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This paper presents a practical approach for analyzing the elastic

behavior of cracked prestressed concrete sections of any shape, using

existing section property software. The use of the results for estimating
deflection and crack control is presented. The method is applicable to

sections with any degree of prestress, from no prestress to full prestress.

Examples are given, including the analysis of cracked composite

sections. The procedural steps for analyzing cracked prestressed

concrete sections are summarized.

o fully understand the behavior

I of a prestressed concrete mem-

ber cracked at service load, an
analysis of the cracked prestressed
section should be made. This analysis
is needed in order to find the change
in steel stress after cracking (for use in
evaluating crack control at service
load), and for finding the appropriate
flexural stiffness for use in deflection
calculations.

The analysis of cracked prestressed
sections requires, at best, the solution
of a cubic equation."*** The complex-
ity of this solution, requiring the use
of charts, tables, or special software,
has impeded the use of prestressed
concrete members with tensile stresses
beyond the code limits for nominal
tensile stress.

The purpose of this paper is to pre-
sent an analysis method using conven-
tional section property software. The
solution requires iteration, but the
bulk of the work is done by an exist-
ing section property program. The it-
eration may be done manually or a
small additional program may be writ-
ten that will do the iteration, using an
existing section property program to
do the computation inside an iteration
loop.

The iterative procedure consists of
assuming a depth ¢ of the neutral axis,
computing section properties of the
net cracked section, checking stresses
at the assumed neutral axis location,
and revising ¢ as necessary to make
the concrete stress equal to zero at the
assumed neutral axis location.
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Fig. 1. Forces acting on cracked transformed section.

DESIGN IMPLICATIONS

Today, there is a trend to unify the
design of nonprestressed and pre-
stressed concrete members, and to per-
mit designs with any combination of
nonprestressed and prestressed rein-
forcement. In order to accomplish this
goal, it will be necessary to replace the
nominal tensile stress limits in the cur-
rent ACI Code with requirements lim-
iting cracking and deflection at service
load. This paper describes a practical
method of performing the needed
cracked section analysis.

SOLUTION STRATEGY

The analysis will make use of
cracked transformed section proper-
ties, like those used in the past days of
working stress analysis of ordinary
(nonprestressed) reinforced concrete.
The area of steel elements is replaced
by a “transformed” area of concrete
equal to n times the actual steel area,
where 7 is the ratio of the modulus of
elasticity of steel to that of concrete.

To begin the analysis, assume a trial
depth ¢ of the neutral axis of the
cracked transformed section. The
forces acting will be the prestress
force P acting at the level of the ten-
dons and the bending moment M,,,
caused by external loads (all loads ex-
cept prestress) (see Fig. 1a).

The forces may be resolved into an
axial force P acting at the center of
gravity of the cracked transformed sec-
tion and an internal bending moment
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M;,, acting about the center of gravity EXAMPLE 1

of the cracked transformed section.
The internal bending moment M,,, is
the external bending moment M,,, re-
duced by the amount P times yp, where
yp is the distance P moved upward
from the location of the tendons to the
center of gravity of the cracked trans-
formed section, as shown in Fig. 1c.

The forces shown in Fig. 1¢ may be
applied to the cracked transformed
section, producing the stresses shown
in Fig. 2. The stress at the neutral axis
must be zero. That is:

fna =P/A - Mint yna/I =0

On the first try for the neutral axis
depth c, f,, will doubtless not be zero.
If it is positive (compressive), ¢ must
be increased; ¢ must be decreased if
Jna 1S negative.

How the solution strategy works can
best be illustrated by a simple exam-
ple. Fig. 3 shows the cross section of a
beam, with design parameters given
below:

12 x 32 in. (305 x 813 mm) beam
f/=6000 psi (41.4 MPa)
Twelve '/2 in. (12.7 mm) 270K strands
Depth d), = 26 in. (660 mm)
Prestress level f;. = 162 ksi (1117 MPa)
Span =40 ft (12.2 m)

Dead and live loads, and midspan
moments are given in Table 1.
P =A,(fs) = 1.836 (162)

=297.4 kips (1508 kN)
n=E,/E.=28,500/4415.2 = 6.455
A;=Aps(n) = 1.836(6.455)

=11.85 sq in. (7645 mm?)
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Fig. 3. Example 1 beam.

For a first try, assume the neutral
axis depth ¢ is 18 in. (457 mm). The
cracked transformed section is illus-
trated in Fig. 4. The cracked trans-
formed section properties are deter-
mined by a section property program.

A=12x18+11.85

=227.85 sq in. (147,000 mm?)
I=9079 in.* (3779 x 10¢ mm*)
y,=9.88 in. (251 mm)

I1y,, =9079/8.12
=1119 cu in. (18.33 x 10° mm?)

The stress at the assumed neutral
axis location is checked.

P/IA =297.4/227.85 =1.305 ksi (c)
Mint = Mext - P(yP)
=6392 -297.4(16.12)
= 1598
M, /(Ily,,) = 1598/1119 =-1.428 ksi (t)
Stress at neutral axis =-0.123 ksi (t)
(-0.848 MPa)

The stress at the neutral axis must be
zero. Reduce ¢, to reduce tension at the
assumed neutral axis location. After a
few more trials (not shown), the solu-
tion at ¢ = 17.26 in. (438 mm) is found.
Fig. 5 illustrates the cracked trans-
formed section for the correct solution.
The calculation for determining the
stress at the assumed neutral axis loca-
tion follows.

The cracked transformed section
properties from the section property
program are:

A =218.97 sq in. (141,270 mm?)
I=28524 in.* (3548 x 10° mm*)
y,=9.57 in. (243 mm)
1/y,, = 8524/7.69

=1108 cu in. (18.16 x 106 mm?)
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Table 1. Dead and live loads, and midspan moments (Example 1).

w Midspan moments
Loadings kips per ft in.-kips kN-m

Self weight 0.413 992 112

Additional dead load 1.000 2400 271

Live load 1.250 3000 339

Sum 2.663 6392 722
P/A =297.4/218.97 = 1.358 ksi (c) The stresses are shown graphically

M;,,=M,,— P(yp) in Fig. 6.

=6392 —297.4(16.43) Note that as the depth to the neutral
=1506 axis decreased, the P/A stress in-
M, /(Iy,,) = 1506/1108 =-1.359ksi (1) creased because the area A decreased.

Stress at neutral axis = 0 (ok)

Complete the analysis.
fe = PIA + My, /(1ly,)
=1.358 + 1506/(8524/9.57)
=3.048 ksi (21.0 MPa)
Af,s =[-PIA + M, /(Ily,s)]n (tension +)
=[-1.358 + 1506/(8524/
16.43)] (6.455)
=9.97 ksi (68.8 MPa)

Also, the bending stress at the neutral
axis location decreased because the in-
ternal moment M,,, decreased as the
shift in the location of the center of
gravity of the composite section
increased.

Equilibrium may be checked manu-
ally, without the use of computers.
Refer to Fig. 7.
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C =fbc/2 = 3.048(12)(17.26)/2
=315.7 kips (1404 kN)

C acts at the top kern of compression
zone equals d,/3 for a rectangular area

17.26/3 =5.75 in. (146 mm)

T = P+ Af,(Ays) = 2974 +9.97(1.836)
=315.7 kips (1404 kN) = C Check

M = CorT x lever arm
=315.7x20.25
= 6392 in.-kips (722 kN-m) Check

The beam of the example was cho-
sen for simplicity. It is a rectangular
beam with only one level of tendons
and no unstressed reinforcement. Nev-
ertheless, the method is general and
will work for any section, no matter
how complicated, for which the
cracked transformed properties may
be calculated.

THE PRESTRESS FORCE P

For use in a transformed analysis,
the prestress level in pretensioned ten-
dons should be taken as the stress that
would exist in the tendons when the
stress is zero in the adjacent concrete
at the same level. This is called the de-
compression stress. The use of the
transformed area of prestressing steel
in the section properties will automati-
cally account for the fluctuation of
stress in the tendons when the stress in
the adjacent concrete is not zero. The
consideration of decompression stress
was not apparent in the working stress
analysis of nonprestressed concrete,
because it was assumed (neglecting
shrinkage) that it would be zero.

How should the decompression
stress f,. be calculated? It does not
make sense to calculate it more accu-
rately than the loss calculations used
to estimate the effective prestress f;,.
If the estimate of prestress loss is
done using the method described in
Section 4.7 of the PCI Design Hand-
book,’ the decompression stress may
be estimated as the effective prestress
fse plus an amount equal to (f,;, —
Jeas)Eps! Ec. The quantities f,;, and f4
are defined in the PCI Design Hand-
book, and their difference represents
an estimate of the stress in the con-
crete adjacent to the tendons under
sustained dead loads.

The most simple estimate of the de-
compression stress f;. is to assume it
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is equal to the effective prestress f,,.
The error will almost always be on
the conservative side when comput-
ing crack control and deflections at
service loads.

More precise methods of computing
prestress losses and the decompression
stress are available.>¢”

NONPRESTRESSED
REINFORCEMENT

In the design of cracked nonpre-
stressed sections, it is the usual prac-
tice to neglect shrinkage and assume
that the decompression stress is zero.
In beams without prestress, the error
introduced is probably small. But, in
beams with a large amount of pre-
stress, creep due to compressive
stresses at the level of the nonpre-
stressed reinforcement can magnify
the error in neglecting the decompres-
sion stress in the nonprestressed rein-
forcement.

If the prestress losses are calculated
by the PCI Design Handbook® method,
the same calculations may be used to
estimate the decompression stress in
the nonprestressed reinforcement.
Using the notation of the PCI Design
Handbook, the decompression stress
in the nonprestressed reinforcement
could be estimated as a compressive
stress equal to the creep losses CR
plus the shrinkage losses SH com-
puted by the method given in the PCI
Design Handbook.

More comprehensive methods of es-
timating the decompression stress fy.
in nonprestressed reinforcement are
given in Refs. 6, 7, and 8. These meth-
ods show that substantial compressive

stresses can be built up in the nonpre-
stressed reinforcement, and that these
stresses can have a significant effect
on the cracking moment and the post-
cracking behavior.

Once the decompression stress (usu-
ally compressive) in the nonpre-
stressed reinforcement is estimated, it
should be combined with the decom-
pression tensile force in the tendons to
produce a resultant force P and a re-
sultant location yp of this force, for use
in the cracked section calculations.

DEFLECTION

When designing a prestressed mem-
ber intended to be cracked at service
load, it is necessary to check deflec-
tions. Where the prestress and dead
load produce stresses below the crack-
ing strength, deflection may be calcu-
lated in the usual manner. The incre-
mental deflection due to live load may
be found using the bilinear behavior
method or the effective moment of in-
ertia method described in Sections
4.8.3 and 4.8.4 of the PCI Design
Handbook .’

The results of the cracked section
analysis provide another way of com-
puting deflection. One normally thinks
of deflection as a function of M/EI.
But M/EI is equal to the curvature K.
And the curvature X is simply equal to
the maximum concrete strain ¢, di-
vided by the depth c¢ to the neutral
axis. The computation of curvature K
for Example 1 is shown below:

K=¢lc
& =f./E.=3.048/4415 = 0.000690

K =0.000690/17.26
=0.400 x 10*in. (0.157 x 10-*/mm)

e K= 36.7 x 10-6/in

K= 20.1 x 10-6/in

Additional Curvature Due to Cracking
Neglecting Tension Stiffening

Curvature Based on Gross Section

| 0341L

i >

Fig. 8. Live load curvature diagram.
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In order to obtain the incremental
curvature due to live load, the curva-
ture due to prestress and dead load
must be subtracted. This curvature
(calculated using gross transformed
section, and the same E, as in the
cracked section analysis) was equal to
0.034 x 10*#/in. Thus, the net curvature
K; due to live load is 0.366 x 10*/in.
(0.144 x 10-/mm).

For an approximate value of
midspan deflection, a parabolic curva-
ture diagram may be assumed. The
live load deflection is:

AL = 5/48KLL2
=5/48(0.366 x 10+)(480)>
=0.88 in. (22 mm)

This result is conservative because
the beam is not cracked throughout its
length. Fig. 8 shows the curvature dia-
gram for this beam, obtained by calcu-
lating the curvature at 1/20 points. In-
tegration of this curvature diagram
produces a live load deflection of 0.69
in. (17.5 mm). Even this number is
conservative because tension stiffen-
ing is neglected.

For comparison, the deflection was
calculated using the methods given in
the PCI Design Handbook. Cracking
was found to occur at 79 percent of
full live load and the cracked moment
of inertia /., was found to be 5513 in.*
(2.295 x 10° mm*). The results are
given below.

Bilinear behavior:
A; =1.00 in. (25 mm)

Effective moment of inertia:
A; =0.86 in. (22 mm)

It may be seen that all of the above
methods give a conservative estimate
of the instantaneous live load deflec-
tion. Additional information on deflec-
tion of cracked prestressed beams is
given in Ref. 9.

CRACK CONTROL

At present, crack control require-
ments for cracked prestressed con-
crete members are not codified in ACI
318-95. ACI Committee 318 is con-
sidering modifying the crack control
requirements of Section 10.6.4 for
nonprestressed concrete. A bar spac-
ing requirement is proposed to replace
the current z factor requirement. The
proposed spacing requirement is:
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s < 540/f; — 2.5¢, < 432/f;
Eq. (10-5)
where

s = center-to-center spacing of flex-

ure tension reinforcement, in.

f, = calculated stress in reinforce-

ment at service loads, ksi

c. = clear cover from nearest surface

in tension to surface of flexural
tension reinforcement, in.

A similar approach to crack control
for cracked prestressed concrete mem-
bers is under consideration. For pre-
tensioned strands, the above equation
needs to be modified in two ways:

1. The change in stress Af,, needs to
be substituted for f,.

2. For seven-wire strand, the spacing
s needs to be reduced by a factor of
two-thirds to account for the bond prop-
erties of strand being different from
those of deformed reinforcement. This
is based on a recommendation of ACI
Committee 224." [If supplementary
mild reinforcing steel is used, the maxi-
mum spacing for deformed bars may be
determined directly from Eq. (10-5).]

The results of Example 1 give Af,, =
9.97 ksi (68.7 MPa). This is substi-
tuted into a modified Eq. (10-5) as fol-
lows, using a clear cover of 1.75 in.
(44.5 mm):

5 S 3(540/4f,s — 2.5¢.) < */3(432)/Af 55
s <33 in. (840 mm)

The maximum spacing turns out to

be very large because Af,, is so low

compared to the f; of 36 ksi (248
MPa) used in nonprestressed beams.
Locating one strand in each corner
of the tension side easily satisfies
crack control requirements.

COMPOSITE SECTIONS

For composite sections, the situa-
tion is more complicated. The pre-
stress and some dead load bending
are usually applied to the bare non-
composite beam. This creates stress
in the bare beam, but not in the com-
posite slab. This causes a discontinu-
ity in stress and strain at the interface
and this discontinuity remains while
additional loads are applied to the
composite beam.

How does one find a section prop-
erty of a cracked composite section
when some of the forces and moments
were applied to a different bare beam
section? The solution is to work with
section properties of the composite
beam and apply all forces and mo-
ments to the composite section. This
requires modifying the forces and mo-
ments applied to the bare beam to an
equivalent force and moment applied
to the composite beam. This equiva-
lent force and moment must produce
stresses in the bare beam portion of
the composite beam that are equal to
the actual stresses in the bare beam.

The process can best be illustrated
by Example 2, which is purposely
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Fig. 10. Composite section analysis.

made simple in order to illustrate the
process.

EXAMPLE 2

Consider a 12 x 24 in. (305 x 610
mm) beam shown in Fig. 9, subjected
to a prestress force P of 288 kips
(1281 kN) at an eccentricity of 8 in.
(203 mm), and a bare beam bending
moment M, of 1728 kip-in. (195.3
kN-m). This produces stresses in the
bare beam as shown in Fig. 10a.

The beam is then made composite
with a 6 in. (152 mm) slab of 12 in.
(305 mm) width of the same concrete
strength. It is now necessary to find
the equivalent forces and moments ap-
plied to the composite section that will
produce the same stresses in the bare
beam portion of the composite beam.

This operation may be accom-
plished by extending the stress dia-
gram for the bare beam up through the
composite slab, as shown in Fig. 10a.
This produces a fictitious force F in
the slab, as shown in Fig. 10b. This
fictitious force is combined with the
prestress force P to produce the equiv-
alent force P, at a resultant location to
be applied to the composite section.
The magnitude and location of P,
combined with M, produce the de-
sired stress in the composite section,
as shown in Fig. 10c.

The stresses shown in Fig. 10c are
then combined with the stresses shown
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in Fig. 10d due to moments M, ap-
plied to the composite beam. The ficti-
tious stresses in the composite slab are
subtracted in order to obtain the true
stress in the composite slab. The final
stresses are shown in Fig. 10e, and
they are identical to stresses calculated
in the usual manner.

Of course, when the composite beam
is uncracked, this procedure is unnec-
essary. But, this procedure also works
for cracked sections. The analysis of a
cracked composite beam is similar to
that of a cracked noncomposite beam,
with the additional step of including
the fictitious force in the composite

slab due to bare beam stresses. Ref. 11
(pp. 201-204) and Ref. 12 give a more
general method of analysis for cracked
composite sections.

EXAMPLE 3

Example 3 illustrates the analysis of
a cracked composite beam. The given
parameters for Example 3 are identical
to those for the example given by Al-
Zaid and Naaman."” The beam is
shown in Fig. 11, and the given pa-
rameters are summarized below.

Eap = 3850 ksi (26,550 MPa)
Rgjap = 0.89535

< 81"
)
K 7
= 1 20"
A
: e
o B
2 ®
N :
x_
= in2
J, VY .//Aps 2.47 in

26"

Ag=2.73 in2

Fig. 11. Example 3 composite beam.
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Table 2. Dead and live loads, and midspan moments (Example 3).

w Midspan moments
Loadings kips per ft in.-kips kN-m
Self weight 0.822 7890 892
Added dead load on bare beam 0.675 6480 732
. Added dead load on composite 0.250 2396 2
Live load 1.111 10,670 1206
Sum 2.858 27,436 3100

Biransy = 72.523 in. (1842 mm)
Epgam = 4300 ksi (29,655 MPa)
E,, = 27,000 ksi (186,200 MPa)
E, = 29,000 ksi (200,000 MPa)

Transformed Areas
ny = 6.279 Ap =15.51 sqin.
ng=6.744 A =18.41 sq in.

Decompression stress in tendons
=146.4 ksi (1010 MPa)

Decompression stress in reinforcement
=0

P = Ap(fa) = 2.47 (146.4) = 361.6 kips
(1608 kN)

Dead and live loads, and midspan
moments are given in Table 2.

The first step is to do an analysis of
the bare beam for the moments ap-
plied to that beam. For consistency
with the later cracked section analysis,
transformed section properties are
used with the areas of composite slab,
tendons, and reinforcement trans-
formed to an equivalent area of beam
concrete. The analysis using gross
transformed section properties shows
that the beam is uncracked at the time
it becomes composite. Gross trans-

formed section properties for the bare
beam are given below:

A =817.7 sq in. (527,560 mm?)
I=275/755 in.* (114,800 x 10° mm*)
¥, =22.08 in. (561 mm)

The stresses in the bare beam are
shown in Fig. 12. The stress gradient
in the bare beam is extended upward
to the top of the future composite slab.
The magnitude and location of the fic-
titious force F is computed. This is the
force that would be in the composite
slab, if it existed, without affecting the
stresses in the bare beam. The ficti-
tious force F is combined with the de-
compression force P and the magni-
tude and location of the equivalent
force P, are determined.

P: 361.6 at57.43 = 20,777

F: 785.1 at3.89 = 3.057
P, 1146.7 23,834

yp =23,834/1146.7
=20.79 in. (528 mm)
(measured from top of composite)

The next step is the analysis of the
cracked transformed composite sec-
tion at full service load. A trial depth

-0.197 Z

F=785.1k

Mpp=
14370 in. - k

4— P=3616k

20.79"

o
(0]

31146.7 k

b=
14370 in. - k

<

Fig. 12. Stresses in bare beam, and fictitious force F.
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of the neutral axis is selected and a
section property program is used to
compute the section properties of the
cracked transformed section. The
equivalent force P, is applied at the
centroid of the cracked transformed
section, and the internal moment M;,,
is found by subtracting (P, multiplied
by the distance it is moved from its lo-
cation to the centroid) from the exter-
nal moment M,,,.

The stress at the assumed neutral
axis is checked and the neutral axis
depth ¢ is adjusted until a solution
for ¢ is found that produces zero
stress at the assumed neutral axis lo-
cation. Fig. 13 shows the final itera-
tion for a neutral axis depth ¢ of
19.67 in. (500 mm).

The cracked transformed composite
section properties are as follows:

A =839.5 sq in. (541,600 mm?)
1=109,079 in.* (45,401 x 10° mm*)

¢ =19.67 in. (500 mm)

v, = 8.80 in. (224 mm)

Ve = 10.87 in. (276 mm)

1/y,,= 10,035 cu in. (164.4 x 10° mm?)

PJA=1146.7/839.5 = 1.365(c)
M, =M, P, (20.79 — 8.80)
=27,436 — 1146.7(11.99)
= 13,690
M (I1Y,00) = 13,690/10,035
=-1.365 ()

Stress at neutral axis = 0 (ok)

The results are identical to those
given by Al-Zaid and Naaman.'® The
equilibrium checks are somewhat
more complicated than for Example 1,
but they can still be accomplished
without the use of a computer, as
shown in Fig. 14. Note that using the
method described in this paper, it is
not necessary to idealize the I-beam as
three rectangles. The actual shape of
the flanges should pose no problem
for a section property program.

DEFLECTION AND
CRACK CONTROL

The curvature K is found as €/c,
where &, at the top of the precast beam
is equal to f./E. = 1.467/4300 = 3.41 x
10. This distance from the top of the
precast beam to the neutral axis is
11.67 in. (296 mm). Dividing by this,
K =2.92 x 10%/in. Subtracting the
dead load curvature of 0.70 x 10,
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Fig. 13. Solution of cracked transformed composite section.

computed from a gross section analy-
sis, the live load curvature K; = 2.22 X
10%/in. (0.874 x 10°%/mm). Substitut-
ing in the conservative and approxi-
mate formula A; = (5/48)K;L?, with L
=960 in. (24.4 m), A; = 2.13 in. (54

mm). For a building, the allowable
live load deflection would be L/360 =
2.67 in. (68 mm). Thus, the deflection
is satisfactory.

The reinforcement nearest the ten-
sion face consists of deformed bars.

The steel stress f; is 34.18 ksi (235.7
MPa). Assuming a clear cover to the
longitudinal steel of 1.5 in. (38 mm),
the maximum spacing of reinforce-
ment is given directly by Eq. (10-5) as
12 in. (306 mm). A minimum of three

) 1.012 Actual Stress = 1.012(n) = 1.012 x .895 = 0.906

ig 229.5 k
- 128.2 k
| Q <

N~

x 4—‘—-— 528.4 k

1.467
= 0.221
4—152.0
< :‘3 44— 185k
Y -
o Mext = 528.4(51.92)
: 10 = 27436 in.-k
e - check
G| ® 0.2k
o‘ x
=
P> (146.4 + 29.79) 2.47 = 435.1 it el 58 4k
———Jp 34.18 x 2.73 = 93.3 ZF = 0 check
528.4 k
a. Stresses and Forces b. Resultants

Fig. 14. Equilibrium check.
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bars equally spaced across the tension
face are required.

ITERATION PROCESS

In order to find the correct location
of the neutral axis of a cracked section,
it is necessary to assume a neutral axis
location and then check to see if the as-
sumed location is correct. The first try
will usually not be correct. It is then
necessary to assume a new neutral axis
location and repeat the process. When
doing this manually, one will naturally
try to make a good guess on the correct
neutral axis location on each try, in
order to minimize the number of tries
needed to find the correct location.

Iteration is best done by computer,
using a more mechanical approach.

One such technique is called binary
search. The author first learned of this
technique in an astronomy magazine.'
The procedure is best illustrated by an
example. Having checked to find that
the section is cracked, it is known that
the value of the neutral axis depth ¢
must lie in a range between zero and
the overall depth £ of the section.

The key concept is to divide that
range in half and decide in which half
the solution exists. That half range is
divided in half, and the process re-
peated. Fig. 15 shows pictorially the
first few steps of the process. After re-
peating the process 20 times, the cor-
rect neutral axis location is known to
an accuracy of h/(2%), or about one
millionth of the overall depth. Of
course, this degree of accuracy is not
needed, but a personal computer does
the calculation in an instant.

The decision of whether the neutral
axis depth should be increased or de-
creased after each try is done in the
same manner as was illustrated in Ex-
ample 1. If the stress at the assumed
neutral axis location is tensile, ¢ must
be decreased, and conversely if the
stress is compressive.

The BASIC programming steps are
shown in Fig. 16, with remarks fol-
lowing the exclamation points.

Subroutine 900 modifies the input to
the section property program so that it
only considers concrete areas above
the neutral axis. Subroutine 1000 is an

existing section property program,
which computes section properties
using the transformed area of the steel.
The quantity YP is the previously de-
termined distance from the compres-
sion face to the resultant prestressing
force. The quantity Y is the distance
from the compression face to the cen-
ter of gravity of the cracked trans-
formed section, determined by the sec-
tion property subroutine.

The same technique is useful for
solving other problems requiring itera-
tion, such as strain compatibility anal-
ysis. The technique works even if the
possible range of the desired variables
is minus infinity to plus infinity (- to
+c0). In this case, a dummy variable
ANGL is incremented, and the desired
variable is equated to the tangent of
ANGL. Then as ANGL is incremented
in the range of (almost) +90 degrees,
the desired variable takes on values of
(almost) +eo. But, the process works
only if the desired variable is continu-
ally increasing or continually decreas-
ing throughout the range investigated.

MANUAL ITERATION

If the iteration is done manually, it is
desirable to make each guess for the
neutral axis depth c¢ as accurate as pos-
sible, in order to minimize the number
of iterations needed. Dr. Alan Mattock
has suggested to the author an efficient
process for adjusting the assumed value

1

C=H/2

DELTC=H/4

FOR J=1 TO 20
GOSUB 900

GOSUB 1000
MINT-MPEXT Pr(VYD-Y)

YNA-C-Y

IF FATNA>O THEN
C=C+DELTC
ELSE
C-C DELTC
END IF
DELTC=DELTC /2
NEXT J

FATNA=P/A-MINT*YNA/I

! Subroutine for finding neutral axis location

1 Firset £y for ¢, depth of na

! Increment of neutral axis depth

! Binary search for correct C

! Modify input to section property program
to include only concrete area above
assumed neutral axis location

Compute cracked transformed section
properties using section property program

Internal moment with respect to center of
gravity of cracked transformed section

Distance of assumed na below center of
gravity of cracked section

Stress at assumed na location

! Increase C if stress at na is comp
t Decrease C if stress at na is tens

! Reduce increment by half

Fig. 16. BASIC programming steps for binary search technique.
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of ¢ after the first try. Find the depth of
the zero stress fiber, and use this for the
trial value of ¢ for the next try.

For example, consider the first try
in Example 1, with ¢ assumed to be
18 in. (457 mm). Fig. 17 shows the
stress diagram for this condition. The
location of the zero stress fiber may
be found by equating P/A to My,/I
and solving for y,, the distance from
the centroid of the cracked trans-
formed section to the zero stress fiber.
This results in y, = 7.41 in. (188 mm)
and a new trial value for ¢ of 17.29 in.
(439 mm). Repeating the process once
produces a new trial value for ¢ of
17.26 in. (438 mm), which is the cor-
rect solution.

To facilitate the computation, a
spreadsheet may be used. The process
converges rapidly; usually sufficient
accuracy is obtained within three tries.

SUMMARY OF
STEPS FOR CRACKED
SECTION ANALYSIS

In general, the steps needed to carry
out the cracked section analysis can be
summarized as follows:

1. Perform a gross section analysis
and determine if the section is cracked
at service load.

2. Estimate the decompression
force P in the prestressing steel. The
decompression stress will usually be
the effective prestress plus some (or
most) of the elastic shortening loss
added back in.

3. At the time of decompression,
there will be a compression force in
the unstressed reinforcement, approxi-
mately equal to the creep and shrink-
age losses of the prestressing steel
multiplied by the reinforcement area.
This force may be combined with the
decompression tensile force in the
strands to obtain a resultant decom-
pression force P, and a location for
that resultant.

4. If the section is composite, com-
pute the fictitious force in the composite
slab created by extending the bare beam
stress diagram through the composite
slab. Combine this fictitious force with
the decompression force P to obtain an
equivalent force P, and its location.

5. Compute the combined trans-
formed section properties (A, I, center
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Assumed c = 18"
New ¢ = 17.29"
Yo =741 "T 9.88"

-0.123

c.g. of Cracked, Transformed

1.305

Cross Section

Zero Stress Fiber

Fig. 17. Concrete stress block, first try, Example 1.

of gravity) of all of the steel elements,
using the modular ratio to transform the
steel area to an equivalent concrete area.

6. Select a trial depth ¢ to the neu-
tral axis. Compute the section proper-
ties (A, 1, center of gravity) of the net
concrete section between the compres-
sion face and the neutral axis.

7. Combine the net concrete
cracked section properties with those
of the transformed steel to obtain the
combined section properties of the
cracked transformed section.

8. Apply the decompression force
P, or the equivalent force P, for com-
posite sections, and the external mo-
ment to the cracked transformed sec-
tion. Apply the force at the center of
gravity of the cracked transformed
section and adjust the internal moment
M;,; to account for the shift in location
of the force P or P,.

9. Compute the location of the zero
stress fiber (i.e., the neutral axis). If
this agrees with the location assumed
in Step 6, the solution is found. Other-
wise, select a new trial depth to the
neutral axis and repeat Steps 6 to 9
until the assumed and computed neu-
tral axis locations agree with sufficient
accuracy.

10. Compute the concrete and steel
stresses by applying the decompres-
sion force P and the internal moment
M;,, to the cracked transformed sec-
tion. Add the decompression stress in
the prestressing steel to obtain the
total stress in the prestressing steel.

11. Find the true stresses in the com-
posite slab by deducting the stresses
associated with the introduction of the
fictitious force in the slab.

12. Find the midspan curvature of the
cracked section and use this to estimate
the deflection. Alternately, use other
recognized methods for estimating the
deflection of the cracked member.

13. Use the change in stress f, or f;
to evaluate strand or bar spacings re-
quired for reasonable crack control.

CONCLUDING
REMARKS

A method is presented for the analy-
sis of cracked prestressed concrete
sections. Although the examples pre-
sented are simplified, the method is
general and is applicable to the most
complicated sections of cracked con-
crete members. These include mem-
bers of any shape with a mix of rein-
forcement types at various depths and
composite sections.

The method requires iteration and is
best done by computer. The great bulk
of the necessary computer code can be
taken from existing section property
software. The results can be checked
without resorting to the use of com-
puter software.
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APPENDIX — NOTATION

= cross-sectional area of transformed section
= area of prestressed reinforcement
= transformed area of prestressed reinforcement

area of nonprestressed reinforcement

= transformed area of nonprestressed reinforcement
= transformed area of steel

width of compression zone

transformed width of composite slab

compressive force in concrete

loss of prestress due to creep of concrete

distance from extreme compression fiber to (as-
sumed) neutral axis

depth of compression zone

= distance from extreme compression fiber to cen-

troid of prestressing steel in tension
modulus of elasticity
modulus of elasticity of concrete

= modulus of elasticity of prestressed reinforcement
= modulus of elasticity of nonprestressed reinforce-

ment

= modulus of elasticity of composite slab

eccentricity of prestress force

= fictitious force in composite slab, needed in

cracked section analysis of composite beams

= concrete stress

specified compressive strength of concrete at 28
days

concrete stress at center of gravity of prestress
force due to all permanent (dead) loads not used in
computing f,;,

concrete stress at center of gravity of prestressing
force immediately after transfer

decompression stress in prestressed tendons that
exists when stress in adjacent concrete at same
level is zero

concrete stress at (assumed) neutral axis location
effective stress in prestressing steel after losses

= overall height of member

moment of inertia of transformed section
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J=

K:
K; =
L=
M=
My, =
My =
M

ext

Mint =

Mmsp =

Yna =

Yp =

Afps =

AL=

a counter used to count repetitions in binary
search routine

curvature

curvature due to live load

span length

service load moment

service load moment applied to bare beam

service load moment applied to composite beam
service load moment due to external loads (all
loads except prestress)

internal bending moment acting about center of
gravity of cracked transformed section

service load moment at midspan

ratio of moduli of elasticity

ratio of Ej,/E,

ratio of E/E,

= ratio of E,,/E,

prestress force at decompression

= effective axial load, including prestress force at

decompression and fictitious force in composite
slab

= loss of prestress due to shrinkage of concrete

tension force in steel

= unfactored load per unit length
= distance between center of gravity of cracked

transformed section and zero stress fiber

distance between center of gravity of cracked
transformed section and (assumed) location of
neutral axis

distance between center of gravity of cracked
transformed section and location of axial force
acting on section

= distance from top fiber to center of gravity of

transformed section

change in stress in prestressed reinforcement be-
tween decompression stress and stress at full ser-
vice load

deflection due to live load

= maximum concrete strain at service load
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