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Abstract: This paper aims to provide guidelines for the numerical modeling of reinforced concrete (RC) frame elements in order

to assess the seismic performance of structures. Several types of numerical models RC frame elements are available in nonlinear

structural analysis packages. Since these numerical models are formulated based on different assumption and theories, the models

accuracy, computing time, and applicability vary, which poses a great difficulty to practicing engineering and limits their confi-

dence in the analysis resultants. In this study, the applicability of four representative numerical models of RC frame elements is

evaluated through comparison with experimental results of four-storey bare frame available from European Laboratory for

Structural Assessment. The accuracy of a numerical model is evaluated according to the top displacement, interstorey drift,

Maximum storey shear, damage pattern and energy dissipation capacity of the frame structure. The results obtained allow a better

understanding of the characteristics and potentialities of all procedures, helping the user to choose the best approach to perform

nonlinear analysis.

Keywords: nonlinear numerical model, RC frame elements, seismic analysis, force-based, displacement-based, plastic hinge,

fiber element.

1. Introduction

The advent of performance-based earthquake engineering
has placed an emphasis on simulating the nonlinear response
of a structural system to seismic excitations (Filippou and
Fenves 2004). Nonlinear frame analysis techniques are
seeking practical design applications in assessing the per-
formance of building structures and bridges under static and
dynamic loads. New performance-based seismic design
guidelines FEMA-273 (1997) require that buildings be
analyzed using nonlinear static pushover analyses or non-
linear dynamic analyses to control the global and local
demands. The use of nonlinear frame analysis necessitates
the availability of robust and computationally efficient
models for performing analyses in a reasonable amount of
time (Coleman and Spacone 2001).
The dynamic analysis of reinforced concrete (RC) build-

ings under earthquake loading is generally carried out with
beam-column elements, which should be able to duly take
into account the inelastic behavior of the actual member

(Almeida et al. 2012). Accurate and computationally effi-
cient numerical models that represent the cyclic loading of
plastic hinges in beam–column elements, including the effect
of degradation, are thus required to simulate the seismic
response and evaluate the performance of structural systems
(Scott and Fenves 2006).
Several studies have investigated the performance of dif-

ferent nonlinear modeling strategies to simulate the response
of RC columns subjected to dynamic loads. Hashemi et al.
(2012) studied the nonlinear response of reinforced concrete
moment-resisting frames considering the bond slip effect
between concrete and bars along the lengths of beam, col-
umn and joint elements. They used fiber model theory to
simulate the behavior of reinforced concrete in the nonlinear
domain, but the perfect bond assumption between the con-
crete and bars was removed. The comparison between
numerical model and experimental of two specimens under
cyclic loading showed that the proposed method can model
the nonlinear behavior of reinforced concrete frames with
very good precision.
Ladjinovi et al. (2012) carried out a comparative study

concerning structural models for seismic analysis of multi-
storey frame buildings using SAP2000 and OpenSees.
SAP2000 and OpenSees programmers offer more opportu-
nities for the selection of material models, elements and
solution algorithms for nonlinear analysis, depending on the
type of material, designing of structural elements, cross
section and type of analysis. The results of the nonlinear
static pushover analysis, obtained using SAP2000 and
OpenSees, were satisfactory from the point of view of
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character changes in the force–displacement relationship.
Moreover, Huang et al. (2015) made a comparison between
numerical models for RC frame elements available in non-
linear structural analysis packages (Opensees, VecTor2,
VecTor5, Response-2000) and experimental test results for
232 rectangular and 88 circular RC cantilever columns are
available in the PEER column database to evaluate the
accuracy of the numerical models the global response of the
element. Each element is based on different assumption and
theories [MCFT-based continuum element (VT2-MCFT),
MCFT-based frame element (VT5-MCFT), Element with
plastic hinge integration method (OS-PHIM), Force-based
beam-column element (OS-FBBC) and Section-analysis
based element (R2K)]. In order to reach this objective, three
accuracy measures were used; energy dissipation capacity,
peak strengths, and initial stiffness. The hysteretic behavior
of an RC element is largely influenced by failure modes, the
previous accuracy measures are evaluated against the shear
force demand–capacity ratio (Iv). If an element is flexure-
critical (Iv\ 0.5), then all tested models accurately predicted
the peak strengths and energy dissipation capacities. The
accuracy increased as Iv decreased. If an element is shear-
critical, (Iv[ 1), then VT2-MCFT and VT5-MCFT most
accurately predicted the specimens’ hysteretic behavior. OS-
FBBC and OS-PHIM could not capture peak strengths and
hysteretic behavior (energy dissipation capacity) because of
the inherent assumptions in their numerical model formula-
tion. The implication of these modeling assumptions on
dynamic response highly depends on the structural period.
The parametric study shows that for a relatively long-period
structure (T = 1.0 s or greater), accurately capturing the
failure mode and hysteretic behavior does not influence the
global response of the structure. For a short-period shear-
critical structure, the global response can be largely different
depending on the adopted numerical model.
Rodrigues et al. (2012) made a comparison between

lumped plasticity and distributed inelasticity. The results of
experimental and numerically analysis of 24 columns show
that the global envelope response is satisfactorily repre-
sented with the three modeling strategies, but significant
differences were found in the strength degradation for higher
drift demands and energy dissipation. Furthermore, Mazza
et al. (2010) proposed a lumped plasticity model for the
nonlinear static and dynamic analyses of three dimensional
reinforced concrete, a bilinear moment–curvature law and an
interaction surface axial force-biaxial bending moment are
considered. The nonlinear dynamic analysis is performed
using a two-parameter implicit integration scheme and an
initial-stress like iterative strategy, adopting the Haar-Kar-
man principal. After a numerical investigation, the LPM is
reliable and relatively simple, so it can be efficiently used for
the nonlinear dynamic analysis of complex multi-storey RC
framed structures.
This study addresses the influence of different simplifi-

cations, assumptions and uncertainties in modeling rein-
forced concrete (RC) frame elements on the seismic
performance of structures. Emphasis is made on the appli-
cability of four representative numerical models of RC frame

elements, which is evaluated through comparison with
experimental results for four-storey bare frame available
from European Laboratory for Structural Assessment
(ELSA) (Pinto et al. 2002), that can be readily performed
with existing software packages. The structural response is
assessed by nonlinear dynamic (time history) analysis, to
estimate the seismic response.

2. Numerical Tool and Modeling Strategies

The numerical analyses developed and described in this
paper with different nonlinear modeling strategies were
studied using the computer program SeismoStruct v7
(SeismoSoft and 2015). The program includes models for
the representation of the behavior of spatial frames under
static and/or dynamic loading, considering both material and
geometric nonlinearities. With this software, seven types of
analyses can be performed, namely: dynamic and static time-
history analysis, conventional and adaptive pushover,
incremental dynamic analysis, modal analysis, and static
analysis (possibly nonlinear) under quasi-permanent loading.
The software allows the use of elements with distributed
inelasticity and elements with lumped-plasticity, all the ele-
ments are based on force or displacement formulations.
While the evaluated numerical models are based on different
assumptions, input parameters for these elements are pri-
marily physical properties such as section geometry and
uniaxial behavior of materials. Hence, as long as the limi-
tation of the element can be clearly defined, which is the
objective of this research, practicing engineering can use the
elements without much effort to calibrate model parameters.
Therefore, in this study, four nonlinear modeling strategies.

The first one is force based and the plasticity is distributed
along the entire length of the structural member (inelastic
force-based frame element -distributed plasticity) IFBEDP.
The second model is a distributed inelasticity forced-based
elementwhere the inelasticity is spreadwithin a fixed length of
the element, as proposed by Scott and Fenves (2006) (inelastic
force-based frame element—plastic hinge length) IFBEPHL.
The third model is formulated in terms of displacements and
the plasticity is distributed along the length of element
(inelastic displacement-based frame element-distributed
plasticity) IDBEDP, and the fourth is a displacement based
element with plasticity concentrated at the two element’s ends
(Giberson 1967, 1969) (inelastic displacement-based frame
element—concentrated plasticity) IDBECP (Fig. 1). The four
modeling strategies were applied to each column and beam
and the obtained results were compared with experimental
results to evaluate the accuracy of each numerical model.

3. Element Formulations

3.1 Stiffness (Displacement) Method
In the stiffness method the displacement fields of the

element are discretized and interpolated in terms of ndof
generalized displacement degrees of freedom q such that
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u xð Þ ¼ N xð Þq ð1Þ
where

N xð Þ ¼
NuðxÞ 0 0
0 NwðxÞ 0
0 0 NvðxÞ

2
4

3
5 ð2Þ

Is a 3�ndof matrix containing the vectors of interpolation
functions Nu, Nw, and Nv for the three displacement fields u,
w, and v, respectively. The expression for the deformation
fields d(x) is then

d xð Þ ¼ B xð Þq ð3Þ
where the strain–displacement transformation matrix B
contains first and second derivatives of the displacement
shape functions according to the kinematic relationships.
Replacing Dd from the incremental version of Eq. (3) in the
constitutive relation DD = kDd, yields the relation

DD xð Þ ¼ k xð ÞDd xð Þ ¼ k xð ÞB xð ÞDq ð4Þ

For the force field increment DD(x). The principle of
virtual displacements leads to the equilibrium condition

Q ¼
Z L

0
BT xð ÞDðxÞdx ð5Þ

And its linearization

kDq ¼ R ð6Þ

In the form of a force–displacement relation, where
Q = element resisting forces and

K ¼ oQ
oq

¼
Z L

0
BT xð ÞkðxÞBðxÞdx ð7Þ

Represents the element stiffness matrix, while Dq and
R are vectors of displacement increments and residual for-
ces, respectively; and L denotes the elements length
(Limkatanyu and Spacone 2002).

3.2 Flexibility (Force) Method
In the flexibility method the force fields are described by

the relation

D xð Þ ¼ b xð ÞQ ð8Þ
Where b(x) contains the force interpolation functions, which
relate the generalized nodal forces Q to the internal forces
D(x). Replacing DD from the incremental version of Eq. (8)
in the inverse from the constitutive relation DD = kDd,
namely Dd(x) = k21DD(x), yields the incremental
deformation field (Limkatanyu and Spacone 2002).

Dd xð Þ ¼ f xð ÞDD xð Þ ¼ f xð Þb xð ÞDQ ð9Þ
where f(x) = k21(x) = section flexibility matrix. The
principle of virtual forces leads of the compatibility
condition

q ¼
Z L

0
bTðxÞdðxÞdx ð10Þ

and its linearization

FDQ ¼ r ð11Þ

In the form of a displacement-force relation, where
q = element end displacement; and

F ¼ oq
oQ

¼
ZL

0

bT xð ÞfðxÞbðxÞdx ð12Þ

Is the element flexibility matrix, while DQ and r are
vectors of force increments and residual displacement,
respectively. Note that a meaningful expression for the
flexibility matrix F can only be derived for the beam element
without rigid-body modes (Scott et al. 2004).

4. Plasticity Models

4.1 Distributed Plasticity Model
In this approach, the entire member is modeled as an

inelastic element, the source of such inelasticity being
defined at the sectional level. The global inelasticity of the
frame is obtained by integration of the contribution provided
by each controlling section (Fig. 2). A major advantage of
such models is the nonexistence of a predetermined length
where the inelasticity can occur, because all the sections can
have excursions in this field of response. Though this
approach is a closer approximation to reality, it also requires
more computational capacity; that is, more analysis time, as
well as memory and disk space (Calabrese et al. 2010).

4.2 Lumped Plasticity Model
The plastic hinge length, lp, of RC members depends on a

number of parameters, including the definition of yielding
and ultimate curvatures, section geometry, material proper-
ties, compression and tension reinforcement, transverse
reinforcement, cracking and tension-stiffening, the stress–
strain curve for the concrete in tension and compression
(Roh et al. 2012).

Fig. 1 Idealized Models of Beam-Column Elements: a Plastic
hinge concentrated at the two element’s ends, b dis-
tributed plasticity on a specific length, but concen-
trated at the ends of the element, c distributed
plasticity with fiber section approach.
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General expressions for the plastic hinge length, lp. Some
popular expressions for the calculation of plastic hinge
length are presented in Table 1.

5. Engineering Limit States

Within the context of performance-based engineering, it is
paramount that analysts and engineers are capable of iden-
tifying the instants at which different performance limit
states (e.g. non-structural damage, structural damage, and
collapse) are reached. The sequence of damage was similar
for all elements of structure. The most notable observations,
in sequence of first occurrence, were concrete cracking,
longitudinal reinforcement yielding, initial spalling of the
concrete cover, complete spalling of the concrete cover,
spiral fracture, longitudinal reinforcement buckling, and
longitudinal reinforcement fracture. And so on. It requires
significant modeling efforts and computing time to model all
these features. It is recognized that the plastic rotation, drift
ratio and displacement ductility levels are associated with
specific damage categories may vary considerably with the
structural system and construction material.
Therefore, the concept of plastic rotation is considered in

this study, for identification the limit states.
The real moment-rotation curve of a RC member in which

the tension steel yields, can be idealised to a simplified
bilinear curve, as shown in Fig. 3 for a typical RC beam
(Park and Paulay 1975). In Fig. 3, point B corresponds to the
tensile yield strain in the steel indicating yield moment, My,
and yield rotation, hy, while point C corresponds to the
ultimate conditions; namely ultimate moment, Mu, and

corresponding ultimate rotation, hu. The ultimate condition
was considered to be the attainment of one of the following
conditions; whichever happened first (Park and Paulay 1975;
Ramin and Fereidoonfar 2015).

1. A 20 % drop in the moment capacity of member.
2. When the tensile strain in the longitudinal steel reaches

the ultimate tensile strain.
3. The attainment of the ultimate compression strain in

concrete using the following equation proposed by Scott
et al. (Scott et al. 1982).

Although not the main focus of this study, the acceptance
criteria of immediate occupancy (IO), life safety (LS) and
collapse prevention (CP) were defined for the beam and col-
umns similar to the ratios recommended in FEMA-356 (1997).

Fig. 2 Example of controlling sections along the element and b section fiber discretization.

Table 1 Expressions for the calculation of plastic hinge length (lp).

Authors Year lp

Priestley and Park (1987) 1987 lp = 0.08L ? 6db (13)

Paulay and Priestley (1992) 1992 lp = 0.08L ? 0.022fydb (14)

Panagiotakos and Fardis (2001) 2001 lp = 0.12L ? 0.014.as1.fy.db (15)

Berry et al. (2008) 2008 lp = 0.05L ? 0:1
fydbffiffiffi

f 0c
p (16)

Fig. 3 A typical real moment-rotation (or moment–curvature)
and the corresponding idealised curve for a flexural
plastic hinge.
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Bar buckling
It is expected that during strong earthquakes, longitudinal

reinforcing steel in reinforced concrete structural elements
may undergo large tension and compression strain reversals.
Because of insufficient tie spacing, this repeated loading into
the inelastic range may lead to buckling of steel reinforcing
bars (Rodriguez et al. 1999). The onset of buckling of lon-
gitudinal bars in reinforced concrete columns is a key
damage state (Fig. 4) because unlike less severe levels of
flexural damage, bar buckling requires extensive repairs
(Lehman et al. 2001), significantly reduces the structure’s
functionality (Eberhard 2000), and has clear implications for
structural safety.
Berry et al. (2005) presented the following Eq. (9) for

calculating the plastic rotation:

hbb ¼ C0ð1þ C1qeff Þ 1þ C2
P

Agf 0c

� ��1

1þ C3
L

D
þ C4

fydb
D

� �
ð17Þ

The five constants in Eq. (17) (C0,…,C4) are presented in
Table 2, qeff is the effective confinement ratio, L is the
length of the column, D is the column depth, Ag is the gross
area of column cross section, db is the bar diameter of lon-
gitudinal reinforcement, and f 0c is the compressive strength
of concrete.

6. Structure, Materials and Loads

In the present study, the modeling of a full-scale, four-
storey with three bays, 2D bare frame as is shown in Fig. 5.
The reinforced concrete frame tested at the European Lab-
oratory for Structural Assessment (ELSA) (Pinto et al. 2002)
under two subsequent pseudo-dynamic loadings, first using

the Acc-475 input motion and then the Acc-975 input
motion. It can be considered representative of design and
construction common in Southern European countries such
as Italy, Portugal and Greece in the 1950’s and 1960’s for the
assessment, Strengthening and Repair aims at a key contri-
bution for the calibration and subsequent adoption of the
codes in Europe. It was designed for vertical loads only.
From the numerical analyses of this frame, it was observed

that it has a resistance to horizontal loads, in terms of ultimate
limit state, of approximately 8 % of their weight. Similar
analysis, in termsof allowable stresses, aswas commonpractice
at the time, would lead to lateral resistance of 5 % of the frame
weight (Carvalho et al. 1999). In addition, all elements used in
this study are only inelastic flexural failure mode, However,
some past studies (Inel and Ozmen 2006; Jeong and Elnashai
2005) have reported that even for under-designedRCbuildings,
possessing inadequate transverse reinforcement, the shear
demand is significantly lower than the shear capacity in both
beams and columns and that no shear failure would occur. The
shear force demand–capacity ratio is defined as

Iv ¼ M

VL
ð18Þ

whereM is themaximumflexural strength, L is the length of the
cantilever column, and V is the shear force capacity. Thus, an Iv
value of greater than 1 implies that the column will reach shear
force capacity before it reaches maximum moment capacity,
that is, shear failure. If the Iv value is less than 1, then the column
is expected to develop flexural failure. Both the flexural
capacity, M, and shear capacity, V, are calculated based on the
approach proposed by Priestley et al. (Priestley et al. 1994) is
invoked, which has been developed for both circular and
rectangular columns. According to this approach, V is given by

V ¼ k
ffiffiffiffi
fc

p
0:80Ag

� �þ Ntanaþ Awfyw d � d0ð Þ � cot h
s

ð19Þ

where k is a parameter depending on the curvature ductility
demand as shown in Fig. 6, and a is the angle between the
column axis and the line joining the centers of the flexural
compression zones at the top and bottom of the column. For
the initial shear primary curve, Vuo is derived by setting in
Eq. (19) the value of k corresponding to the curvature duc-
tility demand lu � 3 (i.e.no strength degradation).
The Iv values of structure columns are shown in Table 3,

where in all cases, the Iv values are less than 1, so the col-
umns are expected to develop flexural failure.

6.1 Structural Geometry
A typical two-way slab system was adopted, with 5 m

transverse spans, 150 mm thick slabs and 500 mm deep
beams throughout the building. The columns have the
characteristics indicated in Fig. 7 where it is noticeable that
only column 2 is working in its stronger axis, as a result of
the non-seismic design philosophy adopted. Consequently,
this member plays a dominant role in the response of the
frame and is here after referred to as ‘‘strong’’ column. The

Fig. 4 Typical buckling of longitudinal bar in a spiral-
reinforced column.
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lap splice detailing, partially shown in Fig. 4, also strongly
influences the response of the structure since it increases
further the strength differential between the second and third
stories. Further detailing of beams, slab and foundation can
be found in Carvalho et al. (1999).

6.2 Loading
The vertical loads considered in the design consisted of the

self-weight of the slab and transverse beams, finishes, infill
walls and the quasi-permanent static load. The Fig. 8 shows
the scheme of vertical loads applied to the structure.
The input seismic motions were defined in order to be

representative of a moderate-high European seismic hazard
scenario. Hazard consistent time series of acceleration (15 s

Table 2 Results of regression analyses.

Column
deformation

Column type Coefficients

C0 C1 C2 C3 C4

hbb (17) Rectangular-
reinforced

0.019 1.650 1.797 0.012 0.072

Spiral-reinforced 0.006 7.190 3.129 0.651 0.227

Fig. 6 Relationship between curvature ductility demand and
strength of concrete shear resisting mechanisms
(Priestley et al. 1994).

Fig. 5 Four-storey, three-bay RC frame geometry (m), (elevation and plan views, after Carvalho et al. 1999).
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duration) were artificially generated (Figs. 9, 10), and two
with different return periods were chosen: 475 years (peak
acceleration 2.180 m/s2) BF475 and 975 years (peak accel-
eration 2.884 m/s2) BF975 (ELSA) (Pinto et al. 2002).

6.3 Material Properties
6.3.1 Concrete Model
Mander et al. (1988) have proposed a unified stress–strain

approach for confined concrete applicable to both circular
and rectangular shaped transverse reinforcement. The stress–
strain model is illustrated in Fig. 11 and f 0cc is based on an
equation suggested by Popovics (1973). For a slow (quasi-
static) strain rate and monotonic loading, the longitudinal
compressive concrete stress is given by:

f ¼ f 0ccxr
r � 1þ xr

ð20Þ

where f 0cc is the compressive strength of confined concrete
and x is a ratio of longitudinal compressive concrete strain
(ec), r is the ratio of the concrete’s initial modulus to the
difference of the initial and secant moduli of elasticity. These

parameters and their components are mathematically
expressed by:

x ¼ ec
ecc

ð21Þ

ecc ¼ eco 1þ 5
f 0cc
f 0co

� 1

� �� �
ð22Þ

As suggested by Richart et al. (1928), where f 0cc and
eco = the unconfined concrete strength and corresponding
strain, respectively (generally eco = 0.002 can be assumed),
and

r ¼ Ec

Ec � Esec
ð23Þ

where

Ec ¼ 5000
ffiffiffiffiffi
f 0co

p
MPa ð24Þ

Is the tangent modulus of elasticity of the concrete
(1 MPa = 145 psi), and

Table 3 Results of The shear force demand–capacity ratio (Iv).

Section (b 9 h) V total (KN) VxL (KN 9 m) M (KN 9 m) Iv

250 9 600 213.0536589 287.622439 247.27 0.85970344

400 9 200 64.76455409 87.432148 36.43 0.41666596

300 9 200 53.68678094 72.4771543 26.9 0.37115144

250 9 500 143.7311598 194.037066 113.9 0.58700125

Fig. 7 Four-storey, three-bay RC frame geometry (m), (reinforcement details of the columns, after Carvalho et al. 1999).
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Esec ¼ f 0cc
ecc

ð25Þ

The characteristic parameters are listed below:
fc = 16300 kPa, ft = 1900 kPa, ec = 0.002 m/m,
Ec = 18975 MPa.

6.3.2 Steel Model
The cyclic behavior of the steel bars is simulated using the

classical Menegotto and Pinto (1973) model with kinematic

hardening (Fig. 12) and possibility to take into account
buckling by introducing a negative modulus slope in com-
pression depending on the transverse steel reinforcement
spacing. The monotonic behavior is defined through the
initial Young’s modulus (Es), the plastic threshold (esy, rsy),
the ultimate strength and strain (eu, ru) and the yielding
slope (Eh). The unloading and reloading process, is guided
by analytic relations (Eqs. 26–29) corresponding to a set of
curves ranging between the elastic and the yielding
asymptotes.

Fig. 8 Scheme of vertical loads for nonlinear analysis, after Carvalho et al. (1999).

Fig. 9 Acceleration time histories for 475, 975 years return period.
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r� ¼ be� þ 1� b

1þ e�ð ÞR
	 
1=R

2
64

3
75 ð26Þ

where:

r� ¼ rs � rr
r0 þ rr

ð27Þ

e� ¼ es � er
e0 þ er

ð28Þ

R ¼ R0 � Ain
Aj þ n

ð29Þ

Tension: i = 1 and j = 2; Compression: i = 3 and j = 4.
(rs, es) is the studied point; (ro, eo) is the crossing point of

the elastic and yielding slopes; (rr, er) are the coordinates of
the previous point of load reversion; b is the Eh/Es ratio; R is
a shape parameter; n is the ratio between the maximum
reached strain during loading; eo, Ro, Ai and Aj are material
constants that can be obtained from experimental results. A
detailed description of the model is presented in Menegotto
and Pinto (1928).
The Menegotto-Pinto steel model is employed for defining

the steel material with the following properties:
Es = 2.00E ? 008 kPa, fy = 343000 kPa, l = 0.0024.
The materials considered at the design phase were a low

strength concrete class C16/20 (CEN, 1991) and smooth
reinforcement steel class Fe B22 k (Italian standards). The
latter refers to smooth bars with a yield stress of 235 MPa
and ultimate strength of 365 MPa.

7. Results and Discussion

7.1 Displacement
In order to evaluate the level of accuracy obtained with the

different modeling strategies, the first step is to evaluate the
global response of the structure under seismic action. The
roof time-displacement trends for the studied frame are
depicted in Figs. 13 to 18 respectively, obtained by using
inelastic force-based elements (IFBE) and inelastic dis-
placement-based elements (IDBE) with distributed and
concentrated plasticity, taking into account the subdivision
of elements.
Figure 13 shows the top displacement depending on the

number of integration points for force-based elements. The
results found indicate that in the first few seconds (less than
5 s), the influence of the number of integration points on the
seismic response is negligible, but between 5 and 13 s for
the BF475 earthquake and 5 and 10 s for the BF975 earth-
quake, the numerical results for the three points integration
scheme are different from the experimental ones. The results
given by the four and five integration points schemes are in
good agreement with the experimental results.
Figure 14 shows the effect of the discretization of the

force-based elements on the global behavior of a structure
under seismic loading. The influence of the discretization is
negligible in all analyses.
Figure 15 shows a comparison between experimental and

numerical results obtained by using different equations to
evaluate the length of the plastic hinge for the force-based
elements. The displacements obtained by Eq. (15) in both
cases are larger than those obtained from the experimental
test, moreover, Eqs. (13), (14) and (16) give almost identical
results in the first case (BF475 earthquake), but in the 2nd

Fig. 12 Menegotto-Pinto steel model.

Fig. 11 Mander et al. (1988) model for monotonic response
of confined and unconfined concrete.

Fig. 10 Response spectra of the accelerograms ACC475
and ACC 975.
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case (BF975 earthquake), Eq. (16) gives different results
compared to experimental Results. These differences
between the analytical and experimental results can be
attributed to the assumed value of the plastic hinge length
and to the frequency content of the earthquake.
The results of a nonlinear analysis using displacement-

based elements with varying number of discretization of the
elements is shown in Fig. 16. The results show clearly that
the number of elements affects the displacement values, and
that increasing the number of elements up to 4 elements in
the columns and beams results in a good convergence to the
experimental results.
In this section, Fig. 17, a discretization of columns and

beams at their ends was used in order to capture the non-
linearity of materials (concrete and steel). We note that the
discretization in two and four elements gives a good

convergence to the experimental results than a single ele-
ment. It should be noted that for a discretization with 4
elements, the analysis stopped for BF975 earthquake.
Figure 18 show a comparison between the experimental

results and the numerical results using displacement-based
elements with concentrated plasticity (plastic hinges length
is equal to zero at the ends). The results are in good agree-
ment for the first few seconds (\ 5 s), but after the fifth
second there is a remarkable divergence between the
numerical and experimental results.

7.2 Inter Storey Drift
The lateral deformability of structural systems is measured

through the horizontal drift. In buildings, storey drifts D are
the absolute displacements of any floor relative to the base,
while inter-storey drifts d define the relative lateral

Fig. 13 Effect of varying the number of integration points on the computed global response in FB formulation for the: a BF475 and
b BF975 tests.

Fig. 14 Effect of the different number elements with four integration points in FB formulation of the: a BF475 and b BF975 tests.
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displacements between two consecutive floors. The inter–
storey drifts are generally expressed as ratios d/h of dis-
placement d to storey height h. Drifts of the roof D nor-
malized by the total height H of the building (roof drifts, D/
H) are also used to quantify the lateral stiffness of structural
systems. The roof drift ratio D/H may be considered d/h
averaged along the height and hence is not suitable for
quantifying variations of stiffness in the earthquake-resisting
system.

Inter-storey drifts are caused by flexural, shear and axial
deformations of structural elements, e.g. beams, columns,
walls and connections. Axial deformations due to shortening
or elongation of members are generally negligible; flexural
and shear deformations are the primary cause of non–
structural damage.
Figure 19 shows a plot of the vertical distribution of the

maximum story-drift of the main frame. It is clear that the
analytical model is able to predict the soft-storey at the third

Fig. 15 Effect of plastic hinge length in FB formulation For the: a BF475 and b BF975 tests.

Fig. 16 Effect of varying the number elements in DB formulation for the: a BF475 and b BF975 tests.
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floor. Further refinement of the analytical model could per-
haps produce a closer match between the analytical and
experimental drift profiles but this is not within the scope of
the present exercise. It suffices that the nonlinear fiber
analysis can predict the soft-storey at the third floor and thus
this will be the reference to which all other analytical anal-
yses will be compared, as can be observed in these figures,
inter-storey drift ratios of regular frames, satisfy the
requirements of the LS performance level (limiting drift
2 %).

The comparison between the experimental and the dif-
ferent numerical models for the maximum storey shear is
shown in Fig. 20. Storey forces or shears are no longer
applied directly to the structure but rather come as a result of
structural equilibrium to the applied displacement pattern,
thus allowing for the reproduction of reversal of storey shear
distributions. The shear distributions are automatically
derived to attain structural equilibrium with the imposed
storey drifts, rather than being a result of the loads directly
applied to the structure. We can see in the tow earthquakes

Fig. 17 Effect of the varying the number elements at the ends in DB formulation for the: a BF475 and b BF975 tests.

Fig. 18 Effect of the varying the number elements in displacement-based formulation with concentrated plasticity for the: a BF475
and b BF975 tests.
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(BF475 and BF975), the models give good convergences
compared to the experimental results and these models can
predict the response of the structure especially for the
IDBECP-4 Elements model.

7.3 Energy Dissipation for Various Models
Based on principles of earthquake engineering, for proper

seismic behavior of structure, the input energy to the struc-
ture due to earthquakes need to be absorbed and/or

Fig. 19 Maximum interstorey drift profiles for a four-storey using force and displacement-based with dynamic analysis of the:
a BF475 and b BF975 tests.

Fig. 20 Maximum storey shear profiles for a four-storey using force and displacement-based for the: a BF475 and b BF975 tests.
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dissipated, depending on the expected performance of the
structure. Energy absorption and dissipation in structures is
usually due to two main sources, the inherent damping of the
structural system, and formation of plastic hinges in struc-
tural components and nonlinearity.
The global base shear force versus roof lateral displace-

ment hysteretic response is plotted in Fig. 21 for the BF475
and BF975 tests. For the BF475 test, the response remained
practically within the elastic range as illustrated in Fig. 21a.
The BF475 test deformed the building to a maximum roof
displacement equal to 0.6 m, while the maximum base shear
force was 180 kN. Figure 21b shows the plot of the base
shear versus roof displacement hysteretic curves for the
BF975 test. At this higher intensity earthquake, some non-
linear effects with noticeably wider force–displacement
loops characterized the response of this system. The peak

roof displacement and maximum base shear force measured
in this test were 0.1 m and 200 kN. The IFBEDP-4 Inte-
gration points model showed the best correlation with the
experimental results.

7.4 Damage Pattern
7.4.1 Experimental Damage Results
The RC frame behaviour was classified as satisfactory for

the seismic action characterized by the accelerogram BF-
475, not showing significant global damage, but only small
local damage. With the accelerogram BF-975 and only for
less than half of test time, the damage observed was stronger,
mainly on the third storey wide column where some exten-
sive cracks appear (Fig. 22). The test was stopped at half of
the time in order to prevent irreparable damage and to allow
the use of the retrofit solutions.

Fig. 21 Base-shear versus top-displacement curves for the: a BF475 and b BF975 tests.
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Figure 23 shows different levels of damage within the
numerical models, the damage in frame structures using the
IDBEDP and IDBECP elements are not identical to the
damage observed in the experimental test for both seismic
loadings. The analysis with IFBEPHL and IFBEDP elements
shows that these elements can capture the damage in the soft
storey on the third storey column, where the limit states LS
and CP are apparent, this indicates that the models with the
last elements are good for predicting damage in nonlinear
analysis of RC structures. The damage of member element
of structure under bar buckling effect is not apparent in this
study because the plastic rotation values are greater than the
collapse values of elements since the structure is not excited
to high intensity loading in this test.

8. Conclusion

This study is concerned with the evaluation of the accu-
racy and efficiency of commonly available numerical models
for RC frame elements. Four representative numerical
models, reproducing an experimental test widely referred in
recent literature, have been used. The consequences of dif-
ferent modeling assumptions, such as element formulation,
mesh discretization, number of integration points, were
investigated under different earthquakes (BF475, BF975).
The main findings are:

• The two major types of distributed inelasticity frame
elements, displacement-based (DB) and force-based
(FB), rely on completely different finite element

assumptions and are thus expected to yield rather
different results under non-linear analyses.

• Unlike the DB approach, the FB relies on the assumption
of force shape functions along the element, which always
verify exact equilibrium independently of the sectional
constitutive relations (linear or non-linear). This implies
a somehow more ‘‘complicated’’ state determination
procedure, but theoretically no meshing is required.

• A Gauss–Lobatto integration scheme should be used for
FB elements. Although a lower bound of 4 integration
points element is required in order to provide a reliable
result, a choice of a larger number of, for instance, five
integration points can also be justifiable in order to
obtain a completely stabilized prediction of the response.

• Regardless of good prediction of force-based beam-
column element peak forces, the lumped plasticity with
plastic hinge length for Eqs. (14) and (16) exhibit better
performance on predicting the seismic response of RC
frame elements, and Eq. (19) could be influenced by the
frequency content of the earthquake, but Eq. (17) does
not give good results for the two earthquakes (BF475
and BF975).

• DB formulations show a quickly converging response
when the number of elements increases. However, a
minimum number of four elements is required to attain an
acceptable degree of accuracy in modeling the inelastic
response.

• The concentrated plasticity models have the disadvan-
tage of separating the strength-moment interaction and
the axial stiffness interaction of the element’s behavior,
and the need to undertake a moment–curvature analysis

Fig. 22 After BF PsD earthquake testes: damage observed on the 3rd storey column.
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to determine the elastic and post-elastic stiffness, and the
nonlinear interaction axial force-moment envelope.

• The frequency content of the earthquake is seen to
influence notably the nonlinearity response.

• The limit states based on the plastic rotation in model
with FB formulations are good for prediction the damage
in nonlinear analysis of RC structures.

• A high intensity seismic loading is required for a damage
to appear under the buckling of a bar.

(a)                                                     (b)
IFBEDP - 4 Integration points

(a)                                                 (b)

IFBEPHL – Eq 14

(a)                                  (b)

IDBEDP – 6 Elements

(a)                                                    (b)

IDBECP – 4 Elements

IO: immediate occupancy, LS: life safety, CP: collapse prevention,   BB: Bar buckling.

Fig. 23 Typical damage pattern and plastic hings formation for the seismic tests: a BF475 and b BF975 tests
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