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Columns with axial load causing biaxial bending are present in
many different building structures. The provisions of ACI 318
Section 10.2 are the basis for traditional design aids that show
section strength when moments act in a plane of symmetry.
Strength analysis for biaxial bending is significantly more difficult,
as moments are not applied in a plane of symmetry. Several methods
of analyses that use traditional design aids are reviewed and the
results are compared with data obtained from physical tests of normal
strength concrete columns subjected to short-term axial loads and
biaxial bending. Results indicate that any among the four different
methods of cross-sectional analysis are equally suitable for design
purposes. The value of three-dimensional interaction diagrams in
the design process is discussed. Computer-based methods of analysis
are also described and compared with test observations.
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INTRODUCTION
Columns resisting axial load and biaxial bending can exist

in building structures. Column bending is uniaxial when the
axial load acts at an eccentricity along one of the principal
axes (in a plane of section symmetry), and column bending
is biaxial when the load is applied at an eccentricity that is
not along a principal axis. Analysis of a rectangular cross
section in uniaxial bending uses an equivalent rectangular
stress block acting on a rectangular area of compressed concrete
and a neutral axis (axis of zero strain) that is perpendicular to
the direction of the eccentricity. Any lateral deflection along
the longitudinal axis of the column under uniaxially eccentric
compression loads remains in the plane of section symmetry.
Analysis of stress on a rectangular cross section in biaxial
bending can involve a triangular or trapezoidal area of
compressed concrete, as well as a neutral axis that is not
perpendicular to the direction of the eccentricity. Generally,
the lateral deflection along the longitudinal axis of the column
under biaxially eccentric compression loads is in a direction
different from the direction of the eccentricity.

Cross sections under service load conditions with low levels
of compressive stress and no cracking of concrete have a
unique geometric centroid that can be determined with elastic
analysis methods of solid mechanics after steel areas are
transformed by the modular ratio (Es/Ec) between steel and
concrete. Because concrete cracks at low tensile stress, it
does not effectively resist tension, and any area of tensile
concrete is neglected. Consequently, in the presence of tensile
strain, the portion of the cross section in compression varies
with load and eccentricity. The elastic analysis of transformed
rectangular cross sections under uniaxially eccentric compres-
sion remains relatively simple because equilibrium equations
yield a second-order polynomial for locating the neutral axis.1

Under biaxially eccentric compression, the equilibrium
equations can be solved iteratively. After the location and

angular orientation of the neutral axis have been established,
displacements and concrete and steel stresses can be estimated
for service load conditions.

Cross sections in which material stress is not proportional
to material strain are more complex to analyze because the
elastic superposition of stresses does not apply. Methods of
analysis for such cross sections are described herein.
Strength design must be based on the cross section ultimate
strength, which is not influenced by the sequence of load that
causes failure. Several design procedures for ultimate
strength analysis are examined in this paper and recom-
mendations for design are offered. The results of the study
are limited to normal-strength concrete columns subjected to
short-term loads.

RESEARCH SIGNIFICANCE
Reinforced concrete columns can be subjected to combined

biaxial bending moments and axial load. Current building
codes, however, do not give enough guidelines for the design
and analysis of these structural elements. This study presents
an overview of recently developed design and computer
analysis methods, and they are compared with many short
and slender columns under actual tests. Examples are also
provided for engineering practices.

ANALYSIS PROCEDURES FOR 
STRENGTH INTERACTION SURFACES

Several writers on the analysis of the ultimate strength of
biaxially loaded columns explained the relationships that are
needed to consider nonlinear stress distributions throughout
a plane strain field.2-4 An equivalent compression zone, similar
to the one developed by Whitney5 and given in ACI 318
Section 10.2.7,6 was used to model concrete in the compression
zone for calculating ultimate strength. ACI 3186 Section 10.2.3
specifies the maximum usable concrete strain to be 0.003.
That strain together with any location and orientation of a
neutral axis defines failure condition for which one set of
failure coordinates Pn, Mnx, and Mny can be evaluated. The
locus of all such points is a strength interaction surface. One
quadrant of such a graph is shown in Fig. 1. Moment contours
representing planes of constant axial load have been used to
describe the three-dimensional ultimate strength interaction
diagram (Fig. 1). These contours are similar to a series of
ellipses for reinforced concrete rectangular cross sections.7,8
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Deviations from the elliptical approximation are largest
when the ultimate axial load is near the axial load strength
corresponding to a balanced strain condition and the eccen-
tricity of the axial load is in the direction of a corner of the
cross section. The balanced strain condition occurs when a
limiting strain of 0.003 in the concrete is reached as the tension
reinforcement achieves first yield. Design aids were devel-
oped from analyses that used the rectangular stress block for
concrete.9-11 The design aid relationship used was

(1a)

where
Mnx = applied nominal bending moment about the X-axis;
Mx0 = nominal bending moment strength if axial load

were eccentric only about the X-axis;
Mny = applied nominal bending moment about the Y-axis;
My0 = nominal bending moment strength if axial load

were eccentric only about the Y-axis; and
α = axial load contour exponent between 1 and 2.

Equation (1a) describes the true ellipse when the exponent
α = 2, and can be written as

(1b)
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Graphs in Reference 10 show α to be a function of the ratio
between the specified compressive strength of concrete and the
yield strength of steel, the ratio between the ultimate axial
load and the cross section ultimate concentric strength, the
reinforcement ratio, and the ratio between the shorter and the
longer side of a rectangular cross section.

Design aids in the 1970 ACI SP-17A Handbookl2 and the
1972 CRSI Handbookl3 were based on interaction diagrams
developed in Reference 14 for square cross sections bent
about the diagonal axis at 45 degrees for which the resultant
moment acts in a plane of symmetry. The contour for an axial
load on the interaction surface was defined by two straight
lines that connect moment values for bending about a principal
axis and the moment value at the 45-degree skew angle.

An alternate equation that can be used to describe an ultimate
strength interaction surface published in 196015 and is used
in the commentary of ACI 3186 as evidence of adequate
strength in reinforced concrete cross sections

(2)

where
Pni = nominal axial load strength under biaxial eccentricity;
Pnx = nominal axial load strength for single eccentricity

along Y-axis;
Pny = nominal axial load strength for single eccentricity

along X-axis; and
Pn0 = nominal concentric compression strength of the

cross section.
If the value of Pni from Eq. (2) , reduced by a strength

reduction factor φ, exceeds the applied factored axial load Pui
at the biaxial eccentricity, the section is adequate. Design
aids in the 1978 ACI SP-17 Handbook16 were provided for
solving Eq. (2). The use of Eq. (1) or (2) requires determining the
cross section bending strength about each principal axis
separately. Such definitions are available with design aids in
the form of graphs17 or tables.18 Equation (1) and (2) were
developed for cross section strength. These equations are
also relevant for slender columns as for short columns if the
values Mnx and Mny for Eq. (1) and Pnx and Pny for Eq. (2)
are obtained with eccentricities magnified separately for
bending and slenderness about each principal axis.

Reports of physical tests on square columns subjected to
biaxially eccentric compression confirm the shape of interaction
surfaces predicted from design aids and Eq. (1) and (2).19

Generally, test strengths exceeded strength predictions from
the design aids. Studies on rectangular and round-ended
bridge pier columns20 included tests and analytical investigation,
which used discrete elements and various stress-strain models
for concrete. Ultimate strength estimates were found to be
insensitive to the specific shape of the stress-strain function
(bilinear, parabolic, higher-order polynomial) used for
concrete in compression.20 The clear spacing between
longitudinal bars in these specimens was about 2 in. (51 mm) or
less, and the effect such spacing can have on confining
concrete effectively to develop more compression capacity
was not considered.21,22 The test results showed that to predict
the maximum bending moments between the ends of an
eccentrically loaded slender column, moment magnifiers for
slenderness effects could be evaluated separately for each
principal axis of bending. Equation (1b) predicted ultimate
biaxial strength of cross sections with an accuracy as precise

1
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------- 1
Pnx

-------- 1
Pny

--------
1

Pn0

--------  (The Reciprocal Load Equation)–+=
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Fig. 1—Typical interaction surface for ultimate strength of
column cross section.
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as that obtained with the rectangular concrete stress block
applied for determining uniaxial strength.20

The 1988 Australian Standard AS 360023 adopted Eq. (1a)
for cross sectional strength with α being between 1 and 2 and
defined as

(3)

where
Pui = applied factored axial load under biaxial eccentricity;
α = 1 for values of Pui less than 0.106Pn0; and
α = 2 for Pui greater than 0.459Pn0.

The 1983 AASHTO specifications24 for highway
structures accepted the results of cross sectional analysis
derived from the same ultimate strength conditions as those
in ACI 318,6 that is, a limit strain of concrete of 0.003, plane
sections remaining plane during all load cases, equivalent
rectangular compression stress block for concrete at ultimate
strength, and elastic steel response before nominal yield strain
with yield stress for all strains higher than or equal to nominal
yield strain. In addition, when Pui is greater than 0.1fc′Ag, Eq. (2)
can be used; when Pui is less than 0.1fc′Ag, Eq. (1a) with α  equal
to 1 can be used, where Ag = gross area of column cross section
and fc′  = specified compressive strength of concrete.

Hsu25 proposed a variation of Eq. (1) with the coefficient α
equal to 1.5 and a term reflecting the influence of the ratio
between the nominal axial load and balanced strain axial load

(4)

where
Pnb = nominal axial load strength of the cross section for

balanced strain condition under biaxial bending;
Mnbx = nominal bending moment strength for balanced

strain condition if axial load were eccentric only
about the X-axis; and

Mnby = nominal bending moment strength for balanced
strain condition if axial load were eccentric only
about the Y-axis.

The magnitude of Pnb will not be a constant value unless
the column section is square and the same amount of longi-
tudinal steel is placed on each of the four faces. The value of
Pnb for Eq. (4) is between Pnbx for bending about the X-axis
and Pnby for bending about the Y-axis. Linear interpolation
is recommended.

Based on reports of the European Working Commission,
MacGregor26 suggested that sections designed for biaxial
bending be proportioned on the basis of the required axial
load acting at an eccentricity eoi larger than either of the
required values ex and ey. For ex/x greater than or equal to ey /y,
a value eoi should be taken as

(5)

where with Pu/(fc′Ag) ≤ 0.4, β  = [0.5 + Pu/(fc′Ag)](fy + 40)/100 ≥
0.6; with Pu/(fc′Ag) > 0.4, β  = [1.3 – Pu/(fc′Ag)](fy + 40)/100 ≥ 0.5
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The Equation of Failure Surface( )
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(fy in ksi units); Ag = gross area of cross section; and x, y = column
cross section dimension along the X- and Y-axis, respectively.

If ex/x < ey/y, the x and y terms as well as the subscripts in
Eq. (5) are transposed. Hence, a section is selected for the
required load Pu acting at an eccentricity eoi about one of the
principal axes of the rectangular section. This procedure is
limited in application to columns with doubly symmetric
cross sections having the ratio of longer to shorter dimensions
between 1 and 2 and reinforced with equal reinforcement on
all four faces. As a result, it appears to be more suited for
selection of trial sections for preliminary sizing of columns.

ULTIMATE STRENGTHS FROM DESIGN 
PROCEDURES COMPARED WITH TEST RESULTS

Ultimate axial load strengths from 59 test specimens subjected
to biaxial bending from Bresler,15 Ramamurthy,19 Furlong,20

Anderson and Lee,27 Hsu,25 and Heimdahl and Bianchini28

were compared with those computed from the design formulas
given previously. These formulas consist of Eq. (1b), Eq. (2),
Eq. (1a) with α computed from Eq. (3), and Eq. (4). The
refinements given in design aids of References 9 to 11 for
determining the specific values of exponent α between 1 and
2 for Eq. (1a) produced computed strength values lower than
those from Eq. (1b). The database involves column specimens
with cross sections of 4 x 4 in. (101.6 x 101.6 mm) square
to 8 x 8 in. (203.2 x 203.2 mm) square or 6 x 12 in. (152.4 x
304.8 mm) rectangle. Effective length varied from 16 to 80 in.
(406.4 to 2032 mm). Reinforcement ratios ρg varied from
2.4 to 5% with yield strengths fy from 44,500 to 73,000 psi
(307 to 503 MPa). Concrete strength fc′  varied from 2805 to
5435 psi (19.3 to 37.5 MPa).

Computed strengths were determined using the concrete
rectangular stress block of ACI 318 Section 10.2.7.6 Strength
reduction factors φ were taken as 1.00 in computation. A
computer program was prepared to evaluate strengths using
singular applications of Eq. (1) to (4). Specimens were loaded
symmetrically with respect to the midheight of the column and,
for the purpose of data comparison, moment magnifiers were
determined separately for each axis of bending. Hence, the
factor δns for each axis of bending was calculated from the
approximation given in ACI 318 Section 10.12.36 for columns
in nonsway frames with Pu /φ taken as Pni and the equiv-
alent uniform moment diagram factor Cm taken as 1.0 for
these specimens

(6)

where Pc = π2EI/(klu)2; k = the effective length factor taken as
1.0 for these tests; and EI = the larger value from EI = (0.2EcIg +
EsIs)/(1 + βd) or EI = 0.4EcIg/(1 + βd) with Ec = 33wc

1.5 √fc′ psi
(wc is the unit weight of concrete in lb/ft3, fc′  in psi) or Ec
= 0.043wc

1.5 √fc′ MPa (wc is the unit weight of concrete in
kg/m3, √fc′  in MPa), Es = 29 × 106 psi (200,000 MPa), and
βd = 0 (short-term load). As indicated by Eq. (6), the stiffness
reduction factor φk used in ACI 3186 Eq. (10-9) was taken
equal to 1.0 for this study. Table 1 displays the specimen
properties, observed strengths (measured axial load
strengths Ptest), and the ratios between the observed
strengths and the computed axial load strengths (P1, P2, P3,
P4). P1 was computed using Eq. (1b), P2 was calculated
using Eq. (2), P3 was evaluated from Eq. (1a) with α taken

δns
1

1
Pni

Pc

-------–

---------------- 1.0≥=
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from Eq. (3), and P4 was determined from Eq. (4). Average
values of ratios between observed strengths and computed
strengths from each of the four design equations are given at
the bottom of Table 1 together with the standard deviation
and the coefficient of variation for each set of ratios. The
average values of ratios between the observed and calculated
strengths are 0.98 for P1, 1.07 for P2 and P4, and 1.16 for P3.

The coefficients of variation are nearly 0.16 for P1, P2, and
P4, and 0.2 for P3. These values show reasonable agreement
between observed and calculated strengths, indicating that
all four methods of calculation compared in Table 1 are
acceptable for design. A similar conclusion was drawn by
Amirthanandan and Rangan29 for the Australian Standard
AS3600.23 Sample calculations for a test specimen taken

Table 1—Comparison of observed and computed axial load strengths

Reference
b x h, 

mm x mm klu, m ρg, % fy, MPa fc′ , MPa ex, mm ey, mm Ptest, kN Ptest /P1 Ptest /P2 Ptest /P3 Ptest/P4

15 152 x 203 1.21 2.6 368.9

22.1 76.2 101.6 142.3 0.831 0.979 1.131 0.950

25.5 152.4 203.2 75.6 0.971 1.278 1.441 1.000

24.1 152.4 101.6 93.4 0.968 0.909 1.333 0.968

24.8 76.2 203.2 106.8 0.992 1.472 1.437 1.076

19

203 x 203 2.03 3.9 322.6

29.2* 21.0 78.5 628.9 1.114 1.201 1.130 1.179

25.8* 19.4 46.9 771.7 1.075 1.177 1.075 1.225

33.5* 50.8 88.0 533.8 1.079 1.108 1.217 1.145

32.0* 63.5 110.0 395.9 1.040 1.094 1.280 1.050

19.5* 35.9 35.9 598.3 0.980 1.114 0.980 1.151

27.6* 64.7 64.7 500.4 0.996 1.046 1.065 1.089

29.5* 71.8 71.8 516.0 1.096 1.148 1.249 1.185

34.1* 101.6 101.6 369.6 1.092 1.187 1.497 1.090

152 x 229 1.91 4.6 322.6

31.6* 25.4 38.1 785.1 1.164 1.293 1.164 1.351

25.4* 55.7 84.5 400.3 1.132 1.233 1.281 1.253

24.5* 76.2 114.3 311.4 1.207 1.331 1.559 1.296

25.1* 32.3 32.3 680.5 1.233 1.362 1.235 1.406

30.9* 80.8 80.8 378.1 1.127 1.200 1.399 1.320

23.9* 79.2 45.7 400.3 1.327 1.367 1.454 1.374

152 x 305 1.91 3.4 322.6

23.4* 56.8 113.6 464.8 1.225 1.281 1.451 1.348

21.4* 76.2 152.4 311.4 1.112 1.214 1.452 1.190

27.7* 86.2 86.2 435.9 1.374 1.422 1.658 1.352

24.8* 66.0 38.1 542.7 1.294 1.287 1.351 1.308

20 127 x 229 1.93 2.4 451.6

33.7 26.4 10.2 529.3 1.059 1.091 1.061 1.201

33.6 19.1 22.9 533.8 0.952 1.014 0.952 1.096

35.7 12.7 38.4 573.8 0.942 1.024 0.942 1.097

34.5 28.7 9.9 387.4 0.799 0.822 0.800 0.898

35.9 26.2 30.7 419.4 0.847 0.907 0.854 0.962

32.4 18.5 56.4 381.6 0.817 0.899 0.825 0.932

30.5 47.2 20.3 239.7 0.717 0.709 0.730 0.791

30.0 54.9 49.0 179.7 0.635 0.653 0.693 0.697

30.7 41.4 110.5 179.7 0.707 0.770 0.874 0.757

27 102 x 102 1.27 5 314.4
37.5 71.6 71.6 60.0 0.839 0.925 1.189 0.818

37.5 71.6 71.6 64.5 0.901 0.993 1.278 0.879

25

102 x 102

0.76 2.75 306.8
22.1 25.4 38.1 93.4 0.886 1.034 0.938 0.968

28.2 25.4 38.1 110.3 0.908 0.963 0.961 1.002

1.02 2.81 503.3

26.9 63.5 88.9 42.7 1.000 1.171 1.433 1.061

26.2 76.2 88.9 38.7 0.981 1.18 1.426 1.048

26.8 88.9 88.9 35.6 0.964 1.176 1.408 1.027

26.4 50.8 50.8 63.6 0.947 1.039 1.312 1.057

25.6 12.7 101.6 48.0 1.059 1.049 1.191 1.049

26.9 12.7 17.8 27.8 1.102 1.099 1.186 1.026

108 x 108 1.62 4.87 306.8

24.4 76.2 50.8 61.8 1.073 1.214 1.487 1.094

26.8 82.6 57.2 52.5 0.971 1.113 1.353 0.971

29.1 63.5 76.2 60.5 1.075 1.248 1.520 1.075
*Based on fc′  = 0.9fcu, where fcu is compressive strength of 150 mm cubes.
Note: Smaller dimension of cross section is along X-axis and larger dimension of cross section is along Y-axis; ex is eccentricity along X-axis and ey is eccentricity along Y-axis
(both acting at column ends); and k is effective length factor that is equal to 1.0.
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from Furlong20 and listed in Table 1 are shown in
Appendix A.

COMPUTER-BASED ANALYSIS PROCEDURES
Anticipating the availability of computers for design and

recognizing that, for an assumed level of axial load and skew
angle of a neutral axis, an iterative procedure is programmable
for determining appropriate moment values Mnx and Mny.
Taylor30 proposed that several values of Mnx and Mny should
be computed to define a moment strength contour for the
given axial load. Linear interpolation between computed
points would give the strength value for the desired skew angle.
Taylor’s method represents a transition between approximate
design by formulas and analysis for design with help from
computer programs.

Ultimate strength
Several numerical procedures31-33 suited for computer use

were developed to perform an analysis based on force
equilibrium and strain compatibility for columns with cross
sections of arbitrary shape. A common procedure produces a
set of points for a constant ratio of bending moments Mx and
My (constant skew angle) on the three-dimensional failure
surface for constructing the resulting interaction lines (Fig. 1).
The use of computers permits an iterative process that is as
time efficient as the approximate design procedures described
previously and elsewhere.26,34-39

Moment-curvature and load-deflection behavior
Computer analyses of column cross sections are based on

force equilibrium, strain compatibility, and stress-strain
relationships for the constituent materials. Special conditions,
such as concrete confinement and/or strain-hardening of
steel, can be included. Most methods involve the subdivision
of the cross section into elements as shown in Fig. 2. Each
element is assumed to have either a constant stress or a
linearly varying stress. It is necessary to assume the location
and orientation of the axis of zero strain. Strains are propor-

tional to the distance from the zero strain axis. Stresses are
obtained from stress-strain relationships for the concrete and
steel. With the force in each element known, the resultant axial
force and bending moments about the two axes can be calculated.
Several iterations of the neutral axis position are generally
needed before the axial force and bending moments conform
to the desired convergence. Any of the several computational
techniques available,40-48 such as tangent and second stiffness
methods, can be used to produce acceptable strength results.

Most methods of computer analysis include the following
assumptions for the cross section (Fig. 2) and for the member
(Fig. 3): 1) plane sections remain plane during bending;
2) stress-strain relationships for the constituent materials are
known; 3) effects of axial and shear deformations are negligible;

Table 1 (cont.)—Comparison of observed and computed axial load strengths

Reference
b x h, 

mm x mm klu, m ρg, % fy, MPa fc′ , MPa ex, mm ey, mm Ptest, kN Ptest /P1 Ptest /P2 Ptest/P3 Ptest/P4

28 127 x 127

0.41 3.2 493.7

31.9 10.4 25.1 324.7 0.825 0.903 0.825 1.150

31.9 10.4 25.0 342.5 0.869 0.952 0.869 1.110

31.9 19.4 19.4 347.8 0.884 1.000 0.884 1.205

31.9 19.2 19.2 335.8 0.927 1.046 0.927 1.196

0.76 3.2 493.7

34.5 66.6 27.6 169.0 0.875 0.990 0.944 0.997

34.5 124.2 51.4 85.0 0.816 0.827 1.091 0.864

34.5 127.7 52.9 78.3 0.779 0.793 1.038 0.842

35.6 48.2 48.2 172.1 0.823 0.975 0.956 0.958

35.6 49.5 49.5 164.6 0.806 0.956 0.948 0.944

35.6 96.1 96.1 82.3 0.796 0.883 1.169 0.855

35.6 94.6 94.6 84.1 0.797 0.879 1.216 0.883

24.0 63.6 26.3 187.3 1.096 1.253 1.153 1.349

24.0 124.2 51.4 82.3 0.877 1.034 1.101 0.934

25.2 48.7 48.7 169.9 0.995 1.197 1.127 1.205

25.2 94.3 94.3 81.0 0.854 1.017 1.152 0.943

Average 0.977 1.076 1.164 1.072

Standard deviation 0.158 0.178 0.234 0.169

Coefficient of variation 0.162 0.166 0.201 0.158

Note: Smaller dimension of cross section is along X-axis and larger dimension of cross section is along Y-axis; ex is eccentricity along X-axis and ey is eccentricity along Y-axis
(both acting at column ends); and k is effective length factor that is equal to 1.0.

Fig. 2—Discretized cross section of square column for
computer analysis.
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4) no slip takes place between the steel and the surrounding
concrete; 5) end-restraint conditions for the member are known;
6) under zero loading, the segment lengths are straight; and 7)
under eccentric load, the curvature is constant for each segment.

For a displacement-controlled computer analysis of slender
columns subjected to symmetric single curvature (Fig. 3), a
value of deflection at any point, usually the midheight, along
the minor axis is assigned, and a trial set of axial load and end
bending moments is assumed. Then, the internal moments,
including the second-order moments due to lateral deflection
of the member are calculated at each division point. The
curvature and the distribution of strains at each division
point can be obtained from the moment-curvature diagram
developed for the cross section. Material nonlinearity is
included through the stress-strain curves. Cracking of concrete
is also included through the tensile stress-strain curve of
concrete. The second stiffness method is employed to capture
the nonlinear material behavior. Curvatures along the column
length are either integrated numerically to obtain deflection
at all division points, or a finite difference approach is used
to formulate the relationship between the curvature and the
deflection. If the calculated deflection at midheight does not
agree with the assumed value, the trial set of axial load and
end bending moments is modified, and the procedure is repeated
until the convergence is within an acceptable limit, normally
0.1% of the assumed deflection.

For the first iteration, the deflection for each division point
is initially assumed to be zero, or assigned any other value

close to zero, and the resulting bending moments and deflections
at all the division points are calculated. The calculated deflected
shape is then taken as the assumed deflected shape for the
subsequent iteration. After a solution is obtained corresponding
to a particular value of assigned deflection at midheight, a
new value of the midheight deflection is assigned and the
whole procedure is repeated. This method, summarized in
the flow chart of Fig. 4, is capable of determining both ascending
and descending branches of the moment-curvature and load-
deflection curves and has been successfully used for columns
reported by Wang and Hsu.46 Hsu and Mirza;42 Chen and
Shoraka;43 Al-Noury and Chen;45 Poston, Breen, and
Roesset;47 and Menegotto and Pinto48 also developed computer
analysis methods using a tangent stiffness technique to evaluate
the load-moment-deflection relationships. Their methods,
however, can calculate the curvatures and deflections up to the
maximum axial load capacity only. In other words, at present
a tangent stiffness technique is not capable of handling the
descending branch beyond the maximum load capacity.

Computed load-deflection and moment-curvature curves
for two slender columns based on the procedures described
previously are reported herein. Details of these columns—
Column C4 taken from Reference 49 and Column RC7
taken from Reference 22—are given in Fig. 5. Figure 6 to 8
represent a comparison of analytical and experimental results
that show good agreement between experiment and analysis.
It is noted that the second stiffness method has been used to
compare the behavior of tested Column C4 (Fig. 6 and 7),
whereas the tangent stiffness method is employed to compare
the behavior of tested Column RC7 (Fig. 8).

ULTIMATE STRENGTHS FROM
COMPUTER-BASED ANALYSIS

COMPARED WITH TEST VALUES
Ultimate axial-load strengths from 20 column specimens

tested under biaxial bending from Bresler,15 Ramamurthy,19

Anderson and Lee,27 and Hsu25 were compared with the
computer-based analysis procedure. The procedure and

Fig. 3—Slender column divided into segments.

Fig. 4—Flow chart for analysis of slender columns.
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underlying assumptions used for the computer analysis are
described previously.

Table 2 lists specimen details, observed ultimate axial-
load strengths Ptest, ultimate axial-load strengths from the
computer-based analysis Pcomp, and values of the ratio Ptest/
Pcomp. For the purpose of comparison with Ptest/Pcomp, Table 2
also shows values of Ptest/P1, Ptest/P2, Ptest/P3, and Ptest/P4,
which were taken from Table 1 and calculated from design
equations described previously. In addition, Table 2 shows
the statistics for Ptest/Pcomp, Ptest/P1, Ptest/P2, Ptest/P3, and

Ptest/P4 . A comparison of the average value and the coefficient
of variation for Ptest/Pcomp with those for Ptest/P1, Ptest/P2,
Ptest/P3, and Ptest/P4 indicates the acceptability of the
computer-analysis procedure.

Fig. 5—Details of Columns C4 and RC7 (diameter of No. 3
bar = 9.5 mm; diameter of Gage 14 wire = 0.08 in. (2.03 mm);
diameter of Gage 13 wire = 0.0915 in. (2.32 mm); 10 in. =
254 mm; 1000 psi = 6.9 MPa).

Fig. 6—Comparison of load-deflection curves for Column C4
at midheight using second stiffness method for: (a) deflection
in X-direction; and (b) deflection in Y-direction (Reference 49).

Fig. 7—Comparison of moment-curvature curves for Column C4
at midheight using second stiffness method for: (a) bending
moment about X-axis; and (b) bending moment about Y-axis
(Reference 49).

Fig. 8—Comparison of moment-curvature curves for
Column RC7 at midheight using tangent stiffness method
for: (a) bending moment about X-axis (strong axis); and (b)
bending moment about Y-axis (weak axis) of column.
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COLUMNS OF
NONRECTANGULAR CROSS SECTION

Irregularly shaped columns can result from architectural
consideration or geometric limitations. Frequently, such
columns are located at the exterior of structural systems and are
subjected to a combination of axial-load and biaxial bending.

In the case of column and shearwall configurations, wide-
f1ange sections have been used to enhance both strength and
stiffness. L-sections are frequently located at the corners of
buildings, channel sections are used as columns or enclosures of
elevator shafts, and S- and X-sections have architectural
functions. Current building codes provide specific assumptions
for the analysis of both sections and members, but design
aids are few in number because of the multiplicity of section
geometries. Marin50 and Park and Paulay35 have developed
design aids for L-sections and channel sections, respectively.
Ramamurthy and Khan,51 Hsu,52-54 Poston et al.,55 and Tsao
and Hsu49 have carried out tests on columns with various
sections and complemented these tests with analyses and
design equations. They show that the computer analyses of
both tangent and second stiffness methods described previously
are capable of predicting the load-deformation behavior of
columns with nonrectangular cross section.

CONCLUDING REMARKS
Various methods of analyses have been reviewed and

compared with test data obtained from tests on short and
slender columns with various rectangular and square cross
sections. It is concluded that the elliptic load contour equation,

Eq. (1b), and the reciprocal load equation, Eq. (2), are the
simplest to use, as these formulations do not require supple-
mentary calculations that reflect the influence of axial loads
near the value of balanced axial load strength. The equation
of failure surface, Eq. (4), includes such influence, but it
produces average strength ratio, standard deviation, and
coefficient of variation only marginally better than such values
from the reciprocal load equation. The standard deviation
and the coefficient of variation near 16% for the elliptic load
contour equation suggests that in too many cases it will not
be conservative. The same values near 17% for the reciprocal
load equation and the equation of failure surface should be
sufficiently conservative because the average of strength
values are more than 7% higher than measured values. It is
recommended that the reciprocal load equation and the equation
of failure surface be used for verifying section strength.
These equations are not helpful for selecting a column section.
It should be noted that the equation of failure surface, Eq. (4), is
able to attain the ultimate strengths not only for the concrete
columns under biaxial loading, but also for the concrete
columns under uniaxial bending. In addition, Eq. (4) can also
be used to study the behavior of concrete columns subjected
to combined biaxial bending and axial tension as well.

The elliptic load contour equation can be used effectively
for help in selecting a column section. Because the ellipse
equation appears to produce strength estimates less than
those from the reciprocal load equation and the equation of
failure surface, it is recommended that the resultant moment be

Table 2—Comparison of observed axial-load strengths and axial load strengths computed from 
computer-based analysis procedure

Reference

b x h, 
mm x 
mm klu, m ρg, % fy, MPa fc′ , MPa ex, mm ey, mm Ptest, kN

Pcomp,* 
kN

Ptest /
Pcomp Ptest /P1 Ptest /P2 Ptest /P3 Ptest /P4

15 152 x 203 1.22 2.60 368.9

22.1 76.2 101.6 142.3 120.5 1.181 0.831 0.979 1.131 0.950

25.5 152.4 203.2 75.6 62.9 1.202 0.971 1.278 1.441 1.000

24.1 152.4 101.6 93.4 75.5 1.237 0.968 0.909 1.333 0.968

24.8 76.2 203.2 106.8 88.3 1.209 0.992 1.472 1.437 1.076

19 203 x 203 2.03 3.90 322.6

25.8† 19.4 46.9 771.7 770.9 1.019 1.075 1.177 1.075 1.225

19.5† 35.9 35.9 598.3 615.0 0.973 0.980 1.114 0.980 1.151

34.1† 101.6 101.6 369.6 367.2 1.007 1.092 1.187 1.497 1.090

27 101 x 102 1.27 5.00 314.4
37.5 71.6 71.6 60.0 63.0 0.953 0.839 0.925 1.189 0.818

37.5 71.6 71.6 64.5 63.0 1.023 0.901 0.993 1.278 0.879

25

102 x 102

0.76 2.75 306.8
22.1 25.4 38.1 93.4 96.1 0.972 0.886 1.034 0.938 0.968

28.2 25.4 38.1 110.3 110.4 0.999 0.908 0.963 0.961 1.002

1.02 2.81 503.3

26.9 63.5 88.9 42.7 44.0 0.971 1.000 1.171 1.433 1.061

26.2 76.2 88.9 38.7 40.3 0.959 0.981 1.180 1.426 1.048

26.8 88.9 88.9 35.6 37.7 0.943 0.964 1.176 1.408 1.027

26.4 50.8 50.8 63.6 66.5 0.957 0.947 1.039 1.312 1.057

25.6 12.7 101.6 48.0 46.5 1.033 1.059 1.049 1.191 1.049

26.9 12.7 177.8 27.8 27.5 1.10 1.102 1.099 1.186 1.026

108 x 108 1.62 4.87 306.8

24.4 76.2 50.8 61.8 60.2 1.027 1.073 1.214 1.487 1.094

26.8 82.6 57.2 52.5 57.1 0.919 0.971 1.113 1.353 0.971

29.1 63.5 76.2 60.5 59.9 1.010 1.075 1.248 1.520 1.075

Average 1.030 0.981 1.116 1.279 1.027

Standard deviation 0.096 0.081 0.136 0.187 0.090

Coefficient of variation 0.093 0.083 0.122 0.146 0.088
*Values of Pcomp were taken from Reference 25.
†Based on fc′  = 0.9fcu, where fcu is compressive strength of 150 mm cubes.
Note: Smaller dimension of cross section is along X-axis and larger dimension of cross section is along Y-axis; ex is eccentricity along X-axis and ey is eccentricity along Y-axis
(both acting at column ends); and k is effective length factor that is equal to 1.0.
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increased by 10% before the trial section is proportioned. If
the column section is to be rectangular, the moment about the
weak axis should be normalized by increasing its value by
the ratio between long and short sides of the section before
the resultant moment is computed for proportioning the section.
A sample of examples can be found in Appendix B.

It is noted that the accuracy of the aforementioned design
procedures for strength of slender columns depends on how
the slenderness effect and the effect of sustained loads are
accounted for in the computation of the member displace-
ments. The second-order effect for the design of biaxially
loaded slender columns can be improved by further observations
from physical tests.

Various computer analyses that are able to determine both
ultimate load and load-deformation behavior of concrete
columns under biaxial bending are discussed herein. For
practical purposes, a load-controlled computing technique
along with the tangent stiffness method can be used to analyze
the concrete columns up to maximum axial load capacity
with any type of cross section. It spends less computing time
than that of a displacement-controlled computing technique
together with the second stiffness method. The second
approach, however, is capable of capturing both ascending
and descending branches of the load-deformation characteristics.
It can be used for the detailed analysis and research on
concrete column behavior under any combination of loadings.
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APPENDIX A
Example calculations for strength estimates

Sample calculations for the 5th test specimen listed in
Table 1 from Furlong20 are shown as follows. For the Furlong
test specimens, 76 in.-long (1930 mm) columns with a
section 5 in. (127 mm) wide and 9 in. (229 mm) thick, were
reinforced with 10 No. 3 longitudinal bars that had a yield
strength fy = 65,500 psi (448 MPa). The 5th test specimen
had a concrete strength fc′ = 5210 psi (36.0 MPa), and the axial
force was located 1.03 in. (26.2 mm) from the minor axis and
1.21 in. (30.7 mm) from the major axis. The centers of No. 3
longitudinal bars were reported to be located 0.75 in. (19.1 mm)
from the edge of the section. For all methods, the values EIx and
EIy must be computed to determine values Pcx and Pcy for
moment magnification.

For this specimen, use Ec = 57,600 √fc′  = 57,600 √5210 =
4,160,000 psi (28.7 GPa); EIx = (4160/5)[5(9)3/12] +
(29,000)[6(0.11)(4.5 – 0.75)2 + 4(0.11)(1.25)2] = 542,000 kip-
in.2 (1555.5 kN-m2); and EIy = (4160/5)[9(5)3/12] +
(29,000)8(0.11)(2.5 – 0.75)2  = 156,000 k-in.2 (447.7 kN-m2).

The value Pcx for buckling about the major axis: Pcx =
π2EI/l2 = 926 kips (4118.8 kN).

The value Pcy for buckling about the minor axis: Pcy =
π2EI/l2 = 267 kips (1187.6 kN).

Moment magnification factors will apply with minor axis
bending in symmetric single curvature. For all methods,

strength interaction data for this specimen were developed.
These data are shown in Table A-1.

Method 1—Eq. (1b): The elliptic load
contour equation

This method requires iteration to determine the axial force
for which moments will satisfy Eq. (1).

Trial 1, for Pn = 94.3 kips (419.4 kN), the reported test
load capacity, end eccentricity along major axis = 1.03 in.
(26.2 mm), and end eccentricity along minor axis = 1.21 in.
(37.2 mm).

Applying moment magnifier δns = 1/(1 – P/Pc), δnsxMnx =
[1/(1 – 94.3/926)]94.3(1.21) = 127.0 kip-in. (14.35 kN-m),
and δnsyMny = [1/(1 – 94.3/267)]94.3(1.03) = 150.2 kip-in.
(16.97 kN-m).

Table A1 gives for Pn = 94.3 kips (419.4 kN), Mx0 =
94.3(3.99) = 376.3 kip-in. (42.5 kN-m), and My0 = 94.3(2.35)
= 221.6 kip-in. (25.0 kN-m). Equation (1b) becomes (127.0/
376.3)2 + (150.2/221.6)2 = 0.573, indicating that the failure
load is larger than 94.3 kips (419.4 kN). Iteration shows that
when Pn = 111.3 kips (495.1 kN), Eq. (1) = 1. For Pn = 111.3
kips (495.1 kN), Mnx = [1/(1 – 111.3/926)]111.3(1.21) =
153.1 kip-in. (17.3 kN-m) and Mny = [1/(1 – 111.3/
267)]111.3(1.03) = 196.6 kip-in. (22.2 kN-m).

Table A1 for Pn = 111.3 kips (495.1 kN) gives Mx0 =
111.3(3.31) = 368 kip-in. (41.6 kN-m) and My0 =
111.3(1.95) = 217 kip-in. (24.5 kN-m). Equation (1b) then
gives (153.1/368)2 + (196.6/217)2 = 0.994, indicating that
the failure load is 111.3 kips (495.1 kN).

Method 2—Eq. (2): The reciprocal load equation
This equation would be quite convenient if slenderness

effects were not to be considered. Because critical eccentricities
at midheight must include slenderness effects, however, use
the test load as a trial value for Pni. Moment magnification
factors determined for Method 1 for the axial force of 94.3 kips
(419.4 kN) can be used herein to determine magnified eccen-
tricities at midheight.

δnsxey = ey /(1 – P/Pcx) = 1.21/(1 – 94.3/926) = 1.35 in.
(34.3 mm) for which Table A1 gives Pnx = 187 kips (831.8kN).

δnsyex = ex/(1 – P/Pcy) = 1.03/(1 – 94.3/267) = 1.59 in.
(40.4 mm) for which Table A1 gives Pny =131.5 kips
(584.9kN).

Pn0 = 266.5 kips (1185.4 kN), and Eq. (2) 1/Pnx + 1/Pny –
1/Pn0 = 1/Pni gives 1/187 + 1/131.5 – 1/266.5 = 1/108.7 or
the value of Pni = 108.7 kips (483.5 kN) is greater than the
value for which moment magnifiers are determined. Try Pni
= 104.7 kips (465.7 kN), and repeat the analysis.

δnsxey = ey/(1 – P/Pcx) =1.21(1 – 104.7/926) = 1.36 in.
(34.5 mm) for which Table A1 gives Pnx =186.5 kips
(829.6 kN).

δnsyex = ex /(1 – P/Pcy) = 1.03(1 – 104.7/267) = 1.59 in.
(40.4 mm) for which Table A1 gives Pny = 126.0 kips
(560.4 kN).

Pn0 = 266.5 kips (1185.4 kN), and Eq. (2) 1/Pnx +1/Pny –
1/Pn0 = 1/Pni gives 1/186.5 + 1/126.0 – 1/266.5 = 1/104.7.
Because the value of Pni is the same as the value used for
moment magnification, 104.7 kips (465.7 kN) is the failure load.

Method 3—Eq. (3): The Australian Standard
The Australian Standard gives Eq. (3) for the exponent α

to be used in Eq. (1a) as

Table A1—Demonstration specimen—failure loads 
Pn (kN) for various eccentricities (mm)

Eccen-
tricity 0 12.7 25.4 38.1 50.8 63.5 76.2 88.9 101.6 Pnb

Bent 
about 
major 
axis

1185.4 1043.1 914.1 797.5 696.1 608.5 533.8 471.5 273.1 373.6

Bent 
about 
minor 
axis

1185.4 960.3 765.9 607.2 483.9 391.9 323.8 273.1 226.8 269.1
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An iterative procedure must be employed because the
strength Pui is a factor in the formulation of the value α as
well as for moment magnifiers from slenderness effects. The
reported failure load Pni = 94.3 kips (419.4 kN) and φ = 0.7
were selected as a trial value. The section strength given
in Table A1 continues to apply.

Pui/Pn0 = (0.7)94.3/266.5 = 0.2476. Because this value is
> 0.106 and < 0.459, α = 0.7 + [(1.7)(0.7)94.3]/[(0.6)266] = 1.4.

For Pni = 94.3 kips (419.4 kN), moment magnification factors
from Method 1 indicated that Mnx = 127.0 kip-in. (14.4 kN-m)
and Mny = 150.2 kip-in. (17.0 kN-m). Table A1 with Pni =
94.3 kips (419.4 kN) indicates that Mx0 = 376.3 kip-in.
(42.5 kN-m) and My0 = 221.6 kip-in. (25.0 kN-m). With
these values and α = 1.4, Eq. (1) gives (127.0/376.3)1.4 +
(150.2/221.6)1.4 = 0.80. Because Eq. (1a) has a value less than
1, the section will not fail, and a larger load Pni can be tried.

Let Pni = 110.4 kips (491.1 kN). Then α = 0.7 +
[(1.7)(0.7)110.4]/[(0.6)266.5] = 1.5216.

Magnified end moments calculated as before become:
δnsxMnx = Pniey /(1 – P/Pcx) = 110.4(1.21) /(1 – 110.4/

926) = 151.7 kip-in. (17.1 kN-m); and δnsyMny = Pniex/(1 – P/
Pcy) = 110.4(1.03) /(1 – 110.4/267) = 193.9 kip-in. (21.9 kN-m)

Table A-1 indicates for Pni = 110.4 kips (491.1 kN), Mx0
= 369 kip-in. (41.7 kN-m) and My0 = 217 kip-in. (24.5 kN).

With these values and α = 1.5216, Eq. (1) gives (151.7/
369)1.5216 + (193.9/217)1.5216 = 1.10, indicating that the failure
load is less than 110.4 kips (491.1 kN). Thus, the failure load
is estimated to be 105 kips (467.0 kN).

Method 4—Eq. (4): The equation of failure surface
Slenderness effects from the magnitude of axial force Pni

make the analysis process an iterative exercise as demonstrated
for the other three methodologies. Let the first trial value of
Pni be taken as Pni = 98.3 kips (437.2 kN) in this application
of Eq. (4) to the 5th Furlong’s test specimen. Magnified end
moments become:

δnsxMnx = Pniey /(1 – P/Pcx) = 98.3(1.21) /(1 – 98.3/926) =
133.0 kip-in. (15.0 kN-m); and δnsyMny = Pniex /(1 – P/Pcy) =
98.3(1.03)/(1 – 98.3/267) = 160.2 kip-in. (18.1 kN-m).

For Pni = 98.3 kips (437.2 kN), Table A1 gives eccentricities
for which Mnbx = 3.58(98.3) = 352 kip-in. (39.8 kN-m) and
Mnby = 2.25(98.3) = 221.5 kip-in. (25.0 kN-m). The critical
section is at midheight of the specimen where the angle of
skew can be taken as the arctan (δnsxMnx/δnsyMny) =
arctan(133.0/160.2) = 39.7 degrees away from the Y (weak)
axis. Linear interpolation between values of Pnbx and Pnby
from Table A-1 to establish Pnb as Pnby + (39.7/90)(Pnbx –
Pnby) = 60.5 + (39.7/90)(84.0 – 60.5) = 70.9 kips (315.4 kN).

Equation (4) gives: (Pni – Pnb)/(Pn0 – Pnb) + (Mnx /Mnbx)
1.5

+ (Mny/Mnby)
1.5 = (98.3 – 70.9)/(266.5 – 70.9) + (133.0/352)1.5

+ (160.2/221.5)1.5 = 0.998, a value very close to 1. The
Method 4 analysis indicates that the failure load is slightly
more than 98.3 kips (437.2 kN).

APPENDIX B
Sample examples

Given the usual design condition for which proportions for
width b and depth h are known, required values are known for
load Pu and moments Mux and Muy, and material strengths fc′  and
fy are known, the following design procedure is recommended.

1. Compute a resultant moment for design Mui =
1.1 ;

2. Select a section for Pui with Mui acting about the major
axis. Distribute reinforcement about the perimeter of the
section; and

3. Check the section according to the reciprocal load equation
using Pux as the load capacity for an eccentricity ey = Mux/Pui
and using Puy as the capacity for an eccentricity ex = Muy/Pui.

If slenderness must be considered, the required moments
Mux and Muy at the end should be increased somewhat before
sections are sized with the steps recommended. After the trial
section is known, required magnified moments δnsxMux and
δnsyMuy can be determined.

Design Example 1—Using fc′  = 5 ksi (34.5 MPa) and
Grade 60 steel, select a square section for a column to support
Pu = 430 kips (1912.6 kN), Mux = 128 kip-ft (173.6 kN-m), and
Muy = 100 kip-ft (135.6 kN-m). Design tables from References
12 and 13 will be used.

1. Compute Mui = 1.1  = 179 kip-ft
(242.7 kN-m);

2. With ex = Mui/Pui = 179(12)/430 = 5.00 in. (127 mm),
try a 16 in. (406.4 mm) square column with eight No. 8 bars; and

3. For the selected section, Pu0 = 1007 kips (4479 kN),
with ey = Mux/Pui = 3.57 in. (90.7 mm); Pux = 579 kips
(2575.4 kN); ex = Muy/Pui = 2.79 in. (70.9 mm), Puy = 654 kips
(2909.0 kN).

Equation (2) gives 1/Pui = 1/Pux + 1/Puy – 1/Pu0 = 1/579 +
1/654 – 1/1007 = 1/442.

Because calculated Pui = 442 kips (1966.1 kN) > required
Pu = 430 kips (1912.6 kN), the section is satisfactory.

Design Example 2—Select Grade 60 reinforcement needed
for a section 16 in. (406.4 mm) wide and 20 in. (508.0 mm)
thick to support an axial load of 827 kips (3678.5 kN) when Mux
= 140 kip-ft (189.8 kN-m) and Muy = 165 kip-ft (223.7 kN-m)
with fc′  = 5.0 ksi (34.5 MPa). The moment Muy acts about the
weak axis of the section.

1. Compute Mui = 1.1  = 274 kip-ft
(371.5 kN-m);

2. With ex = Mui/Pui = 274(12)/827 = 3.98 in. (101.1 mm),
try 10 No. 10, 4 on long face, 3 on short face; and

3. For the selected section, Pu0 = 1448 kips (6440.7 kN),
with ey = Mux/Pui = 2.03 in. (51.6 mm); Pux = 1121 kips
(4986.2 kN); ex = Muy/Pui = 2.39 in. (60.7 mm); and Puy =
1000 kips (4448.0 kN).

Equation (2) gives 1/Pui = 1/Pux + 1/Puy – 1/Pu0 = 1/1121
+ 1/1000 – 1/1448 = 1/832.

Because calculated Pui = 832 kips (3700.7 kN) > Pu =
827 kips (3678.5 kN), the reinforcement is satisfactory.
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