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Multidirectional Membrane Reinforcement

by Stefan J. Medwadowski

A method for analyzing local strength of reinforced concrete mem-
branes reinforced with a multidirectional mesh and subjected to
known in-plane internal forces is presented. Such structures occur
often in practice, and include shearwalls, floor diaphragms, folded
plates, and shells. The effect of concrete cracking on the response of
the shell under proportionately increasing loads is examined. The
governing system of equations is derived, and a numerical, iterative
procedure is developed to calculate local response at any load stage
through ultimate. Gupta's conclusion' that up to first yield crack di-
rection remains constant and then rotates is confirmed. It is shown
that at yield all bars are in tension, and ultimate ductile strength can
be calculated from a simple relation; to obtain a time-history re-
sponse, the method presented here has to be used. The procedure is
illustrated with two numerical examples.

Keywords: cracking (fracturing); diaphragms (concrete); ductility; folded plates;
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Many reinforced concrete structures transfer forces
primarily through in-plane action. Examples are shear-
walls, floor diaphragms acting as a part of lateral load-
resisting systems, folded plates, and thin shells. In the
paper, such structures shall be termed membranes.

Analysis of reinforced concrete membranes of given
geometry supported in a defined manner and acted
upon by known load systems consists of calculation of
deflections and internal forces, followed by an evalua-
tion of strength and serviceability of the structure. In
accordance with the current ACI 318 Building Code,?
evaluation of strength consists of (1) determination of
ultimate capacity at any point of the structure, both
ductile (yielding of reinforcement) and brittle (crushing
of concrete); and (2) demonstrating that appropriately
reduced ultimate capacity is at least equal to internal
forces due to factored loads.

The calculation of internal forces due to loads usu-
ally is performed on the basis of an assumption that the
material is linearly elastic, homogeneous, and un-
cracked. In addition, the effect of reinforcement on the
stiffness and internal force distribution is assumed
small. These assumptions extend throughout the whole
range of magnitudes of applied loads, up to failure.
Thus, the distribution of internal forces in a membrane
under factored loads (i.e., loads at failure) can be cal-
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culated by linear extrapolation from the distribution of
forces under working loads. Ultimate strength corre-
sponds to concrete being crushed in compression, or to
yielding of reinforcement, the latter being the preferred
mode of failure.

A more accurate calculation of concrete shells has
been undertaken by a number of investigators®*® with
the aid of a finite element-based computer analysis. In
this approach, the shell is modeled as an assembly of
layered elements in which reinforcement is represented
as a smeared two or more directional mesh bonded to
concrete. The layered elements allow for cracking and
incorporation of effects such as tension stiffening and
aggregate interlock. This type of analysis, however, is
time consuming and expensive and is used as a research
asset rather than as a practical design tool. The strength
design procedure has been incorporated into codes such
as the current ACI 318 Building Code.? Since it is
somewhat inconsistent (the elastic analysis of the shell
as a whole is followed by the plastic analysis of local
strength), its use is justified, as in the case of all rein-
forced concrete structures, by invoking the lower bound
theorem and the accumulated experience with com-
pleted projects.

Until recently, the effect of possible cracking on lo-
cal strength was neglected (ACI Committee 334,
Flugge,® Rosenblueth,” and Paduart'®). Later, in ex-
plaining the mechanism of load transfer, a number of
researchers proposed to incorporate in the analysis the
effect of crack formation. Significant analytical and
experimental progress in this direction occurred in the
last two decades (Peter," Braestrup;'? Nielsen;'* Bau-
mann;'* Brondum-Nielsen;'* Conley, White, and
Gergely;'® Vecchio and Collins;"” and Aoyagi'®"), and
various theories incorporating cracking of concrete and
explaining test results were proposed. (The provisions
for reinforcement design in the IASS
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Recommendations?® were based to an extent on
Baumann’s' research.) In the United States, a princi-
pal contributor to this effort has been Gupta, who, in
a series of publications,'*? addressed essentially all as-
pects of the problem.

The research previously noted was concerned essen-
tially with the case of two-way reinforcement, primar-
ily orthogonal. In the following, analysis of strength of
a cracked shell element under membrane loads is ex-
tended to the case when the element is reinforced with
a multidirectional mesh.

LOAD TRANSFER MECHANISM

An element of a membrane is shown in Fig. 1(a). It
is acted upon by a known system of calculated internal
membrane force system N (kip/in. or kN/mm) consist-
ing of axial forces N, and N, and shears N,,. Relative
magnitudes of these forces are assumed constant. Re-
inforcement is placed in several directions, each direc-
tion being defined by its angle o; to the x-axis. The
reinforcing bars are assumed to be straight. The inter-
nal resultant force system N may be such that the ele-
ment is entirely in compression. In this case, the ele-
ment fails in a brittle mode, by crushing of concrete,
and analysis of ultimate capacity follows a well-estab-
lished path. Total resistance consists of the sum of the
resistance of concrete and reinforcement, as shown in
Fig. 1(a), (b), and (c), with reinforcement transferring
only a small part of the total force. Of interest here is
the case when the state of stress in the element includes
tensions so that cracking occurs. Then the classical
plane elasticity or membrane shell techniques no longer

N,_}
N,

xy
Ny |
(a) Ny

(c)

\ St 1

/ cracks C
S2 e

(d) (e)

Fig. 1—Force transfer mechanism in a membrane ele-
ment
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apply, and the effect of the presence of a crack must be
included in the calculation of the local strength of the
shell. Failure still can be brittle or ductile, depending on
the state of stress.

As in the case of the uncracked shell, total load
transfer mechanism consists of the sum of the resis-
tance of reinforcement and resistance of concrete, as
shown in Fig. 1(a), (b), and (c). The following assump-
tions are made.

The reinforcement is capable of transferring axial
forces only. This is shown in Fig. 1(d). Since bars are
assumed weak in flexure, their dowel action in the
plane along a crack can be neglected (this results in a
slight underestimate of the strength of the membrane).
The effect of tension stiffening (an increase in the stiff-
ness of bars due to the bond between reinforcement and
concrete) is also disregarded (this results in an under-
estimate of the stiffness of the membrane). Thus, both
of these assumptions are somewhat conservative.

Concrete is assumed capable of transferring
compression only. Further, it is assumed that no shears
can be transferred along a crack plane and aggregate
interlock is taken as negligibly small. Therefore, the
concrete state of stress C,, C,, and C,, must be equiva-
lent to a principal stress system in which there is zero
force normal to the crack direction and a compressive
force C (kip/in. or kN/mm) acting parallel to the
crack, as shown in Fig. 1(e). It is assumed that, at a
given point of the membrane, the crack direction may
vary depending on the magnitude of internal forces,
and that, therefore, any nonlinear effects of crack ro-
tation are negligible.

Note that the assumptions regarding small effect of
dowel action, tension stiffening, and aggregate inter-
lock appear justified by the available experimental evi-
dence that shows that the predicted ultimate strength
and crack direction are in good agreement with the test
values.*!""

EQUATIONS OF EQUILIBRIUM

In consequence of the assumptions made, a wedge
can be isolated from the element, bounded by two ele-
ment sides, and the plane of the crack inclined at angle
6 to the y-axis, as shown in Fig. 2. The force system
that maintains the wedge in equilibrium consists of the
internal forces N and reinforcing forces S, i.e., S,, S,,
and S,,, all in the units of force per unit length of the
membrane (kip/in. or kN/mm). Then the equations of
equilibrium of the wedge are

S, = N, + (N, — §,,) tanf (1a)

S, = N, + (N,

P4

- S,) cotd (1b)

The forces in the reinforcement S; are related to the
forces S,, S,, and S,, as follows (Fig. 3)

S, = LS; cos’a;
S, = LS, sin’q;
S,, = LS, sing; cose; (3]
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Eq. (2) follows directly from the equations of transfor-
mation of plane stress. The principal compressive force
in concrete C (kip/in. or kN/mm) can be expressed in
terms of the forces N and S as follows

Nry - Sxy
sinf cosf

C=WN,+N)-(5+S8)= - 3)

A negative sign of C, as calculated from Eq. (3), is as-
sociated with compression. Eq. (3) is the consequence
of the fact that the stress system N is the sum of sys-
tems S and C (Fig. 1).

STRESS-STRAIN RELATIONS
Forces in each of the reinforcing bar groups are re-
lated to strains ¢ through the one-directional Hooke’s
law as

S, = AE¢ @

where A4, (in.¥/in. or mm?>/mm) are resuitant bar areas
and E; (ksi or MPa) is the modulus of elasticity of steel.
Similarly, compression in concrete is related to strain ¢,
through the expression

C=1tE.¢, (5

where ¢ (in. or mm) is the thickness of the membrane
and E, (ksi or MPa) is the compressive modulus of
elasticity of concrete. Finally, since principal strains in
the concrete ¢; and ¢, are oriented, respectively, normal
to and parallel to the crack direction, they are related
to strains in the reinforcement as follows

€ = €008 (0 — o)) + ¢;sin® (0 — ;) (6)

There are as many Eq. (4) and (6) as there are bar di-
rections.

MEMBRANE RESPONSE
Eq. (1) through (6) describe the response of a mem-
brane shell element with known internal forces N. The
nature of the response varies with the magnitude of
these forces. As internal forces increase proportion-
ately from zero, several phases can be distinguished, as
described in the following paragraphs.

Initial phase

Forces N are sufficiently small that none of the rein-
forcing bars is at yield. Bar forces S; increase propor-
tionately as forces N increase. In consequence, crack
direction 6 remains constant throughout the initial
phase (see also Gupta and Akbar').

Intermediate phase

At some value of forces N, one of the bars yields. As
forces N increase beyond this value, other bars yield in
turn so that the force in these bars also reaches yield
and

S, =A4A,f )]
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where S, is the force in bar group r, A, is the resultant
area of bar r, and f, is the yield stress of steel material.
This means that, after the first bar has yielded, the
crack angle 6 changes direction (rotates) as the intensity
of forces N increases. Eq. (2) can be written

S, = LS, cos’y; + LS, cose,

S, = LS, sin’q; + LS, sin‘e,

S, = LS, sina, cose; + LS, sing, cosa,  (2.1)
Ny
Nyy - Sxy
Ny - Sxy
Sx Ny
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Fig. 2—FEquilibrium of a wedge
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Fig. 3—FExample 1—Three-way mesh at 0, 45, and 90
deg
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In Eq. (2.1), summations are performed over bar group
i (not yielded) or r (yielded).

Ultimate phase

All bars are assumed to have yielded, and the ele-
ment is said to have reached its ultimate ductile
strength. This condition is, perhaps, of primary inter-
est to the shell designer.

At any stage, it is possible also to calculate the prin-
cipal compression in concrete C from Eq. (3). In prin-
ciple, the crushing strength of concrete might have been
reached before the reinforcing bars yielded. In prac-
tice, this condition is to be avoided, as leading to an
undesirable mode of failure.

GENERAL SOLUTION

In general, as seen from Eq. (1), the problem is in-
ternally statically indeterminate, and it is necessary to
solve the complete system of Eq. (1) through (7). A di-
rect solution is not practical since one of the un-
knowns, the crack angle 8, appears in the equations not
directly, but as an argument of several trigonometric
functions that multiply some of the other unknowns.
Only for the particularly simple case of a two-way or-
thogonal mesh was the solution obtained in the form of
a fourth-degree polynomial in tanf independently by
Perdikaris, White, and Gergely,” and by Gupta and
Akbar.'

In the following, the system of Eq. (1) through (7) is
reduced to a set of three equations in ¢,, ¢, and 6, with
forces N considered known. First, bar forces S; are ex-
pressed in terms of strains ¢. Next, using Eq. (2.1),
these are substituted into Eq. (1) and (3). After some
algebraic manipulation, the result is

e ELAcos? (0 — «;) cosa, K,

+ e ELA;sin? (0 — «) cosa;K;
= N, + N, tanf — LS cos’a, (8a)
¢;ELAcos® (0 — ;) sinaK;
e ELASIN® (0 — «;) sing,K;
Nitanf + N, — LS sin’a, (8b)

+

e E,CAcos* (0 — o) + €y [E, TA,
sin@ — o) + Ef] = N, + N, — IS, (8¢)

where
K, = cosa; — sing; tan 6 (84d)

For any given value of internal forces N, the iterative
solution proceeds as follows. First, a value of the angle
6 is assumed, and a solution for strains ¢, and ¢, is ob-
tained from any of the possible pairs of Eq. 8(a), (b),
(c) (in choosing the pair of equations to use, possible
singularities should be considered). The calculated val-
ues of strains are substituted into the remaining equa-
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tion, and a new value of 6 is obtained. The procedure
is repeated until the calculated value of 6 at the end of
any step of iteration differs by not more than some ac-
ceptably small amount from the value of 8 used at the
start of the same step.

Once a solution at any given yield phase has been
obtained, the corresponding sign of the principal con-
crete force C (which must be compressive, or negative)
and the signs of bar forces S; (which are not necessarily
all tensions) can be verified.

ULTIMATE DUCTILE STRENGTH
By hypothesis, all bars have reached yield, so that S,
= §,,. Then, elimination of 6 between Eq. (1) yields the
relation

N.- S, S,-N,
—— — 9
tand S, N, N, =5, )]

Since the relative values of forces N are known and
since, in view of Eq. (7), forces S,, S,, and S,, are
known from Eq. (2), the values of forces N corre-
sponding to the ultimate local strength of the mem-
brane can be obtained directly from Eq. (9).

Thus, an important simplification is possible: since
all the reinforcement is in tension, the problem of cal-
culation of the ultimate strength becomes statically de-
terminate and is independent of the direction of the
crack angle 6. All bar forces at yield are known a
priori, and values of forces N at yield can be calculated
directly from Eq. (9). After forces N have been found,
the direction of the crack at failure can be calculated,
again from Eq. (9).

With forces N known, the corresponding value of
concrete compression C can be found from Eq. (3). In
any specific case, it must be less than the crushing
strength of the membrane, which depends on the cyl-
inder strength of the concrete, on the thickness of the
membrane, and on the local force pattern N. If neces-
sary, the thickness of concrete, or concrete cylinder
strength, or both, can be increased to insure the ductile
mode of failure.

REINFORCEMENT DESIGN

In the design of membranes, the directions and the
amount of reinforcement are usually assumed on the
basis of shell geometry and in the light of past experi-
ence. After the analyses have been completed, the ade-
quacy of the assumed reinforcement is verified using
the procedure just described.

For a two-way orthogonal mesh, a procedure for es-
timating areas of reinforcement was proposed by
Gupta.” Important work on design of reinforcement in
membranes was undertaken also by Fialkow.*** By
choice, Fialkow omits from his analysis any considera-
tion of crack direction. Consequently, while his calcu-
lation of ultimate ductile strength is valid, Fialkow’s
analysis of concrete compression® is based on the im-
plied assumption that crack direction is normal to prin-
cipal membrane tension; the validity of this assumption
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is limited to an isotropic two-way mesh, as demon-
strated by Nielsen’s" interpretation of Peter’s' experi-
ments, and as shown in this paper.

ESTIMATE OF CRACK WIDTH
For the sake of completeness, it is noted that an es-
timate of the width of cracks can be obtained by mak-
ing assumptions regarding the spacing of cracks.
Assuming that the strain ¢, in the direction perpen-
dicular to the crack is known and that the spacing of
cracks is s, the crack width is

crack width = ¢s (10)

Taking s as equal to the spacing of reinforcement, say
not more than three times the thickness of the shell, the
range of values of s is between 5 and 10 in., and the
crack width (in in.) can be estimated at between 5 to 10
times the magnitude of the strain ¢,.

NUMERICAL EXAMPLES

Example 1

Three-way mesh at 0, 45, and 90 deg. The element is
shown in Fig. 3. Calculated internal forces are N =
0.5, —0.5, 1) kip/in. (0.088, —0.088, 0.175 kN/mm).
Material properties are E; = 30,000 ksi (206,850 MPa),
E. = 3500 ksi (24,732 MPa), and f, = 40 ksi (276
MPa), with shell thickness ¢ = 3 in. (76.2 mm). Bar
areas are A, = 1(0.01, 0.02, 0.01) in.?/in. (mm?/mm),
corresponding to the three bar directions (0, 45, 90
deg). The solution is obtained in accordance with the
procedure described in this paper.

Initial phase — At the outset of the initial phase,
none of the bars have yielded, and the quantities S,,
(Eq. 7) are identically zero. Solution of Eq. (8) is

6 = 29.103 deg

5.526E-4, ¢, = —1.229E-4

€
It follows from Eq. (6) that

€ = (3.928E-4, 5.019E-4, 3.692E-5)
Then, from Eq. (4)

S; = (0.354, 0.903, 0.033) kip/in.
(0.062, 0.158, 0.006 kN/mm)

Bar forces at yield reach the values

S, = A, f, = (1.2, 2.4, 1.2) kip/in.
(0.210, 0.420, 0.210 kN/mm)

Comparing the values of S, to S, it is seen that the sec-
ond bar (at 45 deg) will be the first to yield. All quan-
tities of interest calculated in the initial phase can be
divided by the ratio S, to S,, of this bar, so that, at first
yield, the results are
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N= (1.328, —1.328, 2.657) kip/in.
(0.233, —0.233, 0.465 kN/mm)
= 29.103 deg
1.468E-3, ¢, = —3.264F-4
¢ = (1.043E-3, 1.333E-3, 9.808E — 4)
S; = (0.939, 2.4, 0.088) kip/in.
(0.164, 0.420, 0.015 kN/mm)
C = -3.427 kip/in. (—0.600 kN/mm)

Y
|

m
-
1

where principal compression in concrete C can be ob-
tained either from Eq. (3) or (5); this may be used as a
check on the accuracy of numerical calculations.

Intermediate phase — The second bar (at 45 deg) has
already yielded so that, at the outset of the intermedi-
ate phase, bar forces are

S, (0.939, 0.088) kip/in. (0.164, 0.015 kN/mm)
(Bars 1 and 3)

S, = 2.4kip/in. (0.420 kN/mm) (Bar 2)

The objective is to determine the value of internal
forces N and all other quantities of interest at the point
when the next bar (either Bar 1 or 3) reaches yield. To
do this, an incremental value N = N + 8N is used (to-
gether with the constant value of S,) in solving Eq. (8).
It is found that the next bar to yield is Bar 1 (at 0 deg),
and the results are

N = (1.429, —1.429, 2.857) kip/in.
(0.250, —0.250, 0.500 kN/mm)

0 = 30.377 deg

¢ = 1916 — 3,¢, = —3.618E-4

¢ = (1.333E-3, 2.207E-4) (Bars 1 and 3)

S, = (1.2, 0.199) kip/in. (0.210, 0.035 kN/mm)
(Bars 1 and 3)

C = 3.799 kip/in. (—0.665 kN/mm)

It is seen that only Bar 3 (at 90 deg) has not yet reached
yield.

Ultimate strength — All bars are assumed to have
reached yield, and it is seen that, in this particular ex-
ample, all are in tension. Accordingly, bar forces at ul-
timate strength are

S, = S, = (1.2, 2.4, 1.2) kip/in.
(0.210, 0.420, 0.210 kN/mm)

Using these values in Eq. (2) and (9) yields the follow-
ing

N = (1.526, —1.526, 3.052) kip/in.
(0.267, —0.267, 0.534 kN/mm)
6 = 25.257 deg

It follows that

& = 1.254E-3,¢, = —4.571E-4
¢ = 1.333E — 3 for all bars
C = —4.8 kip/in. (~0.841 kN/mm)
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The value of C represents principal compression in
concrete, which occurs at the time when all bars have
just yielded. The results may be summarized as fol-
lows:

Bars yield in the sequence, Bar 2 (at 45 deg), Bar 1
(at 0 deg), and Bar 3 (at 90 deg). All bars yield in ten-
sion. Therefore, if only the response at ultimate yield
were of interest, the problem could have been solved
directly from Eq. (9), as previously noted.

Ultimate ductile strength is N = (1.526, —1.526,
3.052) kip/in. (0.267, —0.267, 0.534 kN/mm), and the
associated compression in concrete is C = — 4.8 kip/in.
(—0.841 kN/mm).

The direction of crack angle 6 up to initial yield is
29.10 deg; following initial yield the crack rotates, in-
creasing to 30.38 deg at second yield, and then decreas-
ing to 25.26 deg at final yield. It is seen that  does not
coincide with the direction of the normal to principal
tension, which is 31.72 deg. Concrete strain perpendic-
ular to the crack direction at ultimate yield is approxi-
mately 0.00125, less than the value at first yield when it
is 0.00147. Thus, at working loads, crack width can be
expected on the order of 0.01 in. (0.254 mm).

Example 2

Three-way isotropic mesh at 10, 70, and 130 deg. It
is seen that the element, shown in Fig. 4, is reinforced
isotropically. Calculated internal forces are N = (0.5,
—0.5, 1) kip/in. (0.088, —0.088, 0.175 kN/mm). Ma-
terial properties are £, = 30,000 ksi (206,850 MPa), E,
= 3500 ksi (24,132 MPa), and f, = 40 ksi (276 MPa),
with membrane thickness £ = 3 in. (76.2 mm). Bar
areas are A, = #(0.01, 0.01, 0.01) in.?/in. (mm?/mm),
corresponding to the three bar directions (10, 70, 130
deg). The solution follows the procedure described in
detail in Example 1; the results follow.

Ny Ny

Ny

Fig. 4—Example 2—Three-way isotropic mesh at 10,
70, and 130 deg
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First yield — Bar 2 (at 70 deg) yields first, and solu-
tion of Eq. (8) is

0 31.72 deg (normal to principal tension)
¢ = 1.573E-3, ¢, = —1.792E-4
€ = (9.006F-3, 1.333E-3, —1.429EF-4)
S; = (0.811, 1.2, —0.129) kip/in.
(0.142, 0.210, —0.023 kN/mm)
C = 1.882 kip/in. (— 0.330 kN/mm)
N= (0.685, —0.685, 1.371) kip/in.
(0.120, —0.120, 0.240 kN/mm)

Bar 3 (at 130 deg) being in compression.
Second yield — Bar 1 yields at the end of the inter-
mediate phase (at 10 deg) and the results are

6 = 27.233 deg (no longer normal to principal ten-
sion)

¢ = 2.664FE-3, ¢, = —2.217E-4
€ = (1.33333E-3, —8.074E-5) (Bars 1 and 3)
S; = (1.2, —0.0727) kip/in.

(0.210, —0.013 kN/mm) (Bars 1 and 3)
C = —2.327 kip/in. (- 0.407 kKN/mm)
N= (0.787, —0.787, 1.574) kip/in.

(0.138, —0.138, 0.276 kN/mm)

Again, Bar 3 (at 130 deg) is in compression.

Ultimate strength — At the end of the intermediate
phase, Bar 3 (the only bar that has not yet yielded) is in
compression, and a further increase in the intensity of
forces N results in its gradually changing sign to ten-
sion, until it finally reaches yield. Eq. (9) and (3) are
used, and the results are

S, = (1.2, 1.2, 1.2) kip/in.
(0.210, 0.210, 0.210 kN/mm)

0 = 28.22 deg

C = 2.4 kip/in. (0.420 kN/mm)

N = (0.805, —0.805, 1.610) kip/in.
(0.141, —0.141, 0.282 kKN/mm)

Note that, even though the mesh of this example is is-
otropic, crack direction at ultimate yield is not normal
to the membrane principal tensile force.

SUMMARY AND CONCLUSIONS

A method for the calculation of the local response of
a reinforced concrete membrane subjected to internal
in-plane forces obtained through a separate elastic
analysis is presented. The equations of the method in-
corporate the effect of cracking of concrete. Reinforce-
ment may be in the form of a multidirectional mesh
with different areas and yield stresses in different di-
rections. The equations represent an extension of pre-
vious work by others, primarily by Gupta,? applicable
to orthogonal two-way reinforcement.
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The system of equations is internally statically inde-
terminate. In addition, it is transcendental, in that it
contains trigonometric functions of the crack angle 6.
An iterative method is presented for its solution, which
permits calculation of the crack angle, strains in con-
crete and in reinforcement, bar forces, and also the
principal force in concrete at any level of internal forces
N. The procedure is useful in establishing local ulti-
mate ductile strength of the membrane, and in estab-
lishing the nature of the failure mode—brittle or duc-
tile. The designer can readily insure that the failure
mode is ductile by increasing thickness of the shell, by
increasing concrete cylinder strength, or both.

At ultimate ductile failure all bars are in tension, the
calculation of ultimate ductile strength and concrete
compression becomes independent of the direction of
the crack angle 6, and the solution can be obtained di-
rectly from Eq. (9) and (3). For the limiting case of a
two-way orthogonal mesh, these equations reduce to
those previously derived by Gupta,?' and predict the
same ductile ultimate strength as that obtained by
Gupta,' by other investigators, and experimentally.'""’
The procedure is illustrated with the aid of two exam-
ples involving membranes reinforced with three-way
mesh.

Crack direction at ultimate yield is, in general, not
perpendicular to the membrane principal tensile force.
This is the case only if the reinforcement consists of a
two-way orthogonal and isotropic mesh.

Finally, since the crack direction rotates after first
yield has been reached, the width of the crack may be
greater at first yield than at ultimate yield, as shown in
Example 1.
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