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This state-of-art paper reviews the concept of limit states design. Following a brief review of 
statistical definitions the sources of variability in reinforced concrete structures are reviewed. 
Methods of defining structural safety are reviewed. Following a derivation of the procedures used 
to compute load and & factors, a series of 4 factors compatible with the 1975 National Building 
Code of Canada load factors are computed. With the exception of the value for shear the new 4 
factors are lower than the current American Concrete Institute and Canadian Standards Associa- 
tion values by about the amount of the ratio of load factors in National Building Code of Canada 
and American Concrete Institute. The computed & for shear is considerably lower than the 
corresponding value from the American Concrete Institute Code. An Appendix traces the 
development of the American Concrete Institute load and &factors. 

Cet article examine le concept du calcul aux etats limites et se veut un expose b jourdes etudes 
realisees sur cette question. Apres un bref rappel dedefinitions statistiques, i l  passe en revue les 
causes de  la variabilite dans les structures de beton arme. Puis les auteurs exposent les methodes 
de calcul des charges et des coefficients &, et pour ces derniers est etablie une serie de  valeurs 
conformes aux regles C.N.B. 1975. Sauf dans le cas du cisaillement, les nouveaux coefficients d) 
ont des valeurs inferieures B celles des regles A.C.I. et ACNOR dans un rapport approximative- 
ment egal au quotient des coefficients C.N.B. et A.C.I. La valeur calculee du coefficient & pour le 
cisaillement est considerablement plus faible que la valeur correspondante tiree du reglement 
A.C.I. Un appendice retrace les etapes qui ont conduit b la definition des coefficients de charge et 
de ponderation & tels qu'ils apparaissent dans le reglement A.C.I. 

[Traduit par la revue) 
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1. Introduction 
1 .I Development of Limit States Design in 

Canada 
In 1963 the American Concrete Institute 

Building Code (ACI 1963) pioneered the 
North American use of split load factors to 
account for overloads and understrength mem- 
bers. The procedure followed in deriving the 
ACI safety provisions involved: (i)  selection 
of the statistical parameters involved; (ii) 
statistical estimate of the probability of failure; 
and (iii) a liberal amount of committee com- 
promise as outlined in Appendix A. 

The introduction of the ACI safety provi- 
sions coincided with an upsurge in the interest 
in, and the development of, safety theories. In 
the 13 years since the adoption of the 1963 
ACI Code major advances have occurred in 
all aspects of safety and sophisticated pro- 

'Paper presented on 1975-76 National Lecture 
Tour  sponsored by the Structural Division of the 
Canadian Society of Civil Engineers and the Cana- 
dian Division of the Portland Cement Association. 

cedures have evolved for estimating load fac- 
tors and resistance or qb factors. In today's 
attempts to evaluate safety provisions, however, 
the three steps listed earlier are still required 
and, as shown in section 6.3.6 of this paper, 
the original ACI qb factors and load factors are 
remarkably similar to those currently being 
developed. 

The chapter on Structural Loads and Pro- 
cedures of the 1975 National Building Code 
of Canada (NRC 1975) included rules for 
both working stress design (section 4.1.3) and 
limit states design (section 4.1.4). The limit 
states design concept is discussed more fully in 
section 2 of this paper. The safety provisions 
for limit states design, as proposed for use in 
Canada, involve common load factors, pre- 
sented in section 4.1.4 of the National Building 
Code, to account for overloads, and resistance, 
performance or 4 factors, to be presented in 
the various material structural specifications, to 
account for possible understrength of the struc- 
tural members. 

The decision to adopt common load factors 



for all materials is an attempt to reach uniform 
levels of safety and to unify and simplify 
structural design. With the increased use of 
mixed structural systems such as steel frames 
braced by concrete shear walls and supported 
by concrete footings resting on soil, flat plate 
floors supported by steel columns, precast 
floors supported by masonry walls, etc., com- 
mon load factors become highly desirable. 

The load factors in section 4.1.4 of NBC 
( 1975 ) were developed by the Canadian Stan- 
dards Association/National Building Code 
(CSA/NBC) Joint Liaison Committee on 
Limit States Design on the basis of an initial 
proposal from the CSA Committee on Steel 
Structures who at the time were developing a 
new standard, CSA S16.1 (1974). The load 
factors are common to all construction rnate- 
rials and will be applied to each building 
material as soon as appropriate resistance or 
+ factors compatible with the 1975 load factors 
have been derived for that material. Because 
this has not yet been done for concrete struc- 
tures, section 4.1.4.2(6) of NBC (1975) re- 
quires the use of the load factors and + factors 
currently in ACI 318-71 (1971 ) or CSA 
A23.3 (CSA 1973) as an interim measure. 
The committee responsible for the Canadian 
reinforced concrete code has formed a sub- 
committee chaired by the writer to develop 
new 4 factors for concrete structures. This 
paper reviews some of the problems involved 
in this task. 

1.2 Research on Structural Safety 
Early in 1975 the Task Group on Safety 

Criteria for Limit States Design, charged with 
co-ordinating the development of load factors 
and d, factors for future editions of NBC and 
future CSA structural standards, proposed a 
research program to develop the necessary 
safety provisions in a unified manner. Although 
this research proposal was enthusiastically sup- 
ported by structural specification committees, 
it has not been funded and hence little work 
has been carried out. 

The necessary research and developmental 
work on the safety of reinforced concrete struc- 
tures is currently underway at the University 
of Alberta. This work is specifically aimed at 
developing resistance factors for design ofice 
use. Although, similar research for timber is 

underway at the University of British Columbia 
and the Western Forest Products Laboratories, 
no major work is underway on other materials. 
Furthermore, the essential aspect of interdis- 
ciplinary co-ordination is absent. For this 
reason it is very important that funding be 
found for the major research program de- 
scribed earlier. 
1.3 Scope o f  Report 

This report is intended to be an introductory 
survey of the concepts involved in establishing 
load and 4 factors for concrete structures. 
Section 2 introduces the concept of limit states 
design and compares current design procedures 
to the limit states design philosophy. A num- 
ber of basic statistical definitions are presented 
in section 3 for use later in the report. Section 
4 reviews the reasons why load and resistance 
factors are introduced in structural design. 
Three basic methods for estimating the safety 
of structures are presented in section 5 fol- 
lowed by a discussion of the safety provisions 
in the ACI (1971) and CSA A23.3 (1973) 
Codes and the latest proposals by the European 
Concrete Committee for European design 
regulations. Perhaps the most important part of 
this report is section 6 which outlines one pro- 
cedure currently under consideration for estab- 
lishing load and 4 factors and presents a few 
typical example calculations. The final section 
serves as a summary. The derivation of the 
ACI (1971) and CSA A23.3 (1973) safety 
procedures is reviewed in Appendix A. 

It should be noted that the load factors and 
4 factors presented in this report are far from 
being finalized for design and should not be 
used until incorporated in the necessary ma- 
terial structural standards. 

2. Limit States and Limit States Design 
An engineer designing a new type of struc- 

ture using a new material would follow a pro- 
cedure which includes most of the following 
steps : 
1. Select a structural system for the particular 

purpose. 
2. Identify all modes of failure or ways in 

which the structure might fail to fulfil its 
intended purpose. 

3. Determine mathematical relationships be- 
tween the loads and each of the potential 
modes of failure. 
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4. Determine the properties of the materials 
and loads which are required in these rela- 
tionships. 

5 .  Select a reasonable level of safety. 
6. Analyze an idealized model of the structure. 
7. Interpret the results of the structural analy- 

sis in terms of the actual structure. 
8. Proportion the structural members. 

In utilizing a well established material such 
as reinforced concrete, all of these steps are 
necessary, but several would have been done 
by persons other than the designer. Thus, the 
equations in step 3 and the material properties 
in step 4 are obtained in engineering research 
centers while the level of safety in step 5 will 
have been established by a building code com- 
mittee. All too often step 7 is forgotten, espe- 
cially when computer analyses are carried out. 

When a structure or structural element be- 
comes unfit for its intended use it is said to 
have reached a limit state. 

Limit states design is a design process that 
involves: 
1. Identification of all potential modes of fail- 

ure (limit states). 
2. Determination of acceptable levels of safety 

against occurrence of each limit state. 
3. Consideration by the designer of the signifi- 

cant limit states. 

2.1 List of Limit States for Reinforced 
Concrete Structures 

Limit states can be divided into three basic 
groups : 

1. Ultimate Limit Stutes-related to a struc- 
tural collapse of part or all of the structure. 
Such a limit state should have a very low prob- 
ability of occurrence since it may lead to loss 
of life and major financial losses. 
(a) Loss of equilibrium of a part or all of the 

structure when considered as a rigid body 
(tipping or sliding). 

(b)  Rupture of critical parts of the structure 
leading to collapse or progressive collapse. 

(c)  Formation of a plastic mechanism. 
(d)  Instability due to deformations of the 

structure. 
(e)  Collapse due to corrosion, deterioration, 

fatigue, or brittle collapse. 
(f)  Structural effects of fire or  explosions. 

2. Damage Limit States-related to damage 
of the structure such as cracking or spalling of 

the concrete. Since there is less danger of loss 
of life, a higher probability of occurrence can 
be tolerated than in the case of the ultimate 
limit states. 
(a)  Premature or excessive cracking. 
(b) Excessive deformations leading to dam- 

age to non-structural elements or changes 
in the distribution of forces. 

(c) Permanent inelastic deformations. 
3. Serviceability or Functional Limit States 

-related to disruption of the functional use 
of the structure. 
(a)  Excessive deformations for normal service. 

( i )  Sensory acceptability (visual, audi- 
tory, tactile) 

(ii) Serviceability (drainage, malfunction 
of machinery) 

(b) Undesirable vibrations. 
Traditionally, reinforced concrete has been 

designed by either working stress design or 
ultimate strength design. Each of these pro- 
cedures explicitly considers a few, but not all, 
of the critical limit states. Thus, working stress 
design prevents the attainment of permanent 
inelastic deformations (limit state 2 (c) ) by 
limiting the stresses under working loads. The 
use of allowable stresses can be used to ensure 
that limit states 1 (b) ,  1 (c) ,  1 (d ) ,  and 1 (e) 
do not occur at service load levels. The de- 
signer does not know what the safety against 
collapse really is, however, particularly if the 
stresses due to the major loads counteract each 
other. 

Ultimate strength design, on the other hand, 
checks limit states 1 (b)  and 1 (d)  directly. If 
the critical cross sections have adequate duc- 
tility, current design procedures which employ 
elastic analysis for forces and moments and 
ultimate strength design of sections will give 
a lower bound solution to the plastic mecha- 
nism load, l ( c ) ,  if stability failures are pre- 
vented. The ACI (1971) and CSA (1973) 
concrete codes attempt to limit the reinforce- 
ment ratio so that beams are always ductile 
in flexure. As pointed out in section 4.3 (e) of 
this paper, these limits may not always guar- 
antee ductility. 

Both design procedures consider the limit 
states involving deformations, severe cracking, 
and vibrations by requiring a separate check 
of these cases. Both design procedures prevent 
overall loss of equilibrium, although at dif- 



ferent load levels. Checking overall equilibrium 
at the service load level may not be adequate 
if the major loads counteract each other or 
increase at different rates. 

The difference between these two current 
design procedures and limits states design 
stems from the fact that in limit states design 
the designer is expected to identify all the 
critical limit states and consider them either 
explicitly by design checks or implicitly by 
satisfying certain detailing requirements or 
minimum reinforcement requirements. Ideally, 
the limit states would be expressed in terms 
of performance requirements which are essen- 
tially independent of the structural material. 
Hence, the basic deflection limits, etc. should be 
presented in Chapter 4.1 of the National Build- 
ing Code (National Research Council of Can- 
ada 1975) and should be similar for all 
materials. 

With the reduction of safety factors against 
ultimate limit states, the damage and service- 
ability limit states become much more critical 
and may govern designs. Thus, for example, 
crack width provisions may govern the limit 
states design of medium to long span bridges 
since crack width is proportional to reinforce- 
ment stress and the dead load stresses repre- 
sent a major part of the total stresses in the 
reinforcement. 

3. Brief Review of Statistical Definitions 
3.1 General Definitions and Concepts" 

If a large number of individual sampled 
values are available for a particular variable, 
they can be plotted in a histogram or frequency 
diagram as shown in Fig. 1. The total number 
of observations is N (in Fig. 1, N = 243), the 
number at any value of x is n,. 

= 'area under the histogram7 
The total data have an arithmetic average or 
mean, x. The dispersion of the data is mea- 
sured by the sample standard deviation, a,: 

'For more detailed information on probability and 
statistics see a textbook on the subject such as Benja 
rnin and Cornell (1970). 

" 
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FIG. 1. Distribution of concrete compressive 
strength. 

This is essentially the root mean square devia- 
tion of the values from the mean. Frequently it 
is more convenient to express the standard 
deviation as a fraction or percentage of the 
mean. This is called the sample coeficient of 
variation, V ,  : 

131 V ,  = (or CF,,;/X X 100% ) 

The histogram is really only applicable to 
the particular number of pieces of observa- 
tions considered (N).  A more universally ap- 
plicable diagram is obtained by dividing the 
vertical ordinates by N to get a frequency dia- 
gram as shown by the right hand scale in 
Fig. 1. The area under the frequency diagram 
is N/N = 1 .O. 

3.2 Properties of Normal and Log-Normal 
Distributions 

Frequently it is possible to represent the 
data with a standard statistical distribution cor- 
responding to the probabilities involved in a 
particular type of statistical process. Two com- 
monly used distributions in load factor theory 
are the normal distribution and the log-normal 
distribution. 

If a random variable is the sum of a num- 
ber of independent causes, the distribution of 
the sum will tend to approach a normal distri- 
bution. Because many natural random vari- 
ables appear to have a normal distribution, 
this distribution is widely used even when the 
mathematical conditions are not strictly satis- 
fied. A normal distribution has been fitted to 
the concrete strength data in Fig. 1 and as can 
be seen it represents this set of data reason- 
ably well. The  normal distribution extends 
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Division of the oreo under the normal frequency distribution 
curve bosed on deviotlons from in multiples of cr 

FIG. 2. Properties of a normal distribution. 

from -.o to and is symmetrical about the 
mean, as shown in Figs. 1 and 2. 

The area under the shaded part of the curve 
in Fig. 1 is given by: 

This is a fraction less than one and repre- 
sents the probability that a data point will fall 
to the left of A (concrete strength less than 
200 kg /cmVn this case) in a single trial. 
Tables of P ( x  < A )  where A is specified as 
being pa, above or  below the mean, are avail- 
able for standard probability distributions. 
Table 1 is an example. Later in this paper p 
will be used as the 'safety index' since it can 
be used to estimate the probability of under- 
strength values. 

For p greater than about 3, the values of 
P (x  < A ) o r  Pf may be approximated by: 

[51 pf 111. 460e-4.:+8 

TABLE 1. Values of P(x 
< A) for A = (X-fiux) 

normal distribution 

In a log-normal distribution, the function 
y = In x is normally distributed. This results 
in a skewed distribution of x as shown in 
Fig. 3 which shows yield strength data from 
almost 20 000 tests of structural steel plates 
and shapes produced in Sweden (Alpsten 
1972).  The probability of a given value of y 
falling more than p standard deviations below 
y can be obtained directly from Table 1.  In 
theory a log-normal distribution will bz ap- 
plicable if the function in question results 
from the product of a large number of inde- 
pendent random variables. In many cases in 
practice, however, it has been adopted because 
the observed data are skewed and a reason- 
ably good fit can be obtained with this rela- 
tively simple transformation of a normal dis- 
tribution. 

3.3 Combination o f  Normal Distributions 
Frequently it is necessary to combine the 

effects of a number of normally distributed 
variables to determine the overall effect of the 
combination. These combinations may be 'ad- 
ditive' or  'multiplicative'. The strength of an 
axially loaded concrete column, P,, = P,. + P,, 
is an additive combination as is U = D + L. 
On the other hand, the load carried by the 
steel in the axially loaded column is a multi- 
plicative combination, P, = Ast. fy.  

Generally when a number of discrete vari- 
ables are combined additively the combination 
will tend to be closer to a normal distribution 
than the distributions that are combined. 

The procedures for combining statistical dis- 

30000 40000 50000 60000 

YIELD STRENGTH (psi )  

FIG. 3. Distribution of structural, steel yield 
strengths (Alpsten 1972). 



tributions depend on whether the combination 
is additive or multiplicative. In the following, 
A and B are independent random variables 
with means 2 and 'B; standard deviations UA 

and u,~, and coefficients of variation Vtl and 
V B .  

(a)  Additive Combinations 

Let 

then 

[6bl X = A - B ( o r A + B )  

and 

1 6 ~ 1  ux = , / u r n  

An example of this type of combination is 
given in section 6.2.3. 

(b)  Multiplicative Combinations 

Let 

then 
- 

r.7b1 Y = X X B  
and 

Since V A  and V,, are generally less than 0.3 
in most situations only a small error in V1r 
(5% at most) is introduced by neglecting the 
product term and it will be assumed that: 

I7dl v, = ,/'m 
An example of this type of combination is 
given in section 6.2.2. 

4. Reasons for Requiring Load and Resistance 
Factors in Structural Design 

There are three primary reasons for includ- 
ing safety factors of some sort in structural 
design: ( a )  the strengths of materials or ele- 
ments may be less than expected, (b) over- 
loads may occur, and (c) the consequences 
of a failure may be very severe. Each of these 
will be reviewed in the remainder of this 
section. 

4.1 Understrength Materials or El'ements 
In calculations this effect will be referred to 

by the factor R (for resistance) with mean R, 
standard deviation U~ and coefficient of varia- 
tion Vie. R ,  in turn, can be subdivided into a 
number of individual factors which contribute 
to variations in the resistance, R. 

4.1 .l. Material strengths may have both a 
systematic and a random difference from 
that assumed in design-Factor M ,  m, oil.[, 
and VaI 

( a )  Variability in strengths 
The compression strength of concrete is 

variable as shown in Fig. 1 and is generally 
assumed to be normally distributed. The 
standard deviation depends on the degree of 
control and is affected by the strength of the 
concrete itself. Values of the standard devia- 
tion from a large number of jobs are plotted 
in Fig. 4 (Rackwitz 1973). For f,' d 4000 
psi (27.6 MPa) , average control corresponds 
roughly to a constant coefficient of variation 
of about V = 0.15 while for f,' > 4000 psi 
(27.6 MPa), average control corresponds 
roughly to a constant standard deviation of 
about u = 600 psi (4.1 MPa) (Rackwitz 
1973). Poor control and good control, respec- 
tively, correspond to V and u about one-third 
greater or smaller than these values. 

Similarly, the yield strength and ultimate 
tensile strength of reinforcement are variable. 
The shape of the distribution is variously de- 
scribed as being normal, log-normal or extre- 
mal. The results of almost 20 000 mill tests on 
structure steel plates and shapes with a nomi- 
nal yield strength of 31 300 psi (220 MFa) 
are compared to a log-normal distribution in 
Fig. 3 and fit this distribution quite well 
(Alpsten 1972). On the other hand, a num- 
ber of investigators have recommended the 
use of a normal distribution for higher strength 
structural steels and for reinforcing bars 
(Allen 1970). Data from mill tests of grade 

AVERAGE CYLINDER STRENGTH ( p s i )  

FIG. 4. Relationship between average cylinder 
strength of concrete and standard deviation of test 
series (Rackwitz 1973). 
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FIG. 5. Distribution of steel yield strengths for 
grade 60 reinforcement (Allen 1972). 

60 reinforcing bars were plotted in Fig. 5 
(Allen 1972). These data are slightly skewed 
and probably could be represented equally 
well by a normal or log-normal distribution. 

The mean yield of reinforcing bars is rela- 
tively constant for bar sizes up to No. 11 but 
drops for larger bar sizes as shown in Fig. 6 
(Grant 1976). 

(b)  EfJect of Speed of Testing 
The strengths of both concrete and steel are 

affected by the rate of loading. Under ex- 
tremely slowly applied loads or  very high sus- 
tained loads the compression strength of con- 
crete drops to about 75 to 80% of the short 
time strength (Riisch 1960). This is offset, 
however, by the maturing of the concrete. 
Concrete subjected to sustained loads less than 
this critical value, followed by rapidly applied 
loads, will not be weakened by the sustained 
load. 

In a mill test on reinforcing bars, the load 
is applied at a very high rate. In a structure, 
the loading rate is very much lower under such 
loadings as dead and live load. Based on tests 

* 
3 4 5 6 7 8 9 1 0  14 18 

BAR SIZE 

FIG. 6. Variation in mill test yield strength with 
bar size-grade 60 reinforcement (Grant 1976). 

of reinforcing bars, Allen (1972) has sug- 
gested that the mean mill test yield strength 
is about 4 ksi (27.6 MPa) higher than the 
mean static yield strength. 

(c)  In situ Strengths vs. Specimen Strengths 
The strength of concrete in a structure will 

differ somewhat from the strength of the same 
concrete in a control specimen for several rea- 
sons. These include the different stress regimes 
the specimen and structure, different placing 
procedures, different curing conditions, the ef- 
fect of vertical water migration during the 
placing of concrete in deep members and the 
greater compaction of concrete near the bottom 
of such members due to the weight of the con- 
crete higher in the forms. In general, high 
strength concrete is more affected by this than 
low strength concrete. 

The reduction in strength due to these 
causes is partially offset by the fact that the 
ACI code (1971) and CSA A23.3 (1973) 
require the mean strength of concrete to be 
higher than the specified values. Thus, for 
average control, the mean strength of the 
control cylinders will range from 700 to 900 
psi (4.8 to 6.2 MPa) greater than the specified 
strength. Based on this, and on equations and 
data from Allen (1970), Petersons (1964), 
and Bloem (1968), the mean 28 day strength 
of concrete in a structure cured with minimum 
acceptable curing can be taken as: 

[81 f,(str,ct,,,,, = (0.675 f,' + 1.1) ksi 

but not more than 1.15 f,' 

Changes in material strength due to matur- 
ing of the concrete or deterioration could also 
be included here if desired. 

(d)  EfJect of Variability of Shrinkage 
Stresses or Residual Stresses 

In members in which cracking is a critical 
limit state, the variability of the residual 

FIG 7. Ratio of actual bar area to nominal area 
(Allen 1972). 
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stresses due to shrinkage may affect the crack- 
ing load. Similarly the transfer of compression 
loading from concrete to steel due to creep and 
shrinkage in columns may lead to premature 
yielding of the compression steel. This may be 
significant in stability failures of slender col- 
umns with small amounts of reinforcement. 

4.1.2. Members may vary from assumed 
due to fabrication errors-Factor F,  ap,  

and V p  
(a)  Rolling Tolerances in Reinforcing 

Bars 
As the rolls used to produce the reinforcing 

bars wear out or go out of adjustment, the 
shape of the deformations and the bar area 
change slightly. For bars larger than No. 3, 
CSA and American Society of Testing and 
Materials (ASTM) specifications allow up to 
6% underweight on any individual bar. Areas 
measured on 102 specimens from five sizes are 
compared to their nominal areas in Fig. 7 
(Allen 1972). Based on this and other data, 
Allen has concluded that the mean area should 
be taken as 0.975 times the nominal area with 
a coefficient of variation of 1.6%. 

(b)  Geometrical errors in cross section and 
errors in placement of reinforcement 

Relatively common variations in dimensions 
can significantly affect the size and hence the 
strength of concrete members as shown in Fig. 
8 (Birkeland and Westhoff 1972). Much of 
the current data on geometrical errors in con- 
crete construction have been obtained in 
Sweden although a limited amount of data are 
available from North American sources. 

Measurements of approximately 6000 cast- 
in-place slabs roughly 5 to 8 in. (12.7 to 20.3 
cm) in thickness (Fiorato 1973) showed the 
average thickness approximately 0.05 in. ( 1.3 
mm) thicker than the designed thickness with 
a standard deviation of about 0.3 in. (0.8 
mm). The effective depth, d, in the positive 
moment region averaged about 0.25 in. (0.6 
mm) less than specified with a = 0.3 in. (0.8 
mm). In the negative moment region d averaged 
about 0.75 in. (1.9 mm) less than specified 
with a = 0.5 in. (1.3 mm). For precast slabs 
the average error in overall thickness and the d 
for positive moment was approximately zero 
with standard deviations of about half those 
for cast-in-place members. 

& ? S  -. ,-, : - 7  m 

SOFFIT 
m * I  REBAR 

( a )  Slab 

INTENDED + ~ D A C T U A I  

[ # 7  TOP STEEL 7 r # 3  STIR 7 

( b )  Beam I 

TRUE POSITION 

A COLUMN BELOW 8 FLOOR POURED C COLUMN ABOVE 

( c )  Column 

FIG. 8. Effects on size and strength by variations in 
dimensions (Birkeland and Westhoff 1972). 

Measurements of the width and thickness of 
299 columns ranging from 12 in. to 30 in. 
(30.5 to 76.2 cm) in width from eight build- 
ings are shown in Fig. 9 (Tso and Zelman 
1970). This data showed a mean error of 
$0.06 in. (1.5 mm) and a standard deviation 
of 0.28 in. (0.8 mm). For Swedish precast 
columns the mean error was about the same 
but the standard deviation was about half as 
much (Fiorato 1973). 

4.1.3. Simplified assumptions and equations 
may lead to systematic or random errors- 
Factor P, F, a1,, and VI,  

The use of such simplifications as the rec- 
tangular stress-block and the crushing strain, 
E , , ,  introduce both systematic and random 
errors. Figures 10 and 11 are from Mattock 
et al. ( 1961 ) who compare the strengths cal- 
culated using the rectangular stress block to 
the strengths measured in laboratory tests. A 
portion of the variation shown in these figures is 
due to variations between the strengths of the 
control cylinders, etc. and the actual strengths 
of the materials in the test specimens. 
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FIG 9. Difference between actual widths of columns 
and the sizes shown on drawings (Tso and Zelman 
1970). 

4.1.4 The use of discrete sizes leads to 
variations in the actual capacity of mem- 
bers-Factor B, uu, and Vn 

Because the reinforcement in a beam or 
column must be some combination of whole 
bars, the area of steel actually provided in a 
member may differ from that found to be 
necessary in the calculations (Lind 1976). 
This is illustrated in Fig. 12 which shows the 
practical bar choices available for an 18 in. by 
18 in. (45.7 cm by 45.7 cm) tied column. 
Based on allowing up to 5% underdesign, the 
mean area provided in this case would be about 
1.02 times the calculated area with a coefficient 
of variation of 5 % . 
4.2 Overloads 

In calculations the maximum load to come 
on a structure during its life will be referred to 
by the factor U with mean U ,  standard devia- 
tion C F ,  and coefficient of variation V U .  The 
factor U can be subdivided into a number of 
individual factors which contribute to varia- 
tions in the total load U. 

4.2.1. The magnitudes of the loads may 
vary from those assumed-Factor S, $ UR, 
and V s  

Although dead loads, D, are known more 
accurately than any other loads except pos- 
sibly fluid loads, they can vary due to: 

Average = 1.01 

FIG. 10 Comparison of strengths calculated using 
rectangular stress block to strength measured in 
laboratory tests (Mattock et al. 1961). 

1. Variations in size of members. 
2. Variations in density of material due to 

different types of aggregate, different mois- 
ture content, etc. 

3. Structural and non-structural alterations. 
Thus, the dead load varies randomly from 
structure to structure in a population of struc- 
tures and also changes from time to time in a 
given structure due to renovations, etc. The 
lifetime maximum dead load will be assumed . 

to have an average value equal to the design 
value with a coefficient of variation of 0.07 
(Allen 1975). This implies that the lifetime 
maximum dead load will not exceed 114% of 
the design value in 97% of all structures. 

Live load, L, varies considerably from time 
to time and from building to building. Loading 
surveys suggest, however, that the occupancy 
in a given part of a building will change from 
5 to 20 times during the life of a building and 
hence the probability of having a high load 
during the life of the building is fairly high 
(Mitchell and Woodgate 1971 ; Allen 1975). In 
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FIG. 11. Comparison of strengths calculated using members Allen suggests VIG = 0.07. For more 
rectangular stress block to strengths measured in complex structures Lind (1976) suggests VE 
laboratory tests (Mattock et a[. 1961). = 0.20 for slender columns in which the mo- 

ments are largely due to compatibility of de- 
formations and hence depend on more vari- 

[/I ables than the beam moments. 

r addition, the larger the area considered, the 
smaller the scatter in the maximum load. Fig- 
ure 13 presents probability distributions for the 

Galambos and Ravindra ( 1973) have fur- 
ther subdivided E into one term dealing with 

AREA OF STEEL REQUIRED (in?) LOAD I N T E N S I T Y  ( psf ) 

maximum live loads to occur in a given area 
during the 30 year life of an office building 
(Comite Europken Du BCton 1973). The of- 
fice live loads and live load reduction factors 
for floor members in the 1975 National Build- 

Average 018 ing Code of Canada (NRC 1975) given by the 
dashed line agree quite closely with the 95th 
percentile loads from these distributions. 

Allen (1975) has suggested that the mean - 

- 

- i 

FIG. 12. Effect of selection of discrete bar sizes on FIG. 13. Distributions of maximum office floor 
choice of reinforcement i11 a tied column. loads expected dur-ing 50 year life of a building. 

- 

- 

! 

- 
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lifetime maximum office live load is about 
70% of the loads specified in loading tables 
with a coefficient of variation of 0.3. This value 
is used in calculations in this paper. 

4.2.2 Uncertainties in calculation of load 

- I 
effects-Factor E, E, cIc, and VE 

The assumptions of stiffnesses, span lengths, 
etc. and the inaccuracies involved in modelling 
three dimensional structures for structural anal- 
ysis lead to variations between the stress re- 
sultants which actually occur in a building and 
those estimated in the designer's analysis. Allen 

- 

- 
I I I I I I 1 (1975) has suggested that the mean values 
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the structural analysis itself which is assumed 
to have a mean of 1.0 and V = 0.05, and two 
additional terms A and B dealing with the 
uncertainties and approximations involved in 
idealizing the dead and live load for the analysis. 
The latter account for such things as consider- 
ing live loads to be uniformly distributed, static 
loads, idealizing localized loads as point loads, 
etc. Galambos and Ravindra ( 1973) have as- 
sumed that these have a mean of 1.0 and V A  = 
0.04 and VI,  = 0.2 for factors affecting the 
idealization of the dead and live load, respec- 
tively. 

The analyses in this report are based on the 
assumption that the structural analysis effects 
will be larger for live loads than for dead loads. 
No attempt will be made to distinguish between 
the type of structure or member, however. This 
is based on the assumption that, although the 
accuracy of an analysis of an indeterminate 
structure is probably less than that of a static- 
ally determinate beam, there is more poten- 
tial for load redistribution in such a structure 
and this offsets much of the loss of safety due 
to possible inaccuracies in the analysis. The 
factor E will be assumed as follows: for dead 
load El, = 1.0 and V E I )  = 0.08, for live load 

= 1.0 and VIgr, = 0.20. 

4.3 Consequences o f  Failure 
A number of subjective values must be con- 

sidered in establishing load factors. These in- 
clude: 

( a )  Cost o f  replacing the building. Gen- 
erally, one consequence of a failure is that the 
building must be repaired or replaced. This 
cost is relatively easy to evaluate. It should be 
noted that the cost of the building may be 
several times the cost of the structural system 
in the building. In addition demolition costs 
may add to the replacement costs. 

( b )  Potential loss o f  life. It is much more 
difficult to rationally account for risk to occu- 
pants in any safety factor theory. Not only is it 
morally difficult to put a value on a human life 
but the socio-economic value of the loss de- 
pends on the type and magnitude of the acci- 
dent. Thus, for example, 200 accidents each 
with one fatality have much less impact and 
are much less newsworthy than one accident 
with 200 fatalities. The aversion function in 
Fig. 14 has been used to measure the socio- 

10 2 0 30 40 

NUMBER OF FATALITIES ----+ 

FIG. 14. Schematic representation of impact of 
various types of accident. 

economic effects of various types of accidents 
(Lind and Basler 1972). 

(c )  Costs to society in lost time, lost rev- 
enue, or indirect loss o f  life or property due to 
failure. The loss of a major urban bridge may 
well cost the residents of the city much more 
in time lost in traffic jams, etc. than the actual 
cost of the structure. Similarly, the collapse of 
a fire station or hospital during a disaster, may 
lead to severe loss of life due to the inability to 
fight fires or treat people during the disaster. 

An importance factor is includcd in the load 
factor equation in section 4.1.4 of the 1975 
National Building Code of Canada (National 
Research Council of Canada 1975) to account 
for the consequences of failure. This factor is 
1.0 for buildings of normal human occupancy 
and 0.8 for buildings such as farm or storage 
sheds. For post disaster buildings, importance 
factors greater than 1.0 are applied to wind - 
and earthquake loads since these are the loads 
causing the disaster. 

( d )  The importance of the structural ele- 
ment in the structure. The collapse of a roof 
beam will generally be less critical than the 
collapse of a lower floor column in a tall build- 
ing because the failure of a column is more apt 
to affect a larger area than that of a beam. 
Thus, the CSA ( 1973) and ACI ( 1971 ) con- 
crete codes penalize columns relative to beams. 

(e )  The type of failure, warning of failure, 
and existence of alternative load paths. If the 
occupants of a building have warning of im- 



pending failure as would occur if severe crack- 
ing or excessive deflections developed prior to 
failure, the probability of loss of life is less. 
For this reason the ACI (1971) and CSA 
(1973) concrete codes have limitations favor- 
ing ductile structures. Thus, for example, the 
steel percentage in beams must not exceed 
three-quarters of that corresponding to the on- 
set of brittle compression failures. Similarly, 
tied columns are penalized relative to spiral 
columns since the latter tend to be more duc- 
tile. 

It is interesting to note in passing that Allen 
(1970) has shown that there is still a danger 
of compression failures in shallow beams with 
the maximum percentage of reinforcement 
allowed by the ACI and CSA due to the ran- 
dom variations of materials and dimensions. 
This is illustrated in Fig. 15. The shaded area 
represents beams failing in compression in a 
random sample of beams with = 0.75 

5. Methods of Defining Safety for Structural 
Design 

Three basic methods of defining structural 
safety will be reviewed briefly to show their 
differences, strengths, and shortcomings. This 
will be followed by a review of the procedures 
which are currently used to define the safety of 
reinforced concrete structures in a number of 
selected codes. 

5.1 Basic Procedures for Defining Safety 
5.1.1 Factor of Safety or Working Stress 

Design Format 
The factor of safety can be defined as: 

Ultimate Resistance 
[9] Factor of Safety = 

Service Load 

This implies that both of these quantities are 
well defined each with a unique value. As we 
have seen, however, the resistance, R, is af- 
fected by a number of variables and is variable 
itself as shown by the frequency diagram for R 
in Fig. 16. Similarly, the maximum load, U, 
that the structure will receive in its lifetime is 
also a variable. As a result the definition of the 
factor of safety given in 191 lacks clarity. Two 
possible restatements of [9] are: 

f; = 4 0  k s t  

f; = 3 k s t  

d '  = 10 ln. 

p '  = 0 75 p; 

L o o d ~ n g  R o t e .  Static 

M i n ~ m u m  W o r k r n a n s h ~ ~  
% Comp.  Fo~ lures  6 7 

FIG. 15. Comparison of ACI design equation for 
beams to the strengths of a randomly generated 
sample of beams (Allen 1970). 

MAGNITUDE OF LOAD, U, 8, STRENGTH,R 

FIG. 14. Variation of loads on  structures and the 
strengths of the same structures. 

[lo] Central Factor of Safety = 

Mean Resistance R -- 
Mean Load - i7 

or 

[ l l ]  Nominal Factor of Safety = 

Design Resistance - R, 
- - 

Service Load u ‘i 
where R,, is the capacity computed accord- 
ing to the design code and U,, is the service 
load given in the local or national building 
code. The intersection of the frequency dia- 
grams for R and U ,  show shaded in Fig. 16, 
suggests thai there is definitely a probability 
that failure will occur under some possible 
combination of strength and load. It should be 
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noted, however, that this area is not equal to 
the probability of failure. 

In working stress of reinforced concrete the 
factor of safety has been assumed to be closely 
related to: 

[12a] Factor of Safety = 

Yield Strength of Reinforcement 
Allowable Steel Stress 

[12b] Factor of Safety = 

Concrete Strength 
Allowable Concrete Stress 

This method of defining safety has four 
drawbacks : 

1 .  It does not adequately account for the 
variability of loadings and resistances. Two ex- 
treme cases are compared in Fig. 17. In Fig. 
17a the control of loading and resistance are 
both very good and there is relatively little 
probability of failure as evidenced by the small 
overlap of the curves. Figure 17b corresponds 
to a case with poor control of loadings and 
resistance. Although the central factor of safety 
is the same for both cases, the probability of 
failure is much higher in the second case. In 
traditional working stress design for reinforced 
concrete the greater variability of concrete was 
recognized in part by using a slightly higher 
safety factor in computing the allowable stress 
for concrete. 

2. It does not adequately account for varia- 
tions in loadings which increase at different 
rates or have different signs. The factor of 

( b )  Poor Control of Loads and Strength R, U 

FIG. 17. Effect of dispersion of loads and strengths 
on probability of failure for constant central factor of 
safety. 

safety or working stress format assumes that 
all loadings will increase at approximately the 
same rate. This becomes serious in the case 
where a highly variable load such as wind, 
earthquake, or soil pressure causes forces op- 
posite in sign to those resulting from relatively 
constant loads such as dead load or prestress- 
ing forces. The stresses due to an overload may 
be opposite in sign to those at service loads and 
the reinforcement provided for service load 
conditions may not be adequate to prevent 
failure. As an example, the calculated stresses 
in the reinforcement at the location where 
failure is believed to have started in the Ferry- 
bridge cooling towers was 0.5fy under ID + 
1W which was felt to be satisfactory since a 
working stress design was used. The reinforce- 
ment stresses rose to 1 .Ofy under 1 D + 1.15 W 
and to the ultimate tensile strength under 1 D  + 
1.3 W (Goode 1976, pers. commun.). 

3. There is no attempt to evaluate the ulti- 
mate load capacity. In working stress design it 
is assumed that the ratio between service load 
capacity and ultimate capacity is the same as 
the ratio between allowable stresses and ma- 
terial strengths. This relationship has not been 
checked adequately for the high strength ma- 
terials currently in use. 

4. There is no rational method of consider- 
ing such things as consequences of failure or 
type of failure. 

5.1.2 Maximum Probability of Failure 
Method 

If R, R, and represent the distribution of 
strengths and U, and o-" represent the loads, 
any given structure will fail if U > R. Thus, 
the probability of failure is the probability that 
U > R or: 

or alternatively: 

or since In 1.0 = O:, 

- 
If we know R, ale 17, and au, we can define 

a new function Y = R - U (Fig. 18) with 
mean Y and standard deviation cry calculated 
according to the procedures presented in sec- 
tion 3.3 of this paper. The function Y repre- 



FIG. 18. Definition of probability of failure and 
safety index, p. 

A 4 - 

sents the 'margin of safety' for a given struc- 
ture. The probability of failure is the proba- 
bility that a particular structure will fall in the 
shaded area in Fig. 18 : 

>- 
U 

Buy 

[16] Pf = P [ ( R  - U )  < 01 = shaded area 

Legend 

T =Total Costs 

For normal distribution or other standard dis- 
tributions this probability can be calculated or 
obtained from tables as a function of the type 
of distribution and the value of p. 

This procedure is not generally used in this 
form because of the work involved in evaluat- 
ing the probabilities of failure for every struc- 
ture. However, as will be seen in section 6.1, it 
forms the basis for computing load and resis- 
tance (+) factors and hence, indirectly it is of 
considerable importance to designers. The ma- 
jor problems in the use of probabilities of fail- 
ure to define safety involve the choice of ac- 
ceptable probabilities of failure and the need 
for statistical data on many aspects of loading 
and construction. On the other hand, this 
philosophy leads to a rational method for esti- 
mating safety factors. 

5.1.3. Minimum Cost Structure Including 
Cost of Failure 

If it is possible to estimate the probability 
of failure, then one can calculate the total cost 
of a structure including the costs of failure. 
The various items involved in the total cost of 
a building are plotted schematically in Fig. 19 
(Riisch and Rackwitz 1972). The total life- 
time cost of a building, T, can be represented 
as the sum of the original construction costs, 
C, the maintenance costs, M ,  and the insurance 
costs, I .  The insurance costs are related to the 
probability of failure and rise rapidly as the 
probability of failure increases. Such a calcu- 
lation provides an estimate of the optimum 
probability of failure. 

Z ,  --- V) I = Insurance Prern~um 
W =; 3 -  

0 M= Mo~ntenance Costs 

u C: Product~on Costs 

W 2 > - . C- m 

Y =R-U a 
=Safety Morg~n ' - I 

8 C 
I 

I 

0 1- 
I i I I 

lo-' 10-4 lo-' lo0 

PROBABILITY OF FAILURE PER YEAR 

FIG. 19. Evaluation of optimum probability of 
failure (hypothetical) (Riisch and Rackwitz 1972). 

PROBABILITY OF FAILURE PER YEAR 

FIG. 20. Variation in total cost of structure with 
probability of failure (hypothetical) (Riisch and Rack- 
witz 1972). 

As shown in Fig. 20, it is possible, in theory, 
to compute an optimum failure probability for 
a given type of structure. The optimum prob- 
ability of failure will vary with the type of 
structure as shown in Fig. 20. Allen (1968) has 
estimated that the structural portion of a re- 
inforced concrete building with a probability of 
failure of in 30 years will cost about 9 %  
more than that of a building with a probability 
of failure of in 30 years. Since the cost of 
the structure is only about one-third of the 
total cost of a building, the additional cost of 
this increase in safety will be 3% of the total 
cost of the building. As shown in Fig. 20, the 
total costs T = C + M + I of office buildings 
are relatively insensitive to the probability of 
failure below the optimum. This is less true for 
bridges since the structure accounts for much 
of the cost of a bridge. 

5.2 Current Code Procedures for Defining 
Safety 

5.2.1 ACI  Code and C S A  Standard A23.3 
The ACI (1971) and CSA (1973) design 
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requirements for reinforced concrete are based 
on an underlying assumption that if the prob- 
ability of understrength members is roughly 1 
in 100 and the probability of overload is 
roughly 1 in 1000, the probability of overload 
on an understrength structure is about 1 in 
100 000. Load factors were derived to achieve 
this probability of overload. Based on values 
of concrete and steel strength corresponding to 
probability of 1 in 100 of understrength, the 
strengths of a number of typical sections were 
computed. The ratio of the strength based on 
these values to the strength based on nominal 
strengths of a number of typical sections were 
arbitrarily adjusted to allow for the conse- 
quences of failure and the mode of failure of a 
particular type of member, and for a number of 
other sources of variation in strength. The ap- 
pendix traces the history of the development of 
the current ACI and CSA load factors. Al- 
though the original derivation was semi-rational 
and represented the state-of-the-art in the late 
fifties, subsequent modifications and com- 
promises greatly reduced the rationality. 

A basic statistical error in the procedure 
used by the ACI to estimate the probabjlity of 
failure is illustrated in Fig. 21. This figure 
shows the relationship between a population 
of loads, U, and a corresponding population of 
strengths, R. The 45" line in the figure rep- 
resents the situation where the load U equals 
the strength R. Combinations of U and R 
falling above this line result in failure such as, 
for example, load U1 in Fig. 21(a) acting on 
structure R1. Load U ,  acting on structure R, 
represents a safe combination. Thus, regions 
A, B, and C in Fig. 21 ( b )  represent failure 
conditions while region D represents the domain 
of safe conditions. 

The shaded area in the frequency diagrams 
in Fig. 21 (b) represent 'overloads7 and 'under- 
strengths' as defined in the derivation of the 
ACI Code safety provisions. The probability 
of such an overload occurring on such an 
understrength structure, shown by region B in 
Fig. 21 (b )  is 1 in 10 000 as assumed by the 
ACI. This definition of the probability of 
failure ignores potential failures in regions A 
and C in Fig. 2 1 (b)  and hence underestimates 
the actual probability of failure. Computations 
of the actual level of safety in the 1971 ACT 
Code estimate that it gives a probability of 

R = Strength 

"Understrength" (-i 

R = Strength 

FIG. 21. (a) Definition of failure. ( b )  ACI defini- 
tion of probability of failure. 

failure for flexure of 1.3 x lo-" rather than 
1 x lo--" (sec section 6.2).  It should be noted 
that [13], [14] or [15] will give a correct esti- 
mate of the probability of failure. 

5.2.2 European Concrete Committee-Oc- 
tober 1975:' 

Design is based on characteristic strengths, 
f r r <  and f , , ,  which are estimators of the 5th 
percentile strengths of the concrete and steel, - 

and on characteristic loads, U k .  The charac- 
teristic dead load is taken as the mean dead 
load. 

In design the designer ensures that: 

[I71 R*  3 Effects of 

where R* is the capacity of a section calcu- 
lated using design material strengths equal to 



f~.k/ylll,. and f,k/y,,l, and dimensions increased 
or decreased by the allowable tolerance; 
ylnC and yIllb are the material understrength 
factors for concrete and steel; yf,,, etc. are the 
overload factors for the particular loads con- 
cerned; and, q,L,, is the 'frequent value' of a 
variable load, where q has a value of about 0.5 
to 0.7. 

The material understrength factors yIllc and 
ylllh were originally found by combining yI,,l, 
yrr12, ytt1:3, Yllli7 and y,11n where: 
yllll takes account of variations in the strength 

of the materials themselves. 
ylIr2 accounts for the variations between the 

strength and dimensions from those es- 
sumed in the design, the degree of control 
on site and the possibility of deviations 
from the assumed resistance model. 

Y,,,:~ accounts for possible inaccurate assess- 
ment of the strengths which may depend 
on the structural material. 

yllll accounts for the consequences of failure. 
y,,l, accounts for the type of failure. 

For normal control average inspection and 
normal consequences of failure for the case of 
flexure in an under-reinforced beam, y,,, would 
be 1.5 for the concrete and 1.15 for the steeL4 

Similarly the load factors, yf, can be con- 
sidered as the product of yfl, yf2, and yra 
where : 
yfl accounts for the possibility of variations 

in the loads. 
yf2 is a load combination factor and accounts 

for the reduced probability of all loads 
acting at once. 

yf:+ accounts for errors in the structural anal- 
ysis which are independent of the struc- 
tural material. 

The value of yf would normally be 1.4 on 
dead load and 1.5 on live load.4 

For serviceability and progressive collapse 
limit states the designer must ensure that R 
based on the characteristic strengths and the 
specified dimensions exceeds D + 8 q, L,. 

5.2.3 Comparison o f  ACI und CEB Safety 
Provisions 

There is a major difference in philosophy 
between the ACT (1971) and Comit6 Europken 
du Bkton (CEB 1975) procedures for defining 

"The numerical values of the coefficients are still 
under discussion and may change. 

load factors. The ACI combines all the member 
understrength terms into one term, +, which 
is intended to reflect the probability of the 
member being understrength plus the conse- 
quences of failure, etc. On the other hand, the 
CEB uses reduced material strengths in design 
to reflect the probability that the materials will 
be understrength. In addition, design is based 
on reduced geometric dimensions to include the 
effect of construction tolerances. The effect of 
errors in the design equations, consequences of 
failure and type of failure are included in the 
y,,, term by means of ym2, ylll~,  and ylllr). 

The major advantage of the ACI procedure 
is slightly increased simplicity in application. 
Thus, one need consider only 4 instead of 
separate y,,, values for steel and for concrete. 
In addition the ACI qb factors may be slightly 
more pleasing statistically, from the standpoint 
of properly combining the variations of one 
particular set of variables to come up with a 
factor reflecting the combined effect of that 
entire farnily of variables. 

On the other hand, when the resistance of a 
member depends partly on the strength of con- 
crete, which may have a coefficient of variation 
of 0.15 to 0.2, and partly on steel with a coeffi- 
cient of variation half as big, the effect of vary- 
ing the portion of the load assigned to the steel 
and concrete cannot be accounted for nearly as 
well as with a single 4 factor, as it can be when 
separate y,,, values are used. Thus, for example, 
the variation in concrete strength has a signifi- 
cant effect on the variability of eccentrically 
loaded columns failing in compression but a 

" 0 20 40 60 80 100 120 

MOMENT ( f t  - k~ps) 

FIG. 22. Dispersion of strengths of eccentrically 
loaded columns in a randomly generated sample of 
1000 columns (Grant 1976). 
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very much smaller effect on the variability of 
columns failing in tension as shown in Fig. 22 
(Grant 1976). This is adequately treated by 
the CEB but not by ACI. If, however, the 
member strength is not linearly related to the 
material strength as, for example, in v,. = 
2 m ,  the required safety may not bc attained 
by the use of f,/y,,l in design since the effect 
will only be m1. For this reason the CEB 
uses fl//rl,, in such cases. All things con- 
sidered, however, the CEB procedure probably 
gives a more uniform estimate of the under- 
strength of a member than the ACI and CSA 
cp factors do. 

6. Derivation of Load Factors and Resistance 
Factors 

The following sections present the bases of 
the derivation of load and resistance factors 
for use in design. It is assumed that a single cp 
factor will be used rather than separate y,,, 
values for steel and concrete. The procedures 
used in this chapter were developed largely 
by Cornell (1969) and Lind (1971 ). 

6.1 Basic Theory 
As explained in section 5.1.2, the probability 

of failure can be expressed as: 

or since In 1.0 = 0: 

Both of these are true regardless of the actual 
frequency distributions of R and U. We shall 
define : 

If we assume that Y is normally distributed, 
R / U  will be log-normally distributed. A log- 
normal distribution of R/U has been assumed 
because U tends to be skewed, those parts of 
R dependent on steel strength tend to be 
skewed, and because theoretically a log-normal 
distribution better represents the products of 
random variables (R/U) . Perhaps more impor- 
tant, however, it is relatively simple to imple- 
ment and gives reasonable results. 

The mean and standard deviation of Y are: 
- 

[19] Y = ln(R/U) = l n ( ~ / ~ )  

The function Y is plotted in Fig. 18. As 
stated by [15], the probability of failure can be 
expressed as the probability that Y is less than 
zero. This probability is represented by the 
shaded area in Fig. 18. The probability of 
failure can thus be defined by the number of 
standard deviations, Pal-, that the mean value 
of Y, t; is above zero. This allows us to write: 

[211 In(R/U) 3 p  a(lnR/U) 

For a log-normal distribution: 

For V,, < 0.6 it is an acceptable approximation 
to write: 

The error in this approximation is less than 
2% for V12 = 0.3 rising to about 10% for 
V ,  = 0.6. Thus, we can rewrite [22] as: 

1251 ln(R/U) 2 pdm 
Lind (1971 ) has shown that: 

[261  AT. - f f A  + f fB 

where a is a 'separation function' having values 
between 0.707 and 1 .O. Values of a are plotted 
in Figure 23 (Lind 1 97 1 ) . For A / B  between 
1 /3 and 3, = 0.75 + 0.06. Thus, the separa- 
tion function a can be used to simplify 1251 
giving: 

- - 
[27] In(R/U) 3 P a VIt + P a VTi 

Rearranging this gives 

This resembles the current ACL (1971 ) and 
CSA (1973) code format in that the average 
strength R is multiplied by a factor less than 
1.0 and the average load is multiplied by a 
factor greater than 1.0. However, when the 
designer uses the code design equations and the 
specified strengths, he computes the design 
strength, R rather than the mean strength, R. 
Similarly, design is based on values of U speci- 



FIG. 23. Variation in separation function a (Lind 
1971). 

fied in code loading tables. We shall define 
yn and yU such that: 

P O I  K = RylC 

[311 fl = Uyu 

Then 

where cp is a 'resistance factor' and A is a 'load 
factor'. Thus: 

and 

1351 A =r: yu e0.v~ 

Before we can proceed to derive values of cp 
and A it is necessary to choose an appropriate 

level of safety defined by the safety index p and 
we must estimate ylc, VIC,  yu, and Vrl. The 
choice of p and the calculation of these terms 
will be discussed in the next few sections. 

This procedure is known as a second mo- 
ment probabilistic method. The method is 
probabilistic because it considers the random 
nature of the variables. It is called a second 
moment probabilistic method because it con- 
siders only two statistical parameters, the mean 
and coefficient of variation, to describe the dis- 
tribution of the variables. 

6.2 Choice of Acceptable Probability o f  
Failure 

Engineers have attempted to estimate the 
magnitude of an acceptable probability of 
failure in two major ways. Using relationships 
related to [34] and [35] one can calculate the 
values of p corresponding to the load factors 
and cp factors in the current codes. If these 
p values and the related probabilities of failure 
are felt to be realistic, they can be used to 
derive new values of cp and A for use in the new 
code format. If not, more appropriate target 
values of p can be selected on the basis of the 
performance of the current code or engineering 
judgement. This approach is called 'calibration' 
since the new code is calibrated or made to 
agree with a target established by a study of 
the old code. This assumes that the load factors 
in the old code had been developed over a 
long period and represent a good engineering 
estimate of the required safety. Using this tech- 
nique Siu et al. ( 1 9 7 5 )  have estimated the 
weighted average p values in current Canadian 
design specifications to be: 

Reinforced concrete - Flexure p = 4.2, P, - 1.3 x l o - "  
-Tiedcolumns p=5.22 ,  P f = = 2 x  
- Shear p = 3.64, Pf  -- 1.3 x 

Structural steel - Tensile yielding p = 3.86, Pf = 5.8 x lo-"  
- Columns p z 4 . 6 9 ,  P f = 1 . 4 x  

These values vary widely from one structural 
member to another. It does not seem reason- 
able, for example, that the probability of shear 
failures in concrete beams should be 10 times 
that of flexural failures. Nor does it seem 
reasonable that the probability of failure of a 
steel column should be ten times that of a 
concrete column. 

Shortcomings of calibration as the sole 
means of setting the value of p or Pf for future 
codes include: 

( 1 )  The levels of safety in the current code 
will generally vary widely from one type of 
member to another as shown by the values 
listed in the previous paragraph. 

( 2 )  The levels of safety may vary from code 
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TABLE 2. Risk of death for various activities* 

Yearly death rate per person per 
year 

For those For the total 
Activity concerned population 

Motorcycle racing 
Mountain climbing 
Mining 
Swimming 
Automobile travel 
Airplane travel 
Fire in buildings 
Poisoning 
Lightning 
Vaccinations and innoculations 

Structural collapse 
During construction 
All others 

*Data from Allen (1968). Otway e t a / .  (1970), and Ruscl~ and Rackwitz (1972). 

differ from those in the ACI Code which is 
produced by an independent committee with a 
majority of its members representing designers 
or  users. 

( 3 )  Due to rapid code changes in recent 
years, there has not been sufficient experience 
with current codes to know whether they pro- 
vide adequate safety (Riisch and Rackwitz 
1972).  

It  is important, therefore, to critically review 
the p values obtained from code calibration 
before selecting the target values. If this is 
done, some of the shortcomings listed can be 
alleviated. 

An alternative to calibration is to select a 
probability of failure which is comparable to 
the risks people are prepared to accept in other 
activities. The risks involved in a number of 
activities are given in Table 2 and Fig. 24. 
Because people are not equally exposed to all 
these risks they have been expressed in terms 
of the 'average' risk to the average person. For 
some of the more dangerous activities the risk 
is expressed in terms of the average person who 
is actually involved in the activity under con- 
sideration. 

As explained in the following paragraphs 
from Otway et al. (1970) the acceptance of 
risks depends on the level of risk involved. 

to code depending On the interests and motha- lo 3 .  Motorcycle rocing 
Avoidable rbrkr connected ~ t h  dor~ng people 

tion of the code writing body. Thus, the levels 
of safely in the industry sponsored American 
Institute of Steel Construction Code may well 

Structurol Collapse 

a 
( 1 0 . '  per year ) 

Mtntng ( 10 per year 1 

Auromob~le Travel 

10 

h. 

o m 
z 
L 

m 
a 

10.' Vocccnations and lnnoculat~onr 

Sw~mmtng Avosdoble rlskr connected w~th careful people 
- Adrplone Trove! ( 10 per year)  

Unavoidable rlrkr 
( 5 x 10.' per yeor 1 

Fjre ~n Bulld*ngs 

FIG. 24. Risks of various activities. 

"Accidents providing hazards in the order 
of 1 0 - Q e r  person per year are uncommon. 
When a risk approaches this level, immediate 
action is taken to reduce the hazard. This level 
of risk is unacceptable to everyone. 

At  an accident level of per person per 
year, people spend money, especially public 
money, to control the cause. Money is spent 



for traffic signs and control, and police and fire 
departments are maintained with public funds. 
Safety slogans popularized for accidents in this 
category show an element of fear; e.g., 'The 
life you save may be your own.' 

Risks at the level of per person per 
year are still considered by society. Mothers 
warn their children about most of these haz- 
ards (playing with fire, drowning, firearms, 
poisons), and some people accept a degree of 
inconvenience, such as not travelling by air, to 
avoid them. Safety slogans for these risks have 
a precautionary ring: 'Never swim alone', 
'Never point a gun at another person', 'Keep 
medicine out of children's reach.' 

Accidents with a probability of about lo-" 
per person per year are not of great concern to 
the average person. He may be aware of them 
but he feels they will never happen to him. 
Phrases associated with these occurrences have 
an element of resignation: 'Lightning never 
strikes twice', 'An act of God'." 

Based on similar reasoning, Rusch and Rack- 
witz (1972) have suggested that the levels of 
acceptable risk can be summarized as follows: 
avoidable risks connected with daring people - 
lo-" per year, avoidable risks connected with 
careful people - lo-* per year, and unavoid- 
able risks - 5 x 10-"er year. Since the occu- 
pant of a building would consider a structural 
collapse to be an unavoidable risks, the prob- 
ability of failure of structure through collapse 
which results in one death should be about 
5 X 1 0 - Q e r  year. If more deaths result, as 
might be the case in the failure of a dam or a 
tall building, the probability of failure should 
probably be even smaller. 

A German study (Rusch and Rackwitz 
1972) of roofs which failed under snow loads 
and the roofs in randomly selected satisfactory 
buildings from the same regions, showed that 
the calculated values of failure probability were 
between lo-:' and 1 0-5 per year for the build- 
ings that failed. For structures which did not 
fail, the annual probability of failure was 
always less than 1 0-5. 

This evidence suggests that the probability 
of failure should not be less than about 10-5 
per year. This corresponds to about 3 x 10W4 
during the 30 year life of a normal building. 
For a normal distribution, this probability cor- 
responds to (F  - Ptr,.) with P = 3.45. A value 
of ,8 = 3.5 will be used in this paper for ductile 

structures with normal consequences of failure. 
This will be increased to ,8 = 4.0 if either the 
consequences of failure become severe or the 
failure occurs in a brittle manner. This should 
yield roughly a probability of failure of lo-* 
in 30 years for ductile structures and in 
30 years for brittle structures. 

6.3 Derivation of Load Factors and Resistance 
Factors for  Reinforced Concrete Beams 
and Columns 

The calculation of load factors and resistance 
or + factors requires a choice of p, as discussed 
in section 6.1, and requires that yll, VI~, yv, 
and V ,  be calculated. These quantities will be 
evaluated in the following subsections and used 
to derive load and + factors for flexure and 
shear in a reinforced concrete beam and for 
axial load in a tied column. 

6.3.1 Selection of Statistical Properties of 
Variables 

The properties assumed in the caIculations 
are listed in Table 3. 

(i) Concrete-The specified concrete strength, 
f,.', will be assumed to be 4000 psi (27.9 MPa). 
The concrete strength will be assumed to be 
normally distributed and the standard deviation 
of the control cylinders will be assumed to  be 
600 psi (4.1 MPa) ( V  = 0.15) corresponding 
to average control (ACI 1965).  A mean con- 
trol cylinder strength of 4900 psi (33.8 MPa) 
is required to satisfy section 4.2.2.1 of ACI 
3 17-71 (ACI 1971 ). The mean strength of 
the concrete in the structure itself, f;., calculated 
using 181, will be taken as 3800 psi (26.2 MPa). 
The coefficient of variation of the concrete in 
the structure, V,., will be taken as 0.18, cal- 
culated by combining V = 0.15 for the control 
cylinders and the coefficient of variation of the 
ratio between the strength in the structure and 
that in the control cylinders, assumed to be 
0.10 (Bloem 1968).  The tensile strength will 
also be assumed to have a coefficient of varia- 
tion of 0.18. 

(ii) Reinforcement-Grade 60  reinforce- 
ment will be used with a specified yield strength 
of 60  ksi (414 MPa) and a mean mill test 
yield strength of 66 ksi (455 MPa).  The 
mean static yield, f ; ,  will be used in these cal- 
culations and will be assumed to be 62 ksi 
(428 MPa).  The coefficient of variation of 
the yield strength, V,, will be assumed to be 
0.07 (Allen 1972).  
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TABLE 3. Statistical distributions assumed in calculations 

Mean Mean.in situ 
Specified in situ Specified u V 

Material Strengths, M 
Concrete strength 
Concrete tensile strength 
Yield strength 

Dimensions, F 
b-beam, column (in.) 
d-beam (in.) 
h-column (in.) 
s-stirrups (in.) 

A,-beam (in.2) 
A,-column (in.') 
A,-stirrups (in.') 

Accuracy of code equations, P 
Mu-under-reinforced beams 
Pu-axially loaded columns 
V,-shear carried by concrete 
V,-shear carried by stirrups 

Loadings, S 
Dead load 
Maximum floor load in 

30 year life 

Structural analysis, E 
Dead load effects 
Live load effects 

4000 psi 
- 

60 ksi 

12 
18 
12 
9 
3.24 
2.16 
0.22 

- 
- 
- 
- 

- 

- 

- 
- 

(iii) Dimensiorzs-The dimensions chosen 
by the designer are: beam width, b = 12 in. 
(30.5 cm);  beam effective depth, H = 18 in. 
(45.7 cm);  column width and overall depth, 
b = h = 12 in. (30.5 cm). In the absence of 
Canadian data, the average width and overall 
depth of the beam and column will be assumed 
to be 0.05 in. (1.3 mm) greater than the de- 
sign values with a standard deviation of 0.30 
in. (0.8 mm) (Fiorato 1973). The mean effec- 
tive depth of the beam will be assumed to be 
0.15 in. (0.4 mm) less than the design value 
with a standard deviation of 0.4 in. (1.0 cm) 
(Fiorato 1973). The mean widths, 8, etc. are 
given in Table 3, along with coefficients of 
variation, Vk,,  etc. calculated by dividing the 
standard deviations given above by the mean 
values. 

The beam and column will both be assumed 
to have a calculated longitudinal steel per- 
centage of 1.5% giving a calculated steel area 
A, = 3.24 in.' (20.9 cm2) in the beam and 
A,, = 2.16 i n . v l 3 . 9  cm2) in the column. In 
addition, the beam has No. 3 U-stirrups at 9 
in. (22.9 cm) on centers. 

3800 psi - 
- - 

62 ksi - 

Since it is unlikely that bars of exactly this 
area will be available, the area of the bars 
selected by the designer will be assumed to 
average 1.02 times that required with a coeffi- 
cient of variation of 0.05 (Fig. 12).  Finally, 
the rolling tolerances are such that the mean 
area of a given reinforcing bar or group of 
bars will be assumed to be 0.98 times the 
nominal area chosen by the designer with a 
coefficient of variation of 0.03 (Allen 1972).  
Thus, the mean area of steel will be assumed 
to be 1.02 x 0.98 = 1.00 times that chosen . 
by the designer and the coefficient of variation 
of the steel area will be assumed to be 
~ ' 0 . 0 5 ~  0.032 or 0.06. 

( iv) Accuracy of A CI Design Equations- 
Due to the use of the rectangular stress block, 
the limiting strains, and the neglect of strain 
hardening, the strengths calculated using the 
ACI (1971) Code and CSA A23.3 (1973) 
may differ from the actual strength even if the 
measured strengths of the concrete and steel 
in the member from control specimens are used 
in the calculations. For under-reinforced beams, 
Mattock et al. (1  961 ) suggest average of mea- 



sured to calculated strength ranging from 1.04 
to 1.1 1 with coefficients of variation ranging 
from 0.05 to 0.10. Some of this variation will 
be due to differences between the control speci- 
mens and the material strengths in the mem- 
bers. For beams we shall assume the mean 
strength to  be 7 = 1.06 with a coefficient of 
variation V,, = 0.04. For tied columns, Mattock 
et al. (1961 ) found mean ratios of test to cal- 
culated strengths ranging from 0.97 to 1.00 
with coefficients of variation ranging from 
0.046 to 0.074 including possible in-test varia- 

- tions. In this study the mean ratio of actual 
strength to design strength will be taken as 
P = 0.98 and the coefficient of variation as 
v,, = 0.05. 

The 1962 Report of ACI Committee 326 
(ACI-ASCE 1962) indicated that ACI-ASCE 
Equation 11.4 for v,. had a mean ratio of mea- 
sured to computed capacity ranging from 1.03 
to 1.30 with an overall average of 1 . I8  with 
V = 0.16. For beams with stirrups the mean 
ratio was 1.37 with V = 0.205. For the pur- 
poses of this comparison we shall assume that 
P = 1.10 for the shear carried by the concrete 
and = 1.20 for that carried by stirrups. In 
both cases we shall assume V = 0.15. 

6.3.2 Computation of 9 for Flexure of a 
Reinforced Concrete Beam 

This value of a, must be corrected to allow 
for errors in the equation itself. Thus: 

W 
y, is the ratio-= 1.071 

R 
(iii) Coeficient of Variation, VR 
The coefficient of variation will be computed 

in a number of stages: 
V,,/2-Since a /2  is the product of a number 

of variables, [7c] will be used to compute 
Va/2 : 

V(,/2 = dVAsP + Vfy2 + Vfc2 + Vb2 
-- 

= f i 0 6 ~  + 0.07" 0.18" 0.0252 = 0.204 

Thus V,,/2 = 0.204. 
V(,, ./,)---Since this is the sum of two vari- 

ables, it is necessary to use [6c] to compute the 
standard deviation of this term and then con- 
vert that to a coefficient of variation using [3]. 
Thus -. 

a((~-a /a  = g+ 
where 

vIL/2 = (i7/2) . V,/:! = 2.58 x 0.204 = 0.526 in. 

cr(d-a/2) = .\/0.4s2 + 0.5263 = 0.69 in. 

( i )  Design Strength, R and 
Using the assumptions in the ACI (1971 ) 

or CSA (1973) codes, the designer would - U ( ~ z - ~ / 2 !  - 0'69 - 0.045 V(d- a/2) - 
calculate the beam strength (neglecting +) as: d-  ii/2 -' 15.27 - 

VBI,-Because M,, is calculated as the prod- 
uct of A,, f,, and (d - a /2) ,  V,,,, can be cal- 
culated as: 

= 253 f tK  (Since a /2  is small compared to d,  Vd could 
Thus, the strength calculated by the designer be used rather than V((l-u/2) in this calculation 
would be R = 253 ftK. for simplicity. The resulting V,, would be 

(ii) Mean Strength, 0.096 which is close enough in most cases.) 
The mean strength can be computed using V,t-Fina11y7 it is necessary to include the 

the mean strengths and dimensions in the equa- effect of !he accuracy of the design equation in 
tion for MU: the coefficient of variation: 

(iv) Summary-For the reinforced concrete 
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beam considered: R = 253 ftK, R = 271 ftK, crete is the product of the variables f,.', b, and 
ylr = 1.071, and VjL = 0.11. h, thus: 

(v) Computation of + for Flexure-Equa- 
tion [34] gives + as: 

The standard deviation of the load carried by 
the concrete is: 

Since a flexural failure of an under-reinforced 
reinforced concrete beam is a ductile failure, u,: = Vl: x Fc = 0.1 83 x 462 kips = 84.5 kips 

generally with normal consequences of failure, VI>s and ups-Similarly, the load carried by 
we shall use P = 3.5 (see section 6.2). The the reinforcement is the produce of f, and A,+: 
term (Y will be taken to 0.75 as explained in 
section 6.1. Thus: VpS dfY2 + VA,t = 0.092 

and 

= 0.092 X 134 kips = 12.4 kips 
The value of + for this particular problem is 
0.802. This value of + will correspond to the VP? and  since P,, is a sum wc must 
load factors to be developed in section 6.3.5. comblnc cr values to get (TI;,: 
By calculating + values for a range of different ,T,. = d- = 
properties, a weighted average value can be o 7 

obtained. d84.52 + 12.42 = 85.4 kips 
6.3.3 Computation of cp for an Axially Thus 

Loaded Tied Column 
- 

(i) Design Strength, K v = 2 g ~ = - ~ - -  85 - 0.143 
The design strength will be assumed to be Po Po 596 

given by the traditional addition law: Again, this must be adjusted to allow for 
Po = l0.85 fc' (A, + (Astfy) 

= [0.85 X (144 - 2.16)] 

errors in the e uation used to compute P,: 
V = J-P VIt" and V, = 0.152. 

(iv) Summary-For this particular axially 
+ (2.16 x 60) = 61 2 kips loaded column: R = 61 2 kips, R = 584 kips, 

y ,  = 0.955, and V,, = 0.152. 
(ii) Mean Strength, R 
Based on the mean strengths and dimensions (v) Computation of d, for Axially Loaded 

Y 

the mean axial load capacity is: Column 
- Since the failure of an axially loaded tied 
Po = [0.85 X 3.8 (12.052 - 2.16)] column will be brittle and may have serious 

+ (2.16 62) = 596 kips consequences, we shall use P = 4.0 in evaluat- 
ing cp. 

Again, this value must be corrected to allow 
for errors in the equation itself. Thus: 4 = yrc e-Bavn 

R = Fo x P =  596 x 0.98 = 584 kips - - 0.955 e - 4 . 0 X 0 . 7 5 X 0 , 1 5 2  = 0.606 

and 

(iii) Coeficient of Variation, Vlc 
The strength of the axially loaded column is 

the sum of the load carried by the concrete, P,., 
and the steel, P,. The coefficients of variation 
of PC and P, will be evaluated separately using 
[7c] and combined using [6c]. 

V1,, and crll,-The load carried by the con- 

Thus the value of + for this particular case is 
0.606. Before a final value can be chosen, a 
number of different column cross sections must 
be studied. In addition, cp values must be cal- 
culated for eccentrically loaded columns. The 
variability of a randomly generated set of 12 
in. (30.5 cm) square eccentrically loaded col- 
umns with a total steel percentage of 1% is 
shown in Fig. 22. The dispersion in the com- 
pression failure range corresponds reasonably 
well with that calculated in this section for pure 



axial load. The dispersion in the tension failure equation gives 
range approaches that for pure flexure. V ,  = 0.182 

The line labelled ACI Strength in Fig. 22 (iv) Summary-For this particular beam in 
represents the strength based on the ACI de- shear: = 53.7 kips, = 61 .7 kips, y,, = 
sign assumptions for cp = 1 .O and ignoring load , .5 , , and V ,  = 0. 82. 
factors. When the ACI load factors and cp fac- 
tors are included, the design strength is found (v) Computation o f  cp for Shear 

to be safe relative to the minimum strength Since a shear failure will generally tend to 

plotted in this figure. be brittle we shall use p = 4.0. 

6.3.4 Computation o f  cp for Shear in a Beam 
(i) Design Strength, R 
The design strength will be assumed to be 

given by : 

R = V ,  = 53.7 kips 

(ii) Mean Strength, 

= 26.5 + 27.1 = 53.6 kips 
Correcting this for errors in the equation for 
V,, gives: 

R = 1.1 x 26.5 + 1.2 x 27.1 = 61.7 kips 

(iii) Coefficient o f  Variation, Vlc 
Vv,, and u , ~  -The shear carried by the con- 

crete is the product of (assumed to have 
V = 0.18), b a n d  d. Thus: 

Vv,  = \/vfC2 + Vo2 + Vc12 = 0.183 

crVc = 0.183 x 26.5 = 4.86 kips 

u,- = 0.10 x 27.1 = 2.71 kips 

V v ,  and rV, - 
- 

uv, - J u V c 2  + sg+ 5.57 

- 
V 0.104 

Y U  V" 

Correcting this for errors in the basic.strength 

Thus, for this beam which had roughly 2 f l  
resisted by V ,  and 2 c  resisted by stirrups, 
the computed 9 was 0.667. 

6.3.5 Computation of Load Factors for 
Live and Dead Loads 

The loads and structural analysis terms will 
be assumed to be represented by the statistical 
distributions given in Table 3. The values 
given are documented by Allen ( 1975) and 
were used to derive load factors for steel struc- 
tures. For simplicity, the derivation will be 
limited to the combination of dead plus live 
loads. Similar analyses are required for other 
load combinations. The load and resistance 
factors can be expressed as: 

where A is the load factor. The derivation of A 
will be based on [34] : 

But, U = D + L where both D and L are sepa- 
rate variables. Because the coefficient of varia- 
tion of D is much smaller than that of L ,  it is 
desirable to separate these. For derivation of 
code values of A the procedures followed by 
Allen (1975) or Siu et al. (1975) should be 
followed. For the purposes of this paper, how- 
ever, approximations to An and AT, can be de- 
rived in the following manner. Using [31] and 
[34] the left hand side of [33] becomes: 

Using the first two terms of the series expan- 
sion for ex gives 
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The terms in the brackets in [37] can be re- 
written in exponential form for consistency 
giving separate load factors for D and L:  

Two values of each of hl, and y ,  will be 
derived in the following sections, one for duc- 
tile failures, based on p = 3.5, and a second 
for brittle failures, based on ,8 = 4.0. 

( i )  Deriveyl, ho 
\> 

AI) = yne pa2 v ~ ,  

The term V,, is affected by variations in the 
load, Vsl,, and variations due to the structural 
analysis, vEI). Thus : 

VI) = dv,yn" VI/12 

= + 0.08" 0.106 

For a ductile member = 3.5 and: 

For a brittle member ,8 = 4 and: 

(ii) Derive ht 
2' At= yteBff VI,  

where 

Vt = J v S L ~  + VEL2 = d 0 . 3 ~  + 0.22 = 0.36 

For a ductile member: 

For a brittle member: 

(iii) Summary 
For a ductile member: 

For a brittle member: 

both ductile and brittle members, it is desirable 
to have the same load factors for the entire 
structure and modify the (p factors slightly to 
account for the changes required to obtain 
common A values: Thus: 

For a ductile member : 

For flexure in under-reinforced beams: 

1.035 (p = 1.035 X 0.802 = 0.83 
or: 

0.83 M u  3 moment due to (1.250 + 1.51;) 

For a brittle member: 

For axially loaded columns : 

0.965 cp = 0.965 x 0.606 = 0.59 
or: 

0.59Po 3 axial force due to (1.250 + 1.51;) 

For shear in beams: 

0.965 x 0.667 = 0.64 
or: 

0.65 V, 3 shear due to (1.250 + 1.5L) 

It is interesting to compare these preliminary 
results to the current ACI (1971 ) and CSA 
A23.3 (1973) safety requirements. If both 
sides of the ACI and CSA safety equations are 
divided by 1.125 the following equation re- 
sults: 

The values of +/I .  125 are 0.8 for flexure, 0.62 
for tied columns and 0.76 for shear. Thus, the 
+ factors derived in this report lead to member 
strengths within 5 %  of those in the 197 1 ACI 
code except for shear in which the new cp factor 
would require 19% additional strength. 

Much more extensive study of various sizes 
of members, reinforcing ratios, live to dead to 
wind load ratios is required before final cp fac- 
tors can be proposed for the building code. 
However, it is expected that the final values 
will be similar to the ones derived in this sec- 
tion. 

6.3.6 Modification of Load and (p Factors 6.4 Proposed Procedures for Defining Resis- 
for Code Presentation tance Factors for Concrete S~ructures 

Since a given structure will normally have It  is envisaged that the following steps will 



EGOR 509 

be required in the derivation of load and 4 
factors for concrete structures: 

1. Collect Data on Statistical Distribution o f  
Parameters 

Extensive data of the type summarized in 
section 6.3.1 and Table 3 must be collected 
for each component affecting the strength of 
reinforced and prestressed concrete structures. 

In addition, data must be obtained from de- 
signers about typical dead to live to wind load 
ratios in reinforced concrete structures, and 
typical concrete strengths, steel percentages, 
etc. so that the factors can be optimized for 
the most commonly used cases. 

2. Theoretical and Design Strength Equations 
Procedures for calculating the theoretical 

member strengths must be selected and com- 
pared to available tests. The design equations 
should be those in the code. The theoretical 
equations should be as exotic as necessary to 
accurately estimate the true member strength. 
See, for example, Allen ( 1970). 

3. Calculate ylt, V ,  for Various Structural 
Actions 

Values of y,,, V,, must be calculated for 
flexure, column cross sections in combined 
bending and axial load, slender columns, shear, 
bond, prestressed concrete, deflections, and 
possibly cracking. For some members these 
terms can be computed using direct statistical 
methods similar to those outlined in section 
6.3.2. For other members such as column 
cross sections or slender columns the inter- 
action of the variables is more complex and a 
Monte-Carlo simulation technique must be 
employed to estimate Yl,  and V,, (Allen 
1970). Figure 22 was obtained in this way. 

4. Calculate Resistance Factors 
Once a format has been selected for the 

resistance factors (either cp factors as in ACI 
and CSA or  reduced material strengths f,* and 
f,* as in CEB) a linear programming solution 
can be used to compute the optimum values of 
the resistance (Siu et al. 1975). The input re- 
quired for this solution includes the desired /3 
value, the load factors from section 4.1.4 of 
NBC (1975) and weighting factors on the 
various values of p, f,', D / L ,  and D / W  to be 
considered in the solution. 

The resistance factors and load factors 
should also be compared or calibrated to those 
currently used to see if wide divergences exist. 

5. Trial Designs 
Finally, a number of typical structures 

should be designed to compare the results of 
using the new and old design procedures. 

6.5 Shortcomings of Procedure Used to Cal- 
culate Load and Resistance Factors 

There are three major shortcomings of the 
second moment probabilistic procedure used 
to calculate load and cp factors: 

1. The procedure is only as good as the data 
used in the solution. This is a problem to all 
procedures. Statistical data of the type re- 
quired are not widely available. 

2. The procedure assumes that specific 
probabilities of failure can be evaluated. Since 
this calculation depends on a knowledge of the 
extreme ranges of the strength distributions 
which are not adequately known, the com- 
puted probabilities of failure could differ from 
the actual values by as much as a factor of 10. 

3. Failure of the structure is assumed to 
occur when one cross section or element 
reaches its capacity. For a weakest-link struc- 
ture such as a truss, failure will occur when 
the weakest of many elements is overloaded. 
For a ductile indeterminate structure, loads 
will be distributed from section to section be- 
fore the entire structure fails. Our solution will 
tend to overestimate the safety of the first case 
and underestimate the second. 

4. Only failure by known overloads has 
been considered. Such causes of failure as 
gross errors, fire, explosion, etc. have not been 
considered. Allen ( 1975) and Knoll ( 1976) 
discuss this problem. 

In spite of these shortcomings, the second 
moment probabilistic procedure used here to 
compute safety parameters will be used to de- 
rive code cp factors because it provides a rational 
procedure for estimating safety factors. 

7. Summary and Conclusions 
The process of limit states design of con- 

crete structures has been examined and com- 
pared to existing design procedures. Neither 
working stress design nor ultimate strength de- 
sign considered all the necessary limit states 
adequately. In the future, designers should 
consider the various limit states more ex- 
plicitly. 

The reasons for requiring safety provisions 
have been summarized in section 4 and pro- 
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posed statistical descriptions of the important 
variables were established in section 6.3.1 and 
Table 3. 

A number of techniques for establishing 
safety provisions for structures were reviewed 
in section 5 .  Of these, procedures based on 
attaining a specified probability of failure were 
found to be most satisfactory. The derivation 
of a second moment probabilistic procedure for 
computing + factors and A factors was presented 
in section 6.1 and used in section 6.3 to derive 
(p factors for reinforced concrete beams and 
columns. Finally a procedure for evaluating + 
factors for future codes was outlined. 

The values of the apparent safety factor 
(load factor/+ factor) derived in this paper 
were close to those currentIy used in ACI 
318-71 (1971) or CSA A23.3 (1973) except 
for shear. The value derived for shear was 
considerably lower than the ACI value sug- 
gesting that the level of safety against shear 
failure may not be adequate in those codes. 
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Appendix. Derivation of Load Factors in 
ACI Code 

The load factors in the ACI Code evolved 
through a series of stages. The load and resis- 
tance factors in the proposed revisions to the 
ACI Code published in 1962 had a very dif- 
ferent format than the load factors in the Ap- 

pendix to the 1956 Code and the load and + 
factors adopted in 1963 were different again. 
The following explanation is based partly on 
unpublished reports and partly on discussions 
with persons originally involved in setting the 
safety factors. 

( a )  1956 ACI Code (ACI 1956a) 
The report of the ASCE-ACI Joint Com- 

mittee on Ultimate Strength Design (ACI- 
ASCE 1955) recommended load factors of: 

where K = 2 for columns, 1.8 for beams and 
T = temperature, shrinkage, and similar effects. 
There were no cp factors. Other equations con- 
sidered uplift loadings and wind but these will 
not be considered in this discussion. 

The basis of the load factors is explained in 
the closure (ACI 1956b) to the discussion of 
the 1956 ACI Code which included the Joint 
Committee load factors in its Appendix on 
ultimate strength design: ". . . The joint com- 
mittee found little difficulty in reconciling vari- 
ous ultimate strength formulas or derivations 
proposed and all available test results, but 
committee judgment was required to establish 
recommended load factors. The factors finally 
recommended are actually conservative; they 
were agreeable to the most conservative mem- 
bers of the committee after comparison to 
practice in other countries using the ultimate 
strength method and comparison to U.S. prac- 
tice using the straightline method. In extreme 
cases they give more than the same factor of 
safety required for straightline design and in 
the usual case about the same." 

The introduction of ultimate strength design 
in the 1956 Code was severely criticized by a 
reinforcing bar producer who apparently be- 
lieved the proposed code would favor the use 
of hard grade steel which they did not pro- 
duce. 

( b )  1962 Proposed Revisions to ACI-318- 
56 (ACI 1 9 6 2 ~ )  

Between 1956 and 1962 extensive work was 
done by a subcommittee of 318 to codify the 
ultimate strength design procedures. This sub- 
committee was chaired by Prof. G. Winter. 
Much of the development of the safety provi- 
sions was done by Mr. T. F. Collier. 
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The basis of the development of the safety 
provisions was the assumption that 1 in 
100 000 was an acceptable probability of fail- 
ure. It was assumed that if there was a proba- 
bility of 1 in 1000 of understrength and 1 in 
100 of overload, the probability of failure 
would be the product of these two or 1 in 
100 000. This is not quite correct statistically 
since the variables should be combined using 
[Gc] and [7c], but it is adequate as a starting 
point. In the statistical calculations all vari- 
ables were assumed to be normally distributed. 

For average control, 1 in 1000 concrete 
compression tests would be expected to fall 
below f,.* = 0.67 f,.' provided that the concrete 
met the ACI control requirements that no 
more than 1 in 10 tests fell below f,.'. In a 
similar manner, 1 in 1000 steel tension tests 
would be expected to fall below 0.9 f,. This 
was lowered to f,* = 0.8 f, to allow for dimen- 
sional tolerances, etc. 

Calculations of the ultimate capacities, M U ,  
P,, V, ,  etc. were to be carried out using f,* and 
f,*. The probability of understrength of a 
cross section would then be 1 in 1000 if the 
strength depended entirely on either concrete or 
steel and somewhat smaller if the strength was 
affected by both materials. 

Overload factors were expressed in terms of 
the basic equation 

where K1 and K2 are load factors and A was 
an overload allowance of 0.2L but not less 
than 20 psf (958 N/m2). The factor A was 
intended to reflect the much higher probability 
that a lightly loaded area would be overloaded. 

Based on the assumptions that the dead 
load had a coefficient of variation of 8 to 
l o%,  load factors of 1.1 8 to 1.24 would be 
required if the probability of overload was to 
be 1 in 100. The code committee arbitrarily 
rounded this off to 1.3. 

Setting load factors for live load was more 
difficult because live loads, especially small live 
loads, tend to be more variable and harder to 
predict than dead loads. In essence, it was 
assumed that a load of (L + A )  would be ex- 
ceeded about 1 time in 10. To reduce this to 
the desired 1 in 100, load factors of 1.25 and 
1.35 would be required if the coefficient of 
variation of the loads was 334- and 50%, 

respectively. Based on all of this ACI Com- 
mittee 3 18 chose K2 = 1.3 giving: 

Finally, the designer was required to in- 
crease the axial load, P, and the moment, M, 
by 10% for all columns to recognize the im- 
portance of columns in a structure. For tied 
columns an additional 10% increase was re- 
quired because of the brittle failure of such 
columns. 

(c) Discussions of the 1962 proposed Re- 
visions (ACI 19626) 

The load factors proposed in the 1962 Pro- 
posed Revisions were vigorously opposed on a 
number of grounds by several groups. This 
criticism centered on five main points: 

1. A number of discussors were concerned 
about the effect of the A term for prestressed 
roof members in parts of the country where 
the specified roof loads were small. It was 
pointed out that for roof loads less than 43 psf 
(2.06 MPa) the 1962 Proposed Revisions led 
to a larger section than the Appendix to ACI 
3 18-56. 

2. Several discussors pointed out that since 
it was common practice to pretension tendons 
to an initial stress of 80% of the ultimate, the 
value of f,* = 0.8 f, seemed low. They also 
felt that plant control should be recognized in 
selecting the understrength factors for con- 
crete. 

3. The probability of having both f,.* = 0.67 
f,' and f,* = 0.8 f, in the same member was 
questioned. 

4. Engineers would not feel comfortable 
with live load factors as low as 1.3. 

5. The use off,,* = 0.67 f. '  and f,* = 0.8 f, 
implied that concrete was a less dependable 
material than steel and the resulting public 
reaction would force concrete out of the market. 

(d) 1963 ACZ Building Code (ACI 1963) 
The presentation and philosophy of the 

safety factors was completely changed between 
the publication of the 1962 Proposed Revi- 
sions and the publication of the 1963 ACI 
Code eleven months later. These changes were 
carried out under pressure from a number of 
interest groups and are not well documented. 
Although some of the following is based on 
discussions with committee members, other 
parts are speculation based largely on the com- 



mittee's closure to the discussion of the Pro- 
posed Revisions. 

Three major changes were made. First, as 
an interim step in the development, the term 
1.3 ( L  + A )  was replaced with 1.3 (1.2L) = 
1.56L. Second, the probability of overload 
was increased to roughly 1 in 1000 by arbi- 
trarily multiplyi~lg both load factors by 1.15. At 
the same time the probability of understrength 
was reduced to about 1 in 100 giving f,* =r 

0.85 f,.' and f,* .= 0.9 fJ. Finally, the ratio of 
the strength of a cross section based on the 
new values of f,* and f,* to that based on f,.' 
and fsr was evaluated and called +. The values 
of + for spiral and tied columns were adjusted 
to account for the additional 10 to 20% safety 

margin required in the 1962 Proposed Re- 
visions. 

( e )  1971 ACI Code (ACI 1971) 
The basic load factors in the 1971 Code 

were reduced about 6% from those in the 
1963 Code. This was an arbitrary decision by 
the Code Committee which they explained as 
follows (ACI 1970). 

"Note that, because of the more compre- 
hensive Code provisions, additional research 
and experience, improved concrete and steel 
quality control, load factors have been de- 
creased from 1.5 to 1.4 and 1.8 to 1.7 for an 
average reduction in the neighborhood of 6 
percent." 
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