide range of cover ratios c/h the coefficients A and
B could be represented with excellent accuracy by

+ B (16)

A= Ay <—0.3p,m + 0.009%—‘

+ 0.208 17
- ) )

¥y

b,
B=-14x10"3{—
<d>

Py

2
) 17 % 10-2% + 0036 (18)

v

By combining (16), (17), and (18), the following equation was derived by
Watson and Park (1989) for square and rectangular columns:

fn _ Ag (—-0.3p,m + 0.009% + 0.208)

Ps 7 ,
fc Ac f(-Ag

b4

2
- [1.40 x 10-3 (%) + 1.7 x 10—2% - 0,036] (19)

v Py

Inspection of (19) indicates that the second term on the right-hand side is
small compared to the first term and can be replaced by a numerical constant
with good accuracy. Also, to use (19) for circular sections it was found that
it needed to be multiplied by a section-type factor of 1.4.

Hence, the refined design equations for square, rectangular, and circular
column sections can be written as follows for use in design with a strength
reduction factor ¢ included in the axial-load ratio term.

For square or reclangular sections p, = Anisb., where A, = total ef-
fective area of transverse bars in direction under consideration; s = center-
to-center spacing of rectangular hoops; and b, = width of the concrete core
measured perpendicular to the direction of the transverse reinforcement
under consideration [see Fig. 2(a and b)]. Hence, from (19)

1819



(ﬁ‘ - 33pm + 22)
Ay _ A y fi P

= it c
~ 0.006

sb, A, 111 Fon &fLA,

: Forbc1r.cular sections p, = 4A4 ,,/sdcz where A, = area of spiral or circular
00p Dar; s = center-to-center spacing of spirals or circular hoops; and d
i (s

= diameter of concrete core [see Fig. 2 i
cection tym prceonerete < [ ig. 2(c)]. Hence, from (19) and using a

A (ﬁ - 33p,m + 22>
e 14D Ie

g
sd. A, 111 fon OFLA,

g’hg refined design equations, (20) for square and rectangular columns
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- 0008  (21)

Comparison with Current Code Equations

Itis clear from Figs. 17 and 19 that, to achieve a curvature-ductility factor
of b /b, = 2(_), the current code equations for transverse reinforcement for
concrete confinement result in more than sufficient confining reinforcement
for c_ol.umns_ with low to medium axial-load ratios, but result in insufficient
confining reinforcement for columns with large axial-load ratios. It is evident
that (20).and (21) can be used to achieve a better match of the available
and required curvature-ductility factors than can be achieved with the cur-
rent code equations. A.curvature-ducti]ity factor of &,/d, = 20 could be
isrll)ecc;iesdigr ductlfle“demgn and ¢,/b, = 10 for design for limited ductility
In ¢ unwarrz;c:eg . ull calculation of the required curvature-ductility factor

Although the refined equations are more complex than the current code
equations, the advantage of more rational and precise design appears to
outweigh this complexity. In any case, design charts can be drawn up to
enable easier use of the refined equations. A further advantage is thzi)t in
fact there is only one basic equation [the difference between (20) and (21)
is a factor of 1.4]. Hence, the number of equations in the code is reduced

CONCLUSIONS

Six major conclusions were reached in the analytical study of the flexural
strength and ductility of reinforced concrete-column sections with various
arrangements and quantities of transverse and longitudinal reinforcement

Design charts for the available curvature-ductility factor can be derived
using theor&?ncal cyclic moment-curvature analyses incorporating cyclic stress-
strain relationships for confined and unconfined concrete and for longitu-
Q1‘r1al.r¢1nforc1ng steel. The cyclic stress-strain curves for confined concgrete
take 1nto account the quantity and arrangement of the transverse reinforce-
ment and the accumulation of strain energy in the transverse reinforcement

The quantity of transverse reinforcement required for confinement to
achieve a curvature-ductility factor in the order of 15-20 is less than that
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calculated using current code equations for axial-compression-load levels P/
flA, < 0.4, but may be greater for P/f/A, > 0.4.

The quantity of transverse reinforcement required for confinement to
meet any particular curvature-ductility factor demand increases with in-
creasing axial-load level, increasing concrete strength, decreasing iongitu-
dinal reinforcement ratio, and increasing relative cover-concrete thickness.
Also, more transverse reinforcement is required for the confinement of
square and rectangular columns than for circular columns.

Using linear regression analysis, refined design equations, (20) and (21),
were obtained for the quantity of transverse reinforcement required for
confinement.

The refined design equations give only the transverse reinforcement re-
quired for concrete confinement. The transverse reinforcement provided
must also be checked to ensure that it is sufficient to prevent premature
buckling of the longitudinal compression bars and to prevent shear failure.
For low axial-load levels, the transverse reinforcement required for lateral
restraint of longitudinal bars and for shear govern the design.

There is a significant increase in the flexural strength of columns due to
confinement of the concrete by transverse reinforcement for axial-compression-
load levels P/f.A, greater than about 0.3. This enhancement in flexural strength
can be taken advantage of in the design of the longitudinal reinforcement and
should be included in the calculation of the design shear forces corresponding
to the development of plastic hinges in columns.
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APPENDIX Il. NOTATION
The following symbols are used in this paper:

A, = area of spiral or circular hoop bar, or longitudinal bar;

A, = area of concrete core of column section measured to outside of
peripheral spiral or hoop;

A, = gross area of column section;

A,, = total effective area of transverse bars in direction under consid-
eration within spacing s;

b, = width of concrete core of column section measured perpendicular
to direction of transverse bars under consideration to center of
peripheral hoop;

C = coefficient representing increase in elastic flexibility of system due
to foundations and bearings;

¢ = thickness of concrete cover;

D = diameter of circular column;

d, = bar diameter;

d. = diameter of concrete core of column section measured to center
of peripheral circular hoop or spiral;

E. = modulus of elasticity of concrete;

E, = reduced modulus of steel;

E,, = strain-hardening modulus of steel;
f. = longitudinal stress in concrete;
f! = compressive cylinder strength of concrete;
f.. = peak longitudinal compressive stress of stress-strain curve of con-

fined concrete;
f., = peak longitudinal compressive stress of stress-strain curve of un-
confined concrete;
f; = lateral confining stress acting on concrete;
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effective lateral confining stress acting on concrete;

effective lateral confining stress acting on concrete in x direction;
effective lateral confining stress acting on concrete in y direction;
stress in steel;

ultimate tensile strength o
compressive stress in longitudinal steel bar at buckling;

modulus of rupture of concrete;

yield strength of longitudinal steel reinforcement;

yield strength of transverse steel reinforcement;

lateral dimension of rectangular column section;

width of core of column section measured perpendicular to di-
rection of transverse bars under consideration to center of pe-
ripheral hoop;

confinement effectiveness coefficient;

height of column to center of mass;

equivalent plastic-hinge length;

flexural strength calculated by ACI 318-89 or NZS 3101, but using
measured material strengths and assuming ¢ = 1;

ideal flexural strength;

maximum moment;

moment when yield is first reached in longitudinal reinforcement
or when extreme fiber concrete compressive strain reaches 0.002,
whichever occurs first;

f,/0.85f;

compressive load on column, or strain-hardening power;
experimentally calibrated factor;

center-to-center spacing of spirals or hoops;

longitudinal compression strain in concrete;

longitudinal compression strain in confined concrete correspond-
ing to £l

longitudinal compression strain in unconfined concrete corre-
sponding to fl,;

ultimate longitudinal compressive strain of confined concrete;
strain in steel, or strain in reinforcement located nearest extreme
tension fiber;

+

£ anl.
1 StClry

= steel strain at commencement of strain hardening;

compressive strain in unconfined concrete when spalling occurs
and longitudinal concrete stress there is reduced to zero;

steel strain corresponding to f;,;

compressive strain in longitudinal steel bar at buckling;
displacement ductility factor; ratio of maximum or ultimate dis-
placement A, to yield displacement 4,, both measured at center
of mass of bridge superstructure;

ratio of volume of transverse reinforcement to volume of concrete
core;

volumetric ratio of effective confining reinforcement in x direc-
tion;

volumetric ratio of effective confining rcinforcement in y direc-
tion;

area of longitudinal column steel divided by gross area of column
section;
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strength-reduction factor, or curvature;
peak curvature;

ultimate or maximum curvature;

yield curvature; and

= curvature when yield is first reached in longitudinal reinforcement

or when extreme concrete fiber compressive strain reaches 0.002,
whichever occurs first.
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