Connections in Precast Concrete Structures—Strength of Corbels

by L. B. Kriz and C. H. Raths*

SYNOPSIS

This paper describes a project directed toward development of design criteria for reinforced concrete corbels. Part 1 contains these design criteria, together with design aids and design examples. Part 2 describes the tests on which the proposed criteria are based, involving 124 corbels subjected to vertical loads only and 71 corbels subjected to combined vertical and horizontal loads. Part 3 contains the discussion and analysis of the experimental data and the derivation of the design equations. Detailed test data are given in an appendix.

INTRODUCTION

A series of investigations of connections in precast concrete structures is in progress at the Research and Development Laboratories of the Portland Cement Association. The three previous papers in this series, collectively entitled "Connections in Precast Concrete Structures," have been concerned with the strength and behavior of continuity connections in double-tee floor construction¹, with the bearing strength of column heads supporting precast beams², and with the strength and behavior of scarf joints in beams and

16

columns³. This paper deals with the development of design criteria for the strength of corbels which protrude from the face of a column.

PART 1-DESIGN OF CORBELS

Background

Corbels projecting from the faces of columns are used extensively in precast concrete construction to support primary beams and girders. Typical applications of corbels may be found in the Prestressed Concrete Institute manual of connection details⁴.

Until recent years little research had been available on the strength of corbels. In the United States it has been customary to design them as short cantilevers, using the flexural and shear design equations derived for beams of more normal propor-

tions. Since the assumptions made in deriving these equations are not valid for deep beams, it is not surprising that corbel brackets designed by these equations can have varying safety factors. The tests described in Part 2 of this paper show that design on this basis will lead to questionably safe designs when the amount of tension reinforcement exceeds about one percent, and also if shear reinforcement is necessary and is provided in the form of vertical stirrups. In addition, corbels have in general been designed for vertical loads only, although horizontal forces caused by restrained creep, shrinkage, and temperature deformations of the beams supported by the corbels are often important indeed. Tests described in Part 2 of this paper have shown that such horizontal forces can substantially reduce the vertical load-carrying capacity of corbels. This effect has also been evidenced in the field where some corbels carrying light vertical loads were damaged by horizontal restraint forces.

In Europe the design of corbels has been based mainly on the investigations of Rausch^{5,6}. These design procedures involve the "straight-line" method of design for flexure, and the provision for bent bars to resist all shear forces.

In 1961, Niedenhoff⁷ suggested that a corbel acts essentially as a simple truss composed of two members: a horizontal tension member, i.e. the tension reinforcement, and an inclined concrete compression strut. On the basis of an experimental investigation, Niedenhoff proposed that the depth of the equivalent truss be taken as 0.8 times the total depth of the corbel. These assumptions form the basis of Niedenhoff's working load design proce-

dure.

A series of tests conducted at the University of Illinois^{8,9,10,11} involved the strength of deep beams. A deep beam, loaded by a concentrated load at midspan and supported by concentrated reactions at the ends, acts essentially as a double corbel protruding from opposite faces of a column. However, the number of specimens tested under concentrated loads was not sufficient to lead to design procedures for corbels. These tests, together with recent tests of short cantilevers made at the University of Texas¹², will be referred to later.

The tests recently carried out in the PCA Structural Laboratory, and reported in this paper, have been specifically concerned with corbels in which the ratio of the shear span to the effective depth of the bracket at the column face was less than unity. One hundred ninety-five corbels were tested, of which 124 were subject to vertical load only and 71 to combined vertical and horizontal loads. The variables included in the tests were: size and shape of corbel, amount of main tension reinforcement and its detailing, concrete strength, amount of stirrups, ratio of shear span to effective depth, and the ratio of the horizontal force to the vertical force.

The design criteria set out below are based on a study of the results of these tests; they have also been checked against the results obtained from the tests at the Universities of Illinois^{8,9,10,11} and Texas¹². In the development of such design criteria, numerous plots and numerical computations were made to compare observed performance with various empirical expressions. Considerable use was made of electronic computation to arrive at suitable ultimate

^{*} Formerly, Development Engineer and Associate Development Engineer, respectively, Structural Development Section, Portland Cement Association Research and Development Division, Skokie, Illinois.

strength design equations.

Proposed Criteria for the Design of Corbels

1. Notation

 A_s = area of tension reinforcement, in.²

 A_v = total area of horizontal closed stirrups, in.²

a = shear span, i.e. distance from column face to resultant of vertical load, in.

b = width of corbel, in.

 d = effective depth of corbel measured at column face, in.

 f'_c = concrete cylinder strength, psi

 $\sqrt{f'_c}$ = relationship expressed in psi, so that $\sqrt{f'_c} = 60$ psi for $f'_c = 3600$ psi

H/V = ratio of horizontal load to vertical load

p = reinforcement ratio at column face,

$$p = \frac{A_s + A_v}{bd} \text{ when } H/V =$$

0, i.e. vertical loads only,

 $p = \frac{A_s}{bd}$ when H/V does

not equal zero, i.e. combined vertical and horizontal loads

 v_u = nominal shear stress at ultimate strength, psi, $v_u = \frac{V_u}{v_u}$

V_u = vertical load at ultimate strength, i.e. shear at ultimate strength, lb

 ϕ = capacity reduction factor

2. Scope

18

(a) These provisions apply to corbel brackets having a shear span to depth ratio, a/d, of less than unity.

(b) Provisions of the ACI Building Code (ACI 318-63) not in conflict with the provisions of these proposed criteria should be considered applicable to the design of corbels.

3. Safety Provisions and Design Loads

(a) Strength should be computed in accordance with the provisions of section 4.

(b) The coefficient ϕ should be 0.85.

(c) The strength capacities of corbels so computed should be at least equal to the total effects of the design loads required by Section 3(d).

(d) The design loads to be used in the design of corbels should equal the design loads specified in Section 1506 of the ACI Building Code (ACI 318-63), multiplied by 4/3.

4. Strength Computations

(a) When special provisions are made so that a corbel is subject to vertical loads only, the ultimate design load capacity may be calculated by:

$$V_u = \phi \ [6.5bd \sqrt{f'_c} (1 - 0.5^{d/a}) \ (1000p)^{1/3}]$$
 (1) where $p = (A_s + A_v)/bd$ does not exceed 0.02, and A_v does not exceed A_s .

(b) In all other cases the ultimate design load capacity may be calculated by:

$$V_u = \phi \left[6.5bd \sqrt{f_c'} \left(1 - 0.5^{d/a} \right) \right.$$

$$\left. \frac{(1000p)^{(1/3 + 0.4H/V)}}{10^{0.8H/V}} \right]$$
 (2)

where $p = A_s/bd$ does not exceed 0.013.

5. Minimum reinforcement

(a) The amount of tension reinforcement A_s should be not less than 0.004bd.

(b) Closed horizontal stirrups should be provided having a total

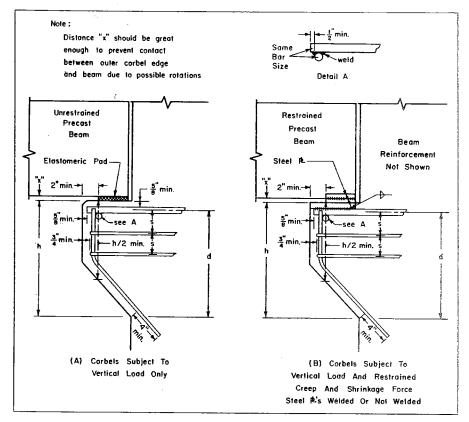


Fig. 1—Recommended Corbel Details

cross section A_v not less than 0.5A_s.

6. Detailing of Corbels*

(a) The tension reinforcement should be anchored as close to the outer face of the corbel as cover requirements permit, by welding a cross-bar to the ends of the tension reinforcing bars. The size of the cross bar should be at least equal to the maximum size for bar used as tension reinforcement.

(b) The closed horizontal stirrups should be distributed over the up-

per two thirds of the effective depth at the column face.

(c) The total depth of a corbel under the outer edge of a bearing plate resting on the corbel should be not less than half the total depth of the corbel at the face of the column.

(d) The outer edge of a bearing plate resting on a corbel should be placed not closer than 2 inches to the outer edge of the corbel.

(e) When corbels are designed to resist horizontal forces, steel bearing plates welded to the tension reinforcement should be used to transfer the horizontal forces directly to the tension reinforcement.

^{*} The requirements of Section 6 are illustrated in Fig. 1.

7. Bearing Stresses

(a) The bearing stresses at ultimate strength beneath a bearing plate resting on a corbel should be not more than $0.5f_c$.

Discussion of Proposed Design Criteria

Safety Provisions and Design Loads

The proposed safety provision and design loads are in agreement with the philosophy concerning safety provisions and design loads of Part IV-B, Ultimate Strength Design, of the ACI Building Code (ACI 318-63). Since a corbel is primarily a shear transfer device, and since its ultimate strength is governed by shear strength, it is considered appropriate to use the value $\phi = 0.85$ specified in ACI 318-63 for ultimate strength governed by shear and diagonal tension.

The design loads specified for corbels are made one third greater than those specified for the design of members in ACI 318-63 for two reasons. First, in corbels having less than about one percent of tension reinforcement, yield of the reinforcement occurs before the ultimate strength of the corbel is developed. The ratio of the load at which yield occurs to the ultimate load can vary

between % and 1. The load factors proposed will provide an adequate factor of safety against yield of the reinforcement, thus insuring serviceability of the corbels under moderate overloads. Second, it is considered good practice that the strength of a precast concrete structure should be governed by the strength of the members and not by the strength of the connections between members. Since a corbel forms part of the connection between a beam and a column it should be made stronger than either the beam or the column. Use of the proposed design loads will assure this.

Strength Computations

The equations for ultimate strength presented in Section 4 and Part 3 are based on a study of the results of tests of 195 corbels carried out at the PCA Structural Laboratory. Eq (2) reduces to Eq. (1) when H/V is zero. However, the different definitions of reinforcement ratio p in Eqs. (1) and (2) should be noted. Whereas stirrups make a considerable and consistent contribution to the strength of a corbel subject to vertical load only. their contribution to the strength of a corbel subject to combined vertical and horizontal loads is smaller and more variable. It is therefore considered sounder for the present not

Table 1—Comparison of Test and Calculated Strengths

Source	Type of Specimen	Number of Specimens	H/V	$egin{array}{c c} Average & V_u ext{ test} \\ \hline V_u ext{ calc} & \end{array}$	Standard Deviation
PCA PCA PCA PCA PCA U of I ¹⁸ U of T ¹²	Corbels without stirrups Corbels with stirrups Corbels without stirrups Corbels without stirrups Corbels with stirrups Deep beams Beams with $a/d = 1.33$ Short cantilevers $a/d < 1.10$	78 10 25 21 4 23 14	0 0 1/2 1 1 0	1.02 1.11 1.05 1.21 1.42 1.01 1.14	0.119 0.084 0.132 0.216 0.134 0.168

to rely on their contribution when designing a corbel subject to combined loading.

Eqs. (1) and (2) have been used to calculate the strengths of 181 members tested at PCA, the University of Illinois, and the University of Texas. Tests involving local failures resulting from inadequate reinforcing details were excluded. A summary of the results of this application of the proposed equations is set out in Table 1. In these calculations, ϕ was taken equal to 1.0, since accurate values of material properties and of dimensions were known.

The application of these equations is simplified considerably by the use of design aids which are presented following this discussion.

Minimum Reinforcement

The minimum amount of tension reinforcement is specified to insure against too rapid opening of cracks after first cracking. The lower the amount of tension reinforcement, the lower is the ratio of load at yield of tension reinforcement to ultimate load.

Closed horizontal stirrups are required in all corbels to eliminate the possibility of a sudden explosive-type failure of the corbel, which can occur in a corbel without stirrups.

Detailing of Corbels

The correct detailing of corbels is fully as important as the over-all design of the reinforcement. Almost invariably, distress of corbels in the field can be traced to poor detailing. If the tension reinforcement is not effectively anchored close to the outer face of the corbel, the full strength potential of the reinforce-

ment cannot be developed and failure will occur at a lower load than indicated by Eqs. (1) and (2). The recommended form of anchorage using a bar welded across the ends of the tension reinforcement is shown in Fig. 1. A frequently used detail for the main tension reinforcement is shown in Fig. 2(a). However, in order to conform to Section 801 of the ACI Building Code which specifies minimum bend radii for reinforcing bars, the bars are actually bent as shown in Fig. 2(b). Failure has then been observed, both in the field and the laboratory, to occur on the surface indicated in Fig. 2(b), the tension reinforcement being bypassed completely. Welding of the bearing plate to the main reinforcement when horizontal forces act is specified to eliminate the possibility of a local failure of the concrete between the bearing plate and the reinforcement.

The horizontal stirrups are located so that they will be as effective as possible, both from consideration of ultimate strength and for control of diagonal cracks. A suitable spacing of stirrups, s, is given by

$$s = \frac{2}{3} \left(\frac{d}{n+1} \right)$$

where n is the number of stirrups used. The stirrups should be placed in the corbel beginning at a distance s from the tension reinforcement. Horizontal stirrups are used rather than vertical stirrups because of the steep inclination of the diagonal cracks. These cracks can in some cases be almost vertical.

The limiting proportions of a corbel, and the limiting location of the bearing plate, are both recommended to insure against local failures of the concrete before the po-

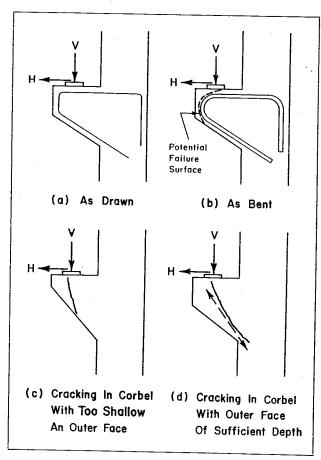


Fig. 2—Corbel Details

tential strength of the corbel has been developed. If the outer face of the corbel is made too shallow, the principal diagonal crack will take a course as shown in Fig. 2(c), and will intercept the sloping face of the corbel. resulting in instantaneous failure. If the outer face is sufficiently deep, however, the principal diagonal crack will take a course as shown in Fig. 2(d). In this case a diagonal concrete compression strut is formed as indicated, and a further increase in load may be possible after formation of the crack. Location of the bearing plate too close

to the outer face of the corbel can result in a bearing failure beneath the plate at relatively low intensities of stress. This is particularly the case if the load on the bearing plate becomes eccentric. It is essential to insure that rotation of the end of a beam due to deflection under load shall not result in the beam bearing on the outer edge of the corbel.

Bearing Stresses

Use of the maximum bearing stress of $0.5f'_c$ is contingent upon compliance with the requirements of Section 6(d). Bearing failures were ex-

perienced at stresses lower than $0.5f_c'$ in corbels loaded through bearing plates located closer to the outer face than two inches.

Design Aids and Design Examples Design Aids

Design aids have been prepared to facilitate the use of Eqs. (1) and (2).

Eq. (1) may be written:

$$V_u = \phi b d \sqrt{f_c'} F_1 F_2 \tag{1a}$$

where
$$F_1 = 6.5 (1 - 0.5^{d/a})$$
, and

$$F_2 = (1000p)^{1/3}$$

Values of F_1 and F_2 are listed in Tables 2 and 3.

Similarly, Eq. (2) may be written:

$$V_u = \phi b d \sqrt{f_a'} F_1 F_3 \tag{2a}$$

where
$$F_3 = \frac{(1000p)^{(1/3+0.4H/V)}}{(10)^{0.8H/V}}$$

Values of F_3 are listed in Table 4. Using Eqs. (1a) or (2a), and Tables 2, 3, and 4, V_u may be readily evaluated for given values of b, d, f'_c p, a/d, and H/V. The use of the tables is illustrated in the following examples.

Since both p and a/d can be varied independently, design of a corbel must be by successive trials. This process is simplified by use of the design chart given in Fig. 3. It is proposed that corbels be designed by successive trials using the design chart, and that the strength of the final design be checked using either Eq. (1a) or (2a), whichever is appropriate. Use of the chart and equations in this manner is illustrated in the examples.

Example 1

A typical interior corbel shown in Fig. 4(a) projects from a 14 x 14-in. February 1965

square tied column. It supports a 50-ft span prestressed girder carrying a live load of 1500 lb/ft and a dead load of 960 lb/ft. Design the corbel for the vertical reaction from the girder, assuming that suitable bearings are provided to eliminate horizontal restraint forces, and that the corbel does not have to resist wind or earthquake forces. Intermediate grade reinforcement is used and $f'_c = 5000$ psi. Tolerance gap between beam end and column face is one inch.

Design Loads.
 Dead load reaction = 24 kips
 Live load reaction = 37.5 kips
 Ultimate design load,

$$V_u = \frac{4}{3} - (1.5D + 1.8L)$$

$$= 2.0D + 2.4L$$

$$= 2.0(24) + 2.4(37.5)$$

$$V_u = 138 \text{ kips}$$

Determine shear span "a".
 a ≈ 2 (tolerance gap between beam and column)
 + ½ (bearing plate width)

Bearing plate width = $\frac{V_u}{b(t'/2)}$

$$=\frac{138,000}{14 \times 2500} = 3.9 \text{ in., say 4 in.}$$

$$a = 2(1) + 4/2 = 4$$
 in.

- Estimate depth d. a/d is generally between 0.15 and 0.4; assume a/d = 0.3, hence d = 13.3 in.
- Determine $v_u = V_u/bd$.

$$v_u = \frac{138,000}{14 \times 13.3} = 741 \text{ psi}$$

• Find required p from design chart. Enter chart at $v_u = 741$ psi, proceed horizontally to $f'_r = 5000$ psi, vertically to a/d = 0.3, horizon-

Table 2-Values of $F_1 = 6.5 (1 - 0.5^{d/a})$

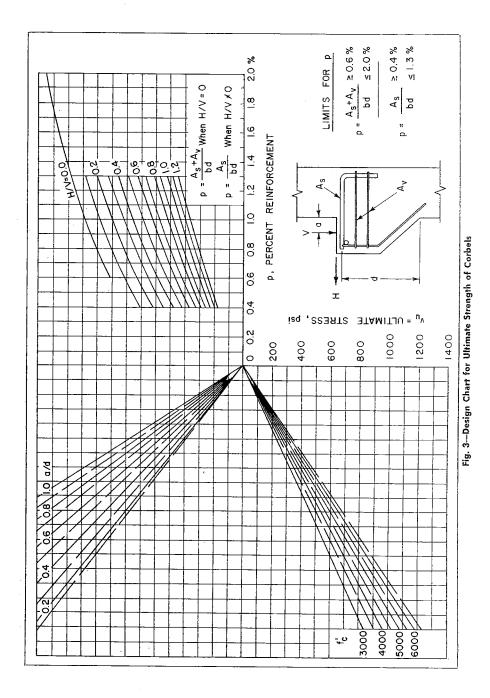

						 				
a/d	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	6.50	6.50	6.50	6.50	6.50	6.50	6.50	6.50	6.50	6.50
0.1	6.49	6.49	6.48	6.47	6.45	6.44	6.41	6.39	6.36	6.33
0.2	6.30	6.26	6.22	6.18	6.14	6.09	6.05	6.00	5.95	5.90
0.3	5.85	5.80	5.75	5.70	5.65	5.60	5.55	5.50	5.45	5.40
0.4	5.35	5.30	5.25	5.20	5.15	5.10	5.06	5.01	4.97	4.92
0.5	4.87	4.83	4.79	4.74	4.70	4.66	4.61	4.57	4.53	4.49
0.6	4.45	4.41	4.37	4.34	4.30	4.26	4.22	4.19	4.15	4.12
0.7	4.08	4.05	4.02	3.98	3.95	3.92	3.89	3.86	3.83	3.80
0.8	3.77	3.74	3.71	3.68	3.65	3.62	3.60	3.57	3.54	3.5
0.9	3.49	3.46	3.44	3.42	3.39	3.37	3.34	3.32	3.30	3.27

Table 3-Values of $F_2 = (1000p)^{1/3}$

\boldsymbol{p}	F_2	p	F ₂	p '	F_2
0.0040	1.59	0.0095	2.12	0.0150	2.47
0.0045	1.65	0.0100	2.15	0.0155	2.49
0.0050	1.71	0.0105	2.19	0.0160	2.52
0.0055	1.76	0.0110	2.22	0.0165	2.54
0.0060	1.82	0.0115	2.26	0.0170	2.57
0.0065	1.87	0.0120	2.29	0.0175	2.60
0.0070	1.91	0.0125	2.32	0.0180	2.62
0.0075	1.96	0.0130	2.35	0.0185	2.64
0.0080	2.00	0.0135	2.38	0.0190	2.67
0.0085	2.04	0.0140	2.41	0.0195	2.69
0.0090	2.08	0.0145	2.44	0.0200	$\frac{2.71}{2.71}$

Table 4-Values of $F_3 = \frac{(1000p)^{(1/3 + 0.4 H/V)}}{(10)^{0.8 H/V}}$

H/V												
p	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1,2
0.0040	1.40	1.23	1.08	0.95	0.83	0.73	0.64	0.57	0.50	0.44	0.38	0.34
0.0045	1.46	1.29	1.14	1.00	0.89	0.78	0.69	0.61	0.54	0.48	0.42	0.37
0.0050	1.52	1.34	1.19	1.06	0.94	0.83	0.74	0.66	0.58	0.52	0.46	0.40
0.0055	1.57	1.40	1.25	1.11	0.99	0.88	0.78	0.70	0.62	0.55	0.49	0.44
0.0060	1.62	1.45	1.30	1.16	1.04	0.92	0.83	0.74	0.66	0.59	0.53	0.47
0.0065	1.67	1.50	1.34	1.20	1.08	0.97	0.87	0.78	0.70	0.62	0.56	0.50
0.0070	1.72	1.55	1.39	1.25	1.12	1.01	0.91	0.82	0.73	0.66	0.59	0.53
0.0075	1.76	1.59	1.43	1.29	1.16	1.05	0.95	0.85	0.77	0.69	0.63	0.56
0.0080	1.81	1.63	1.48	1.34	1.21	1.09	0.99	0.89	0.80	0.73	0.66	0.59
0.0085	1.85	1.68	1.52	1.38	1.25	1.13	1.02	0.93	0.84	0.76	0.69	0.62
0.0090	1.89	1.72	1.56	1.41	1.28	1.17	1.06	0.96	0.87	0.79	0.72	0.65 0.68 0.71 0.74 0.77
0.0095	1.93	1.75	1.60	1.45	1.32	1.20	1.10	1.00	0.91	0.83	0.75	
0.0100	1.96	1.79	1.63	1.49	1.36	1.24	1.13	1.03	0.94	0.86	0.78	
0.0105	2.00	1.83	1.67	1.53	1.40	1.27	1.16	1.06	0.97	0.89	0.81	
0.0110	2.04	1.86	1.71	1.56	1.43	1.31	1.20	1.10	1.00	0.92	0.84	
0.0115	2.07 2.10 2.14 2.17	1.90	1.74	1.60	1.46	1.34	1.23	1.13	1.04	0.96	0.87	0.80
0.0120		1.93	1.78	1.63	1.50	1.38	1.26	1.16	1.07	0.98	0.90	0.83
0.0125		1.96	1.81	1.66	1.53	1.41	1.30	1.19	1.10	1.01	0.93	0.86
0.0130		2.00	1.84	1.70	1.56	1.44	1.33	1.22	1.13	1.04	0.96	0.88

tally to H/V = 0 and vertically downward to the p scale.

p = 0.98% OK since it is < 2.0%.

and
$$>A_s+A_v=0.4\%+rac{0.4\%}{2}=$$

0.6%

• Select A_s , A_v , and corbel dimensions.

$$p = \frac{A_s + A_v}{bd} = \frac{1.5 A_s}{bd},$$

if A_v is made equal to $0.5A_v$. Hence

$$A_s = 0.0098 \times 14 \times 13.3/1.5$$

= 1.22 in.²
Use 4-#5 bars.

 $A_v = 0.61 \text{ in.}^2$

Use 2-#4 bar closed stirrups. Stirrup spacing (2-#4 stirrups)

$$s = \frac{2}{3} \left(\frac{d}{n+1} \right) = \frac{2}{3} \left(\frac{13.3}{3} \right)$$

= 2.96 in.

Use 3 in. ctrs. from tension reinforcement.

Allowing 1 in. cover to reinforcement, over-all depth of corbel

= 1 + 0.3 + 13.3 = 14.6 in. Use 15 in.

Length of corbel

= 2 + (bearing width) + (clearance)

= 2 + 4 + 1 = 7 in.

Depth of outer face of corbel, say half over-all depth at column face, = 15/2 = 7.5 in.

Use 8 in.

• Check design. d = 15.0 - 1.0 - 0.62/2 = 13.7 in. a/d = 4.0/13.7 = 0.29

$$p = \frac{A_s + A_v}{bd} = \frac{2.04}{14 \times 13.7} = 1.06\%$$

$$V_u = \phi b d \sqrt{f_c'} F_1 F_2 \qquad (1a)$$

Using Tables 2 and 3 to obtain F_1 and F_2

$$V_u = 0.85 \times 14 \times 13.7 \times \sqrt{5000} \times 5.90 \times 2.19$$

= 149 kips OK, greater than required design load.

• The details of this corbel are shown in Fig. 4(a).

Example 2

Redesign the corbel of Example 1 assuming that a bearing shoe in the prestressed girder is welded to the corbel, and because of this, a horizontal force of 45 kips will occur due to restraint of creep and shrinkage deformation of the girder. This example is illustrated by Fig. 4(b).

- From Example 1, $V_u = 138$ kips, and a=4 in.
- Section 1506(a)5, of the ACI Building Code (ACI 318-63), requires that the effects of creep and shrinkage be considered on the same basis as the effects of dead load, when calculating the design ultimate loads. Hence the load factor for the horizontal restraint force will be:

$$\frac{4}{3}$$
 (1.5) = 2.0

$$H_u = 2.0(45) = 90 \text{ kips}$$

therefore

$$H/V = 90/138 = 0.65$$

• From the design chart, the value of v_u corresponding to the maximum allowable p (= 1.3%), H/V of 0.65,an assumed a/d of 0.3, and f'_c of 5000 psi, is about 460 psi.

Therefore

$$d = \frac{V_u}{v_u b} = \frac{138,000}{460 \times 14} = 21.4 \text{ in.}$$

now

$$a/d = 4/21.4 = 0.19$$

PCI Journal

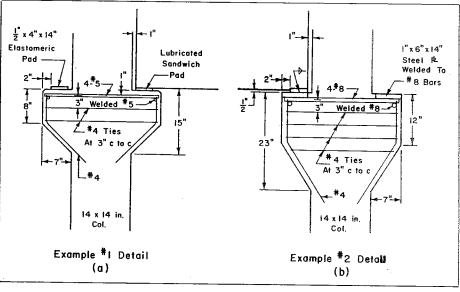


Fig. 4—Corbel Details for Example Problems

• Determine p from the design chart for $v_u = 460 \text{ psi}, f'_c = 5000 \text{ psi}, a/d =$ 0.19 and H/V = 0.65.

p = 1.07% OK since it is > 0.4% and < 1.3%

• Select A_s , A_v , and corbel dimensions.

 $p = A_s/bd$

Hence

 $A_s = pbd = 0.0107 \times 14 \times 21.4$ $= 3.20 \text{ in.}^2$

Use 4-#8 bars.

$$A_n = A_s/2 = 1.60 \text{ in.}^2$$

Use 4-#4 bar closed stirrups. Stirrup spacing (4-#4 stirrups)

$$s = \frac{2}{3} \left(\frac{d}{n+1} \right) = \frac{2}{3} \left(\frac{21.4}{5} \right)$$

= 2.88 in. Use 3-in. centers.Assuming a 1-in. thick bearing plate welded to the main tension reinforcement, over-all depth of corbel:

h = 1 + 0.5 + 21.4 = 22.9 in.Use 23 in.

Length of corbel will be as in Example 1, 7 in.

Check design.

= 23 - 1 - 0.5 = 21.5 in. a/d = 4/21.5 = 0.19

 $=A_s/bd=3.16/(14\times21.5)$ =1.05%

 $V_u = \phi b d \sqrt{f_a'} F_1 F_3$ Using Tables 2 and 4 to obtain F₁ and F_2

 $V_u = 0.85 \times 14 \times 21.5 \times \sqrt{5000}$ \times 6.33 \times 1.21

- = 139 kips OK, greater than design load
- The details of this corbel are shown in Fig. 4(b).

Special Note

It should be noted that the addition of the horizontal restraint force has necessitated an increase in depth of the corbel of 53 percent and an increase in main tension reinforcement of 162 percent. It is clear. therefore, that for safety, a realistic estimate must be made of any horizontal forces that may act on a corbel. If special provision is not

made to eliminate the horizontal restraint forces by using lubricated sandwich pads at one end of each girder, it is proposed that H/V should be assumed in design to be at least 0.5, unless the horizontal force is calculated.

PART 2-TESTS OF CORBELS

Scope

Three series of tests were made: (a) exploratory tests, (b) tests of corbels subjected to vertical loads only, and (c) tests of corbels subjected to combined vertical and horizontal loads. The exploratory tests involved testing procedures and reinforcing detailing. The other two series involved a systematic investigation of the effect of different variables on the strength and behavior of corbels.

The variables considered in the tests were: reinforcement ratio, concrete strength, ratio of shear span to effective depth, amount and distribution of stirrup reinforcement, size and shape of corbel, and the ratio of the horizontal applied load to the vertical applied load. The range of the variables is indicated on Fig. 5.

Test Specimens

All specimens consisted of a length of 8 x 12-in. column with two corbels

- a → h Range of Variables a - 2.75 to 12.5 in. b - 8 in.54" or h - 18 to 45 in. 72" h' - 6 to 26 in. 1. - 6 to 24 in. fc - 2110 to 6680 psi p - 0.21 to 1.86 % $f_v - 39.9$ to 95.8 ksi

Fig. 5—Corbel Test Specimen

arranged symmetrically, as shown in Fig. 5. With the exception of certain specimens in series (a) the main tension reinforcement consisted of straight deformed bars anchored by bars of equal diameter welded across their ends, as shown in Fig. 6. Corbels with horizontal stirrups were detailed as shown in Fig. 6(b). Corbels to be subjected to combined vertical and horizontal loading were provided with grooved bearing plates welded to the tension reinforcement as shown in Fig. 6(c). The detailing of the reinforcement of the corbels in the exploratory series (a) was as indicated in Fig. 7.

The dimensions of the individual specimens and the material properties are set out in Tables A1 through A4 appended to this paper.

Materials and Fabrication

All concrete was made with Type I portland cement. The coarse aggregate was a gravel of 4-in. maximum size, and the fine aggregate was Elgin sand. The concrete slumps varied from 1½ to 3 in. An air-entraining agent was added to produce 4 to 6 percent air. One batch of concrete was used for each specimen, with the exception of two large specimens, which required two batches each. Three 6 x 12-in. cylinders were taken from each batch for determination of concrete strength. The specimens and test cylinders were moist cured for three days under a plastic cover, and then stored at 70°F and 50 percent relative humidity, and were tested at six days. The concrete cylinder strengths

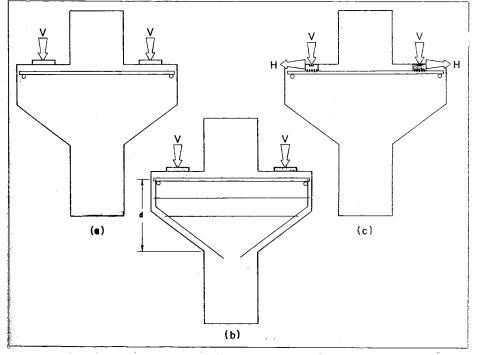


Fig. 6-Reinforcement Details of Test Corbels

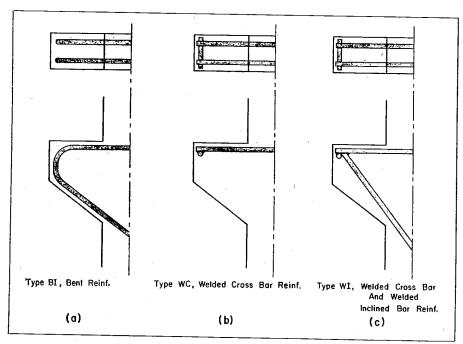


Fig. 7—Detailing of Corbel Reinforcement in Auxiliary Test Series

varied from 2110 psi to 6680 psi, as given in Tables A1 through A4.

The reinforcing steel conformed to ASTM Designation A305 for deformations. The steel yield strengths were determined from tension tests of 30-in. coupons taken from each reinforcing bar used; the yield strength varied from 39,900 psi to 95,800 psi, and are given in Tables A1 through A4.

Instrumentation

The corbels were instrumented with SR4-A-12 strain gages mounted on the reinforcement and with SR4-A-9-4 strain gages mounted on the concrete. This instrumentation varied according to the purpose of individual tests.

Test Procedures

For convenience all corbels were tested in an upside-down position. A heavily-reinforced U-frame cen-

tered under the loading platen of a million-pound testing machine was used to support the corbels. To assure adequate bearing capacity of the legs of the U-frame, the top of the legs was armored by steel plates. These plates were carefully aligned in the forms of the U-frame before placing the concrete to provide parallel bearing surfaces.

The corbels were subjected to various combinations of vertical and horizontal loads. The loads were increased in increments until failure. After each load increment the development of cracks was observed and marked on the specimens. All strain measurements were recorded continuously by strip-chart strain recorders

Vertical Loading Only

The corbels were loaded through steel bearing plates placed symmet-

PCI Journal

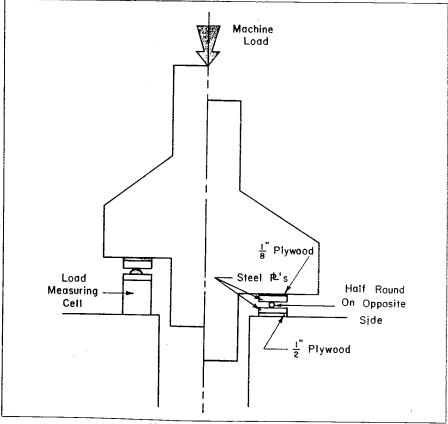


Fig. 8—Vertical Loading of Corbels

rically on the top* of the corbels as shown in Fig. 8. The length of the bearing plates was equal to the width of the corbels. The width w was either 3 or 5 in. and the thickness of the plates was 1 or 1½ in. To eliminate restraint of deformations, a half-round and a round bar were placed between the bearing plates and another set of steel plates which rested on the supporting U-frame. The load was applied to the bottom of the column stub by the testing machine platen.

To assure uniform load distribu-

tion on all bearing areas, new plywood inserts were used in each test. A ¾-in. plywood sheet was placed between the column bottom and the testing machine platen, ¼-in. plywood sheets between the corbels and the bearing plates, and ½-in. plywood sheets between the U-frame and the second set of steel plates. After the application of the first 10,000 lbs, the machine platen was blocked to prevent its rotation.

In the first five tests the load applied to the corbels was checked by load measuring cells to establish that the load was distributed equally to the two corbels. Since the two loads did not differ by more than two percent, the use of these load

Top refers to the position in a structure and not to the position of the specimen in the testing machine. This convention is used throughout this paper.

measuring cells was discontinued in further tests. The two test setups are shown schematically in Fig. 8. Fig. 9 shows the test setup used for the tests involving vertical load only.

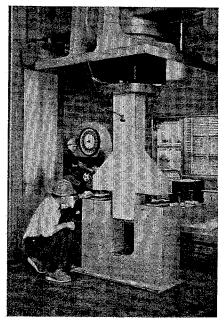


Fig. 9—Test Setup for Vertical Load Only, H/V = 0

Three tests were made to determine whether a column load carried from upper floors influenced the strength of the corbels. In these tests a load was applied to the top of the column stub by a 100-ton hydraulic ram. A constant ratio of the machine load to the ram load was maintained throughout each of these tests. The loading of the ram was controlled by the oil pressure indicator but the load was also continuously monitored by a load-measuring cell placed between the ram and the column top. This test setup was similar to that shown in Fig. 9, except for the 100-ton hydraulic ram which was within the U-portion of the test frame.

Combined Vertical and Horizontal Loading

The horizontal forces which develop in precast beams as a result of restrained volume changes were simulated by horizontal forces applied at the level of the top of the corbels. To permit a direct transfer of the horizontal forces to the tension reinforcement, the 3-in. bearing plates were welded to the reinforcing bars. The horizontal forces were applied by four or six hydraulic rams to a set of loading plates, and transferred to the bearing plates through milled shear keys. The hydraulic rams were positioned on each side of the corbels in such a manner that the resultant of the ram loads was at the level of the top of the corbel. The frictional restraint to lateral deformations was eliminated by placing 2-in. diameter round bars between the loading plates and the steel plates on the supporting U-frame.

The rams used for applying the horizontal forces were calibrated so that the loads could be correlated with the oil pressure. The operation of the rams during testing was checked by load measuring cells which indicated that the errors in the load as determined from the oil pressure were less than one percent. Therefore, the use of the load-measuring cells was discontinued.

The vertical load was applied in the same manner as in the tests of corbels subjected to vertical loads only. A constant ratio between the vertical and the horizontal loads was maintained throughout each test.

The loading system for combined horizontal and vertical loading is shown in Fig. 10.

Test Results

The principal data obtained in

PCI Journal

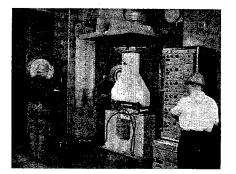


Fig. 10—Test Setup for Combined Horizontal and Vertical Loading, H/V does not equal zero

these tests have been listed in Tables Al through A4 appended to this paper. Other data are reproduced where appropriate in the discussion of the behavior of the corbels set out in Part 3.

PART 3-BEHAVIOR OF CORBELS

Series (a)-Exploratory Tests

Effect of Additional Column Loads

Three tests were made on pairs of identical specimens. One of each of the companion specimens was subjected to vertical loads applied to the corbels only, while the other specimen was subjected also to an additional load applied at the top of the column stub. The pertinent data are given in Table 5. These tests show that the strength of the corbels is not significantly influenced by the additional load carried by the

column. Therefore, subsequent tests were performed with loads applied to the corbels only.

Detailing the Corbel Reinforcement

Test of corbels reinforced conventionally according to Fig. 7(a) have shown the weakness of such detailing when loads were applied close to the outer edges of the corbels. These corbels failed along a surface following the bends of the reinforcement, Fig. 11, indicating that the

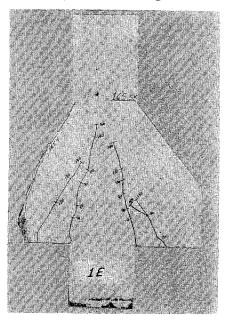


Fig. 11—Conventionally Reinforced Corbel, Type BI, Loaded Near Outer Edge. Failure Plane Follows Bend Radius

Table 5-Effects of Additional Column Load

Specimen	Concrete Strength, f'_c psi	Effective Depth Shear Span	Load per Corbel at Ultimate, kips	Additional Column Load, kips
4	3520	0.171	99.9	0
5E	4010	0.171	114.3	114.0
15	4500	0.370	72.0	0
6E	4140	0.370	63.9	48.0
24	4250	$0.372 \\ 0.372$	88.8	0
7E	4490		109.3	110.0

reinforcement was not fully effective and that it even created a possible source of weakness. Measurements of the strains in the reinforcement along the compression side indicated only small compressive stresses throughout the length of the reinforcement.

Previous tests of corbels and of deep beams^{8,9,11}, and the tests reported herein, show that the stresses in the tension reinforcement of a corbel do not vary significantly along its length between the face of the column and the point of load application. Consequently, high bond stresses exist in the outer parts of the tension reinforcement and may lead to bond failures. Such bond failures were observed in tests of deep beams8. The anchorage of the bars can be assured by cross-bars welded to the ends of the tension reinforcement as shown in Fig. 7(b). This method proved satisfactory and subsequent tests were made on specimens reinforced with straight tension bars anchored by the welded cross-bars.

Tests of corbels with inclined compression reinforcement welded to the ends of the tension reinforcement, Fig. 7(c), show the compression reinforcement contributes little to the strength of the corbels. Therefore, compression reinforcement was not used in further tests.

The strength of corbels with the three types of reinforcement is compared in Table A1. The specimens designated by letters WC had tension reinforcement with welded cross bars, Fig. 7(b), specimens BI had bent reinforcement, Fig. 7(a), and specimens WI had compression reinforcement and cross-bars welded to the ends of the tension reinforcement, Fig. 7(c).

The arrangement and amount of

reinforcement in the column has little influence on the strength of the corbels projecting from the column, as may be seen in Table A1. Thus, the amount of column reinforcement used in subsequent tests was that which would prevent failure of the column portion of the test specimens.

Series (b)—Corbels Subject to Vertical Loads Only

Behavior Under Load

Initially the corbels behaved elastically, and the stress in the main tension reinforcement was proportional to load. In all the tests, the first cracks to appear were flexural cracks starting at the junction of the horizontal face of the corbel and the face of the column. After formation of these cracks the tension reinforcement stress increased much more rapidly. Typical relationships between applied load and force in the tension reinforcement are shown in Fig. 12. Subsequent development of the cracks depended primarily on the reinforcement ratio and the ratio of the shear span to the effective depth, and was also closely related to the mode of failure.

Four principal types of failure were observed, as described below.

- Flexural Tension—A flexural tension failure occurs by crushing of the concrete at the bottom of the sloping face of the corbel after extensive yielding of the tension reinforcement. Such a failure is illustrated in Fig. 13(a). The appearance of a corbel after a flexural tension failure is characterized by very wide flexural cracks.
- Flexural Compression—A flexural compression failure occurs when crushing of the concrete takes place at the bottom of the corbel before

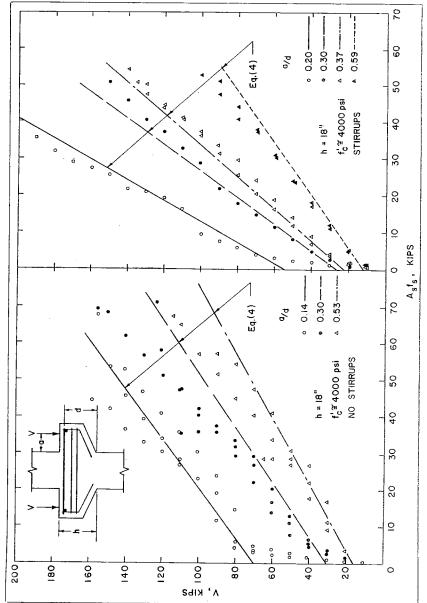
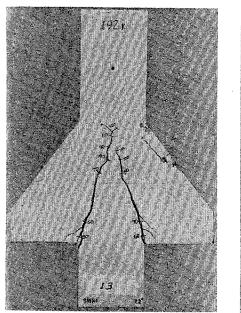



Fig. 12.--Relationship Between Applied Load and Tension Steel Force, Verrical Load Only

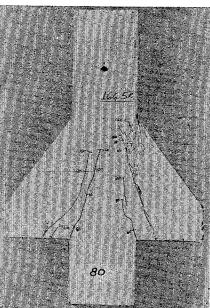


Fig. 13—Flexural Failures, H/V = 0

extensive yielding of the reinforcement has occurred. The tension reinforcement stress at failure is either below or just at the yield point and the flexural cracks, while well developed, have not opened excessively. Such a failure is illustrated in Fig. 13(b).

(a) Tension Failure (FT)

- Diagonal Splitting—The diagonal splitting mode of failure is shown in Fig. 14(a) and 14(b). The flexural crack pattern was well developed before the diagonal splitting of the concrete, which occurred along a line extending from the bearing plate toward the junction of the sloping face of the corbel and the face of the column. A corbel with such a crack usually fails by shear-compression of the concrete compression zone, as in the corbel shown in Fig. 14(b).
- Shear Failure—Shear failures were characterized by the develop-

ment of a series of short inclined cracks along the plane of the interface between the column and the corbel, as may be seen in Figs. 15(a) and (b). The final failure was by shearing along this weakened plane, and the appearance after failure can be seen in Fig. 15(b).

(b) Compression Failure (FC)

• Secondary Modes of Failure-Failures which did not involve the deepest section of the corbel at the column face were considered secordary modes of failure. These were of two types: (a) the splitting away of a portion of the concrete due to a major crack intersecting the sloping face of the corbel, as seen in Fig. 16(a), and (b) bearing failures of the concrete beneath the bearing plate, as seen in Fig. 16(b). Both types of secondary modes of failure occurred at loads lower than those at which failure would have occurred by one of the principal modes

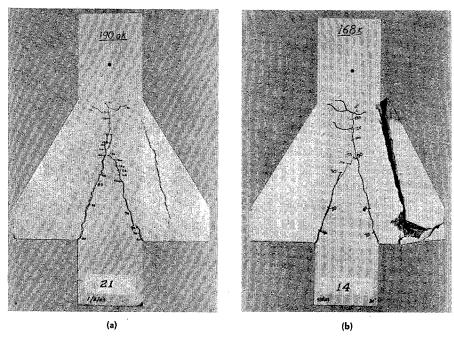


Fig. 14—Diagonal Splitting Failures (DS), H/V = 0

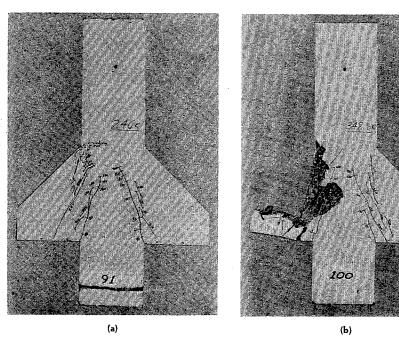
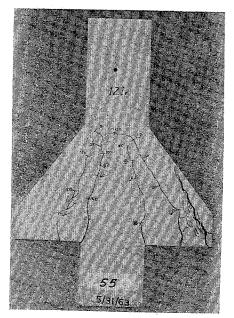
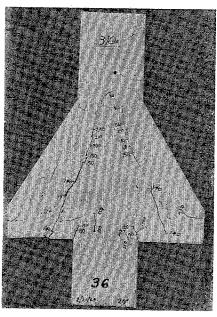




Fig. 15—Shear Failures (S), H/V = 0

(b) Bearing Failure (B)

Fig. 16—Secondary Modes of Failure, H/V = 0

of failure had the secondary failures been prevented.

Discussion of Behavior

To understand the behavior of corbels and to arrive at design equations, extensive plotting of test data was made. During such studies, further tests were conducted to cover adequate ranges of the significant variables. Empirical design equations were gradually arrived at by numerous comparisons of observed properties to those computed by various expressions. An LGP-30 electronic computer was used in these studies.

The relationships between tension reinforcement force and applied load shown in Fig. 12 are for corbels made from concrete with a strength of about 4000 psi. Similar relationships were found to hold for corbels without stirrups made from 2000 and 6000-psi concrete. It was not considered necessary to test corbels with stirrups made from concretes having strengths other than 4000 psi. It was found that the tension reinforcement force, $A_s f_s$, is a function of the applied load, V, of the ratio of shear span to effective depth, a/d, and of the concrete strength f'. The relationship between load V and tension force $\tilde{A}_s f_s$ can be idealized as shown in Fig. 17. The linear part of the

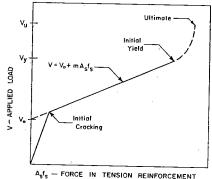


Fig. 17—Idealized Relationship Between Applied Load and Force in Tension Reinforcement

PCI Journal

relationship between first cracking and yield of the reinforcement can be represented by the equation:

 $V = V_0 + m A_s f_s$ where V = applied load

> $V_0 = \text{nominal cracking load}$ m = slope

The nominal cracking load, V_o , and the slope, m, are both functions of f'_o and a/d. These functions can be expressed as:

$$V_0 = bd \, rac{4.4}{(a/d)^{1_2}} \left(rac{f_c'}{a/d}
ight)^{1/3} \, C_1$$

and
$$m = \frac{2}{3} \sqrt{\frac{f'_c}{1000}} \frac{1}{C_2}$$

Substituting for V_0 and m in Eq. (3) above yields:

$$v = rac{V}{bd} = rac{4.4}{(a/d)^{i_2}} \left(rac{f'_c}{a/d}
ight)^{1/3} C_1$$

$$+\frac{2}{3}\sqrt{\frac{f'_{c}}{1000}}\frac{pf_{s}}{C_{2}}$$
 (4

where $C_1 = 1$ for vertical loads only $C_2 = 0.8(10)^{a/3d}$ when there are no stirrups $= 0.25(10)^{a/d}$ when there are stirrups

Eq. (4) may be used to calculate the nominal shear stress, v, at working load by substituting the allowable steel stress for f_s , and can be used to calculate the nominal shear stress at yield of the tension reinforcement, v_y , by substituting f_y for

Eq. (4) has been used to calculate the nominal shear stress, v_y , at yield of tension reinforcement in those corbels tested in which yielding occurred. The average value of (v_y) $test/v_y$ cale) given in Table A2 is 1.06 and the standard deviation is 0.135. When the computed steel stress, f_{su} , given by Eq. (5) below was less than the yield point of the steel used, no value for v_v calc is

given in Table A2.

Eq. (4) can also be used to define whether or not the tension reinforcement will yield prior to the corbel developing its ultimate strength. If the nominal shear stress at ultimate strength is $v_u = (V_u/bd)$, then transposing Eq. (4) and substituting v_n for v yields:

$$f_{su} = \left[v_u - \frac{4.4}{(a/d)^{1/2}} \left(\frac{f'_c}{a/d} \right)^{1/3} C_1 \right] \times \frac{1.5C_2}{p\sqrt{f'_c/1000}}$$
 (5)

in which the stress, v_u may be calculated from Eq. (7).

The tension reinforcement will yield if f_{su} calculated using Eq. (5) is equal to or greater than the yield point stress f_{y} .

To facilitate the use of Eqs. (4) and (5), values of C_1 and C_2 have been listed in Tables A7 and A8 appended to this report.

For purposes of practical design, it should usually not be necessary to check the stress in the tension reinforcement. As indicated in the discussion of design criteria in Part 1, yield of the tension reinforcement will usually take place at % to 1 times the ultimate load. The proposed ultimate strength procedure accounts for this by specifying load factors 1/3 greater than those used for the individual precast members.

Ultimate Strength

The ultimate strength equation must of necessity be empirical because of the complexity of the state of stress in the corbel. Several conclusions concerning the effect of individual variables on the strength of corbels can be drawn on the basis of the experimental data presented herein. These conclusions, together with the requirements of the laws of similitude, lead to a suitable form for the ultimate strength equation.

The ultimate strength of a corbel, V_u , is a function of its width b and effective depth d, of the reinforcement ratio, $p = (= A_s/bd)$, of the concrete strength f'_c and of the ratio of the shear span to the effective depth, a/d. From the laws of similitude it is concluded that the ultimate strength, Vu, must be directly proportional to the width b and to the effective depth d. The tests have shown that the strength is also proportional to $\sqrt{f_o}$. Accordingly, the strength may be expressed in terms of the non-dimensional ratio $V_{u}/bd\sqrt{f_{c}'}$. This ratio must be a function of the remaining two variables, a/d and p.

The tests show that increasing the a/d ratio lowers the corbel strength, V_u . The maximum strength is obtained for a=0, while $a=\infty$ represents the condition of pure bending. Hence, $V_u=0$ when $a=\infty$. The variation of the strength with a/d can be represented by a term of the form K_1 $(1-K_2^{a/a})$, where K_2 is less than unity.

These tests also show that the strength increases when the reinforcement ratio increases. The effect of the reinforcement ratio can be expressed by the term $K_3p^{R_4}$. The foregoing analysis leads to the expression:

$$\frac{V_u}{bd\sqrt{f_c'}} = K_1 (1 - K_2^{d/a}) K_3 p^{K_4}$$
 (6)

The constants K_1 and K_3 need not be known separately and may be combined into a single coefficient. Statistical analysis of the test data resulted in the following equation:

$$\frac{v_u}{\sqrt{f'_{\cdot}}} = \frac{V_u}{bd\sqrt{f'_{\cdot}}}$$

$$= 6.5 (1 - 0.5^{d/a}) (1000p)^{1/3}$$
(7)

Multiplying both sides of Eq. (7) by $bd\sqrt{f_c}$ and introducing the strength reduction factor ϕ yields Eq. (1) of the proposed criteria for design of corbels.

Eq. (7) was used to calculate the nominal shear stress at ultimate strength, v_u , for all corbels subjected to vertical loads only, and the results of these calculations are listed in Table A2. Excluding those specimens which experienced secondary failures by bearing or splitting off of the corbel end, the average value of $(v_u \text{ test}/v_u \text{ calc})$ was found to be 1.02, and the standard deviation 0.119.

Analysis of data from tests of corbels with horizontal stirrups shows that the stirrups are as effective in resisting vertical loads as is the main tension reinforcement. Accordingly. the strength of a corbel with horizontal stirrups and subject to vertical loads only can be calculated using Eq. (7) but calculating p on the basis of the total cross section of tension and stirrup reinforcement. i.e. $p = (A_s + A_v)/bd$. The calculated ultimate strengths of corbels with stirrups and subject to vertical loads listed in Table A4 were determined in this manner. The average value of $(v_u \text{ test}/v_u \text{ calc})$ was 1.11 and the standard deviation 0.084.

Fig. 18 shows a graphical representation of Eq. (7), together with the corresponding test values. The test results from corbels which experienced secondary failures are not included in this figure.

In Table A5 comparisons have been made between data obtained by other investigators at the Universities of Illinois and Texas, and the ultimate strengths calculated using Eq. (7). A satisfactory agreement is found.

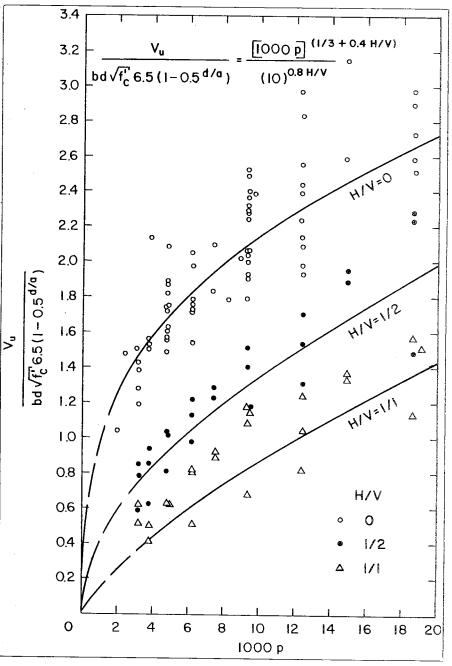


Fig. 18—Ultimate Strength of Corbels

Series (c)—Corbels Subject to Combined Vertical and Horizontal Loads

Discussion of Behavior

The addition of outward horizontal forces to the vertical loads does not change the essential characteristics of behavior, which can still be represented by the idealized diagram of Fig. 17. However, the functions for V_0 and m must be modified to account for the lower values of the nominal cracking load V_0 and of the slope m observed in data from tests of corbels subject to combined loading. Typical relationships be-

tween applied load and tension reinforcement force for corbels subjected to combined loading are shown in Fig. 19.

The function for v derived from the data shown in Fig. 19, and from other similar data not presented here, takes the form:

$$v = \frac{V}{bd} =$$

$$\frac{4.4}{(a/d)^{\nu_2}} \left(\frac{f'_c}{a/d}\right)^{1/3} C_1 + \frac{2}{3} \sqrt{\frac{f'_c}{1000}} \frac{pf_s}{C_2}$$

$$1 + \frac{2}{3} \frac{H}{V} \sqrt{\frac{f_c'}{1000}} \tag{8}$$

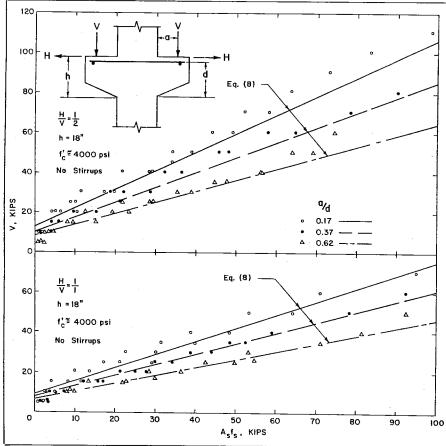


Fig. 19—Relationship Between Applied Load and Tension Steel Force, Combined Vertical and Horizontal Loading

where $C_1 = 1.5 (a/d)^{2/3}$, and $C_2 = 0.7 (10)^{a/2d}$, whether stirrups are present or not. Eq. (8) reduces to Eq. (4) when H/V = 0, i.e., for vertical load only. However, it should be noted that coefficients C_1 and C_2 must then be as defined earlier for Eq. (4).

Eq. (8) has been used to calculate the nominal shear stress, v_y , at yield of the tension reinforcement in those corbels tested in which yield of the tension reinforcement occurred. The results are given in Table A3. The average value of $(v_y \text{ test/}v_y \text{ calc})$ was 1.04 for $H/V = \frac{1}{2}$, and 0.92 for $H/V = \frac{1}{2}$, the standard deviations being 0.088 and 0.084 respectively.

As before, by equating Eq. (8) to the nominal shear stress at ultimate strength, v_u , and transposing, the reinforcement stress at ultimate strength, f_{su} can be determined.

$$f_{su} = \left[v_u \left\{ 1 \right. \right. \left. + \frac{2}{3} \left. \frac{H}{V} \sqrt{\frac{f_c'}{1000}} \right\} - \frac{4.4}{(a/d)^{V_2}} \right]$$

where C_1 and C_2 are as defined for Eq. (8) above, and v_u is obtained from Eq. (10) below. Values of C_1 and C_2 are also listed in Tables A9 and A10 appended to this report.

For purposes of practical design, yield of the tension reinforcement may again be accounted for by the use of load factors ½ greater than those specified for individual members.

Ultimate Strength

The principles used in the derivation of the ultimate strength equation for corbels subjected to vertical loads only apply also to the derivation of an ultimate strength equation for corbels subject to combined horizontal and vertical loads. The ultimate strength V_u must again be proportional to b and d, and it may be assumed that it is also proportional to $\sqrt{f_c}$. The ratio V_u/bd $\sqrt{f_c}$ is then a function of a/d, p and H/V, which should reduce to Eq. (7) when H/V=0, i.e. for vertical loads only. The following equation was established after study of the test data, having in mind the above requirements.

$$v_u = \frac{V_u}{bd} = 6.5 \sqrt{f_c^{T}} (1 - 0.5^{d/a})$$

$$\frac{(1000p)^{(1/3 + 0.4H/V)}}{(10)^{0.8H/V}} \quad (10)$$

Eq. (10) was used to calculate the nominal shear stress at ultimate strength for all corbels subjected to combined vertical and horizontal loads, and the ultimate shear stresses so calculated are set out in Table A3. Eq. (2) of the proposed design criteria is based on Eq. (10). Excluding those specimens which experienced secondary failures (i.e., by bearing or by splitting off of the corbel ends), the average value of $(v_u \text{ test}/v_u \text{ calc})$ was 1.05 for H/V = $\frac{1}{2}$, and 1.21 for $H/V = \frac{1}{2}$, the standard deviation being 0.132 and 0.216, respectively.

The appearance of typical corbels after failure under combined loading is shown in Figs. 20 and 21.

A limited number of corbels with stirrups were tested under combined loading, and the results are given in Table A4. It was found that the stirrups did not increase the resistance of a corbel to combined loading by as large a proportion as was the case with a corbel subject to vertical load only. Also, the contribution of the stirrups was more erratic, viz. corbels 13S and 14S with 0.34% and

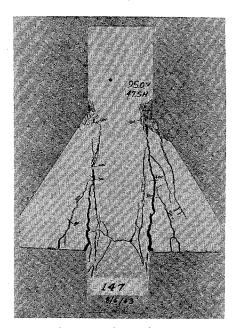


Fig. 20-Flexural Yielding Failure Followed by Crushing of the Concrete (FI), H/V = 1

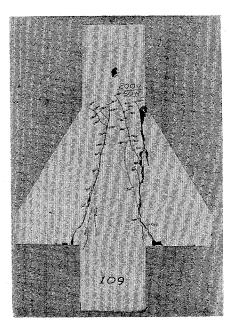


Fig. 21—Shear Failure (S), $H/V = \frac{1}{2}$

0.93% of stirrup steel, respectively, and all else the same, gave ultimate shear stresses of 260 and 273 psi. The effectiveness of the stirrups is also apparently a function of the a/d ratio and of the H/V ratio. A considerable program of tests would be necessary to assess the influence of the various factors which apparently influence the effectiveness of stirrups in a corbel subject to combined loading. For the present it was decided that any contribution from the stirrups should be regarded as reserve strength, and should not be taken into account in design. Stirrups do lead to a more ductile form of failure, and hence it was concluded that a minimum amount of stirrups should always be provided.

Secondary Failures

The following comments apply to both vertical load only and to combined vertical and horizontal loading.

Corbel End Failure-In certain of the tests the depth of the outer face of the corbel was deliberately varied in order to determine the minimum depth necessary to prevent the occurrence of a secondary failure by splitting away of a portion of the concrete at the tip of the corbel. It was found that this type of failure, as shown by Fig. 22, did not occur in those corbels having a depth below the outer edge of the bearing plate greater than about 0.5 the depth of the corbel at the face of the column.

Bearing Failure-Crushing of the concrete below the bearing plate occurred in some of the tests. The bearing stress, f_{bu} , at ultimate strength of the corbels is listed in Table A6. Bearing failures occurred

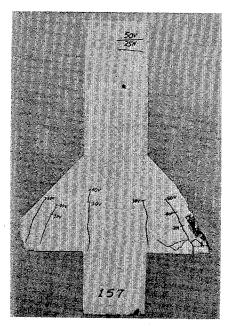


Fig. 22-Corbel End Failure (CE), H/V = 1

at stresses as low as $0.34f'_c$ when the load was applied near the outer edge of the corbel in a combined loading test. However, if the outer edge of the bearing plate was at least 2 in. from the outer face of the corbel. then bearing failures did not occur at bearing stresses less than $0.5f_c^{\prime}$ A detailed study of bearing stresses was not made. It is believed that 0.5f' is a suitably conservative value.

CONCLUDING REMARKS

The experimental evidence presented in this paper indicates that the nominal ultimate shear stress, v_u , in corbels with a shear span to effective depth ratio less than one may exceed the maximum shear stress allowed by Chapter 17 of the ACI Code (ACI 318-63) for beams with a/d ratio greater than one.

The nominal ultimate shear stress in a corbel is a function of the ratio of the shear span to the effective

February 1965

depth, of the reinforcement ratio, of the concrete strength, and of the ratio of the horizontal and vertical components of the applied loads.

Horizontal forces acting outward from the column significantly reduce corbel strength, and must be considered in the design of a corbel unless special provisions are made for free movements of the supported beams.

Tension reinforcement and horizontal stirrups are equally effective in increasing the strength of a corbel subject to vertical loads only. However, the effective amount of reinforcement is limited.

Loads carried by a column do not affect the corbel strength, nor does the amount or arrangement of column reinforcement.

The results of this investigation have been used as a basis for the formulation of "Proposed Criteria for the Design of Corbels" which is presented in Part 1 of this paper.

ACKNOWLEDGMENTS

The work described herein was carried out in the Structural Laboratory of the Portland Cement Association under the direction of Eivind Hognestad and Alan H. Mattock, Contributions were made by several members of the laboratory staff. Particular credit is due Bernard I. Doepp, William Hummerich, Ir., David C. Yates and Kenneth Hirte for the laboratory work involved.

NOTATION

The notation of the ACI Building Code (ACI 318-63) is used wherever applicable. The letter symbols used in this paper are defined below:

= area of tension reinforcement. in.2

 A_n = area of horizontal stirrups, in.2

- a = shear span measured from the face of the column to the resultant of applied load, in.
- b =width of corbel, in.
- d = effective depth of the centroid of tension reinforcement at the column face, in.
- f_{bu} = bearing stress at ultimate strength, psi
- f_s = stress in tension reinforcement, psi
- f_{su} = stress in tension reinforcement at ultimate strength, psi
- f_v = stress in horizontal stirrups, psi
- f_y = yield stress of reinforcement, psi
- f'_c = concrete cylinder strength, psi
- $\sqrt{f'_c}$ = relationship expressed in psi, so that $\sqrt{f'_c} = 60$ psi for $f'_c = 3600$ psi
- H/V = ratio of horizontal and vertical components of applied loads
- h = over-all depth of corbel at column face, in.
- h' = depth of corbel outer face. in.
- n = number of horizontal closed stirrups
- p = reinforcement ratio = $(A_s + A_v)/bd$ when H/V = 0 = A_s/bd when H/V does not equal zero.
- s = center to center spacing of stirrups, in.
- V = applied vertical load, lb
- $v = \text{nominal shearing stress} = \frac{V}{hd}$, psi
- V_0 = nominal cracking load, lb V_u = ultimate vertical load, lb
- v_u = nominal ultimate shearing stress = V_u/bd , psi

- V_y = vertical load at initial yielding of tension reinforcement, lb
- v_y = nominal shearing stress at initial yielding of tension reinforcement = V_y/bd , psi
- v = width of bearing plates, in.
- ϕ = capacity reduction factor

REFERENCES

- Rostásy, F., "Connections in Precast Concrete Structures—Continuity in Double-T Floor Construction," Journal of the Prestressed Concrete Institute, Vol. 7, No. 4, August 1962, pp. 18-48; PCA Development Department Bulletin D55.
- Kriz, L. B., and Raths, C. H., "Connections in Precast Concrete Structures
 Bearing Strength of Column Heads," Journal of the Prestressed Concrete Institute, Vol. 8, No. 6, December 1963, pp. 45-75; PCA Development Department Bulletin D73.
- Gaston, J. R., and Kriz, L. B., "Connections in Precast Concrete Structures
 —Scarf Joints," Journal of the Prestressed Concrete Institute, Vol. 9, No. 3, June 1964, pp. 37-59; PCA Development Department Bulletin D79.
- "Connection Details for Precast-Prestressed Concrete Buildings," PCI Committee on Connection Details, Prestressed Concrete Institute, October 1963.
- Rausch, E., "Berechnung der Abbiegungen gegen Abscheren" (Design of Bent Bars for Shear), Der Bauingenieur, Vol. 3, No. 7, Berlin, April 1922, pp. 211-212.
- Rausch, E., "Beanspruchung auf Abscheren im Eisenbetonbau," (Shear in Reinforced Concrete Structures), Der Bauingenieur, Vol. 12, No. 32/33, Berlin, August 1931, pp. 578-581.
- Niedenhoff, H., "Untersuchungen Uber Das Tragverhalten von Konsolen und Kurzen Kragarmen," (Investigations of Behavior and Strength of Corbels and Short Cantilevers), Desertation, Technische Hochschule Karlsruhe, 1961, 115 pp.
- 8. Austin, W. J., Egger, W., Untrauer,

- R. E., and Winemiller, J. R., "An Investigation of the Behavior of Deep Members of Reinforced Concrete and Steel," Air Force Special Weapons Center Report AFSWC-TR-59-18 (1960). (Also Civil Engineering Studies, Structural Research Series No. 187, Department of Civil Engineering, University of Illinois, Urbana, Illinois, January 1960, 103 pp).
- Untrauer, R. E., and Siess, C. P.,
 "Strength and Behavior in Flexure of
 Deep Reinforced Concrete Beams Un der Static and Dynamic Loading," Air
 Force Special Weapons Center Report
 AFSWC-TR-61-47, Vol. 1 (1961). (Also
 Civil Engineering Studies, Structural
 Research Series No. 230, Department
 of Civil Engineering, University of
 Illinois, Urbana, Illinois, October 1961,
 167 pp.; Untrauer, R. E., University
 of Illinois PhD Thesis, 1961).
- 10. dePaiva, H. A. R., and Siess, C. P., "Strength and Behavior in Shear of Deep Reinforced Concrete Beams Under Static and Dynamic Loading," Air Force Special Weapons Center Report

- AFSWC-TR-61-47, Vol. 2 (1961). (Also Civil Engineering Studies, Structural Research Series No. 231, Department of Civil Engineering, University of Illinois, Urbana, Illinois, October 1961, 252 pp.; dePaiva, H. A. R., University of Illinois PhD Thesis, 1961).
- Dill, A. F., and Siess, C. P., "Behavior of Simple and Restrained Deep Reinforced Concrete Beams Under Static Loading," Research and Technology Division, Air Force Weapons Laboratory, RTD TDR-63-3092, March 1964, 250 pp. (Also Dill, A. F., University of Illinois PhD Thesis, 1963).
- Unpublished data on tests of short cantilever beams supplied by the University of Texas.
- Moody, K. G., Viest, I. M., Elstner, R. C., and Hognestad, E., "Shear Strength of Reinforced Concrete Beams, Part 1—Tests of Simple Beams," Journal of the American Concrete Institute, Proceedings, Vol. 51, December 1954, pp. 317-332; Reinforced Concrete Research Council Bulletin No. 6.

Presented at the Tenth Annual Convention of the Prestressed Concrete Institute, Washington, D.C., September 1964

Table A1—Exploratory Test Results

1	r	T	T	Т	T	ī ·
$\frac{v_{\rm u} {\rm test}/\sqrt{f_{\rm u}^{\prime}}}{(v_{\rm u} {\rm test})_{\rm WC}/\sqrt{f_{\rm u}^{\prime}}}$	1.00 0.59 1.01	1.00	1.00	1.00	1.00	1.00 1.17 1.12
v test	1.13	\$ 5.1.1 \$ 5.1.1	1.0.97 40.1	0.89	0.92	1.08 1.13 0.97
v test v test	1.40	1.35	1.1	0.86	1.08	
vacalc,	689 640 659	684 624 641	797 851	622 597	753	669 685 681
v test, v calc, psi psi	778 429 751	640 648 755	777 889	556 493	691 850	726 772 659
v _y calc, psi	1s 605 539 520	611 480 507	Load	472 456	731. 716	Ment 540 608 549
v test, psi	ng Detai * - 726	648 726		405 478	- 077	ainforce: * *
fsutest, vytest, vycalc, ksi psi psi	Effect of Reinforcing Details 0 52.5 * * * 66 0 48.5 34.0 - 55 0 44.9 44.9 726 53	45.3 43.0 44.9	Effect of Additional Column 520 45.6 45.6 777 010 44.5 * *	48.1 48.1	42.5 44.5	Effect of Column Reinforcement 46.5 * * \$40 53.3 * * 608 46.5 * * \$ 949
fy, iksi	ect of 1 52.5 48.5 44.9	47.5 44.9	t of Add 43.6 44.5	1.84 1.87	47.3	fect of 46.5 54.5 46.5
f., psi	EFF 4850 4190 4140	3730 3980 4200	Effec 3520 4010	4500 4140	4250 4490	EE: 4580 4790 4750
e/d	0.249 0.249 0.249	0.249 0.249 0.249	0.171 0.171	0.370	0.372 0.372	0.39 425.0 9.394
5, 26	0.62 0.62 0.62	0.62	0.93	0.48 0.48	0.93	0.62 0.62 0.62
d, in.	24.1 24.1 24.1	24.1 24.1 24.1	16.1 16.1	16.2 16.2	16.1	45 1.45 1.145
a, in.	9.5	6.0 6.0	2.75 2.75	99	9	. 9999 2.2.2.
h', 1n.	###	92 21 92 21 93 21	0,0	99	99	16 16 16
b, in.	56 26 26	98 98	18 18	848	97 18	56 26 26
Туре	WC BI WI	WC BI	WC CL 100%	WC CL 75%	WC CL 100%	ис СВ 5-#9 СВ 6-#9
No.	42.1 101.	29 314 414	بل چورل <u>جور</u>	15 6 E	24 7E4	882 982 1082

/= 12 in, and b = 8 in. for all specimens
WC = welded cross-bar tension reinforcement
BI = inclined bar formed by bending tension reinforcement
WI = inclined bar welded to WC tension reinforcement
CL-\$ additional column load, \$\$\frac{1}{2}\$ indicates retio of column load to corbel load
CR = No. following OR indicates reinforcing bars in 8x12" column

1 w = 5 in. (in all other cases w = 3 in.)
2 column failed
* not measured or inconclusive test data

Table A2—Test Results for Vertical Load Series

1	
Type	ი ი ი ი ი ი ი ი ი ი გექექვე გე
v test	00.00000000000000000000000000000000000
v test	1.30 1.30 1.30 1.30 1.05 1.04 1.04 1.04 1.104 1.104 1.104 1.104 1.104
v _u calc,	88888888888888888888888888888888888888
, vutest,	1755 1755 1755 1755 1755 1755 1755 1755
v calc, psi	3500 4 4 4 4 4 4 4 4 4 4 5 6 6 6 6 6 6 6 7 6 4 4 4 4 4 4 4 4 4 4 4
v test, ps1	619 9999 9999 9999 9999 9999 9999 99999 9999
f _{su} test, ksi	**************************************
ry, ksi	よいまなないないない けんぱんな 85 5 7 5 8 5 7 7 7 7 7 7 7 7 7 7 7 7 7
f., psi	7790 6170 7880 7880 7880 7880 7890 6170 6170 6170 7800
예1명	0.136 0.136 0.137 0.137 0.137 0.138
à ve	00000001111100000000000000000000000000
th d.	808648488484848888888888888888888888888
a,	
, 'd	မ်ာ ဝလ္တီဝဝင်စာဝဝ ဝလိုဝဝင်စာဝလိုဝဝ ဝဝင်စာဝဝဝဝဝ ဝဝဝဝဝဝဝဝ
d th	$\mathbf{e}_{\mathbf{c}}$
No.	

Table A2—Test Results for Vertical Load Series (continued)

50

																																											_
Type Failures	SO	טמ	ž	2 22	ı g	3 5	3 2	3	щ	щ	ф	Д	ıμ	, po	Ę	3 8	3 1	т.	S	뜅	FG F	DS	E	E	3 8	2	Q P	a e	a 6	3 2	3 0	,	S	덩	Д	Д	93	SQ	တ	മ	ф	D E	
v test	0.99	-i -	2,0	1.19) <u>-</u>	7.	,	(0.05)	(6,49)	(0,58)	(0.67)	(0.79)	() ()	(24.0)	12		(0.0)	(0.87)	(0.78)	(0.79)	1.09	0.99	(0.80)	(09'0)	(29.0)		9,00	2 2 2	t ((20.0)	200	0.0	(0.61)	(0.50)	(0.13)	(0.74)	0.81	9.0	0.93	0.86	(0.71)	ਰ . ।	
v test	1.08	, ;	1,15	OT -					-1	,		70.	84	- v	3 -	1.0	5 8,	1. 8	ı		,	,	,	, ,	ı		•		•	ı				,			,			,		1.28	
vacalc,	ट्रा9	600	2,4	36	720	2 6	ر ارد	875	807	956	23.5	ころが	g	30	101) i	ρ.	664	201	545	268	582	1 1 1	1	200	0 4	700) To	o To	0,0	2 5	C)	799	18t	778	807	\$	795	511	636	732	493	
v test, psi	909	200	565	2 6	1,2	100	arr orr	718	716	11.4	563	, k	2 0	1 C	j ;	t :	301	4.25	425	721	620	583	7.47	א ל א))))	55	۲. ر	101	0 0	07.4 (10.00)	88	770	164	38	570	599	641	749	124	2 <u>F</u>	517	515	
v calc, psi	260	5 5	010	Ž41	4	1 4	4 -	41	41	41	41	X 0 X	7 6	7	700	724	314	325	516	64	250	41	1,57	1 2	4 5	720	у С	001	74	4 <	4 4	1	4 1	41	41	41	770	785	41	41	41	385	
v test, psi	909	* (220	₹ *	:			*	*	,	,	722	5 5	-1	- 10	7	301	337						,						1				,	,	,	,	1				465	
f _{su} test, ksi	ተ " ካ ካ	ا * ن	, t	† * *	1	ر د. د	36.8	*	*	21.3	2 00) t		, t	ر.ر .	45.3	47.5	34.6	34.0	45.9	17 J	7 7 2	7.00 ×	0.10	41.0	39.0	N 1) ,	4.0	7.63	27.5	27.6	26.8	24.1	26.3	37.4	3.5	34.6	39.6	24.0	43.5	
fy, ksi	4.44	й,	÷.	4.02 4.03		: ‡:	7. 77	42.4	48.0	45.4	1,5	- 1) t	÷ ;	ر د د د	4.7.	45.3	47.5	9.44	43.3	きる	r T	, ,		٠, أ	10.0	52.5	:: ‡:	2	ئ. 0	: :	5.5	45.6	45.6	‡	52.7	45.4	16.7	45.3	14.3	47.3	13.5	
f', psi	4200	4820	4140	200	2 0	ά, 5,	4060	4920	4180	4390	0011	200	200	0000	50,00	OTO#	3770	4130	3720	3510	3850	טוריין	1 2	200	24.7	0740	2000	010	0004	92,	3660	4010	1410	4110	4050	4360	4110	0007	2010	2200	2400	2430	
ಜ1ರ	0.590	95.0	\$.	25.5	0,000	0.290	0.590	0.394	0.394	0.394	102	,	0.01	o or	0.017	0.495	0.413	0.413	0.621	0.621	0.621	109	101	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	0.4T2	0.415	0.415	0.415	0.415	0.621	0.621	0,621	0.497	0.415	0.415	0.415	0.300	000	0.144	0.145	0.145	0.297	
D 80	0.93	0.62	20.0	0.62	96	9	1.86	1,24	1.24	1.24	Ċ	10	5	9	Q .	o.5	0.32	0.32	0.03	6	9		3 6	0.0	η, Ο	8,6	9,0	0 0	9.0	1.86	1.8 8	1.8 8	1,49	1.24	1.24	1.54	0.05	9,0	0.18	0.93	12,	64.0	
Å,	1.91	. t	7.	24.1	1:0	19.	16.1	17 17 17	24:1	24.1	7	1.	9,0	3,4	10.2	20.5	5,45	5, 12	16.1	16.	16.1	י אי	1:00	20.1	74.1	24.1	24.1	₹.	5	16.1	16.1	16.1	20.1	24.1	24.1	24.1	17	1	70	24.1	24.1	20.2	
a,	9.5	9.5	9.5		ر. د	9.5	5.6	5.6	0.0	5.6		, ,	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.01		0.00	0.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	20.01	, 5 , 1	, ,	, ,	, 10	6.0	
, at	83	4	9	9 0	ا ب	2	18	9	7	56	ò	8,	۰ م	٥٩	2	9	ø	56	٧	2	15	9	3,	۰۵	۰ ب	٥٧	97	56	50	9	炓	57	٧	9	9	9	2	12	ع إ	ý	56	9	
ų ü	18	8	8,	99	99	2	쭤	56	56	56	ò	0 0	99	2	2	g	92	56	<u>e</u>	4	β	9	3 8	3 6	8	8	56	92	92	8	B	2	c c	98	8	9	4	14	, 6	2 2	98	22	
No.	414	151	<u>†</u>	17	<u>ኒ</u>	194	£74	1 8	형	Ę,	. (<u> </u>	K.	in i	九	22	29	57	œ	Q (2	/8	5	d (8 (:G	4,	65	99	29	89	69	2	7	Ę,	73	14	7.0	7,5	77	187	1	.68 19	

Table A2—Test Results for Vertical Load Series (concluded)

Type Failures	**************************************
v test v calc	688 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
v test v calc	1.10 1.35 1.35 1.19 1.114 1.122 1.024 1.114 1.01 1.03 0.95 0.95
v _u calc, psi	867777888887777788888777778888877777888887777
v _u test, psi	559 559 559 559 559 561 561 561 561 562 575 575 575 575 575 575 575 575 575 57
v calc, psi	034854494445774777744457744457744457744457744457744
v test, psi	672 386 886 886 1377 1300 699 609 609 609 826 609 826 609
f _{su} test, ksi	4%2442484443 2277432848427 337 6.082141682 280220202020 202
fy, ksi	######################################
f', psi	2570 2210 2210 2210 2210 2210 2210 2310 231
ಪ⊩ರ	0.298 0.525 0.525 0.525 0.144 0.145 0.297 0.297 0.297 0.297 0.297 0.297 0.297
à 82	1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d, tn.	
a, In.	04000 0 0 0000 0 0000 0 0000 0000 0000
h', 1n.	66666666666666666666666666666666666666
h,	888 8888888888888888888888888888888888
No.	44444444444444444

D = modeling CE = Corbel End, crack intersecting inclined face	DS - Diagonal Splitting FC - Fletural Compression	FT - Flexural Tension	S . Shear	f=12 in, and b = 8 in, for all specimens unless otherwise noted	

Table A3—Test Results for Combined Load Series $(H/V=1/2) \label{eq:combined}$

Type Failures	លលលលលល
v test v calc	1.14 1.17 1.16 1.16 1.10 1.18
v test v calc	1.08
, v_calc,	280 429 305 534 445 788
, vutest,	454 784 584 525 515 515 932
y calc,	294 243 5111 431
v test, psi	309 278 258 543 441 441
f _{su} test, ksi	45.7 47.7 47.7 47.7 47.7
fy, ksi	45.7 447.7 448.5 448.5 44.5 7.5
f, psi	4210 7860 4040 7860 7860 4240 4240
ದ ದ	0.170 0.136 0.134 0.171 0.137 0.137
98 D	0.038 0.038 1.068 1.888
d, in.	26.28 26.28 26.28 26.28 26.21 26.21
a, in.	9999999 27777 27777
h', in.	ουουουο
h, in.	18 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
No.	100

Table A3—Test Results for Combined Load Series (continued) (H/V=1/1)

																											_
	Type Failures	TI	보보보	യയ	ឈ្ល	F	H H	된면	댇	យប	. S	CE	88	38	E	SG	3 8	3 8	р	뜅	DS	뜅	日	SC	0.084;	0.216.	
	v test v calc	1.20	1.1.45 4.45	1.36	1.2.	1.27	1.5	1.33	1.32	1.10	1.05	(0.84)	96.0	(0.85)	(0.87)	46.0	(0.70)	(0.73)	(0.86)	(0.72)	0.85	(0.59)	(0.54)	0.82	11	10	
	v test v calc	1	1.08		. ,	0.93) } '	0.93																	Standard Deviation	Standard Deviation	
	v _u calc,	198	150 246 278	248 564	14.45 14.75	167	14.0	291 266	235	492 1133	84	151	לל! נונ	229	233	240	100	214	211	378	397	360	554	358	0.92, Stan		
	v test,	251 224 224	213 273 273	337	575	212	245	82	511	주도 *	(\$	127	12.	5 5 7 7 7	203	202 155	142	156	.84 84	272	557	212	192	295	calc = 0.9	alc = 1.21,	
	v _y calc, psi	185	245 Se	ભાબા	에 애	166	J.04	272	553	ભા ભા	ભા	146	ıt cuj	218	221	223 203	195	186	808	લા	396	<u>3</u> ‡	326	355	v_test/v_c	vtest/vcalc	
(1)	v test, psi	174 155	32.5 32.5 32.5 33.5 34.5 35.5 36.5 36.5 36.5 36.5 36.5 36.5 36	233 660	553	15,7	ដូន	272 230	702	24.7 480 0	404	127	127	r P	1	202 155	130		182	·	,	212	1	272		Avg.	
H/V = 1	f _{su} test, ksi	7.4.7 0.0.0	5‡‡ 6.v.v.	45.3 44.3	47.5 48.8	45.0	14. 10.	5.5.i	42.0	45.3 48.5	45.3	48.5	0 4 0 4	45.3	†. [†	45.5 45.5	45.3	36.9	1.94	38.2	38.4	42.5	59.0	46.7	specimens Avg.	specimens	
E	fy, ksi	47.0 44.3	\$\$\$.v.v.	45.3	47.2 48.8	45.0	0,0	5.5.5	0.7	45.3 48.5	45.3	2.8.7	4 5 7 7	45.3	45.6	45.5 45.3	45.3	43.2	46.7	48.3	4.5.4		τ	46.7	For 10	For 21	
	f°, psi	3870 4610	7850 2890 2890	4000	4110 4250	3720	35	4280 4380	4020	4230 4130	3960	4750	3670	4150	4300	4540 4200 4200	4090	0244	4350	080	4520	4110	4440	4550			
	ರ್ ಬ	0.170	0.171	0.114	0.137	0.370	0.248	0.00	V. N. V.	0.372	0.249	0.617	0.417	0.621	0.621	0.621	0.415	0.415	0.415	0.621	0.621	0.497	0.4TO	0.415			CONTRACTOR
	ý, se	0.48	0.93	0.62	1.49 1.24	0.48	0.32	9.50	0.0	1.86	1.5	0.79	0.32	0.93	0.93	0.93	0.62	0.62	0.62	1.86	1.86	-i-	, i	J. 75			
	d, in.	20.2	74.75 1.65 1.05	24.1 16.1	20.1 24.1	16.2	5.5	50.1	1.	16.1 20.1	24.1	16.2	24.2	16.1	16.1	16.1 20.1	24.1	24.1	24.1	16.1	16.1	20.1		7. T.			
	a, in.	2.75	 	2.75	2.75	0.0	0.0	000	· ·	0.0	6.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	0.0	10.0		70.0			A CONTRACTOR OF THE PERSON OF
	h',	994	000	99	99	90	90	v 0 0	o '	99	9	9 V	9	9	ο,	φ Ε	9	7	56	9	۲ <u>۲</u>	ρν	9	O V			
	h, in.	18 22 22	888	989	88	9 g	56	987	Ų '	엉엉	96	83 E	192	87	3,5	김성	56	86	56	23.5	<u>p</u>	א ע מ מ	0 10	,			-
	No.	136	323	44		145	147	3 5 5	2	122	153	1,54	156	157	52.5	163	161	762	163	10,	207	167	200	2			

Table A3—Test Results for Combined Load Series (concluded)

<u> </u>				
st Ic Pailures		တ		ω
v test v calc		1.28		1.36
v test v calc		1.02		
v _u cale, psi		605		722
v test, psi		775		983
v _y calc,		533		сų
v test, psi	3/4)	545	5/4)	269
fo, fy, fatest, ytest, ycalc, ytest, ycalc, ytest ytest vest psi ksi ksi ksi psi psi psi psi psi psi	(H/V = 3/4)	46.8	(H/V = 5/4)	12.1 2.48 0.248 6650 46.8 46.8 692
fy, ksi				16.8
f', psi		6430 46.8		6650
ಪ ರ		0.248		0.248
Q 80		1.24		2.48
in,		3.0 12.1 1.24 0.248		12.1
No. h, h', a, d, p, a in. in. in. in. % d				3.0
h', 1n.		∞ .		8
h,		1357 14		††
No.		1357		1694 14 8

(see Figs. 13 to 16)

B - Bearing
CE - Corbel End, crack intersecting inclined face
CE - Corbel End, crack intersecting inclined face
CE - Diagonal Splitting
FG - Flexural Compression
FT - Flexural Tension
S - Shear
(= 12 in. and b = 8 in. for all specimens unless otherwise noted
* not measured or inconclusive test data

Table A4-Test Results for Corbels with Stirrups

	······································		
v test	1.07 1.11 1.10 1.10 1.10 1.20 1.03 1.00 1.28	1.21	1.17 1.16 1.56 1.81 1.42
v test	1.18 1.18 1.18 1.18	1,10	1.19
v calc, psi	738 691 - 844 759 1.18 849 795 1.18 845 - 1050 902 - 1160 974 - 929 912 912 912 912 912 912 912 912 912	ተባተ	222 235 1.19 277 - 326 - ,
v test, psi	738 844 849 932 1165 827 939 912 11210 840 827 827 827 827 827 827 827 827 827 827	536) -
v calc,	47172 27176 27144 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1	352	4 260 229 273 4 432 4 589 specimens Avg.
	778 844 849 972 1050 1160 - 1200 - 1200	388	259 272 408 467 For 4 sp
futest, vtest, psi psi	## 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	47.5	47.5 47.5 47.5 47.5 5.7
fy, Tension Reinf. psi	0) 14.0 14.0 14.0 14.2 14.2 14.2 14.2 14.2 14.2 14.3 14.3 14.3 14.3 14.3 14.3 14.3	/2) 47.5	1/1) 47.5 47.5 47.5 47.3
f', y', Stirrup ksi	(H/V = 0) 50.0	(H/V = 1/2) 50.2 47	H/V = 1/ 149.0 149.9 149.1 149.1
	For		
Stirrup Spacing c/c in.	7700000044004 110140 004004 40	31/2	2 7 1 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 ×
15. S. 184	1340 4590 14590 14590 14500 1480 14150 14500 14500 14500	6120	3900 4350 4110 4100
8 8 8 8 10	0.590 0.590 0.590 0.572 0.572 0.572 0.594 0.294 0.295	0.621	0.621 0.621 0.404 0.197
p% Stirrups and Tens Reinf.	iiiiiiiiiiiiii	6.93	0.00 0.00 0.00 0.00 0.00 0.00
p% Stirr- ups	00000000000000 40004000400000000000000	0.62	0.34 0.93 0.62 0.62
d, in.	11997 1197 1	16.1	16.1 16.1 16.1 24.1
a, in.	0000000044 000000000000000000000000000	10.0	10.0 10.0 6.5 4.75
h, at	० ० ० ० ० ० ० ० ०	9 1	9998 11
h, fn.	888888888888	18	18 18 26
No.	1255 1255 1255 1255 1255 1255 1255 1255	128	138 148 158 168

= 12 in. and b = 8 in. for all specimens

w = 15 in. (w = 5 in. for all others)
Test stopped at v = 1190 psi
Stirrups not included in p

 f_{su} calculated smaller than f_{y} < ના લા જા ના ✓

Table A5—Comparison with Test Results of Other Investigators

	·			
م	*********	44できる	ดดดด <i>พพพพพ</i> ฉ±±	nnn
v test	0.100011000 8888999888	0.95 1.45 1.22 1.61 1.30 1.36	1.30 1.30 1.30 1.30 1.30 1.10 1.10 1.10	0.85 0.74 0.80
v test		0.74 0.98 0.99	1.05 0.90 0.84 0.74 0.85 0.75	0.89 0.72 0.76
v calc,		464 589 472 707 693 844		430 605 476
v test,	26 621 628 140 511 500 150 502 566 150 572 573 1572 577 577 161 577 577 164 577 577 164 577 577 164 577 577 164 577 577 164 577 577 165 577 577 167 577 167 577 5	442 854 575 1140 902 1150	116 776 595 602 478 736 485 478 737 435 591 741 600 82 454 452 891 737 83 618 518 84 671 522 84 642 85 618 518 85 618 518	367 448 382
v_calc,	0 4	411 1433 1435 146 1500 1500 1500 1500 1500 1500 1500 150	MW04 W 4	381 581 463
v test, psi	1,05 1,05 5,16 2,57 2,57 2,85 2,85 2,85	306 411 442 614 1 854 427 453 575 700 456 902 885 1 1150 compression reinforcement	533 525 525 535 535 667 324 861 694 539 475 530	338 421 351 calc = 0.80
f _{su} test,	6.4 0 5 2	16.7 46.7 48.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6 1	45.7 51.4 65.7 65.7 67.7 67.7 68.7 68.7 7.9 68.7 7.9 68.7 7.0 6.7 68.7 7.0 6.7 68.7 7.0 6.7 68.7 7.0 68.7 7.0 68.7 7.0 68.7 7.0 68.7 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	45.0 51.0 51.0 .test/v.c
fy, ksi	465.0 475.0 475.0 475.0 475.0 775.0 876.0	46.7 48.6 47.4 47.4 46.0 44.8 Specin	45.7 45.7 47.3 47.3 45.2 47.2 47.2 47.0 47.0 47.0	45.0 51.0 51.0 Avg. v
f', psi	2390 2910 2740 2740 2960 2860 2520 6460	4970 5030 3530 4980 4920 4600	3560 560 560 560 560 578 578 578 578 578 578 578 578 578 578	2930 5800 3580
ಪಟ	0.483 0.636 0.636 0.903 0.903 1.400 1.400	1.000 1.000 0.750 0.750 0.500	0.462 0.462 0.462 0.667 0.667 0.667 0.667 0.857	0.750 0.750 0.750
£ €	11.011.01.01	0.83 1.67 0.83 1.67 1.29	0.83 0.46 0.46 0.46 0.83 1.64 1.64 1.64 1.64	9.9.9
d, in.	29.0 28.0 28.0 28.0 15.5 10.0 10.0 10.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	2424 0000000000000000000000000000000000	888
a, in.	0.000000000000000000000000000000000000	0.00000		6.0
No.	## ## ## ## ## ## ## ## ## ## ## ## ##	F4.81 F4.82 F3.82 F3.83 F2.81 F2.82	9238-11 9238-21 9248-12 9248-21 9238-11 9338-21 9358-11 9458-11 9458-11 9448-11	HOS HOD HOn
Source	U.of I. (4)	U.of I.(5)	U.of I.(6)	U.of I.(7)

Table A5—Comparison with Test Results of Other Investigators (concluded)

م		12.87 12.37 12.50 14.00 14.00 12.62
v test v calc	11.03 11.03 11.03 11.03 11.03 12.03 13.03 14.03 15.03 16.03	1.03 0.99 0.95 1.14 1.02 1.07
v test	1111111111111111	990
v _u calc,	402 453 510 429 500 441 441 457 442 551 551 555 525 526 527 520 520 520 520 520 520 520 520 520 520	548 668 623 270 457 673 .10n = 0.
v test, psi	452 402 402 403 404 403 403 403 403 403 403 403 403	23 568 548
v calc,		1 - 1 - 1 - 1
v test, y		******
fatest, ksi	45.7 24.8 45.4 18.4 45.4 20.0 45.8 25.0 45.7 28.5 45.7 28.5 45.7 28.5 45.4 21.0 45.8 24.1 45.8 24.1 45.8 24.1 45.8 24.1 45.8 24.1 45.8 24.1 45.8 24.1 45.8 x x x test/v calc = 1.14;	64.0 * * * * * * * * * * * * * * * * * * *
fy, f	Avg. v.	64.0 47.0 75.0 75.0 47.0 47.0
f., psi	2580 2590 3530 3530 3500 3500 3500 3500 3500 3	5120 4680 6170 2860 4820 4820
ಥ∤ರ	11111111111111111111111111111111111111	0.629 0.623 0.449 1.10 1.10 0.632
દ્રે ૪૨	aaww++aaww+++++ 6644aage 6664aage	0.55 0.37 0.46 1.01 1.02
å,	######################################	4.55.55 4.55.50 53.00 53.00
a, in	୦୦୦୦୦୦୦୦୦୦୦ ଷ୍ୟୁଷ୍ଟ୍ର୍ଟ୍ର୍ଟ୍ର୍ଟ୍ର୍ଟ୍ର୍ଟ୍ର୍ଟ୍ର୍ଟ୍ର୍ଟ୍ର୍ଟ୍	21.0 21.0 15.0 36.25 36.25 20.87
No.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 W + W 0
Source	JAGI(11).	U.of T.(B)

 $^{ar{L}}$ f $_{
m SU}$ calculated smaller than f $_{
m y}$

Table A6—Corbel Bearing Stresses at Ultimate Strength

Type	5555800 55555	ឧភួល ឧក្សស្ត ស្ត្រីលេខជ	ាលសួង គីឡីជួលឯឯឯឧឧឧ	សសុអ្នក្ស ភូមិ
12 F	1.05 1.00 0.76 0.76 0.73 1.08	8.9000000000000000000000000000000000000	0.000.000.000.000.000.000.000.000.000.	1.35 00.57 00.57 00.88 11.04
fbu,	2700 2110 1290 1750 1580 4250 3880	2730 2750 3890 3080 1610 2250 2840 4750 6260	7180 4610 4610 4610 4610 1950 2340 2340 2340 2350 2340 2350	5310 2030 2030 2730 3020 3640 4780 4780
f., psi	2570 2110 2310 2310 2290 2170 4180 5880	2860 2940 2940 2940 2940 2940 2940 2940	6570 6570 6570 6570 6680 6590 4210 7860 4040 4040 4040 4040 4040 4040 4040 4	3900 4310 4400 4320 4950 3870 3880 4240 4240 4210 4210
No.	886888 88688 897	######################################	100 100 100 100 100 100 100 100 100 100	1112 1113 1114 1116 1116 1116 1116
Type Failures	80 80 80 80 80 80 80 80 80 80 80 80 80 8		28.95 8.99 8.8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
E S	0.46 0.77 0.72 0.73 0.68 0.68		0.000000000000000000000000000000000000	0.75 1.10 0.65 0.65 1.04 1.04
fou,	1950 3750 3000 2800 3000 2620 2620	2450 2450 2710 2270 2270 2420 2420	2530 2530 2530 2530 2530 2530 2530 2530	2290 4580 4580 2150 2300 2630 2630 2630 2630 2630
f, psi	4850 4140 4140 4880 4880 4880 4060	4920 4180 4390 3960 6360 6360 6360 6360 19770 4010	3720 3510 3820 4110 3260 3780 5540 6540 6540 6540 7560 4040 7660 7660 7660	4410 4050 4050 4760 4110 4090 2210 2200 2450
No.	1254455 125455 155455	2 X X X X X X X 2 2 2	- 2082488888 888	18242424 8938434434
Type Failures	ស ល ល ល ល ល ល ប	ນ ແ ພ	~ % % % % % % % % % % % % % % % % % % %	25 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30
f- o	1.10 1.19 1.18 1.48 1.44	0.01 12.00 12.00 13.00 14.00 15.00 16.00 1	0.00 1.1.00 1.1.00 1.1.1.00 1.1.1.1.00 1.1.1.1.	11.33 11.24 11.64 11.63 11.64 11.63 11.64 11.63
f _{bu} , ps1	4170 4540 4170 5690 5730	45/0 6640 7220 3850 2940 4000 3500 1960 3560	3380 3850 3850 3960 4370 3680 3710 5420 5420 5420 5420 5420	2150 5150 5140 5510 6460 6500 2140 2170
f', psi	5790 51790 51790 5780 5780 5780 57970	6500 6500 7300 7420 7450 7450 7430 7430	7790 7790 7790 7740 7740 7740 7740 7730 7730 7730 773	47390 7830 7830 7830 770 770 4700 4740
No.	ιαντνοια	13 E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	\$284284 \$384284 \$384284

Table A6—Corbel Bearing Stresses at Ultimate Strength (concluded)

	Type Failure	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
	멸단	0.000000000000000000000000000000000000	
b b	fbu'	810 880 880 1040 1040 1040 1040 1040 104	
oncinae	f.,	4120 3670 3670 4120 4230 4240 4240 4250 4250 4250 4250 4250 425	
o) wigu	No.	155 157 158 158 158 168 168 168 168 168 168 168	
able AC—Colbei bearing siresses at Ommare Strength (concluded)	Type Failure	######################################	
	⁷ 일 ² ~	44888464846666666666666666666666666666	
2222	fbu, psi	2700 2700 2500 2500 3540 3540 1120 1120 1120 2500 2500 2500 2500 250	
Jie 6111	f', psi	3870 1,420 3,890 3,890 1,200 1,200 1,3	
ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב	No.	25552525555555555555555555555555555555	
	Type Failure	~ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
anie	다.	1.00.00.00.00.00.00.00.00.00.00.00.00.00	
	fbu, psi	4790 1140 1410 1670 1260 1880 2710 1740 1740 1750 1750 1750 1750	
	f°, psi	3970 3380 3380 4240 5250 5250 5350 5350 5350 5450 6450 6450 6450 6450	
	No.	124 125 125 125 125 125 125 125 125 125 125	

 $H/V = 0.10r \text{ L to LO}_2$ $H/V = \frac{1}{2} er \text{ LOH to 13}_4$ $H/V = \frac{3}{4} er \text{ L3}_5$

Table A7—Values of $C_2 = 0.8 (10)^{\alpha/3d}$ (H/V = 0 and no stirrups)

				0	•	•	Sign of the cold o		
0.800	0.81	0.81	0.82	0.82	0.83	0.84	0.84	0.85	0.86
0.86 0.	0.87	0.88	0.88	0.89	0.90	0.90	0.91	0:92	0.92
	46.	0.95	0.95	96.0	0.97	0.98	0.98	0.99	1.00
	6.	1.02	1.03	1.04	1.05	1.05	1.06	1.07	1.08
	10	1.10	1.11	1.12	1.13	1.1^{4}	1.15	1.16	1.16
	18	1.19	1.20	1.21	1,22	1.23	1.24	1,25	1.26
	88	1.29	1.30	1.31	1.32	1.33	1.34	1.35	1.36
	38	1.39	1.40	1.41	1.42	1.43	1.44	1.45	1.47
	64.	1.50	1.51	1.52	1.54	1.55	1.56	1.57	1.58
	19,	1.62	1.63	1.64	1.66	1.67	1.68	1.70	1.71
			0.94 1.10 1.18 1.38 1.38	0.94 0.95 1.01 1.02 1.10 1.10 1.18 1.19 1.28 1.29 1.38 1.39 1.49 1.50	0.94 0.95 0.95 1.01 1.02 1.03 1.10 1.10 1.11 1.18 1.19 1.20 1.28 1.29 1.30 1.38 1.39 1.40 1.49 1.50 1.51 1.61 1.62 1.63	0.94 0.95 0.95 0.96 1.01 1.02 1.03 1.04 1.10 1.10 1.11 1.12 1.18 1.19 1.20 1.21 1.28 1.29 1.30 1.31 1.38 1.59 1.40 1.41 1.49 1.50 1.51 1.52 1.61 1.62 1.63 1.64	0.94 0.95 0.95 0.96 0.97 1.01 1.02 1.03 1.04 1.05 1.10 1.10 1.11 1.12 1.13 1.18 1.19 1.20 1.21 1.22 1.28 1.29 1.30 1.31 1.32 1.38 1.39 1.40 1.41 1.42 1.49 1.50 1.51 1.52 1.54 1.61 1.62 1.63 1.64 1.66	0.94 0.95 0.95 0.96 0.97 0.96 0.97 0.96 0.94 0.95 0.95 0.96 0.97 0.98 1.01 1.01 1.02 1.05 1.04 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	0.94 0.95 0.95 0.96 0.97 0.99 0.99 1.01 0.01 1.02 1.05 1.04 1.05 1.05 1.05 1.06 1.01 1.01 1.02 1.05 1.05 1.05 1.05 1.06 1.01 1.01 1.10 1.11 1.12 1.13 1.14 1.15 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.38 1.39 1.40 1.41 1.42 1.43 1.45 1.56 1.51 1.52 1.54 1.56 1.51 1.52 1.54 1.55 1.56 1.61 1.62 1.63 1.64 1.66 1.67 1.68

Table A8—Values of $C_2 = 0.25~(10)^{\alpha/d}$ (H/V = 0 and stirrups)

a/d		0.01	0.00 0.01 0.02 0.03	0.03		0.04 0.05 0.06 0.07 0.08 0.09	90.0	0.07	0.08	0.09
0.0	0.25	0.26	0.26	0.27	0.27	0.28	0.29	0.29	0.30	0.31
0.1	0.31	0.32	0.33	0.34	0.34	0.35	0.36	0.37	0.38	0.39
0.2	0.40	0,40	0.41	0.42	0.43	0.44	0.45	94.0	0.48	0.49
0.3	0.50	0.51	0.52	0.53	0.55	0.56	0.57	0.59	09.0	0.61
4.0	0.63	0.64	99.0	0.67	0.69	0.70	0.72	0.74	0.75	0.77
0.5	62.0	0.81	0.83	0.85	0.87	0.89	0.91	0.93	0.95	0.97
9.0	1.00	1.02	1.04	1.07	1.09	1.12	1.1^{4}	1.17	1.20	1.22
0.7	1.25	1.28	1.31	1.34	1.37	1.40	1.44	1.47	1.51	1.54
0.8	1.58	1.61	1.65	1.69	1.73	1.77	1.81	1.85	1.90	1.94
6.0	1.98	2.03	2.08	2.13	2.18	2.23	2.28	2.33	2.39	2.44

Table A9—Values of $C_1 = 1.5 (a/d)^{2/3}$ (H/V does not equal 0)

a/d	0.00	0.00 0.01 0.02 0.03 0.04	0.02	0.03	0.04	0.05	0.05 0.06 0.07 0.08	0.07	0.08	0.09
0.0	0.00	0.07	0.11	0.14	0.18	0.20	0.23	0.25	0.28	0.30
0:1	0.34	0.36	0.38	0,40	0.42	0.44	0.46	0.48	0.50	0.51
0.2	0.53	0.55	0.56	0.58	09.0	0.61	0.63	0.64	0.66	0.67
0.3	69.0	0.70	0.72	0.73	0.74	92.0	0.77	0.79	0.80	0.81
0.4	0.83	0.84	0.85	0.87	0.88	0.89	0.91	0.92	0.93	46.0
0.5	96.0	0.97	0.98	0.99	1.01	1.02	1.03	1,04	1.06	1.07
9.0	1.08	1.09	1.10	1.11	1.12	1.1^{4}	1.15	1.16	1.17	1.18
0.7	1.19	1.20	1.22	1.23	1.24	1.25	1.26	1.27	1.28	1.29
0.8	1.30	1.31	1.32	1.34	1.35	1.36	1.37	1.38	1.39	1.40
0.9	1.41	1.42	1.43	1.44	1.45	1.46	1.47	1.48	1.49	1.50

Table A10—Values of $C_2=0.7~(10)^{\alpha/2d}$ (H/V does not equal 0)

σj	a/d		0.00 0.01 0.02 0.03 0.04	0.02	0.03	0.04	0.05	0.05 0.06	0.07	0.07 0.08	0.09
	0.0	0.70	0.71	0.72	0.72	0.73	0.74	0.75	0.76	0.77	0.78
	0.1	0.78	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.86	0.87
	0.2	0.88	0.89	0.90	0.91	0.92	0.93	0.94	96.0	0.97	0.98
0	0.3	0.99	1.00	1.01	1.02	1.03	1.05	1.06	1.07	1.08	1.10
	0.4	1.11	1.12	1.13	1.15	1.16	1.18	1.19	1.20	1.22	1.23
	0.5	1.24	1.26	1.27	1.29	1.30	1.32	1.33	1.35	1.36	1.38
	9.0	1.40	1.41	1.43	1.44	1.46	1.48	1.50	1.51	1.53	1.55
	0.7	1.57	1.58	1.60	1.62	1.64	1.66	1.68	1.70	1.72	1.74
	0.8	1.76	1.78	1.80	1.82	1.84	1.86	1.88	1.90	1.93	1.95
0	6.0	1.97	2.00	2.02	о <u>.</u>	2.06	2.09	2.11	2.14	2.16	2.19
_											

February 1965

9