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Continuous-frame analysis is a very important design sub-
ject for the structural engineer. In this field, he is con-
fronted with the conflicting requirements of achieving
suficient accuracy and at the same time expending a
minimum of effort and calculation, For this purpose, there
are many analytical procedures available, such as the
methods of elastic weights, virtual work, slope deflection
and moment distribution, Each has certain advantages
that make it specifixdly adaptable for particular conditions.
In this text, moment distribution is treated in a manner
suitable for office practice.

Interest in moment distribution had its origin in the
presentation by Hardy Cross in 1929.* His method is ap-
plicable to even the most complicated frame problems.
However, a condensed form was needed for ordinary build-
ing frame design in order to standardize certain features
incidental to the analysis.

The moment-distribution procedure offered in this text
is not a new method, However, it has been limited to two

preface cycles for ordinary building frames. The two-cycle method
of moment distribution has been tested over a period of
years in the analysis of numerous building frames and in
other work. The results have shown that the method speed
and accuracy are of great assistance to designers. Some may
choose to acauire a working knowledge of the mechanical
details, wbic~ are readily le;med and-remembered. Others
will consider it sufficient to use arbitrary coefficients. They
will benefit by giving consideration to the tables included
in this text for fixed-end moments, stiffness, points of in-
flection, and design of columns. These tables m-c also ad-
vantageous for those who continue to use individual types
of an=lysis.

Section 22, “Design of Column Sections Subject to
Combined Bending and Axial Load,” has been revised for
this edit’icm. If designers adopt the procedure proposed,
design of column sections subject to bending should be
reduced from a time-consuming problem to. one of simple
routine.

Designers who do not wish to study the preliminary
explanation and derivation may turn immediately to Sec-
tion 10. However, a working knowledge of Tahlm 1 through

oSee reference 3.
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4 is needed, The special arrangement for two-cycle moment
distribution is described in Sections 10 and 11. Subsequent
sections treat supplementary problems.

The second part of this book, which is concerned with
wind-stress analysis, is the same as in the previous edition.

The chronological list of references, pages 55-56, has
been revised and brought up to date.

Miscellaneous changes in wording and references have
been made in tbe text to incorporate code and handbook
revisions and to include experience accumulated since the
third edition was published.
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~= fraction less than l.t)tl

A= area

b= width of compressive zone

b’= width of web in T-beam

C= a coefficient

d= depth ofasection

D= distribution factor, ora ratio

c = e~centiicity

E= modulus of elasticity

f = stress

F= a multiplier

h = height of column

1= moment of inertia

notations K = stifhess

L = span length

M = moment

MA” = end moment at joint A of member AB

M’ = fixed-end moment

n = ratio of &
E.

N = actual axial load on column section

p = percentage of reinforcement

P = equivalent axial load on column section

r = a r*tio

R = radius of gyration, or angle of joint translation

t= depth of flange, or overall dimension of column section

U = unbalanced moment

~ = relative shear in columns

V = total shear

w = ]Oad pIXlinear foot

W = load on a span, or wind pressure

6 = angle of rotation
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1 the concept of fixed-end moment

If a load, W, is placed on a simply supported beam AB with span L as in
Fig. 1(a), moments in the beam may be computed as tbe product of a coeffi-
cient and WL. The coefficients are independent of adjacent beams,

When tbe load is applied on AB, the beam will deflect and the tangents
at the ends of it will rotate through angles denoted as d“ and 8,, The designer
need not be concerned with these angles if the beam ends are free to rotate,

Assume that AB is restrained at A in such a manner that the angle
change at A is smaller than @.. Tbe restraint may be represented by a mo-
ment M4,, as illustrated in Fig, 1(b). Various degrees of restraint may be
considered but the most important of these is the one illustrated in Fig. 1(c)
where the angle changes are zero at both supports, In this case AB is said to
have fixed ends, and the restraining moments are called fixed-end moments,
M5S and M;..

F{g, 1- Beam OU.I

The beam with fixed ends bas characteristics resembling those of simply
supported beams. The following statements apply to both types of beams:
Moments may be computed as the product of a coefficient and WL, The co.
eficients are independent of adiacent beams.

The fixed-end moment is particularly useful in beam design since it is
independent of other members in the frame and also is a major part of the
actual end moment in the beam, One objective in frame analysis is to deter-
mine the minor correction to the fixed-end moment to give the actual mo-
ment. When the correction is relatively small, as is often the case, it may be
determined either by quick approximate procedures or by judgment,

9
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2 determination of fixed-end moments

The procedure to be illustrated is typical for all types of loading, Assume
the problem is to determine the moments required to “fix” the ends A and B
of a beam with span L supporting a load, W, placed a distance of aL from A.

To solve this problem, first place W on a beam All considered simply
supported as in Fig, I(a), Tbe angle changes in this beam are denoted as
9A and d“. Then, as shown in Fig. 1(c), apply two end moments, bf~, and
M~., of such direction and magnitude that the angle changes 8. and #, are
eliminated.

Angle changes and deflections may be determined by application of the
two moment-area principles. Their use will be illustrated, but for a complete
explanation refer to standard textbooks on structural theory. *

The procedure in this problem is as follows: For the load W acting
alone, determine the moment curve in Fig. 2(a), assuming the beam to be
simply supported. Let E denote modulus of elasticity and Z denote moment
of inertia, Divide all M-ordinates in Fig. 2(a) by the product of EI which

gives the so-called ~-diagram,” Similarly, as in Fig. 2(b), draw an ~- dia-

gram for M~, and Ms., which are the unknown quantities, Note that M de-
notes moments at any point in the beam considered simply supported.

The first moment-area principle states that the angle between the tan-

gents at any two points on a beam is equal to the area of the ~-diagram

between the two points. Since the tangents at A and B in the beams with
fixed ends are assumed not to rotate, the angle between them equals zero.
Both E and I are considered constant in this problem; therefore the product
of EI cancels out, and we may write

—l%M!LL — l%M~~L + ~2Wa(l — a)L’ = O,*O
from which

kl~~ + M:. = a(l — a)W.L, (1)
The second moment-area principle states that the defection of any poin?-

on a beam measured from the tangent at any other point eqtud.s the moment

about the first point of the #-diagram between the two points. The deflec-

tion of A measured from the tangent at B equals zero; therefore, canceling
the constant product of EI and taking moments about A, we have

—%%L X ?4L — I/J41LL X YsL + %Wa(l — CJ)L’ x Y3(1 +a)L = O,
from which

M.. +2MLA=a(l–a) (l+a)WL. (2)
Subtracting equation (1) from equation (2) gives

M~. =a’(1–a)WL,
Similarly,

}

(3)
M%, = a(l – a)’WL.

*For imtance, see reference 11.
*e ~oment~ MP are here ~on,ide,d numerical values. Fi.ed-end moments du. to ma~-

ity loads create tension in top fibers of h.wns and will whwquemtly he defimd as
negative quantities.
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Fig, 2 – Moment curoa for oatkd load and restraint momen$.

It is seen that Mj, and M:. equal the product of WL and a coefficient
that is a function of the type and position of the loading on span AB, Table 1

contains such coefficients for 15 types of loading on beams with fixed ends
and constant moment of inertia. Coefficients are given so that moments may
be computed also at intermediate points of the beams. For beams with
variable 1, similar data are available in Handbook of Frame Constants and
Continuous Concrete Bridges. ”

/
3 examples of fixed-end moments

‘ Tbe four beams in Fig, 3 are assumed to have fixed ends and a constant sec-
tion throughout each beam, Moments at ends and at midspan are determined
by using coefficients in Table 1. Time may be saved by selecting numerical
values from Table 2,0 * which gives results witbout the use of a slide rule.

Fig, 3 – Monwnts in fow beams with fixed ends,

“Both publications are available only in the United States and Canada from tbe
Portbmd Cenvat Amociatiom

o. ~eproduced from Retnfo,ced cott~,d~Design Ha&book. published by the American
Concrete Institute, Detroit, Mich.
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table I. coefficients for moments in beams with fixed ends

moments In beam, of constant section and with fixed ends

12



M=mx WxL
m = coefficient taken from diagram
W = total load on beam
L = length of beam
,7 — 6,,.+ ;.. I... +hB. I on. —.. . . ... .. .“””.........
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fable 2. moments in beams with fixed ends

1. uniform load
-

Fixed end momenta: Table v.Iu.8
M = i2”L’

Midwan mommb: Table .,1..s x 0,5
M “ Z.”L’

5

For following loads “8, table values directly

For foilcwinu loads .s8 table vduw diwded by 10

0,1 [ 0.2 I 0.3 I 0.4 I 0,5 I 0.6 0.7[ 0.8 0,9 1,0

2. concentrated load
o! midspan M%

fixed end moments: Table values M . AWL

Midmm moments: Table values M = ;WL

Concentrated Load Win W,

For following loads US, tab!, “,1”.8 dimtly

Syn 10 1201301 4OI5OI8OI7OI8O 190110(

For foltcw”Q loads .8. table “alum divided by 10

7 ;J

112 31415 61718 9/11

,, 6.3 12,5 18,8 25.0 31,3 37.5 43.8 53,0 56.3 2.!
5’.’ 6.8 13.1 19.7 26,3 32.8 39.4 45,9 52,5 59,1 5.1

6.9 13.8 ?0.6 27.5 34.4 41,3 48.1 55,0 61,9 ,(
7.2 14.4 21.6 28,8 36,9 43,1 50,3 57,5 64,7 1,!
7,5 15.0 22.5 30.0 37,5 45,0 52,5 EQ,o 67,5 5,(
7.8 15,6 23A 31,3 39.1 46.9 54.7 62.5 70.3 8.1

6,+, 8.1 16.3 24.4 32.5 40.6 48.8 66.9 65.0 73.1 1,:
V-9, 8A 16,9 25,3 33.8 42,2 50,8 59,1 67,5 75,9 4.,

7,4, 8.8 17.5 26.3
7,.*. 9.1 18,1 27,2
7,4, 9,+ 18,8 28.1
,,+, 9.7 19.4 29.1
8<4, 10.0 20.0 30,0
8>-3, 10.3 20,6 W9
8,-+. 10.6 21,3 31,9
8,+, 10.9 21.9 32.8 /1

35.0 43.8 52.5 81,3 70.078.8 7,!
36,3 48,3 54.4 63,4 7Z581.6 0.1
37.5 46,9 56,3 66.8 75084.4 3,1
38,8 48A 58,1 67.8 77.587,2 6.{
40.0 50.0 60.0 70.0 80. 90.0 10[
41,3 51.6 61,9 72,2 82,5 2.8103
42,5 53.1 63.8 74.4 85. 95.6706
43.8 54,7 65,6 7&6 87, 98,4 10S

~,+.
S?-ar

~,4,

~,-y

10,+s
1w+?
11,4,
11,%,

12,4.
12,4
13,4,
13,+,
14,4,
14,+.,
15,4,
16,-6,

16,-4s
16,-6,
17~4.
17,+,
18,4,
18,-3,
19,-0,
19,+

/

11.3 22.5 33,8 45,0 86,3 67.6 78.8 90, 10, 113
11,6 23.1 34,7 46.3 57.8 69,4 80,9 92, ,04 I,@
11,9 23.8 35,6 47,5 59,4 71.3 83,1 96, 107 11$
12.2 24A 36.6 4S,8 60,9 73,1 85,3 97. 110 122
12,5 25,0 37,5 Eao 6?.5 75,0 87.5 , 1,3 125
13.1 76.3 39.4 52.6 65,6 78.8 91.9 10 118 131
13,8 27,5 41,3 55.0 68,8 8’2,5 98,3 11 1’24 ,38
14.4 28.8 43,1 57.5 71.9 88.3 101 11 129 144

16.0 m.o %0 60,0 75.0 90.0 105 12 135 15C
15,6 31,3 46,9 62,5 78.1 93,8 109 ,’2 ,,1 ,M
16.3 32,5 48,8 65,0 81,3 97,5 114 13 148 lN
16,9 33.8 50,6 67.6 84,4 ,01 ,18 1.3 ,62 ,69
17.5 36,0 52,6 70.0 87,5 106 Iw ,4 ,57 ,75
18.1 36.3 54,4 72.6 90.6 109 127 14 163 181
18,8 37,5 56,3 75.0 93,8 112 131 1 169 188
19,4 38.8 58.1 77.5 96,9 118 136 13 174 194

20.0 40.0 60.0 W3.o 100 120 140 1 180 200
20,6 41,3 61,9 82,5 103 124 144 186 ,86 208
21.3 42,6 63,8 86,0 106 128 149 170 191 213
21.9 43.8 65,6 87,6 109 131 153 175 197 219
22,5 45,0 67,6 90,0 112 136 158 180 202 226
23.1 46,3 69,4 92,5 118 139 162 ,85 208 231
23,8 47,5 71.3 95.0 119 142 166 190 214 238
24.4 48,8 73,1 97,6 122 I 46 171 196 219 244

25.0 50,0 75,0 100 125 160 175 200 226 2?0
25,6 51,3 78,9 103 128 154 179 205 231 256
26.3 52,5 7b,8 105 731 i 58 ,84 210 238 *63
26,9 53.8 80,6 108 134 161 188 2,3 24? 269
27,6 58,0 82.5 1,0 138 , w 192 220 248 275
28.1 56.3 84,4 113 14, , w 197 225 253 28,
28,8 57,5 86.3 115 144 f 72 20, 230 259 288
?3,4 58.8 88.1 118 147 1?6 2m 235 264 294

30.0 60.0 silo 120 I&l ,80 *I o 24,3 270 Xlo
30.6 61.3 91.9 123 15.! 184 m 4 248 276 306
31,3 62,5 93,8 ,25 156 188 2,9 25.3 2*, 3,3
31,9 63.8 46,6 128 169 191 223 255 287 3,9
32,5 65.0 97.5 130 182 195 228 260 292 3’25
33.1 68.3 99.4 133 168 199 232 265 298 .331
33.8 67,5 101 135 169 202 236 2’/0 304 338
34.4 68,8 103 138 172 X+ 241 275 .309 3,,

4_uluuL
28<Q3. 35.0 70,0 105 140 175 210 245 280316350
28’+- 35.6 71.3 107 143 178 214 249 285321 356

36.3 72.5 109 145 181 P18 254 290326363
294< 38.9 73,8 111 148 184 221 258 295332369
30,+= 37.5 75,0 113 160 188 225’262 303338376

14



3. concentrated loads
at third points MM3

Fixed end nmments, Table value, M - ;lvr,

Midwm manw”ts: Table ..1..s x 0.5
1

M - %WI.

Co”.entr.ted Load W in Km

For following loads .s, table ,4..$ directly

10120130140 /50/ 60170 [80190 1100

For Fat!owino loads “se table “.4”,s d;”idw! by 10

112 3/4 5 6I7I8I9I1O

5.6 11.1 16,7 22,2 27.8 33.3 38.9 44.4 60.0 W.t
6,8 11.7 17.5 23.3 29,2 35.0 40,8 48,7 52,5 68. ?
6.1 12.2 18.3 24.4 30,6 36,7 42.8 48.9 55,0 81.,
6,4 12.8 19.2 26.6 31.9 38,3 44,7 51,1 67,5 63.9
6.7 13.3 20,0 28.7 33.3 40.0 46.7 53.3 60.0 66,7
6,9 13.9 20.8 97.8 34,7 41,7 48.6 55.6 82.5 69,4
7.2 14.4 21.7 28.9 36.1 +3.3 54,6 57.8 85.0 72.2
7,5 15,0 22,5 30.0 37.5 45.0 52.5 Eo.o 67,5 75.0

7.8 15.6
8.1 16.1
8.3 16.7
8.6 17.2
8,9 17.8
9.2 18,3
9.4 18,9
9,7 19.4

23.3 31,1 38,9 46.7 54.4 62.2 70.0 7Z8
24.2 32.2 40.3 48,3 56,4 64,4 72.5 80,6
25.0 33.3 41.7 50.0 58,3 66.7 75.0 &3,3
25.8 3+.4 43.1 81.7 60.3 88.9 7/6 8c3,1
26,7 35.6 44.4 53.3 62,2 71.1 80.0 88.9
27,5 36,7 45.8 55.0 64.2 73,3 82,5 91.7
?8.3 37,0 47.2 56.7 66,1 75.6 85.0 94.4
29,2 38,9 +8.6 58,3 68,1 77.8 87,5 97.2

0.0 20,0 30.0 40.0 50.0 6!3.0 70,0 80.0 90,0 ,00
0.3 20.6 30,8 41.1 51.4 81.7 71.9 82, * 92.5 103
0.6 21,1 31.7 4’2.2 52.8 63,3 73.9 84.4 95.0 106
0,8 21.7 .32.6 43.3 54.2 65.0 75.8 86., 97,5 , O*
1,1 22.2 33,3 44.4 55,6 86,7 77,8 W,g ,00 ,1,
1.7 23,3 35,0 46,7 58..3 70,0 81,7 93.3 108 ,1,
2,2 24.4 36., 48,9 61., 73,3 85.8 9%8 1,0 122
2,8 25.6 38,3 51,1 63.9 78.7 89.4 102 115 128

3,3 26.7 40.0 53.3 66.7 80.0 93,3 107 120 13,9
3.9 27.8 41.7 56.6 W.4 83.3 ‘37.2 11, ,26 13.3
4.4 28.9 43.3 57.8 72,2 86,7 101 116 130 144
5.0 30.0 +5.0 60,0 75.0 90.0 ,05 120 ,35 1m
5.6 31,1 46,7 62,2 77.8 93,3 109 124 1w 1m
6.1 32.2 48,3 64,4 80.8 96.7 113 ,29 145 1m
6,7 33.3 50.0 66,7 83,3 100 117 133 ,50 167
7,2 34.4 51., 68.9 86,1 ,03 121 138 155 ,72

35.6 53.3 71,1 88.9 107 ,24 142 160 17s
36,7 55.0 73.3 91.7 110 128 147 165 183
37.8 56.7 75.6 94,4 113 132 151 ,,0 189
38.9 58.3 77.8 97,2 117 138 156 1‘/5 , w
40.0 60,0 80.0 100 120 140 160 180 200
41.1 61.7 82,2 103 ,23 144 ,64 185 208
42.2 63,3 8+.4 108 127 1+8 169 190 21,
43.3 65.0 86.7 108 130 152 173 195 21,

4. concentrated loads
at fourth points w

fixed end moment.: Tab!. ,.,.,,

‘“ - ;8WJ,

Midwan nmrne”ts, Table values x 0.6
3

M = #’-

Ccmoentrated Load W in k im

For followino Ioad$ we table values direcvy

10 [20/30140/50160/70180190 [1C43

For following loads use table value. avided by 10

!12 3
415 617 8 9110

5.2 10.4 15,6 20.8 26,0 31.2 36.5 41.’/ 46.9 52.1

I

5.5 10.9 16,4 2,.9 27,3 32,8 38,3 43.849.25”!.7
5,7 11.5 77,2 22.9 28.6 34A 40.7 46,851. 57.3
6,0 12.0 18,0 24.0 29.9 35.6 .41.9 47,953 .960.0
6.3 12.5 18.* 25,!2 ,31,3 37,5 43.8 50. 56,36.2.5
6,5 13,0 19.5 26.0 3’2,6 39,1 .W8 62.168, 85. I
6.8 13.5 20.3 27.1 33.9 40.6 47,4 54.* 60.96,.,
7.0 14.1 21,1 28,1 35.2 42,2 49,2 56,363,370.3

7,3 14.8 21.9 29,2 36.5 43.8 51.0 53,3 66,672.9
7.6 15,1 2.7 30.2 37,8 46,3 52.9 WA 68.075.5

1

7.8 15.6 23.4 31.3 39,, 48,9 64.7 !32.5 70.378,,
8.1 16.1 24,2 32,3 40.4 48,4 56.3 64,6 7’2, 80.,
8.3 18,7 26.0 33,3 4,,7 WV) 58,$ 66, 75,0 m.a
8.6 17.2 25,8 3*.4 43,0 51,6 W2 68.7 77.3 8&9
8,9 17.7 26,6 36,4 44.3 &31 62,0 70,8 79.788.6
9,1 18.2 27.3 36.6 48.6 M., 83.8 7’2,9 82, 9,,,

9.4 18,8 28.1 37,5
9.6 19,3 28.9 38,5
9.9 19,8 29.7 39.6
!.2 20.3 30,5 40.6
3.4 20.8 31,3 .4,.7
).9 21,9 32,8 +3.8
I ,5 22.9 34.4 45.8
2.0 24.0 35,9 47,9

46,9
48,2
49,6
50.8
52,1
:4.;

59.9

2,5 25.0 37,6 54,0 62,5 75,0 8,.s ,C,l ,,3 ,25
3.0 26,0 39,, 62.1 65.1 78., 9,,, , w ,,, ,30
3,5 27,1 40.6 64.2 67,7 8,.3 94.8 108 ,22 ,35
1,1 28.1 42,2 56,3 70..3 84,4 ‘38.4 ,,3 ,2, ,4,
$,6 29.2 43,7 58,3 79,9 87,5 102 ,,’/ 13, ,48
3,! 30.2 45.3 60,4 75.5 90.6 , ,)6 , *, ,36 , ~,
5.6 31,3 46.9 62,5 78.1 93,8 ,,39 ,25 ,4, ,M
;, 1 32.3 48.4 64,6 80.7 96,9 ,,3 , *9 , +5 , e,

;,7 33.3 50.0 66,7 83.3 ,00 ,,7 ,33 , so , f,,
?.2 34.4 51.6 68,8 85.9 ,03 , *,I ,38 ,55 ,,*
?.7 35,4 63,, 70,8 88,6 ,06 ,24 ,4! ,59 , ‘/T
).2 36,5 54.7 72.9 91.1 ,09 ,28 ,46 1w , w
1.8 37.5 5&3 75,0 93.8 ,,3 1m 150 169 , *8
1.3 385 57.8 77.1 98.+ 116 135 154 173 193
1,8 39,6 59,4 79.2 99.0 1,9 ,39 15* 1,8 ,9*
13 40.6 60,9 81.3 102 122 142 163 ,83 203

1.8 41.7 62.5 83.3 104 125 146 167 187 208
,4 42,7 64.1 85,4 107 128 149 ,,, ,9* 2,4
,9 43,8 65.6 87.5 109 131 153 176 197 2,9

!.4 44,8 67.2 89.6 112 134 157 179 202 **4
!.9 45.8 68,8 91.7 115 138 160 18 206 229
1,4 48.9 70.3 93,8 ,17 ,4, ,64 ,88 *,1 234
ILO 47.9 71.9 95.8 120 144 168 192 216 2.!0
1.6 490 ?3.4 97.9 122 147 171 196 22.3 245

iO 50.0 75.0 100
i,5 51.0 76.6 ,02
!.0 52.1 78,1 1CM
1.6 53.1 79,? 108
.1 54,2 81.2 108
,.6 55.2 82,8 110
1,1 56.3 84,4 112
1,6 57,3 85,9 115

125 150 175 200 225 250
128 153 i 79 204 230 255
133 156 182 208 234 260
! 33 159 186 212 239 26!3
135 162 190 21 ‘/ W 271
138 166 193 221 248 2,6
141 169 197 225 253 281
143 172 200 229 258 286

1.2 58.3 87,5 117 146 1?5 204 233 26 2’32
l.? 59.4 89.1 119 148 178 208 238 26 297
1.2 60.4 90,6 121 151 181 211 242 *7 3,3*
}.1 61.5 92.2 123 154 184 *I 5 246 27 3,3,
.3 62,5 93.8 125 156 188 219 254 281 313
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Note that end moments for total load ( TL ) are computed in Fig. 3 as a
coefficient multiplied by WL. All other values equal certain proportions of
the moments in the first column.

/
4 stiffness and carry-over factor

It has been shown in Section 2, “Determination of Fixed-End Moments,”
that moments at fixed ends may be determined by multiplying the product
of load and span by a coefficient, Since ends of beams in buildings are not
fixed, the fixed-end moments must be modified to suit whatever rotation
takes place at the joints, The effect of rotating one end of a beam will now
be discussed, including the concepts of stiffness and carry-over factor.

In the member AB in Fig. 4(a), joint A is fixed and there is no load on
the beam between A and B. Applying a moment M“. at B will cause a change
of angle, 6“, and induce a resisting moment M4, at A. Consider the problem
to determine the relationship between M~~ and ~“, and between M~~ and
Mm.

The moment diagrams corresponding to MA, and MDA are shown in

Fig. 4(b) and then divided into two constituent ~1 -diagrams as in Fig. 4( c )

and 4(d), Since the rotation of B creates tension on top of tbe beam at A,
M., is negative, while MB,, producing tension on the bottom of the beam,
is positive. According to the first of the moment-area principles, the area of

the ~ - diagrams between A and B equals tbe angle d,:
L!,’

?&&–*xL+ =1—xL=O,.’

According to the second principle, the moment of the # -diagrams about A

equals tbe deflection of A measured from the tangent at B:
l%MnAL.wx~L+7 x SL == OnL.



Inserting K = ~ and rearranging give

— 2M.B + 2M.A == Ko.;
— 2M., + 4M.,4 == 3K6,;

from which
M,,i == K8,;
M*, == %M~,i.

K is called the stiffness of the member, For members with constant
4EI

section, K equals ~, which is referred to as the absolute value. A relative

value of K = ~ is preferred when E is constant throughout a frame. It is

seen by inspection of tbe two equations derived that
1. Tbe stiffness K at B equals the moment at B required to give B a

unit rotation when A is fixed.
2, The moment required to rotate B through a given angle is propor-

tional to the stiffness K,
3. Applying a moment MEA at B will induce at A a moment M.. =

\~M,A, The factor Of 1A is called “the carry-over factOr.”*

The concepts of stiffness and carry-over factor together with the concept
of fixed-end moment are used in the procedure of analysis known as moment
distribution.

/
5 tables of stiffness for beams and columns

The relative stiffness of all beams and columns must be established regard-
less of the analytical method used. Stiffnesses are functions of cross-sectional
dimensions, but are not initially known and must he estimated. The selec-
tion of stiffness factors is simplified by use of Tables 3 and 4. Tbe specific
assumptions on which these tables are based are discussed in this section
and also in Section 18, “Effect of Variation in Stiffness.”

For beams, the question arises regarding the effect of flange on stiffness.
Tbe ACI Code specifies that in computing tbe value of 2 for relative stiffness
of beams, the reinforcement may be neglected, but allowance shall be made
for the effect of flange in T-shaped sections.

One procedure is to compute I for a T-beam as the product of Ylzb’d’
and a coefficient C, values of which may be selected from Fig. 5. The width
of tbe web is denoted as b’ and the total beam depth as d. Stiffness equals

()

~ % and the value of I = +&#’d, may be selected from Table 3.

It is often difficult to select the flange width, b, and the assumption that the
entire flange width available is fully effective across tbe span may be ques-
tionable, Therefore, results obtained by using Fig. 5 are only as accurate as
the assumptions made.

“The value of 1%applies to rismat ic members only. For other types of members, values
\of carry-omr factors may e selected from Handbook of Fr.nw Constants and Con-

thuousCcmcrete Bridges, available od in the United States a“d Canada from the
tPortland Cement Association. These w bcatmns also give stiffness factors
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fable 3. stiffness of beams
~=~

values of K for T-beams 10L
d = depth

—

d

8

—

10

—

12

—

14

—

16

—

18

—

20

—

22

Iv I

1; 1%
~ji 13248

14976
15 ;:;~

U 21888
21 24192

11717
1; 1W47
11* ::84:
13
15 y:

;: 27829
21 30752

; ;:;:
1:
llb 21037
13 23781
15 ;[744:

Ii 34757
21 38416

18CC0
1: 225W
11: 25875
13 29250
15 .33754
17 382?0

~27?Jl
H 47WI

18 U%
114 44712
13 E4E4+
15 5s320
;; W96

73872
21 81648

,: 49392
61740

~y 71031
84262

18 92610
~~ ;C44$

21 129654

18 til::
114 105984
13 1198C3
16 138240
17 1WY/2
19 175104
21 193536

8 1C4976
10 131220
~y ;;54);

16 196$30
17 223074
19 249318
21 27E.582

b’ = width of web
~=~

12

.%. POW 20 for q+anollon of coeffldent 2 in numeralor, C.aei7f&nl 10 in denominator Is Introduced dmply

to red... the magnitude of relative diffne$s values.



fable 4. stiffness of columns

K=* d=(lepth ~ .l&
values of K for columns b = width

12
—

d

—

8

—

10

12

—

14

.

16

—

18

—

20

?2

—

h : Height of column (feet)
I *

I 9 10 11 12 14 16 20

—

d
—

24

—

26

.

28

30

—

32

.

34

36

—

38

—

‘See footnote !. Table 3,
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Fig. 5 – Coe&k?nts for moment of inmtla of T-beams,

A quicker and usually acceptable procedure in building design is to
select K for T-beams from Table 3, Allowance has been made for effect of
flange by doubling the moment of inertia of the gross web section, Fig. 5

indicates that for values of ~ between 0.2 and 0,4, a multiplier of 2 corre-

sponds closely to a flange wi_dth equal to six times the web width. This will
be considered a reasonable allowance for most T-beams. As seen from Fig, 5,

variations in depth ratio, ~ have relatively little effect on 1. For rectangular
d’

beams the factor of 2 in Table 3 should be omitted.
Table 4 contains relative stiffnesses for columns computed on basis of

gross concrete section, neglecting reinforcement as is done for beams, This
is in accordance with Section 702 of the 1956 edition of tbe ACI Code, Other
building codes, such as the 1936 edition of tbe ACI Code, required that
allowance be made for reinforcement in columns. If this is to be done, the
best procedure is probably to add a percentage to the I and K values taken
from Table 4. An increase of 10 per cent is considered reasonable for usual
column sections.
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/
6 signs

Two sign conventions are in general use. One must be chosen and used
throughout the operation of moment distribution. Fixed-end moments for
gravity loads may be recorded either as (1) negative on botb sides of a joint,
or (2) negative on one side of the joint and positive on tbe other side, Both
have advantages, The choice between them depends on the type of problem,
Convention ( 1 ) is usually applied to problems involving distribution within
a single level, It is identical to the usual design concept that considers mo-
ments to be negative when they produce tension in tbe top of beams, How-
ever, ( 2 ) is preferred when moments are distributed from floor to floor, ”
Convention ( 1 ) has been adopted here,

One simple, sure way to determine signs is to visualize curvature of
beams and rotation of joints, In accordance with the sign convention chosen,
moments are negative in “humps” (tension in top) and positive in “sags”
(tension in bottom),

For illustration, a fixed-ended beam when loaded conforms to the shape
indicated in Fig, 6(a), The central portion sags (plus) and the outer portions
hump (minus ), Therefore, moments at fixed ends are negative in horizontal
beams with gravity loading,

Examples of clockwise and counterclockwise rotation about a central
suppofi, B, of a continuous, fixed-ended beam is illustrated in Fig. 6(b) and

F{g. 6 – Slgm {llwtrat@d b~ means of curvature and dejlect40n of banns.

6( c). The beam sags on one side and humps on the other side of the support.
It can readily be seen that the sag adjacent to B would be on the span that
had the greater fixed-end moment at B. When the beam sags at one end of a
member because of joint rotation, it will hump at the opposite end,

The fundamental sign concepts illustrated in Fig, 6 are suf%cient for
the type of analysis in this text and will be the sign convention used in the
following sections.

/
7 moment distribution at one ioint

‘ Consider the frame in Fig, 7(a), which consists of fow members fixed at
their far ends. Apply at their common end, joint B, an external moment U,
This moment will rotate joint B until the sum of tbe resisting moments in-
duced in the four members is equal to U. Since all members are rigidly con-

“As illustrated in Moment Distribution Ap&d to Continuous Concrete Stm.tuwx and
Concrete Buddin Frames Analyzed by Moment Distribution, available only in the

fUnited States an Canada from the Portland Cement Association.
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netted at B, each member will rotate through the same angle at this joint.
The problem is to determine the moments induced at both ends of each of
the four members.

First compute the relative stiffnesses K = ~ for all members; then their

sum, X; and finally the four ratios of K divided by X. These ratios are
called “ distribution factors” and will be denoted at D.., D.o D,~ and D,..
Itwill beshown that the moments induced in the beams atB, called “dis-
tributed moments,” equal

M~A=DnAx U;
Mm=Dm X U;
Mm== Dm x U;
Mm= DM x U.

Summation: sM”. = U2DBI = U,
It has been stated that the sum of the distributed moments at B must

equal tbe external mOment U, w that ~MBx = u. This requirement is sat-

isfied since the sum of the four distribution factors sDB, equals unity. It
has been shown in Section 4, “Stiffness and Carry-over Factor,” that moments
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required to produce a given angle change are proportional to the stiffness K.
This requirement is also satisfied since the D-factors are proportional to the
K-factors. Therefore, the distributed moment M.. equaf.s U multiplied by
the dktribution factor k.

According to one of the equations derived in Section 4 for a prismatic
member, half of the distributed moment is “carried over” to the opposite
fixed end.

/
8 example of moment distribution at one ioint

The frame in Fig, 7( b ) is the same as that in Fig. 7(a), but numerical values
have been inserted. Sizes and lengths of beams and columns are given for
which stiffnesses may be selected from Tables 3 and 4, Joint B is being ro-
tated clockwise by an external moment, U = 69 ft.kips, The problem is to
determine the distributed moments and tbe carried-over moments.

Initially, calculate the sum of the four stiffnesses, ZK = 146 +73+

133 + 163= 515, and the distribution factors, D = ~. These are recorded

in Fig. 7(b) and, it should be noted, add up to unity mound a joint. The
distributed moments induced at B in Fig. 7(c) equal UD”,, which gives 19
and 18 in the beams, and 10 and 22 in the columns. The four distributed
moments must add up to 69, The rotation of joint B also produces moments
at the opposite fixed ends of all the members, These carry-over moments are
half of the distributed moment.

The sketch of the distorted frame in Fig. 7(a) indicates that the clock-
wise rotation of joint B creates a hump to tbe left, but a sag to the right.
Therefore, 19 is negative, but 18 is positive. There is also a sag at A and a
hump at D; therefore tbe carried-over moments are +10 at A and –9 at D.
No signs are given for the column moments.

In moment distribution, U is called “unbalanced moment” and is com-
puted as the numerical difference between adjacent fixed-end moments, For
illustration, let beams AB and BD in Fig, 7 be loaded as shown in the second
and third beam in Fig. 3. The fixed-end moments for total load are A4$A= 78,
and M ZD= 147, The numerical difference is U = 69 ft.kips.

/
9 limitations in two-cycle moment distribution

The procedure described in Sections 7 and 8 in regard to moment distribu-
tion at one joint is an elemental part of the general procedure, in which marq/
joints are involved, The entire frame may be divided into “unit frames,”
each of which is treated as in Fig. 7. Each joint may be rotated and relocked
one or more times. One operation of rotating and relocking corresponds to
what is known as a “cycle.” The main problem in these operations is the
recording of calculations. For the general case involving distribution of mo-
ments between various levels, a type of recording is discussed and illustrated
in Concreta Building Frames Analyzed by Moment Distribution. *

The scope of this text is limited to that type of building frame in which

‘Available only in the United States a“d Canada from the Portland Cement Association.
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the following assumption is permissible, as stated in part in Section 702 of
the ACI Code under the heading “Conditions of Design”: “. the far ends
of the columns may he assumed as fixed.” This assumption is accepted gen-
erally and simplifies the moment analysis to a great extent. As a result, beams
in one floor may be designed without regard to those above and below. Also,
analytical work is simplified. All building frame analyses for vertical load
discussed in this text are based on this assumption.

/
10 special arrangement of moment distribution for building frames

Fig. 8 contains five groups of calculations for moments at ends of four beams.
The loads on the beams are shown in Fig. 3, in which moments have been
computed for beams with fixed ends, Since stiffnesses are not known before-
hand, it will be assumed that they are all equal, In this case, the stiffness
ratio or distribution factor for each member at any joint equals 1 dioided by
the number of all adfacent members,* recorded as Y8 or Y4 in Fig. 8. The
problem is to determine maximum end moments in the beams.

To determine maximum end moment at A, place total load on Aff and
dead load on BC as shown in (A). Since B is considered fixed, tbe end mo-
ments at B are 172 to tbe left and 37 to the right. The difference is U = 135,
when B is released, the moment distributed to the left is UD = 135 x ~;
and the moment carried to A while it remains fixed is UD X 1%= 135 X ~4

X % = 17. Refer to Fig. 6(c) for a deflection curve illustrating this case.
The counterclockwise rotation of joint B creates a hump in the beam at A
that results in a negative value for the carry-over moment. This value is
written in Fig. 8(A), but neither the external moment U nor the distrib-
uted moment UD is recorded, Joint B is then relocked in its new position.

The next step is to examine A, which so far has heen considered
locked, The original fixed-end moment is —172, but the release and rota-
tion of B transfers an additional moment to A, At this stage, the modified
total fixed-end moment is —172 — 17 = —189, Since there is no fixed-
end moment to the left of A, U at A equals 189, Releasing A and permit-
ting it to rotate induces a distributed moment at A equal to UD = 189x
}~ = 63, When joint A rotates clockwise, it tends to create a sag in the

beam at A, which results in a positive moment of 63 and a final maximum
moment at A of— 189 + 63 = —126 ft,kips.

The procedure explained in the last two paragraphs takes much longer
to describe than to perform, and the explanation is superfluous for designers
who are familiar with moment distribution. In Fig. 8, tbe only new feature
is the manner of recording and the arrangement of the calculations. The
full advantage of the modification proposed will be discussed later, but first
a brief description will be given in connection with group ( B ) in Fig, 8,

To determine moments at B, place loading as illustrated in Fig. 8(B),

‘The general expression is

distribution factor =
stiffness of member

sum of stiffnewes of all members at joint”
For further discnssicm, see 8ections 5 and 18.
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and release joints A and C, The figure clearly presents the. computation of
the two moments, 29 and 1, carried over to B, When A and C are released,
they rotate so as to create a hump on both sides of the fixed joint B, There-
fore, both 29 and 1 are negative, While B is still considered fixed, the modified
total fixed-end moments at B are —201 to the left and —79 to the right,
The unbalanced moment at B is numerically equal to 201 – 79 = 122, It is
multiplied hy the distribution factor of +/4 at either side when joint B is
released. In regard to signs, refer to Fig. 6(c) for the counterclockwise rota-
tion of joint B, Distributed moments at colmnm C, D and E are detemined
by the same procedure.

The operations illustrated in Fig, 8 cover two complete cycles of distri-
bution, which in the ordinay type of recording means that moments are
distributed twice,However, in Fig, 8 only one distribution is in evidence,
because the usual two distributions have been combined in one operation,
Moments are carried over first and are included with fixed-end moments
before the distribution is made.

One advantage of the proposed arrangement is that it automatically
limits the analytical work to the degree required for reasonable accuracy.
Two cycles of distribution are all that are needed when columns are assumed
fixed at ends above and below the floor considered. Designers who fail to

Fig, 8 – Moment dfstdbut{on Uustmted {II its OdOU.S demats,
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realize this often include three or even four cycles of distribution at consid-
erable waste of time.

In Fig, 8, the five groups of calculations have five different arrangements
of load. The total load is carried on spans adjacent to the particular joint at
which maximum moments are to be computed, but dead load only is carried
on the next adjacent spans. The calculations are so arranged that all five
groups in Fig. 8 can be consolidated into one single group, as has been done
in Fig, 9.

Note that all the moments in line 7 of Fig. 9 are rmzx{rnum values and
that it requires five types of loading to produce them. Computing moments
as in Fig. 9, therefore, will save considerable time, In addition, some of the
blank spaces in Fig. 9 are available for a quick, convenient determination of
maximum moments at midspan. Such midspan moments, which ordinarily
are determined only after a rather tedious set of calculations, maybe recorded
directly in Fig. 9. This operation is illustrated in Fig. 10 and described in
Section 11, “Maximum Moments at Midspan.”

The arrangement suggested accommodates any type of loading, whether
uniform or concentrated, symmetrical or unsymmetrical, It is effective for
any combination of stiffnesses of the various beams and columns, and can
beusedalso forhaunched beams and flared columns, For highly irregular
cases in which it is necessary to discard the assumption of columns’ being
Iixed above and below, the fundamental calculations remain unchanged. The
proposed method needs merely to be extended, not to be discarded.

It may also be considered an advantage to start with the fixed-end
moments, which generally make up the bulk of tbe final moments. In many
instances, corrections may not need to be added to the fixed-end moments,
or they maybe estimated, If the corrections must be computed, calculations
without the use of a didertde will often be sufficient. The calculations that
follow the recording of tixed-end moments are relatively unimportant and
maybe made with great speed at little risk of serious error.

Yet another advantage results from the use of fixed-end moments. When
tieanalysis begins, cross-sectional dimensions must reestimated. If there is
any doubt about sizes of beams, the fixed-end moments in line 3 of Fig. 9
should be computed first and used for preliminary design. Stiffnesses may
then deselected from Tables 3and4 and stiffness ratios recorded in line 1
of Fig. 9. If this is done, it will seldom be necessary to revise the distribu-
tionof moments. Another convenient use of fixed-end moments is discussed
in Section 17, “Point of Inflection.”

Fig, 9–Spwidwrmgmwnt for btiilding frames,
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Fig. 10 – Complete schedule including maximum momzmts atmkfwan.

/
11 maximum moments at midspan’

The calculations recorded in Fig. 9 are repeated in Fig. 10 and others ire
added for the determination of maximum moments at midspan.

The usual procedure for calculating midspan moments is to consider
two loading conditions, in each of which alternate spins have live loads.
Since the object is to determine end moments for each of these loadings, this
step involves calculations occupying approximately twice the space given
in Fig, 9, The average value of moments at opposite ends of each beam is
finally computed and deducted from the midspan moment in beams consid-
ered simply supported,

It is much faster to determine maximum moments at midspan, as in
Fig, 10. The positive midspan moments shown m 99, 73, 85 and 63 are taken
from the data in Fig, 3 for beams with fixed ends, Certain corrections are to
be added to these moments in order to obtain the final maximum moments
at midspan.

The procedure will be illustrated for span AB. Multiply –17 at A by

—~%( 1 + Ys), in which 1A is the distribution factor at A, and record the
result, +11, Multiply —29 at B by —1A( 1 + 1A), in which Y4 is the distri-
bution factor at B, and record the resdt, +18, The sum, +99+ 11+ 18 D
+128, is the maximum moment at midspan. All the other corrections are
determined in the same manner. An additional example is given in Section
19 for haunched beams, to which reference is made for explanation and
derivation, The corrections for prismatic beams in Fig, 10 are simply a spe-
cial case of those discussed in Section 19 for haunched beams,

The accuracy of the two-cycle procedure in Fig, 10 is illustrated in Fig,
11. All moments in Fig. 11 are based on the fixed-ended beams taken from
Fig. 3, the stiffness ratios taken from Fig. 10, and on the assumption that
columns are fixed at ends above and helow the floor considered. The results
of both the two-cycle and the four-cyole method of moment distribution are

Fig, 11 – AcxuwJcg .f tw.-qi.le procedure.

0In certain irregular cases, it may be necessary to determine maximum posikive moment
at points other than at mids~im,
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in close agreement for this example. However, the determination of maxi-
mum moment at midspan assumes that rotation in adjacent joints is relatively
small, with negligible effect on midspan moment, When adjacent joints have
large unbalanced moments and are very flexible, consideration should be
given to the carried-over moment,

/
12 minimum moments ❑t midspan

In the frame analyzed in Fig, 10, the second span from the left, span BC, is
only 14 ft. long and is flanked by much longer spans. It is possible that nega-
tive moments may extend across the short intermediate span. This possibility
will now be investigated,

The loading in Fig. 12 has dead load only on span BC and total load on
the adjacent spans. The end moments of — 172, —37 and —147, together
with the midspan moment +34, are taken from Fig. 3. The same fixed-end
moments as those in Fig, 10 are used, but in a different arrangement.

The procedure is the same as that described in previous sections. For
further explanation of Fig, 12, consider B fixed while C is permitted to rotate.
The unbalanced moment at C, 147 – 37 = 110, is to be multiplied by

1%X l%. The result, 14, is the moment carried to B. Since tbe individual
rotations of B and C create sag at tbe respective opposite joints, the signs of
the carry-over moments are positive. Multiply +14 by – ?~( 1 + % ) and
+17 by –~ ( 1 + ~). Record the results and add them to +34; this gives
a minimum moment of +14 at midspan. Similarly, the minimum moment at
midspan of DE is +28.

These moments are much smaller than those recorded in Fig. 10 but they
are still positive. With certain framing proportions, however, the minimum
moments are negative. Tbe matter is discussed further in Section 17, “Point
of Inflection,” and Fig. 12 is referred to again in Section 21, “Determination
of Column Mnments.”

The same consideration should be given to carried-over moments from
very flexible joints as that mentioned at the end of Section 11.

Fig. 1!2- Minimum moments at midsoan.

/
13 clear span and center-to-center span

In analysis of frames, members are usually represented by their centerlines.
The ACI Code specifies that “in analysis of continuous frames, center-to-
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Fig, 13 – Clew span wrsus canter-to-
center span.

center distances may be used in tbe determination of moments. Moments of
faces of supports may be used for design of beams and girders.”

These simplifications in design imply that reactions are concentrated at
the column axes and that the moments of inertia at the ends of the beams
and girders are unaffected by tbe stiffening effect of tbe adjoining supports.
For average design conditions, the error introduced by neglecting these fac-
tors is small, However, it should be pointed out that while these assumptions
yield a conservative value for moment at the centerline, they underestimate
the critical moments at the face of the support. For this reason, corrections
should be applied to the moment curve determined on the basis of center-to-
center distances, especially when the width of the support is large,

Other than a rigorous, two-dimensional analysis, no exact, easily applied
method is available for computing the correction. Such accuracy, however,
is unnecessary, In all cases, the magnitude of the correction can be estab-
lished on the basis of limiting assumptions.

With respect to the distribution of the reaction over the column, the
centroid of the reaction must occur between the face of tbe column and its
axis, If it is assumed that the reaction is concentrated at the face of the sup-
port, but that the span of the beam is still measured from center to center
of columns, the correction applied at b to the theoretical moment curve
shown in Fig. 13 is 1AVLa’, For usual values of a, this correction is insig-
nificant and will be ignored,

On the other hand, the effect of the restraint imparted by the column is
more pronounced, The use of center-to-center span distance assumes that the
beam is free to deflect at b. This movement is restricted by the column. The
effect of such restriction can be approximated by assuming that the moment
of inertia of the beam over the column varies. A reasonable assumption is
that the moment of inertia is infinite in this area. On this basis the moment
at b computed by means of Table 56 in Handbook o} Frame Constants is
‘/i VLa greater than that indicated by tbe theoretical curve in Fig. 13, This
correction applies along the entire length of the beam and therefore the
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modified moment curve is % VLa higher than the theoretical curve, This
corresponds to a reduction of the moment at the column face of }f VLa.

For columns, it appears reasonable to take the length equal to the story
height. Theoretical column moments obtained in this manner are larger than
those existing at the top and bottom of the beams. This will be considered in
the discussion of column moments given in Section 20, “Bending in Columns.”

/
14 shear in continuous beams

Shear at the end of a beam that is part of a frame is detemnined as the sum
of the shear in the beam considered simply supported and a correction due
to the difference between end moments produced by the frame action. The
correction is usually small compared with the simple beam shear, especially
in interior spans,

In end spans the correction may be obtained from the moment calcula-
tions in Fig. 10. As an illustration: In span AB, the end moments are 171
and 126. The difference between them is 45, and the shear correction is 45
divided by the span length (L= 23 ft. 4 in.), which equals 1.9 kips. The
end shear at B in the beam AB considered simply supported is 37.5 kips
taken from loads in Fig. 3. Therefore, the total shear at B is 37.5+ 1.9=
39.4 kips; at A it is 37.5 — 1.9 = 35.6 kips. Similarly, the shear at D in DE

151 – 69
is 33,2 + ~ = 33.2+ 3.4= 36,6 kips.

For interior beams the loading conditions for maximum moments are
not quite as favorable for determination of maximum shears. For illustration,
consider the problem to determine maximum shear at D in CD, The shear in
the simply supported beam is 33,1 kips. In Fig. 10, 157 ft.kips is the maxi-
mum moment at end D, but 137 ft.kips at C is not tbe moment due to the
loading that will result in maximum shear at D. The moment at C is too

157 – 137
large. Therefore, computing the corrections as —

22.67
= 0,9 kips is not

on the safe side. The correction is small in comparison with tbe figure it
modifies. As a result, it is often sufficient to use some rough approximations
such as twice its value. In this case, the shear would be 33,1 + ( z x 0,9) =
34.9 kips.

It maybe necessary under special circumstances to determine the shear

correction accurately. The end moment M,. to be substituted for 137 ft.kips

F{g. 14 – End momsnt jar shar determination.
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in the example above may be easily computed as shown in Fig. 14. The fixed-
end moments in Fig, 14 are available from Fig, 10 and the distribution shown
is the procedure explained in connection with Fig. 8, The shear correction

157 – 117
equals — = 1.8 kips. This represents only 5 per cent of tbe total

22.67
shear, 33.1 + 1.8 = 34,9 kips.

/15 example of reduction in theoretical moments
,

As discussed in Section 13, “Clear Span and Center-to-Center Span,” mo-
ments determined on basis of centerline distances should be reduced at the
face of columns before being med for proportioning of the members, It was
recommended that tbe reduction be 1AVLa for end moments and % VLa for
positive moments. V is the end shear and may for this propose be taken as
the shear in simply supported beams, The width of support, aL, in this
example will be taken as 20 in, for all five columns.

Fig, 15 – Dedimtiomsin theoretical momotitsand proportioning of reinfomernent

The theoretical moments taken from Fig. 10 are recorded in Fig, 15,
with end shears determined from the loads and spans ( minm 20 in. ) taken
from Fig, 3. Values for the ends and midspans are computed and deducted
from the theoretical moments.

/
16 propotiioning of reinforcement in beams

To continue the example in Section 15, consider the problem to proportion
all tensile reinforcement for f, = 20,000 psi and d = 21 in. by tbe accepted
straightline theory of flexure, Tbe first four lines in Fig, 15 were discussed
in Section 15. The areas and arrangement of tensile reinforcement are re.
corded in the next four lines, Negative reinforcement is given first and con.
sists of trussed bars with tbe exception of tbe first and last items, which are
short, straight top bars, Positive reinforcement is given in the next two lines
for trussed bars and straight bottom bars, respectively,

Comparing areas required with areas provided, it is seen that the latter
is often much larger than the former, The most conspicuous fact is the devia-
tion from the customary rule-of-thumb of “bending up one-half of the bars,”
Actually, a far greater proportion of positive reinforcement is bent,
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,/
17 point of inflection

The designer should specify where to bend up bars and how far negative
reinforcement shall extend into adjacent spans. The generally adopted rule
is that reinforcing bars shall be extended at least 12 diameters beyond the
point of inflection or beyond the point at which they are no longer needed to
resist stress, In the discussion that follows, special attention is given to nega-
tive reinforcement.

Tbe problem is to determine the point of inflection for negative moments
near B in beam EC, Refer to Fig. 10.

The final maximum moment M,,, is 109 and with the original fixed-end
moment Mj$a of 78 has a ratio of 109 + 78 = 1,4. The greater portion of the
loading on BC is concentrated load at midspam Locate this type of loading
in Table 5 and proceed in tbe line marked “Neg. mom.” to the right until
the ratio of 1.4 is reached. Just above that point on the adjacent scale, the
value of 0.35 appears. This signifies that the point of inflection is a distance
of 0.35.L from the support, L being the span length.

Span BC is particularly short in comparison with the adjacent spans.
Under such circumstances, it is possible that a greater distance to the point
of inflection may be obtained with minimum loading on EC, This loading
case is treated in Fig. 12, from which the ratio of final moment to fixed-end
moment may be computed as 68 + 37 = 1.8. The value in Table 5 for this
ratio is 0,45L and is farther from the support than the point based on maxi-
mum loading. Therefore, negative reinforcement must extend at least 12
diameters beyond the 0.45.point of the span.

The construction of the scales in Table 5 merits a brief explanation. Fig.
16 illustrates the method of construction for a concentrated load at midspan.

fable 5. points of inflection

* r I !’ I “’”J , ‘1”, “~,“’!, “t,,”?,“’?,Zj
Neq.mom,: 0.0
Po%mom: 2,0 1.5 Lo 0.5 0,0

a i’, “;5, x,, “? , “’f ,/0“y, ,’Y ,! ‘?O “~’ ‘5,
Neq.mom.: 0.0
P03,mom.: 1.5 1.0 0,5 0.0

* j“ , ;?5, , ‘$5 r ;)’ , ,“zfo , “:; “13 ‘~’,:, ‘?O ,f ,]

Pos. mom; 1.6 1,1 0.6 0.4 0.3 0.2 0,! 0.0

b+#J ~ol ,’): , ;~l , ? I ,$, “j:, “~” ‘~’ “y “4; “1

P05.mom.: 1,33 0.03 0.33 0.0

Neq.mom:
Pos. mom.:

Neg.mom.,
P05.mom;

o ,05 ,10 .15 .20 ,25 .30 ,35 ,40 .45 ,5
1 ! 1 ! 1 1 1 1 1 1 1 1 1 1

~ 0.5 1.0
1,0

1,5
0,5

0
0,0

,05 ,10 ,15 .20 .?5 .30 .35 .40 .45 .5
, 1 1 1 1 , ( $ 1 , , 1 ,

0.0 0.: 1.0
M

1.5
0.6

1,6
0.I 0,0
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Fig. 16 – Po{nt of inflection.

The heavy white line is the moment curve in a beam with fixed ends, and the
point of inflection for this curve is at the quarter-point. If M’ is the fixed-
end moment and rkf” is the final moment in the beam, the distance to tbe
point of inflection must be 0,25rL. This determines the relationship between
the scales in Table 5,

Distances to tbe point of inflection for positive moments are determined
in a similar way, Data for several types of loading are given in Table 5. In all
instances, actual moments whether at end or at midspan are to be divided
by fixed-end moments. The data in Table 5 are correct only for cases in
which the moment curves are symmetrical. However, it is usually satisfac-
tory to use Table 5 for cases of dissymmetry. It is applicable for members of
constant or variable moment of inertia and may also be used to determine
where a certain percentage of the total reinforcement is no longer needed,

Returning to the example in this section, assume that two negative bars
extend from Eltomidspanof BC and can carry a moment of t30ft.kips, Corm

109 – 60
pute tbe ratio of ~ =0,63, which corresponds to 0.16L in Table 5.

This isthepoint atwhichthetvmhars can carry the tensile stress without
help from other trussed bars. The latter cannot be bent down closer to tbe
support than 0.16.L plus 12 diameters.

/
18 effect of variation in stiffness

It was stated in Section 10 (page 24) that’’since stiffnesses are not known
beforehand, it will be assumed that they are all equal. In this case, the
stiffness ratio or distribution factor for each mcrnber at any joint equals 1
divided by the number of all adjacent members,” It is of interest to examine
the effects change in stiffness mayhtweon the results of an analysis.

Inspection of Table4 indicates that column stiffness is approximately
doubled if the dimension of asqware column is increased from 12to 14 in.
or from 22 to 26 in. This shows that column stiffness is quite sensitive to
change in coIumn size. It is not unusual for a designer to increase the column



Fig, 18–Sti new of floor s@am with
1?two awns per column.

sizes estimated by 2 or even 4 in. when making allowance for bending mo-
ment in columns. As a result, tbe stiffnesses and the analysis may have to be
back-checked and perhaps revised.

The effect of variations in stiffness is illustrated in Fig, 17 for ratios of
columns to beam stiffness of 0,5, 1.0, 2.0 and 4.0. The tabulated values indi-
cate that some moments, especially those in exterior spans, are sensitive to
changes in column stiffness, whereas others are not. It is advisable to be sure
that appropriate stiffness values are used in the analysis.

Some question may arise as to what moment of inertia should be adopted
for a floor system such as that in Fig. 18. Some designers compute I only for
the beams marked a; others use the sum of I-values for beams marked a
and i. The former procedure gives an I that is too small and the latter gives
an I that is too large. The intermediate beams contribute to the actual I for
the floor construction, the amount depending cm tbe torsional stiffness of
the girder,

The beam marked i is a part of the frame and its stiffness (or part of it)
must he included in the I-value for the floor construction. It is probably best
to make all the beams identical. Select the K-value for one beam from Table
3 and use twice this value for stiffness of one panel of the floor in Fig. 18.

/
19 haunched beams

Moments in continuous beams are usually much greater at ends than at
midspan. It is unfortunate that only the web is available to take compression
at the ends where the moments are greater. As a result, there is a tendency

Fig. 19 – Hounded beam.
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to deepen the web at the supports and to use haunched beams, The ACI
Code specifies that if this is done, “the effect of haunches shall be considered
botb in determining bending moments and in computing stresses,”

Haunching beams at their ends changes fixed-end moments, stiffness,
and carry-over factor, For illustration, compare the baunched beam in Fig,
19 with a straight beam, The following values obtain:

straight ffaunched
Fixed-end moment coefficient for uniform

load .,.,,.,,.,,., 0.063 0,093
Stiffness, ..,,,,.., ,,, 1.00 1.50
Carry-over factor 0.50 0.59

The changes due to the haunches are so great that they cannot be ignored.
Coefficients for haunched members may be selected from Handbook of
Frame Constants, Many examples involving haunched members are given in
One-Story Concrete Frames Analyzed by Moment D1.stribution, *

An example of analysis for baunched beams will now be given, The
beam loading and span lengths inthis example are the same as in Fig, 3,
Assume that all beams are symmetrically haunches, that the ratio of maxi-
mumdepth tominimum depth of beam is 1,5, andthatthe length of haunch
divided by length of span is O.17inallheams. Under tbesecircumstances, it
can be shown that all the fixed-end moments are approximately 12 per cent
greater in the ba”nched beams than in the prismatic beams. The 12 per cent
increase will be used in this example, Moment coefficients for more accurate
work may be selected from tbe references given in the preceding para-
graph. *O The ~tiff”es~ of 1.5 and the carry-over factor of 0.6 were selected

from the same data.+
In this example all beam stiffnesses are increased 50 per cent became of

the haunches, The stiffness ratios or distribution factors equal
1,5

— 0.4 for exterior end of exterior beams;
1.5 + 1.0+ Lo –

1.5
— 0.3 for all other ends of beams,

l.s41.5Ll.o Ll.f —--- ---. .
The moments in Fig. 20, when distributed and carried over from exte-

rior joints, aremultiplied by 0.4 X0.6=0.24. Inallother cases multiply by
0,3x0.6=0.18. It is seen that the procedure is exactly the same as for
prismatic members, The two corrections for maximum midspan moment
and the derivation of the corrections +15 and +22 may be computed as
illustrated in Fig. XI. For example, the correction originating from —27at A

27[! )
equals~ ~+ 0,4 — 1,0 The values of 0.4 and 0,3 are distribution fac-

— \.. . ,
tors, and 0.6 is the carry-over factor,

*Avai18ble only i“ the United States and Canada from the Portland Cement Association.
.. The,e .Oeffici.”ts wer. ohtai.edby plotting the values given in Tables 42, 43 and 44

i“ the Handbook of Frame Constants, page 19, and intqmlati”g. The we of these
tahlesis disc. ssedi” tbe handbook.

tNote that stiffness for prismatic members is given as 4 in Table 52a of the Handbook
of Frcmw Constants, page 22, but it is, of course, cmly the relative valw with wbicb
we are concerned,
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Fig. 20 – Haunched beam, distribution of moments.

Fig. 21 – Maximum mid.span moment bg ordinaru method.

The ordinary method is shown in Fig, 21, It is to determine the end
moments and deduct their average value from the midspan moment in AB
considered simply supported. The fixed-end moments are based on a loading
pattern that produces maximum positive moment at midspan of AB. The
result, +115, is the actual maximum midspan moment.

A more convenient procedure is to add two corrections to the midspan
moment of +78. From Fig. 21, it is seen that the two corrections equal

+77.2 – 27.4+ 11.0 + +45.6 – 46.3 + 13.9
2 2

_ +77.2 – 46,3 + 13.9+ +45,6 – 27,4 + 11.0
—

2 2

_ +77.2 – 77,2 X 0,6+ 77.2X 0.6X 0.3
—

2

+ +45,6 – 45.6 X 0.6+ 45,6X 0.6X 0,4

2

(_ +77.2X 0.6 1
—

2 ) (
~ – 1 + 0.3 + +45”}X 0“6 & – 1 + 0,4

)

(

_ +46.3 1

) (

+27,4 1
— — ~+o.3–l + ~

2 ~+o.4– 1
)

= 14.4+ 22,3, Say, 15 + 22.

Note that 46.3 and 27.4 have been calculated and are recorded as –46
and —27 in Fig. 20. These values must be multiplied by the quantities as
shown. The result is the two corrections calculated above, which added to
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+78 give the final moment, +115, Since the carry-over factor is ~ in pris-
matic beams, the quantity within the parentheses becomes, for prismatic
beams, 1 plus the distribution factor.

/
20 bending in columns

The two subjects dismssed in this section are ( 1 ) determination of moments
in columns, and (2) proportioning of column sections subject to combined
hending and axial load,

Section 1108 of the 1956 ACI Code states: “In computing moments in
columns, the far ends may be considered fixed, Columns shall be designed to
resist the axial forces from loads on all floors plus the maximum bending due
to loads on a single adjacent span of the floor under consideration,

“Resistance to bending moments at any floor level shall be provided by
distributing the moment between the columns immediately above aid below
the given floor in proportion to their relative stiffnesses and conditions of
restraint.”

The simplest procedure is to use tbe moments obtained from the regular
beam analysis illustrated in Fig, 10. Greater moments may he produced in
the exterior columns, hut it is doubtful whether the effort required to calcu-
late these is justifiable.

It is generally conceded that moments cannot be determined in col”mm
with the same degree of accuracy as in beams. A beam moment is obtained as
the sum of fixed-end moment and an additional term or a correction derived
by analysis, But a column moment equals the corrections obtained by analy-
sis and is far more sensitive to changes in assumptions and much more sus-
ceptible to faulty analysis.

In addition, columns appear to have a marked ability to “select” the
amount of moment they are capable of supporting. Consider for illustration
a column supporting an axial load and assume that one end of it is also being
subjected to a gradually increasing rotation, At a certain stage of the rota.
tion, the column section maybe overstressed, and it may crack or yield, When
this occurs, there is a, sudden drop in the moment required to produce the
rotation.

These two arguments are representative of a group from which the fol-
lowing conclusion may be drawn: The elastic theory is not at present close
enough in accordance with facts to justify an elaborate procedure for deter-
mination of moments in columns, For multistory buildings, it is considered
satisfactory to compute column moments under the same assumption used
for beam moments, As previously stated, far ends of columns are fixed above
and below the floor at which moments are to be determined. Tbe procedure
is illustrated in Section 21, “Determination of Column Moments,”

In regard to proportioning of column sections, the 1956 ACI Code per-
mits the use of the assumption that gross concrete section may be considered
effective even if some of it is in tension because of a relatively large bending
moment, The Code does not allow this assumption to be used for eccentrici-
ties greater than two-thirds the dimension of the column section,

Proportioning may be made simple if concrete is considered “untracked,”
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or effective in both compression and tension. When the design is based on
the assumption of a “cracked section,” proportioning of column sections is
always cumbersome and difficult, especially in corner columns where there
is bending in two directions. The former assumption is by far the more
desirable one from the viewpoint of the professional engineer, This in itself
is significant.

It maybe argued that analysis and proportioning should both be made
under the same assumption of either cracked or untracked section. The
common procedure is to use gross section for stiffnesses in the analysis, It
would be difficult to determine the stiffness under any other assumption.
The 1956 ACI Code allows “any reasonable assumption for computing the
relative stiffnesses of columns and floor systems,” provided that it is consist-
ent throughout the analysis.

/
21 determination of celumn moments

From the considerations in Section 20, column moments will be determined
on the basis of the assumption underlying the calculations made for beams
in Fig. 10, Moments in exterior columns may then he taken directly from this
figure, For illustration, the moment at the exterior end of beam AB is 126.
This moment must equal the sum of the moments in the columns at A and
should be distributed to them in proportion to their stiffness ratios or distri-
bution factors,

The moments in interior columns are not recorded in Fig. 10 because the
end moments are based on live load on both sides of each individual joint.
Most codes specify that column moments be computed for unbalanced floor
loading, that is, live load on one side only.

Fig. 12 serves the additional pu~ose of obtaining moments in interior
columns produced by unbalanced floor loading. Live load is placed on the
alternate long spans in Fig. 12. The fixed-end moments are the same as in
Fig, 10, but arranged differently.

Irregularities in spans or loading maybe great enough to necessitate an
analysis for beams more extensive than that shown in Fig. 10. The general
form of moment distribution may be used and should be employed for both
beams and columns. For a detailed description of a loading pattern arranged
to give maximum moments in columns, refer to Concrete Building, Frames
Analyzed by Moment Dfetributfon, page 8.

/
22 design of column sections subiect to combined bending and axial load

For untracked sections, Section 1109 of the 1956 ACI Code gives a new
form of the formula for proportioning columns.

( JThe 1951 ACI Code formula (28) was: P ==N 1 + CA

The 1956 ACI Code formula (18) is: ~ + ~s LOO.
a
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The 1956 ACI Code limits the ratio of eccentricity, ~, to ~; its former limit

was 1.0.

()
Formula (20) of the 1956 Code is: P = N 1 ++ .

The old values CD are combined in the single symbol B. This formula can
he used in both preliminary selection and final design of the column. Tbe
1951 Code formula (28 ) is more convenient for column design, hut the 1956
ACI Code formula (18) is more advantageous for investigation of stresses.

A derivation of the 1951 ACI method is presented in the ACI Reinforced
Concrete Design Handbook (Second Edition, 1955 ) on page 98, with further
information on page 31.

To illustrate that the 1951 and 1956 formulas give the same results, the
following derivation is presented:

Concrete: f.= actual axial stress;
f,= actual bending stress;

F.= allowable axial stress when no bending stress exists;
F~ = allowable bending stress when no axial stress exists;
f,= ;~fl$~rstress for combination of axial compression

f:= ultimate compressive strength.
Steel: f,= allowable stress in vertical column reinforcement.

Supplementary notation is given on page 7.
In the 1951 formula (28), tbe allowable equivalent axial load, combining

the effects of axial load and moment, is:

‘=4+%9 (28)

For an axially loaded column:
P= FA[l+(n–l)p]. (1)

Equating formulas (28 ) and (1):

N(l+~)= FaA[l+(n–l)P]. (2)

This can be written a;:

:[l&)p]=F.(~) (3)

When tbe entire concrete area, A, is considered effective in a section subject
to an eccentric force N at a distance e from the centerline. the total extreme
fiber stress is expressed as:

fc=fa+fo= A[l+~_l)pl+y. (4)

The moment of inertia equals:
I= fPA[l+(n–l)p], (5)

t’
and ~ is denoted as D. (6)
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Inserting (5) and (6) into (4) gives:

‘o=’a+’b=ll::~l)Pl

(7)

The objective of design is to make the actual and allowable stresses
equal, that is, ~, S ~r Then, from formulas (3) and (7):

.( )

1++

fp=Fa — (8)
1+% “

This is formula (29) of the 1951 ACI Code except that the term F. has
been used instead of ~a to avoid conflict of terminology.

By definition, C = ~. (9)

Therefore,

1++

f,= ~. (lo)

G+=

Multiply numerator and denominator by *[l+ ~~ _ ~ ~pl :

N [11+*

x l+(n–l)p
f,=

N
(11)

Fa.A[l + (n –l)p] + A[l + (&p]Fd

Substituting (4), (5), (6) and (7) into (11) gives:

f.+ fbf,= ~. (12)

K+R

Equation (12 ) can he transposed as follows to show the ratio of actual
to allowable stress:

fb fa+fb#
$+=– f, (13)

Now the sum of the actual stresses, fa and f~, should be less than the allow-
able stress, fr; therefore the column should be proportioned so that:

f f’ -= 1.00.~+~= (14)

This is the same as formula (18) of the 1956 ACI Code, which was to be
demonstrated.
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/23 proportioning of ❑ column section

‘ Consider the problem to design a 20-in, square section with a 17-in, spiral
core subject to an axial load, N = 200 kips, combined with a moment

M = 70 ft,kips. Use intermediate-grade bars, f’, = 3,000 psi, hot rolled spiral,
and select column section from Tables 20, 21 and 22 for spiral columns in
tbe Reinforced Concrete Design Handbook, pages 61-63, These tables are
based on the 1951 ACI Code.

70 X 12 = 4,2 in,Compute e = ~

Then ~ = ~ = 0.21= less than 0.67,

From Table 7, for g = 0.75 and in the group headed “Square Sections
with Spirals,” it is seen that D = 6,2 is a good average covering a wide
range of values of (n — 1 )p.

table 6. coefficients f. and C for design of columns

0.225f’c + f.P ~
vdnes of f. =

l+(n–l)p
m spiral columns; 0,8 times this value for tied columns

“,1”,s of c =&

Tied Columns SDir.1 C“lunlrm

J’< . v.(,m. of P

0.030 0.015 0.0’20 0.025 0.030 0040 0.010 0.015 0.020 0.025 0030 0.040 0.0.50 0.060 0.070 0080

I*- 16,0D0

2000 15 0.48 0.51 0.53 0.56 0.58 0.62 0.59 0.63 O& 0.70 0.73 0.78 0.82 0.85 0.88 0.91

2500 12 0.46 0.49 0.51 0.54 0.56 0.59 0.58 0.61 0.67 0.70 0.74 0.78 0.82 0.84 0.87
$77: 10 0.45 0,48 0,50 0.52 0.54 0.57 [g p: p? 0.).: ;:; ~; 0.;: :,;: };; :.:

8 0.44 0.46 0.48 0.50 0.52 0.55
5000 6 0.44 0.45 0.47 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.65 0.68 0.71 0.74 0.76

!,= 20,000

0.55 0,59 0.63 0.66 0.71 0:63 0.69 T74 0.78 0.82 0.89 0.95 1.J1 1 .M ; :::
0.53 0.56 0.59 0.62 0.67 0.61 0.66 0.70 0.74 0.78 0.84 0.90 O.w 099
::J }fl }5J ::; O& }:: :8 }:; g.7: :;; }.: :.! ::! [:: :::

0.47 0.49 0.51 0.53 0.57 0.56 0.59 0.62 0.64 0.67 0.71 0.78 0.79 0.83 0.86L!-_lL2CC0 15 0.51
2500 12 0,49
3000 10 0,48
3750 8 0.46
5000 6 0.45
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table 7. coefficients D for design of columns

(.–l)p

“ 0,0 0.05 0.10 /0,1510.2010,2510.30/0,35 10.40 0.46 0.5010.55 0.6010,65 /0,7010 .7610.8[

Rmtamular $mtiam with ~es

;:: ;;
56 5.3
0,7 5.4
5.7 5,5
5.8 ,.6
5.9 5.7
5,9 5.9
~6.0

4.8 45 4.3 4.1

T ~

:.: :,; ,::~ :::
:.; ::j ::; ::; ~;4

,, 4.2 41 1~”~ ~’~
-::: :; I ;:: :%

4 0 j: ::: :,: 3.7 3.7
5:2 5.0 49 4,7 4,6 4.5 4 4 43 42 4.0 4.0
5.4 5.2 5,1 4.9 4.8 4.7 4.7 4.6 4 5 4.5 4,4 4.3 4.3 4.3
6.5 6,4 5.3 5.2 5.1 5.0 4.9 4,6
;:: ::; ;:; ::: ;:: ::; ::: ::; : ~ ;::‘“g 48 48 ,p ;:! ;:! ;:!

5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.8 5.8 5.8 5.8

SW am Se o~m w~th SDIraIS

1.00 6,0 5.9 5.7 5.6 ;:$ ::: ;:: ::; ::: g:j ::j :;: ;:; 5.0 5.9 4.9 4.9
0,95 6.0 5.9 5.8 57 5.3 5,2 :,: 5.2
0,90 60 59 5.9 58 ;:; ::: ::: ::: 5.7 5.6 5.6 5.6 5.5 ;:: ::; ~:8 g::
0.85 60 6.0 5.9 5.9 3,9 ::; ;:; ::; ::;
0.80 60 6.0 60 ::: ::: ::; ::; ::; ;::
0,75 60 6,0 :.;
0.70 6,0 6.1 6.3 6.3 6.4 6.4 6,5 &5 6.6 66 6.7 67 6.7 6.8 68
0.66 8,0 6.1 62 ::: 6,4 6,5 6.5 8.6 $: ::: ;:; 6.9 7.0 70 7.1 7.1 7 2
0,60 60 6.1 6.3 6.4 6.5 6.6 6.7 6.8

R. ““d .%ctimls with Spl rals

g ~ }j ;Jfi ; H ;! : : : ; ; ; : ;; : ; ‘;

7,0 6,9 6,8 6,7 6,6 6.6 6.5 6.4 6.4 6,3 6.3

0,80 8.0 7.9 7.8 77 ?.6 7.6 7.5 7.5 74 7.4 ;:; 73 7.2 7.7 ;:; ;:; ;;;
::;7 ::: ~:: [:: ;:! ::~ ;:: 7.8 7.7 77 7.7 77 j:: ::;

*,2 *,2 *,3 ;:; 8,0 8.0 8.0 8:1 8:1
0,65 8.0 8.1 8.1

8,1 8,1 8,1
8,3 8.4 8.4 84 85 8.5 8.5 85 8.6 8,6

0,60 8.0 8.1 8.2 8.3 8,4 8,5 8.6 86 8.7 !88 88 89 8.9 90 9.0 9.1 9.1

Refer to Table 6 in the group headed “Values of C for spiral columns,

f.= 16,000 and f;= 3,000. Select C = 0.65 (estimating p = 0,025).

Compute:
‘“:= O’5’6’(W)::K

Add:

Design section for total load: P=369 kips
From TabIe20 (ffmtdbook), load onconcrete=270kips

Balance to be carried by longitudinal bars = 99kips

From Table21 (Handbook), select eight No.8 bars: 10lkips. Select spiral
from Table 22 (Handbook): ~-in. round rodat2~-in. pitch.

Since p actually equals 0,016, the value of C taken from Table 6 should

be reduced from 0.65 to 0.60. This reduces the temn G’D~ by 13 kips. The

load to be carried by the bars becomes 86 kips, and the number of No. 8 bars
may be reduced from eight to seven.
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It is customary in office work to “run down” column loads in a column
schedule. This arrangement may still be retained when bending is included.. .

Space should be allowed for recording of the bending term, C+; the axial

load, N; and the summation of these terms, P. The value of M is-taken from
Fig, 10 or 12; of C from Table 6; and of D from Table 7. In the case of bend-

ing in two directions, there will be two terms of the type CD$, one for each

direction, and P will be the sum of three items. This type of proportioning
of columns is quick and simple.

/
24 moments in one-way slabs and ioists

For design of ordinary one-way slabs, it is not customary to me a regular
moment analysis. Moments in slabs are usually determined by means of
arbitrary coefficients. Such coefficients may also be useful for beams of

approximately equal spans with uniformly distributed loads,
Boase and Howell have presented extensive tables of moment coeffi-

cients. ” One of their tables, reproduced as Table 8, is based on the following
assumptions:

Spans are all of the same length.
Horizontal members have the same stiffness.

Vertical members have the same stiffness.
Vertical members are fixed at ends above and below the floor considered.
Load is uniformly distributed.
Ratio of live to dead load is the same in all beams.

Coefficients are tabulated separately for frames with two spans, three
spans, and four or more spans. Five ratios of live to dead load and seven
ratios of column to beam stiffness are included. The coefficients are to be
multiplied by the product of unit load, w, and the square of span length, L.
In accordance with the ACI Code specifications for the application of pre-
scribed moment coefficients, it is recommended that for positive moments,
L be taken as clear span; and that for negative moments, L be taken as tbe
average for two adjacent clear spans. The ratio of the longer to the shorter
of two adjacent spans shall not exceed 1.20.

The use of Table 6 enables the designer to ascertain at a glance how a
change in stiffness affects the results. For slabs and joists, he may then select
stiffness ratios in such a manner that his design is reasonably conservative.

The pmcedurc outlined for one-way slabs and joists is also useful for a
number of other cases involving beams with uniform load and approximately
equal spans. Further refinements and additional tables have been introduced,
including three types of concentrated loading. For detailed description and
illustrative examples, refer to the appendix of Reinforced Concrete Design
Handbook.

“’Design Coefficients for Building Frames,” Anmrican Concr.te Knstitutc lournal,
%pternher 1939. The t;d]les am republish.d, enlarged and elaborated in the appendix
to the ACI Reinforced Concrete Design Hmtdbook, piwes 103–120.
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fable 8. moment coefficients for slabs and ioisis

maximum moment coefllcients,Cl

TWO-SPANFRAMES THREE-sPANFRAMES

_ . ,=- !,~-

‘: I My’ .p M:x i My I t.’~ .$ M:,,

0 +.083 +.063 123-
oi5 –.028 +,056 +.056 :Ijj

–,042 +,052 +,062

0 : y; ~: +,049 –,097 -,058 +.049 +,049 -,093 –,085

I. fl\ity
_,oe +,04, ~: :& :~ &J G; :::9 2::! w m-,074 +,044 +,044

+.042 –.083 –,083 +,042 +,042

+.073 +,031 ~:j$~ +.083 +,042 -,106 –.106 +,042
O;6 -,831 +,061 +,031 -.:33 +,066 +.036 -.101 –,096 +.044 +.:12

0.5
;

:6 g g ;yj ;% m pi :g :$ +&J R

-,076 +,046 +.028 ;,::: –,076 F4;
In$lty

+.om y):
-.083 +442 +,028

-.086 +.043 +.028
-.083 +,042 +,028 –.083 +.042 +.028

0;6 ~j: g jg~ y! :!: H
pz: ~j.: ~:.: *:.: -.013

1 ; -.060 +,062 +,0’21 ~:.; –,061
-,070 +,048 +.021 -,070

i

:; $ ;% 2::+ $jj; ~:

-.076 +,046 +,021 -,088 -,070 ,o~6 +,021
-,088 +.045 +.01 8

1“r: Ity -,083 +.042 +,021 –.083 -.083 +,042 +,02,
–,088 -,086 +,044 +,01 8
–.083 –.oa +.C42 +,021

+,083
0°5

+,092 +,008 -,111 ~:,1: +,058 –.026
-,!33 +,087 +.:07 gfi – ,:38 +.071 +.010 –,104
:::: $0.0: +:gyy

+.054 -m
–.060 +.C62 +.01 1 -.100 –,096 +.052 –.002

12 ~ _,o,l –.097 -.062 +,054 +,012 -,096 ~:::; +,049 +.003
+,049 $,012 -,092 -,071 +,049

~:. +,046 +,01 3
+.01 3 -.091 +.047 +.CQ8

–.088 –,077 +,046 +,01 3
!nfl:lty

-JJ88 –.086 +.045 +,01 1
+.C42 +,01 4 -,083 -,083 +,C4Z +,01 4 –,083 -,083 +,0+2 +,014

0:5 ~. &
;: :!K 3$ P;
+,001

-.113 ~s;: +,063 -.031

&b :1:; -:~, ~ :ti;

3 : ~:g~; +,054 +,007 ;:.; ~::;; $.0& +,007 -,098 -,094 +,060 –,,XI,
+.049 +,008 +.008 –,091 –.090 +.047 +.004

~::m: +,048 +.009 –,088 ~::o: +:::: +,009 –,088 –.08, +.,348 +.00,
lnlity +,042 +,010 –,083 +.01 0 -,083 -,083 +.042 +.010
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.m‘+.072 –.106 –.106 +,034 ‘ &
+.060 –,101 –.095 +.038 +.038
+.054 –.098 –.090 +.039 +.039
+.050 –.094 –,087 +.041 +.041
+.046 –.090 –.085 +.042 +.042
+.044 –.087 –.084 +.042 +.042
+,042 –,083 –.063 +,042 +,042

+.039 –.110 -,110 +.049 +.007
+.035 –.104 –.099 +.0+8 +.016
+.033 –,1 00 –.094 +.047 +.019
+,031 –,095 –,090 +.045 +.022
+.029 –,091 –,087 +.044 +.026
+.029 –.088 –,085 +.043 +.026
+.028 –.083 –,083 +.042 +,028

+,023 –.113 –.113 +.056 – .006
+.027 –.1 05 –.101 +.W2 +.004
+.02+ –.100 –.096 +.050 -+.009
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+.021 –,091 –.088 +.046 +.07 6
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M = c,(lo,,o”+- uJ,,”. )L~ where: u,,.. = Uuiform live load in kips per ft.
~,.., = U,,ifmm dead Imd in kips per ft.
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/
25 introduction

Some theoretical treatises on wind pressure are confined to the simple case
in which a single bent in a building is subject to a known wind pressure,
However, the amount of pressure acting on each bent is generally not known
beforehand.

In a wind-pressure problem, it is essential first to ascertain the pressure
on each individual bent, This is particularly important in reinforced concrete
construction because all concrete members are integrally and rigidly con-
nected with adjacent members, Also, all bents extending in a given direction
cooperate in resisting the wind pressure acting in that direction.

The share of wind pressure resisted by each bent in a building is a func-
tion of the pressure necessary to give the bent a unit deflection. The rela-
tionship between pressure and deflection may make it difficult to solve the
problem in its general form A special, simplified way to solve the problem
is presented in this text. *

Consider a floor in which all joints are part of bents that cooperate in
resisting a given total wind pressure, W, acting above that floor, Each joint

Fig, 22 – Framing plan of flow.

“See reference 29; also reference 28,
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Fig. 23 – Tabulation of wind-pressure calctdatiotm

in the floor is the intersection of one or two columns with one or two beams,
or its equivalent portion of floor construction, The concept of “joint” will in
this connection include physical properties such as stiffnesses of the adjacent
members in tbe direction of tbe wind pressure.

A joint taken in this enlarged sense is illustrated in Fig. 26 with certain
theoretical derivations, On the basis of certain assumptions, it can be demon-
strated that the resistance nf a joint against deformation or deflection may

be expressed as a fmmtion of the ~ values of the members at the joint. The
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particular function of the stiffnesses will be called the “joint coefficient.” If
the coefficient for any joint in the floor is denoted as o. and the sum of all
coefficients in the floor considered is zo., the share of the wind pressure

()
carried by each joint is ~ W. An illustration for a complete floor level

is given in Figs, 22 and 23.
Total shear in a story, caused by wind pressure, may be distributed to

each joint in the floor below by means of a particularly simple set of calcula-
tions. However, the centroid of wind shear and that of all joint coefficients
must coincide. This may generally be accomplished by altering certain beam
or column sizes. If joint coefficients cannot be adjusted sufficiently, a correc-
tion for the eccentricity may be introduced as illustrated in Figs, 24 and 25.

The treatment of wind pressure given in this text is sufficient and ade-
quate for design of wind pressure on all reinforced concrete buildings except
tall, towerlike stnmtwes. For these, refer to publications listed in the bib-
liography: for example, see reference 31, which uses an exhaustive analysis
based on the elastic theory, the conventional theory for reinforced concrete
design.

The procedures presented for wind pressure are also useful for investi-
gation of eatihquake stresses, provided the design can be based on the as-
sumption of “static loading,” in which the effect of an earthquake shock is
assumed to be equivalent to a static horizontal load similar to wind pressure.
For earthquake design based on the “dynamic-loading” aswmption, refer to
publications in the bibliography; for example, reference 35,

Fig, 24 – Moments of {natia of columns re$isting eccentdc wind pressure.

Fig. 25 – Determination of .&or due to ecceatdc wind pressure.
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26

/ concentric wind pressure on a building

Fig. 22 is a framing plan for a floor 20 stories below the roof of a building
in which each story is IO ft. high, The direction of the wind is east-west
and its intensity is 20 psf. All bays are 20 ft. long. The relative stiffnesses,

I
K = ~, of tbe members of tbe floor in the east-west direction are:

Type of member ReJatioe stiffness
Spandrel beams 20+ 20= 1.0
Interior beams 30+ 20= 1.5
Wall columns 40+ 10= 4.0
Interior columns 80+ 10= 8.0

The distribution of wind pressure to columns above each joint in the floor
considered will be determined.

The total shear due to wind pressure above tbe floor is W = (8X 20)
X (2OX1O) X20= 640kips, anditscentroid lies midway between bents
A and J, that is, 80 ft. from J.

The nine bents from Ato Jin the east-west direction resist wind pres.
sure, Each column in Fig, 22 will carry a certain portion of the 640 kips,
Resistance of each joint orthe shear induced in each column shove is pro-
portional to a joint coefficient, The following expression is derived in Section
29:

0$ = K for column
(

sum of K-values for adjacent beams

)sum of K-values for adjacent members
As mentioned in Section 25, the portion of W that is resisted by each

()column is ~ W. Calculations may conveniently be arranged as shown
xv.

in Fig, 23, The nine bents, A to J, are tabulated separately, and each group
is subdivided to provide space for individual joints in that bent. Joint coef6-
cienta are computed in the second column with a summation for each bent.

The relative resistance of each bent against horizontal displacement is
proportional to the summation of joint coefficients for that bent, If the
center of gravity of these nine resistances coincides with the centroid of the
shear due to wind pressure, the wind pressure will give the floor a paraJlel
displacement. If it does not coincide, a parallel displacement must be com-
bined with a rotation of the floor as a whole about some vertical axis.

The joint coefficients in bent J based on tbe original K-values are in
parentheses and their sum is 2.48. This value together with the other eight
summations gives a centroid of resistance that is 89.5 ft. * from bent J. Since
the wind-pressure component lies 80 ft. from J, the object is to eliminate the
eccentricity of 9.5 ft. This may be done by adjusting sizes of certain beams
and columns. The adjustment will be made in the J-bent because it is farthest
from the centroid, which gives the change in J relatively greater weight. It
is assumed that structural changes in bent J are not objectionable from an
architectural viewpoint.

.Computed ~, ~ ( iOintcoefficients times distance from J )
2 ( joint coefficients)
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In Fig, 23, the joint coefficients in the ]-bent have been trebled; their
new summation is 7.46, This value in conjunction with the other eight sum-
mations, which remain unchanged, gives a centroid of resistance that is 79,4
ft. from J, Tbe eccentricity of 0,6 ft. is considered negligible, Calculations are
needed to ascertain what changes in dimensions will be necessary to produce
the new K-values recorded for the ]-bent. This is settled by a urocedure of
trial and error and does not involve wind-pressure theory. ‘ “

After the adjustment is made in the J-bent and the eccentricity is made
negligible, the sum of all joint coefficients in Fig. 23 is 43.59. Each unit of
bent resistance must withstand a wind pressure equal to 640 + 43,59= 14.7
kips. Multiplying each individual joint coefficient in Fig, 23 hy 14.7 gives
the portion oi wind pressure withstood by each joint or the wind shear
resisted by each column above.

Column moments are taken as column shear multiplied by one-half the
column height, At each joint, the s“m of column moments equals the s“m
of beam moments and is distributed to the betams in proportion to their
K-values. Beam shears are taken as the sum of the two end moments in the
beam divided by the length of the beam,

At columns C3 and C4, it is assumed that there is not enough torsional
stiff ness in the lateral girders at the opening to transmit hending to the
east-west beams, As a ;esult, credit is given only for beams to one side of the
column, The beam moments at D4 vary according to the stiffness of the
spandrel and interior beams,

A brief discussion must be added in regard to tbe adjustment in bent J,
The stiffening of this bent may cause the beam shears to increase greatly,
The increased uplift on the windward side of such a bent may approach the
point at which there is insufficient dead load available to counteract the
uplift. This may be remedied by removing some of the stiffness from such
bents to adjacent bents,

An interesting point may be demonstrated by making a similar analysis
with smaller K-values for the columns at another typical floor several stories
above the one considered. It will show that the percentage of wind pressure
carried by each bent remains surprisingly uniform even when all K-values
are one-fourth of their original vahe. This uniformity in distribution greatly
reduces the analytical work required for a group of typical floors.

27/eccemtric wind pressure on o building

‘ Consider the example in Section 26, but assume that the joint coefficients
for the J-bent remain unchanged. Their sum equals 2,48 ( see Fig, 23) and
the sum of all joint coefficients equals 38.61, The centroid of resistance is
3,458:38.61 = 89,5 ft. from J, and the wind-pressure eccentricity is
e = 9.5 ft. Under these asswnptions, determine the shear induced in all tbe
columns by a wind pressure of W = 640 kips.

If the wind pressure had been concentric, all joint coefficients wodd

have been mdtiplied by the same factor, ~ =&= 16,6. All joints

would then he given the same translation, In the case of eccentric pressure,
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the floor will get both a translation and a rotation about some vertical axis.
It is proposed to account for the combined effect by a method that amounts
to using a multiplier equal to

F=~+~,

in which
20. = sum of all joint coefficients in the z-bents (east-west);

x = distance from any z-bent to centroid of joint coefficients;
1. = moment of inertia of joint coefficients about their centroid;
1,= the same as I. but for bents in the perpendicular direction.

Values of L and Iv are computed in Fig. !24, in which joint coefficients,
o. are taken from Fig. 23. The calculations leading to OVand y for bents
1, 3, 4 and 6 ( mnning north-south ) are not shown, but may be derived in
the same manner from the data in Section 26, K-values for the floor slab are
low and are ignored since its stiffness is small in comparison with the stiffness
of tbe beams. Therefore, bents 2 and 5 do not appear in Fig. 24.

Inserting numerical values in the above formula for F gives:
640 640 X 9.5 X x

‘=-+ 114.700
= 16.6+ 0.053%.

Values of F are computed in ‘Fig. 25. Tbe next step is to determine
column shears by multiplying joint coefficients in Fig, 23 by corresponding
values of F in Fig, 25. These calculations will not be illustrated here, It is
of more interest to compare results obtained by eccentric and concentric
analysis.

In the example in which the J-bent is stiffened, all joint coefficients are
multiplied by 14.7, But if the low K-values are maintained in J, all joint co-
efficients are to be multiplied by F taken from Fig. 25. The ratio of F :14.7
compares tbe column shears in the two examples. It is seen that changing
from concentric to eccentric wind pressure reduces the shear by 12 per cent
in bent A and increases it by 38 per cent in bent H. These changes have been
brought about merely by varying the sizes of members in the J-bent.

/
28 warping of floors

Bents subject to wind pressure have deflection due to shear and moment.
Shear deflection signifies that floors are translated but not tilted, and origi-
nates in bending deformation of columns. Moment deflection, signifying that
floors are tilted, is caused by change in column length, The latter type of
deflection cannot be disregarded in tall, towedike structures but has been

ignored in the procedure employed in Sections 26 and 27,
One point in regard to moment deflection and its effect on reinforced

concrete bents desmves brief attention, Refer for illustration to tbe calcula-
tions for bent B in Fig. 23. The shear is 9.3 kips in all beams, both interior
and exterior. Since shears have opposite directions in beam ends adjacent
to interior columns, the wind pressure creates no additional axial load in the
interior columns, However, in exterior columns, an axial load of 9.3 kips is
added to the gravity load in the column on the leeward side and deducted on
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the windward side. The result is a nonuniform change in length of col”m”;
the floor warps and a secondary distribution of moments and shears takes
place.

Ordinarily the effect of warping is not of’ any consequence, but it may
sometimes be desirable to approach the ideal condition in which there is no
warping of floors. To do this, it is necessary to adjust dimensions in the bents
so that interior beams carry much more shear than exterior beams. This can
be accomplished by making the coefficients at interior joints large in com-
parison with those for exterior joints, Suitable dimensions are established by
trial, The purpose is to make tbe additional column load due to wind pressure
proportional to the distance of the columns from the midpoint of the bent,

Such refinements as those described in this section are considered justi-
fiable only in relatively tall buildings, especially if the outer spans are com-
paratively short and their stiffnesses great,

/29 derivation of formula for ioint coefficient
/

A, B, C, D and F in Fig. 26 are joints in a bent that is deformed by bending
due to wind pressure. During the investigation of the conditions around
joint A, the following assumptions were made and incorporated in Fig, 26:

1, Joints F, A and C lie on a straight line,
2. Joints B, A and D lie on a straight line.
3. The angle change, d,,, is the same at F, A and C, d. being measured

from a horizontal line,

Fig. 26 – Fmme deformed bu wind pressure,
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4. The angle change, 0,, is the same at B, A and D, 8,1 being measured
from a vertical line.

The part of the bent included in Fig. 26 is distorted under wind pressure
as shown diagrammatically, and angle R represents tbe translation of joints.
Combined angle change at ends of columns is R – o., while the angle change
at ends of beams is O..

It can he shown by application of the formulas derived in Section 4,
“Stiffness and Carry-over Factor,” that:

M.c = 2EK. J20~ + OA) == 6EKm6A.
MA, = 2EK.,.( 20. + 6L ) == 6EK,@A.

As indicated in Fig, 26 (a), the moments in the beams tend to rotate
joint A in one direction and the moments in the columns tend to rotate A
in tbe opposite direction. Changing sign and substituting R — O* for 8A give:

A44. = —6EK.n( R — 8A) == 6EKm6, — 6EK.,R.
M., == —6EK,m( R — d.) = 6EK,,m9. — 6EK,I.R.

Since joint A is in equilibrium, the sum of tbe four moments must equal
zero, or:

X14.x = 6E@AxKAx – 6ER(KAn + K,m) = O,
from which

(

~ =R K~. +K,m

)
Inserting this expression for 9. in the formula for M., gives:

M’”=GE’K’’(%&) -6E~’6ERK’” (=)
If the shear in column AB is denoted as V..,

“’=+’M’”=(*)K””( *)’
R

and when ~is considered constant for all columns in a story, the relative

value of shear in a column AB is
Km+ K..

v~~ = K*B —
xK~X “

KAO and K., are ~-values for the beams adjacent to A; zK.X is the

sum of~- vaIues for all members adjacent to A. For column AD below A,

substitute KAD for K...
When relative values of shear in columns and the total wind shear are

known, shears and subsequently moments may be calculated in the columns.
Shears and moments may then be determined in the beams as illustrated in
Fig. 23.
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