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LATERAL STABILITY OF
REINFORCED CONCRETE BEAMS

By WILLIAM HANSELL and GEORGE WINTER

Some concrete design specifications, including the ACl Code, in various ways
limit the distance between lateral supports of beams, presumably to safeguard
against lateral buckling. The present investigation is intended to furnish some
factual information on which to base such provisions. Ten tests on deep narrow
beams have been carried out with unbraced lengths ranging from 28.8 to 86.4
times the beam width. No reduction in strength was observed over this range,
showing the absence of lateral buckling. A tentative theory of lateral in-
stability of reinforced concrete beams, including the effects of inelasticity and
cracking, is given. It agrees with the tests in showing that present Code pro-
visions are too restrictive, particularly for ordinary steel strengths. Theory in-
dicates that closer lateral supports are required for high strength reinforced
beams than for ordinary strength reinforcement.

B DESIGN SPECIFICATIONS FOR STEEL STRUCTURES contain provisions for
safeguarding unbraced beams against lateral buckling. These provisions
are usually expressed in terms of slenderness ratios such as L/b or Ld/bt.
Lateral buckling of beams, as shown in Fig. 1, involves both lateral bending
and torsion. Since torsional rigidity is proportional to the cube of the thick-
ness of a member, it is evident that this rigidity is relatively low for steel
members with their comparatively small thicknesses of webs and flanges.
It is for this reason that such members, if sufficiently slender, are liable to
buckle laterally, and that appropriate measures must be taken in design to
prevent such buckling.

In contrast, rectangular beams, such as occur in reinforced concrete struc-
tures, possess high torsional rigidity. This would indicate that the danger
of lateral buckling is considerably less for such beams than for structural
steel shapes. Nevertheless some concrete design codes contain provisions
which restrict L/b-ratios, presumably for the same purpose of preventing
lateral buckling.

It is the aim of this paper to investigate the lateral buckling of rectangular
reinforced concrete beams to furnish some basis for the development of appro-
priate design provisions. Since the complex nature of reinforced concrete
(inhomogeneity, partial cracking, limited elasticity, etc.) makes an entirely
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analytical treatment impossible, resort was had to tests of ten beams, with
It was the purpose of these tests to
determine the manner in which such large L/b ratios affect flexural capacity.
The paper reports the results of these tests, develops an approximate and
somewhat tentative buckling formula for unbraced rectangular reinforced
concrete beams, and draws conclusions in regard to the design of such mem-

L/b ratios ranging from 28.8 to 86.4.

neutral axis

bers.
Notation
b = width of a rectangular beam K; = ratio of ultimate flexural stress to
¢ = distance from the neutral axis of a ultimate compressive stress of con-
concrete beam to the extreme com- crete
pression fiber L = distance between points of lateral
d = depth of a concrete beam {rom center support
of tension reinforcement to extreme M = bending moment
compression fiber M, = ecritical buckling moment
K = modulus of elasticity M w1 = predicted ultimate moment
E. = initial tangent modulus of concrete M e = maximum moment observed in beam
E, = modulus of elasticity for steel test
E,.. = fc./e. = secant modulus of concrete w(y) = width of a beam at a distance y from
pertaining to flexural stress-strain the neutral axis
properties and extreme compression y = vertical distance from neutral axis
fiber stress and strain B, v = parameters related to the shape of
E, = tangent modulus the flexural stress-strain relation of
E = reduced modulus, used in inelastic concrete (see Fig. 9)
buckling equations € = strain
fe = concrete stress €c = extreme compression fiber strain in
I = ultimate compressive strength of concrete
concrete at 28 days €n = extreme fiber strain in homogeneous
G = modulus of elasticity in shear beam
G = reduced modulus, used in inelastic e = strain in tension steel
buckling equations ey = strain at vield point of steel
h = depth of a homogeneous beam €0 = concrete strain at ultimate stress
Iy = moment of inertia of a beam about e, = ultimate concrete strain
the minor (vertical) axis of sym- = Poisson’s ratio corresponding to
metry elastic values of £ and G
K, = torsional constant of a beam o = stress in homogeneous beam
k = ¢/d = ratio indicating position of o = extreme fiber stress in homogeneous

beam
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BACKGROUND

Little information is available in English literature concerning the lateral
stability of reinforced concrete beams. No published reports of lateral in-
stability failures are known to the authors. One experimental study in-
volving tests of three rectangular concrete beams with a constant L/b ratio
of 36 is reported.! This reference does not indicate whether the beams were
restrained from lateral or rotational movements at the load point. Since such
restraint has a considerable effect on the stability of slender beams, there is
some question concerning conclusions drawn from these test results. Ref-
erence 2 gives the results of an analytical study of the stability problem for
concrete beams. The author considers both the lateral and torsional rigidities
of a beam and concludes that stability regulations which consider only the
L/b ratio are basically unsound. However, this brief analysis assumes ‘“un-
cracked,” elastic, homogeneous beams with flexural strength defined by the
straight-line theory. The question of whether or not this analysis is con-
servative, particularly at loads approaching ultimate, is a matter of con-
jecture since a concrete beam is cracked, inelastic, and nonhomogeneous.

The 1956 edition of the ACI Building Code specifies in Section 704 that:
“The clear distance between lateral supports of a beam shall not exceed
32 times the least width of compression flange.” It is presumed that this
provision was intended to safeguard against lateral instability failures. There
is reason to question whether this regulation is appropriate for its presumed
purpose, since it is supported by little or no valid factual evidence. It is
obvious from experience that the L/b = 32 limitation is safe, at least for
construction materials and methods of long standing. It is not obvious as
to whether this limitation is a necessary and economical solution to the lateral
stability problem in reinforced concrete.

A rectangular, homogeneous, elastic beam in pure bending will buckle
laterally at the bending moment?

m

Mo =7 \/ EL,GKe...... .. (1)

Fig. 1—Lateral buckling
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TABLE T—TEST BEAM DATA

Beam Span, L/b Stirrup Cylinder
mark ft ratio spacing, * strength,
in. I, psi

B6 6 28.8 514 4310
BY 9 43.2 5% 4310
Bi12 12 57.6 7 4350
B15 15 72.0 7 4215
B18 18 86.4 7 4260

*Uniform along entire span.
tAverage of six 6 x 12-in. cylinders tested at 28 to 32 days.

For deep and narrow beams, with sufficient accuracy, K, = b*h/3. Using
this value, the maximum fiber stress in such a beam at buckling is easily
computed to be

oo v EG Z
O = ———(L/b) [.,. .......................... (1&)

Two things are apparent from this equation: The stress at which buckling
occurs decreases with increasing slenderness L/b, and this is the reason why
design codes have often been formulated in these terms. It is also seen,
however, that beams are the more unstable the smaller I,,/I, i.e., the narrower
and deeper they are. This equally important fact is not reflected in formulas
which merely contain L/b.

These simple equations cannot be applied directly to reinforced concrete
beams in view of the complex character of the material. For this reason
the test program reported below was carried out.

SPECIMENS AND TEST PROCEDURE
Specimens

The experimental program involved the testing to destruction of ten rectangular reinforced
concrete beams of identical cross section, main reinforcement, and concrete mix. The beams
were loaded at the quarter points on five simple spans of 6, 9, 12, 15, and 18 ft. Two com-
panion beams were tested on each span. Beam specimens are designated by the letter B
and two numbers. The first number is the simple span in feet and the second denotes one of
two companion beams. All beams were 13 in. deep, 214 in. wide, and used the same tensile
reinforcement, one 34-in. diameter deformed bar 1114 in. from the extreme compression fiber.
These dimensions provided a steel ratio of 1.56 percent. The beam section was purposely
made unusually deep and narrow, i.e., more conducive to lateral instability [see Eq. (1a)],
than beams normally encountered in practice. This was done to afford every possibility for
lateral instability failures. Data concerning the beam specimens and the testing arrangement
are included in Table 1 and Fig. 2.

The L/b ratios of the test specimens varied from 28.8 for the 6-ft span to 86.4 for the 18-ft
span. All beams except the 6-ft spans violated the requirements of the 1956 ACI Building
Code by as much as 270 percent. The 6-ft spans were included in the program to experi-
mentally verify the ultimate flexural capacity without lateral buckling.

The beams were designed to fail in the flexural tension mode if lateral instability did not
precede flexural failure. Quarter-point loading was used to create constant moment over an
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Fig. 2—Testing arrangement layout

appreciable portion of the span. As indicated in Reference 4, loading systems which produce
near-maximum moments over sizeable portions of the span tend to increase the danger of
lateral instability.* To minimize the possibility of shear failures, liberal web reinforcement
was used along the entire span of all beams as indicated in Fig. 2 and Table 1.

Materials

Type I portland cement and intermediate grade deformed steel bars were used. Coarse
aggregate was a graded gravel of 34-in. maximum size. Six 6 x 12-in. cylinders were cast and
cured with each pair of test beams. Average cylinder test results are reported in Table 1.
The average cylinder strength was 4290 psi.

The average yield stress and strain of the sharp yielding tensile reinforcement was 43,800
psi and 1.53 mills, respectively. These figures represent the average of four tension tests
using standard 0.5-in. diameter specimens machined from the #6 bars.

Testing equipment

The beams were tested in a 400,000-1b capacity universal testing machine which was modi-
fied for the beam tests by bolting a steel “‘support’” beam to the table of the machine and by
suspending a steel “load”’ beam from the compression head of the machine. A diagram of
the testing arrangement is shown in Fig. 2 and IMig. 3 shows a 12-ft test beam in the machine.

It was essential that the apparatus used to transmit load to the test beam (hereafter termed
the loading rig) should provide a minimum of lateral and torsional restraint to the beam.
Otherwise the test beam would have been restrained from the lateral and rotational move-
ments associated with lateral instability. As indicated in Reference 5, mere friction may
suffice to provide effective lateral bracing and prevent lateral buckling. Fig. 4 shows an
assembly drawing of the loaded rig and Fig. 5 shows the rig in place during a beam test. The
four rollers in the roller assembly are hollow automotive wrist pins. Keeper plates and roller
pins maintain the rollers in a parallel configuration. The load ball is a 114-in. diameter ball

*Although Reference 4 is primarily concerned with the lateral stability of steel I-beams, the comparison of

critical buckling moments for various loading systems when the loads are applied at the centroid is at least quali-
tatively valid for reinforced concrete beams. See liq. (48) of Reference 4.
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Fig. 3—Beam under test

bearing. All bearing surfaces of the loaded rig were hardened and ground smooth to reduce
surface penetration and friction. All rolling surfaces were cleaned and lightly oiled before
each test.

During the setup and centering phases of a beam test, the lateral bars were inserted in
the positions shown in Fig. 4 (to impart stability), but were removed during the remainder
of a test. The only lateral restraint offered by the loading rig (for lateral beam displacements
of 134 in. or less at the load points) is developed by rolling friction at the roller assembly.
Torsional restraint is limited to that developed by point contact between the load ball and
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the load plate. The line of action of the load
passes through the point of contact between
load ball and load plate and moves laterally
with the beam.

Auxiliary tests* indicated that the maxi-
mum lateral restraining force developed by
the loading rig did not exceed 0.1 percent of
the vertical loads. Itxcept for these negligible
restraining forces the test beams were laterally
and torsionally unrestrained over their entire
simple span.

The apparatus used to support a test beam
(hereafter termed the support rig) permitted o R
the beam to rotate about the principal axis of Fig. 5—Loading rig in place
its cross section but prevented rotation about
the longitudinal beam axis. This was accomplished as illustrated in Fig. 6 which also shows
the idealized support conditions approximated by this rig. Fig. 3 shows the support rig in
place during a beam test. Note the vertical rollers extending above the top of the test beam.
Vertical and lateral deflections were measured using nine dial gages as indicated in Fig. 2.
All dial gages (except the two measuring vertical movement at the supports) were clamped
to a steel deflection bridge which was supported on the horizontal rollers at the ends of the
simple span. Fig. 3 shows the deflection bridge with dial gages in place.

*These auxiliary tests are described in detail in Reference 6.
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Testing procedure

The beams were measured with a steel scale and calipers and were found to be within = 14
in. of nominal dimensions. A plumb bob, level, and measuring tape were used to accurately
locate the beams in the testing machine.

Centering under load was accomplished by minimizing lateral deflection at midspan, under
loads not exceeding one-third of the predicted ultimate load.

When the loading rig was centered, loads were applied in increments of about 10 percent
of the predicted ultimate load up to 90 percent of this load. Thereafter, loads were applied
in smaller increments at a reduced loading rate until it was evident from the rapid increase
of vertical deflections that the flexural steel had yiclded. The time between the first and last
increment of load averaged about 114 hr.

TEST RESULTS

Table 2 summarizes the results of the beam tests. In this table, M.,
is the moment at midspan of the test beams (including dead load moment)
corresponding to the maximum observed test load. The values of M .
are the ultimate moments for simple flexural tension failure computed by
using Eq. (A1) in the Appendix of the 1956 ACI Building Code. A flexural
tension failure is initiated by yielding of the tensile steel. The marked de-
viation from approximately linear load-deflection behavior which occurs
when yielding begins in an underreinforced beam defines the yield point of
the beam. The yield point deflections of the test beams are entered in Table
2. This table also gives the initial lateral deflections measured prior to load-
ing.

Inspection of the ratios M./ M. in Table 2 indicates that slenderness
or laterally unsupported length had no effect on the flexural capacity of the
test beams. All ten beams in this experimental program failed in the flexural
tension mode at practically identical moments, in close agreement with the
predictions of ultimate strength theory. They were not weakened by lateral
buckling. This was true in spite of the fact that the largest L/b ratio was

TABLE 2—RESULTS OF BEAM TESTS

Beam B6 B9 B12 B15 B18 Suffix*

L/b ratio 28.8 43.2 57.6 72.0 86.4 1, 2

Observed ultimate 216 201 193 192 190 1

moment, M test, kip-in. 199 205 199 198 196 2

Calculated ultimate moment, Mecate, kip-in. 196.7 196.7 197.0 195.9 196.2 1, 2

M teat/ Mcate 1.10 1.02 0.98 0.98 0.97 1
1.01 1.04 1.01 1.01 1.00 2

Midspan deflections at yield point, 0.001 in.

Vertical 192 330 460 825 1015 1
188 330 495 1005 1080 2

Lateral-Top 53 33 43 1260 72 1

78 18 515 97 500 2

Lateral-Bottom 66 56 14 1090 150 1

82 25 620 228 430 2

* Initial lateral deflection, 0.01 in. 4 8 8 25 13 1 1
6 6 11 12 17 2

*Suffix indicates one of two companion beams.
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Fig. 7—Beam B18-2 after test

86.6 or three times the smallest, and 2.7 times the largest L/b ratio permitted
by Section 704 of the 1956 ACI Building Code. The average value of the ratio
M0/ M 0. was 1.01 indicating an excellent agreement between predicted
and observed ultimate flexural capacities. The usual small variations in
observed ultimate moments show no significant correlation with span lengths
or lateral deflections. These are the most important results of the testing
program.

One factor which may have had a minor influence on the results of the
beam tests is the rather heavy web reinforcement used in the test specimens.
The web reinforcement ratios were 1.60 percent for the 6- and 9-ft beams and
1.26 percent for the 12-, 15-, and 18-ft beams. This reinforcement undoubtedly
contributed to the torsional strength of the beams and may have prevented
potential torsional failures in those beams which developed large lateral
deflections.

Fig. 7 shows Beam B18-2 after completion of its test. The crack pattern
for this beam is typical of that for all of the test specimens. Several diagonal
tension cracks, due to vertical shear-
ing stresses, developed near the sup-
ports of the beams at loads approach- 90l
ing the yield point. Otherwise the
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This lateral deflection behavior may be ascribed to initial imperfections and
to small eccentricities of the applied loads. It had no significant effect on
flexural capacity and should not be interpreted as evidence of instability
prior to flexural failure.

Table 2 indicates a considerable range of lateral deflections at the yield
point. There appears to be little more than a qualitative correlation be-
tween lateral deflection under load, and the L/b ratio or initial lateral de-
flection. It may be noted that seven of the beams exhibited larger lateral
deflections at the bottom than at the top and that lateral deflections exceeded
vertical deflections in two tests.

INELASTIC BUCKLING ANALYSIS

The test results above constitute the main contribution of this paper. In
an attempt to generalize this somewhat limited evidence the following approxi-
mate buckling analysis is presented.

Many factors affect the lateral stability of a reinforced concrete beam.
One is the contribution of longitudinal steel reinforcement to the lateral and
torsional rigidities of the beam. Others concern the effects of the inelastic
stress-strain properties of concrete, cracking, and shear reinforcement. The
effects of creep are a factor in stability studies of concrete members sub-
jected to sustained loading. Finally, the location of loads and the conditions
of end support have a considerable influence on the lateral stability of beams.
It is evident that a rigorous analysis of this problem, considering all of the
above factors, would be cumbersome if not impossible. It is the purpose of
this section to propose conservative simplifying assumptions leading to an
approximate expression for the critical buckling moment of a rectangular
reinforced conerete beam subjected to uniform bending.

The buckling moment for an elastic, homogeneous beam was given in Eq.
(1). This relation is analagous to the Iuler formula for elastic column buck-
ling. Obviously, Eq. (1) cannot be applied directly to a concrete beam since
such a beam is neither homogeneous nor elastic. It is, therefore, necessary
to establish the conversion from an elastic to an inelastic relation. This is
done by replacing £ and G by appropriate values in the inelastic range in
analogy with the Ingesser-Shanley tangent modulus theory for inelastic
column buckling. This theory states that the Ituler column formula pre-
dicts bifurcation of equilibrium in the inelastic range if the tangent modulus
is used in place of the elastic modulus. (For all practical purposes, the load
at which bifurcation of equilibrium occurs is identical with the load causing
buckling.)

Correspondingly, in the inelastic range Eq. (1) for the buckling moment
may be written in the form

E ™

Moy = mmmeo X A L, Ky (2)
v2u 4w L
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in which u is Poisson’s ratio and E is a reduced modulus related to (a) the
shape of the cross section, (b) the stress-strain properties of the material, and
(c) the extreme (compression) fiber strain caused by M,.. The transition
from Eq. (1) to Eq. (2) and the assumptions involved are outlined in the
appendix, where it is shown that for a rectangular beam E equals the secant
modulus, F.,., corresponding to the extreme (compression) fiber strain. It is
pertinent to note that M., and F,.. are both functions of the extreme com-
pression fiber strain.

It remains to evaluate the geometric properties 7, and K, in Eq. (2). As-
sume temporarily that the beam has an effective depth A. Then considering
a rectangular section with b < h,* I, and K, may be written

1
I, = n bh .. (3a)

Ki=3Yb0h@N) b<h.......... ... ... ... (3b)

where X is a function of the ratio h/b. For practical purposes one may take

- b
VBN =1 -0385 - (4)
and so obtain the result
b7 b
My = ———— X B X = <1 - 035 —) ,,,,,,,,,,,,, (5)
6v2 (1 + ) L h

One may conservatively compute the lateral and torsional rigidities of a
cracked concrete beam by considering only the compression area of the con-
crete.

This assumption neglects any contribution of the longitudinal and shear
reinforcement, and of the concrete below the neutral axis. The longitudinal
reinforcement is implicitly considered only in that it affects the location of
that axis. Using this assumption, [, and K, are given by Eq. (3a) and (3b)
if h is taken as the depth ¢ of the compression area. Then with the substitu-
tion h = ¢ = kd, Eq. (5) may be written

Eee b b
6v2 (1l +u) L é d
and with x4 = 0.16 this becomes”
Eleee b b
s cr = . I Y ¢ — ~: [ R C T e e e e e e e e e e e (‘
M 0.34 7 bd (k 035d> k >d (6)

*In later developments pertaining to reinforced concrete beams it will be seen that A may be less than b (kd less
than b), in which case b and h should be reversed in Eq. (3b) and (4).
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It is proposed that Iiq. (6) be used as an estimate for the critical buckling
moment of an initially straight rectangular reinforced concrete beam sub-
jected to uniform bending over a span L.

It should be noted that I8q. (6) is a conservative approximation in that it
neglects the increase in the rigidities of a beam due to reinforcement and
the uncracked concrete below the neutral axis of the beam. In regard to
torsion, Cowan concludes that longitudinal reinforcement increases the
torsional stiffness of reinforced concrete beams, but that “this increase is
generally too small to be considered in practice’” (Reference 8, p. 18). In
regard to lateral bending, unless the longitudinal reinforcement is purposely
placed to resist lateral bending (i.e., distributed along the sides of the beams),
its contribution to the lateral rigidity of the beam is limited, particularly in
slender beams which have a small width to depth ratio.

Iirnst has investigated the torsional properties of reinforced concrete
beams with variable quantities of shear reinforcement.® His experimental
results indicate that for small torsional moments, the torsional behavior of a
reinforced concrete beam is not significantly affected by shear reinforcement.
This statement applies to torsional moments less than those causing diagonal
tension cracks. One is therefore justified in neglecting reinforcing steel in the
rigidity calculations leading to I£q. (6), at least as an approximation.

It is pertinent to distinguish between buckling of an ‘“ideal” (initially
straight, concentrically loaded, free from imperfections) beam and insta-
bility of a ‘real” (initially bowed, eccentrically loaded, imperfect) beam.
Eq. (6) gives critical buckling moments for an ideal beam subjected to pure
bending. A real beam becomes unstable at loads somewhat less than an
identically loaded ideal beam. The application of loads above the shear
center of a beam reduces the critical buckling load while loads applied below
the shear center have an opposite effect. A rigorous analysis of the influence
of initial bow, eccentric loading, and loads applied above the shear center on
the stability of reinforced concrete beams is beyond the scope of this dis-
cussion.

Creep would appear to have a twofold effect on the stability of reinforced
concrete beams subjected to sustained loads. Lateral deflections increase
due to creep. In addition the secant modulus I, decreases as creep strains
increase. IKach of these effects would impair the stability of the beam. In
considering the stability of reinforced concrete arches subjected to sustained
loads, it has been suggested that creep effects may be approximated by us-
ing a reduced value of the concrete modulus.!® [t seems reasonable to use a
similar procedure for concrete beams without compression reinforcement.
Washa and Fluck have reported significantly reduced creep deflections for
beams with compression reinforcement.!' It is therefore reasonable to pre-
dict smaller reductions in buckling moments due to creep for compression
reinforced beams than for similar beams without compression steel.
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Finally, Eq. (6) applies specifically to beams subjected to a constant bend-
ing moment over the full span L and simply supported at the ends of the
span. A discussion of other loading and support conditions is omitted here
for brevity. However, it may be stated that the loading and support condi-
tions on which Eq. (6) is based are more severe from the standpoint of sta-
bility than most conditions encountered in practice.* This statement is
true for both elastic and inelastic stress-strain conditions. In fact, if one
considers the inverse variations of flexural rigidity with bending moments
in the inelastic range, it is evident that a beam is more stable than calcula-
tions based on the minimum rigidity at a point of maximum moment would
indicate.

It may be concluded that, under most conditions, a concrete beam will
remain stable if the maximum bending moment in the beam is less than the
critical buckling moment given by Eq. (6). The reduction in the stability
of a beam due to initial bow, eccentric loading, and loads applied above the
shear center is probably cancelled approximately by the fact that Eq. (6) is
conservative for most loading and support conditions met in practice.

APPLICATION OF BUCKLING ANALYSIS

For test verification and possible design application it is desirable to con-
struct curves of laterally unsupported span length versus critical buckling
moments. This section discusses the construction of such a curve for the
beam section and material properties of the previously reported tests.

As indicated, the values of M., and F. in IEq. (6) correspond to the same
value of the extreme compression fiber strain e. This implies that to use
Eq. (6) one must first establish the relation between 4/ and E,, throughout
the entire loading range from zero to ultimate, since buckling may occur at
any load in this range, depending on unsupported length. Both the area
under, and the slope of, the stress-strain curve used to establish this relation
must conform as closely as possible to actual stress distributions in concrete
beams since this curve determines both M and FE,. Thus simplified stress
blocks such as a trapezoid or rectangie are not suitable for buckling calcula-
tions.

The M-E,,. relation may be estab- TABLE 3—MATERIALS PROPERTIES USED

. . AP . IN BUCKLING CALCULATIONS
lished using a modification of Stiissi’s
. . D . H
flexural theory. Since this theory has Properties of concrete
. . ’ = 49 i
been discussed at length by previous K Z o
authors, notably Hognestad and his S Zoos
associates,'3 only the results of its o = 38mills
. . . . ’ = = - 1 1
application will be given here. The Eo =383 X 107 psi
flexural stress-strain relation shown in Properties of steel
1 1 't 1 s = 43,800 psi
Fig. 9 and the materials properties in for = 43,800 pei

Table 3 were used as a basis for estab- Es = 28.8 X 106 psi
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lishing the M-E,,.. relation. The assumed:ﬂexural stress-strain curve and the
particular values of the parameters 8 and v which determine the shape of this
curve were chosen to approximate the measured flexural stress distributions
reported in Reference 12.

Using Stussi’s flexural theory, data for the moment and steel strain curves
in Fig. 10 were calculated. These curves assume that the steel remains elastic
up to the yield point. As indicated in Fig. 10 a yield strain of 1.53 mills
for the tension steel in the test beams corresponds in this analysis to a yield
point bending moment of 183 kip-in. which is 8 percent on the conservative
side compared with observed test beam behavior (see Table 2). Portions of
the moment curve in Fig. 10 above 183 kip-in. correspond to larger steel
yield strengths than those used in the testing program. A secant modulus
curve based on the assumed flexural stress-strain relation is also included in
Fig. 10.

Having simultaneous values of E,. and M from Fig. 10 one may use Eq.
(6) to estimate critical buckling moments of the test beams.

With £ = 0.382 (a conservative and minimum value prior to tensile steel
yielding), b = 2.5 in., d = 11.25 in., this equation reduces to

Ei(’(‘
M, = 1.51 —

in which the following units apply: M, = kip-in., F,. = kips per sq in. and
L =ft. Eq. (7) was used to plot the buckling curve shown in Fig. 11. This
curve gives the relation between the buckling moment and the laterally un-
supported span length which would cause buckling of the test beams accord-
ing to Eq. (6), assuming elastic steel behavior. Also shown is the average
yield point bending moment M = 183 kip-in. of the test beams computed
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from the assumed stress-strain relations as shown on Fig. 10. The maximum
unbraced test span was 18 ft while M/ = 183 kip-in. is seen to correspond to
L =222 ft. Thus, Fig. 11 indicates that none of the test beams were suffi-
ciently long to produce instability failure prior to reaching the yield point,
which agrees with the test observations. Assuming the validity of the buck-
ling curve, the minimum unbraced span length at which buckling would
precede steel yielding for the test beams is 22.2 ft, corresponding to an L/b
ratio of 106.

Some observations concerning the stability provisions of the current ACI
Building Code (ACI 318-56) may be made from Fig. 10 and 11. The curves
in these figures indicate that the limiting L/b ratio of 32 stipulated by Sec-
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Fig. 10—Theoretical behavior of test beams
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400 T T ' - T tion 704 of the Code is devoid of any
significance for ordinary strengths of
steel and concrete, even for beams of
the unrealistically extreme cross-sec-
tional dimensions which were used in
the tests. It is seen from Fig. 11, on
the other hand, that L/b = 32 would
correspond to a critical moment of 328
| __M=183 Kip-in._ O\ kip-in. For the test beams Fig. 10
shows that this moment would be
reached only if a steel strain of 2.93
mills were developed elastically, i.e.,
at an elastic steel stress of about
85,000 psi, which is possible only with
high strength steels. This illustrates
0 , . . . ) the fact that the higher concrete
OLa feri " U/:supp;f ‘e d?;; on rzfie f)so strains wh‘ich can b‘e de\{eloped prior
! L to steel yielding with high strength
reinforcements can lead to a signifi-
cant reduction of K., and a corre-
sponding reduction of the L/bratio at
which lateral buckling can occur.
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Fig. 11—Theoretical critical buckling mo-
ments for test beams

Correspondingly, it appears justified to liberalize considerably the present
limitation of L/b = 32 in the ACI Code when applied to beams reinforced
with steel of 40,000 to 60,000 psi yield point. At the same time, since rein-
forcement with yield values of the order of 80,000 psi is in the process of
becoming available, it would appear desirable to impose more stringent
limitations on unbraced length for beams reinforced with such high strength
steels.

It should be emphasized that the theoretical results of this investigation
on which the above remarks are based are limited in scope and have not
been experimentally verified, except to the extent that they agree with the
fact that no buckling failures were obtained in any of the tests up to L/b = 86.

SUMMARY AND CONCLUSIONS

Ten slender beams with d/b ratios of 4.5 and L/b ratios from 28.8 to 86.4
were tested using specially designed loading rigs which eliminated any sig-
nificant lateral and torsional restraint at the load points. The beams were
loaded at the quarter points and were laterally unrestrained over their full
span between supports. All of the beams failed in simple, vertical bending
due to yielding of the tension steel, at loads in close agreement with the pre-
dictions of ultimate strength theory. There was no evidence of any reduction
in strength due to laterally unsupported span length even though the largest
L/b ratios were 2.7 times as large as permitted by the limitations of the current
ACI Building Code (ACI 318-56).



LATERAL STABILITY OF BEAMS 209

Since the test beams were dimensionally more extreme, i.e., more conducive
to lateral buckling, than beams likely to occur in practice, it is concluded
that the L/b limitations of Section 704 of the ACI Building Code are ex-
cessively conservative when applied to realistically dimensioned laterally
unbraced beams reinforced with ordinary strength steel. However, it was
shown that more stringent L/b limitations are advisable when high strength
steel is used than for ordinary reinforcement.

An approximate analytical method was suggested for estimating the critical
buckling moment of a simply supported, initially straight, concentrically
loaded, rectangular, reinforced concrete beam. It is believed that this method
gives conservative estimates for most conditions met in practice. The pro-
posed buckling theory was used to predict the critical buckling moments of
the test beams. The theory correctly predicted that none of the test beams
would buckle prior to yielding of the tension steel.

It should be noted that the testing program involved only short time load-
ing, one beam cross section, one steel ratio and steel strength, one loading
system, and one concrete strength. IFurther studies are desirable to verify
the general applicability of the proposed buckling relation.
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APPENDIX—INELASTIC BUCKLING MODULI

An analytical investigation of the lateral stability of reinforced concrete beams must con-
sider the inelastic stress-strain properties of concrete. In particular, one must determine
what values of the elastic constants E and G apply in the inelastic case. It is the purpose of
the appendix to consider this problem. For simplicity, lateral buckling will be considered
without particular reference to reinforced concrete. It will be assumed that all members are
homogeneous, initially straight, and free from imperfections, and that all loads are applied
concentrically.

Consider a slender beam with constant symmetrical cross section bent about its major
principal axis (X axis) by equal couples applied at the ends of the beam [Fig. A-1(a)]. The
ends of the beam are supported so as to prevent rotation of the end sections about the longi-
tudinal beam axis (Z axis). Otherwise the beam is unrestrained. The beam material is as-
sumed to have equal stress-strain properties in tension and compression [Fig. A-1(b)]. The
stress-strain relation is assumed to be inelastic and is represented in the general form ¢ =
g(e) where ¢ and e denote stress and strain respectively. The tangent modulus E, is then
defined as

Plane sections are assumed to remain plane during bending and the stress-strain properties
of the material for axial loading are assumed to be valid for flexure. The symmetrical cross
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section of the beam is assumed to have the general shape indicated in Fig. A-1(c) where w(y)
denotes the width of the beam at a distance y from the horizontal centroidal axis and & is the
depth of the beam.

Incipient lateral buckling occurs in the inelastic stress range at a moment M, of

My = 11 NELGEK . .............c.......... (A2)

where E and @G represent reduced moduli which are related to the stress-strain curve and the
strains caused by M... The problem of inelastic buckling is reduced to evaluating E and G.

In discussing the lateral stability of metal I-beams stressed beyond the proportional limit,
Timoshenko? and Bleich!* have proposed that the tangent modulus corresponding to the
maximum extreme fiber stress be used for %, i.e.

and that G may be approximated by

Sl

In a recent series of tests of aluminum I-heams, Clark and Jombock!s found that Eq. (A2),
(A3), and (A4) gave reasonably accurate estimates of observed buckling moments (for uni-
form bending). However, one is not justified

X in using Eq. (A3) for rectangular sections
z since their flexural strength is not derived
e from material concentrated in “flanges.” The

v following discussion would establish Eq. (A3)
as a special case of a more general expression
( }} z for E. _
M+aM The product ET, in Eq. (A2) is the lateral
L flexural rigidity of the beam at the instant of
(a) incipient buckling. It is assumed that, ac-
cording to Shanley, bifuraction of equilibrium
is a convenient and only slightly conservative
criterion for incipient buckling. One is then
led to consider the lateral flexural rigidity of
the beam of Fig. A-1 at the instant when
bifurcation of equilibrium occurs. Before
evaluating K7, it is pertinent to describe in
detail the relations between the stresses and
strains involved in bifurcation of equilibrium.
y (6) Let M represent the largest moment the
~w(y) beam can resist without deflecting laterally.
€n Ty By analogy with the tangent modulus theory,
3 _ a small increase in bending moment from M
_,—r < to M + A M causes a small but stable
> X rotation and lateral deflection of the beam.
As A M approaches zero, the straight and
L + deflected forms of the beam approach coinci-
dence so that M is the moment at the instant
(c) when bifurcation of equilibrium occurs.
Again by analogy with the tangent modulus
theory, the moment A M causes the strains

Fig. A-1—Inelastic lateral buckling
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at every point in the beam to increase in absolute value.* If A e represents the increase in
strain at any beam fiber due to the moment A 3/ then the increase in stress A o at this fiber
is approximately A ¢ = E,; A ¢ where E, corresponds to the strain at the fiber caused by the
moment M. When bifurcation occurs the stresses A ¢ and strains A e vary across the width
of the section. The resistance of the beam to lateral deflection is associated with these varia-
tions in A ¢ and A e

One is now in a position to evaluate the lateral flexural rigidity of the beam, Ef,, at the
instant of bifurcation of equilibrium. Consider an element of area in the beam cross section
[Fig. A-1(c)] of width w (y) and height dy at a distance y from the neutral axis of the beam.
The contribution of this element to the lateral flexural rigidity of the beam may be expressed
as

_ 1
d(El,) = E, |i1—2 wa(y)] dy

where E, is the modulus relating the stresses and strains associated with lateral deflection.
The preceding discussion indicates that E, = E; so that

_ 1. 1/2
El, = — X2 Eow’(y)dy
12 o

is the lateral flexural rigidity of the beam associated with bifurcation of equilibrium.
To evaluate E, one may express I, as

1, =fx2dA
A
Yh w(y)/2
=4 x2dzxdy
0 0
h/2
I, = %f w¥(y)dy
0

h/2
/ E, wi(y)dy
0
4W—_ .......................
/ w3(y)dy
0

Eq. (A5) is a general expression for the reduced modulus E and is based on an analogy with
the tangent modulus theory for columns. It is seen that the shape of the cross section has an
important influence on E. For instance, neglecting the thin web, Eq. (A5) gives E = E,
for an I-section, in agreement with Eq. (A3). For the rectangular section, one obtains from
Eq. (A5)

and so obtain the result

E-

*If the lateral deflection is small but finite, this statement is not strictly valid for beam fibers in a small band
near the neutral axis. Strain reversal will occur in this band but the stress-strain curve is nearly elastic for the
small strains involved. Therefore strain reversal near the neutral axis will have only a minor effect on the lateral
flexural rigidity.
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h/2
bs / Edy
T JO
L= 12
b3 / dy
0

and with the substitutions

€
y =%h~e,—
1 h
dy =7?de
h

derived from the strain diagram in Fig. A-1(¢) it follows that

_ 1 €5
K= —f E, de
a ),

€h

Finally from Eq. (A1) one obtains

=/ 4
T e de
T
1
M
e J o
E=(1L=Esec
€n

where ¢, and ¢, are the extreme fiber stresses and strains respectively. This interesting result
indicates that the modulus for lateral buckling of a rectangular section is the secant modulus
E.. corresponding to the extreme fiber strain.

No direct method of evaluating the reduced shear modulus is evident to the writers. One
must therefore resort to somewhat arbitrary approximations, such as I£q. (A4). Substitution
of this relation in Eq. (A2) gives

— ]G =
MM:E\/—E—X-L—JIHI(t

G__1
E 21+ u)

Using the known relation

where u is Poisson's ratio, one obtains IXq. (2) as an approximate expression for the critical
inelastic buckling moment of a beam subjected to uniform bending. The reduced modulus
E in this equation may be evaluated for a given beam section using Eq. (A5) if the stress-
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strain curve and the extreme fiber strain are known. It is equal to E.. for rectangular, and
to E, for I-shaped beams. Note that according to the assumptions made here, u corresponds
to elastic values and does not vary with the extreme fiber strain.

The prime objective of the preceding study has been to show the relation between the
shape of the beam section and the reduced modulus. No claim is made to a rigorous or exact
solution of the problem of inelastic lateral buckling. In essence the study consists of a ra-
tional application of the tangent modulus theory to this problem.
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