
practical analysis for vertical load and wind pressure

portland cement IHi association

An organization of cement manufacturers to improve and extend the uses of portland cement and concrete through scientific research, engineering field work, and market development.

Continuous-frame analysis is a very important design subject for the structural engineer. In this field, he is confronted with the conflicting requirements of achieving sufficient accuracy and at the same time expending a minimum of effort and calculation. For this purpose, there are many analytical procedures available, such as the methods of elastic weights, virtual work, slope deflection and moment distribution. Each has certain advantages that make it specifically adaptable for particular conditions. In this text, moment distribution is treated in a manner suitable for office practice.

Interest in moment distribution had its origin in the presentation by Hardy Cross in 1929.* His method is applicable to even the most complicated frame problems. However, a condensed form was needed for ordinary building frame design in order to standardize certain features incidental to the analysis.

The moment-distribution procedure offered in this text is not a new method. However, it has been limited to two

preface cycles for ordinary building frames. The two-cycle method of moment distribution has been tested over a period of years in the analysis of numerous building frames and in other work. The results have shown that the method speed and accuracy are of great assistance to designers. Some may choose to acquire a working knowledge of the mechanical details, which are readily learned and remembered. Others will consider it sufficient to use arbitrary coefficients. They will benefit by giving consideration to the tables included in this text for fixed-end moments, stiffness, points of inflection, and design of columns. These tables are also advantageous for those who continue to use individual types of analysis.

Section 22, "Design of Column Sections Subject to Combined Bending and Axial Load," has been revised for this edition. If designers adopt the procedure proposed, design of column sections subject to bending should be reduced from a time-consuming problem to one of simple routine.

Designers who do not wish to study the preliminary explanation and derivation may turn immediately to Section 10. However, a working knowledge of Tables 1 through

[^0]4 is needed. The special arrangement for two-cycle moment distribution is described in Sections 10 and 11. Subsequent sections treat supplementary problems.

The second part of this book, which is concerned with wind-stress analysis, is the same as in the previous edition.

The chronological list of references, pages 55-56, has been revised and brought up to date.

Miscellaneous changes in wording and references have been made in the text to incorporate code and handbook revisions and to include experience accumulated since the third edition was published.
vertical load

1. The Concept of Fixed-End Moment 9
2. Determination of Fixed-End Moments 10
3. Examples of Fixed-End Moments 11
4. Stiffness and Carry-over Factor 16
5. Tables of Stiffness for Beams and Columns 17
6. Signs 21
7. Moment Distribution at One Joint 21
8. Example of Moment Distribution at One Joint 23
9. Limitations in Two-Cycle Moment Distribution. 23
10. Special Arrangement of Moment Distribution for Building Frames 24
11. Maximum Moments at Midspan 27
12. Minimum Moments at Midspan 28
13. Clear Span and Center-to-Center Span 28
14. Shear in Continuous Beams 30
contents 15. Example of Reduction in Theoretical Moments 31
15. Proportioning of Reinforcement in Beams 31
16. Point of Inflection 32
17. Effect of Variation in Stiffness 33
18. Haunched Beams 34
19. Bending in Columns 37
20. Determination of Column Moments 38
21. Design of Column Sections Subject to Combined Bending and Axial Load 38
22. Proportioning of a Column Section 41
23. Moments in One-Way Slabs and Joists 43 43
wind pressure
24. Introduction 47
25. Concentric Wind Pressure on a Building 50
26. Eccentric Wind Pressure on a Building 51
27. Warping of Floors 52
28. Derivation of Formula for Joint Coefficient 53
appendix

tables, vertical load

1. Coefficients for Moments in Beams with Fixed Ends 12
2. Moments in Beams with Fixed Ends 14
3. Stiffness of Beams 18
4. Stiffness of Columns 19
5. Points of Inflection 32
6. Coefficients f_{c} and C for Design of Columns 41
7. Coefficients D for Design of Columns 42
8. Moment Coefficients for Slabs and Joists 44

This publication is based on the facts, tests, and authorities stated herein. It is intended for the use of professional personnel competent to evaluate the significance and limitations of the reported findings and who will accept responsibility for the application of the material it contains. Obviously, the Portland Cement Association disclaims any and all responsibility for application of the stated principles or for the accuracy of any of the sources other than work performed or information developed by the Association.

$$
\begin{aligned}
& a=\text { fraction less than l.00 } \\
& A=\text { area } \\
& b=\text { width of compressive zone } \\
& b^{\prime}=\text { width of web in T-beam } \\
& C=\text { a coefficient } \\
& d=\text { depth of a section } \\
& D=\text { distribution factor, or a ratio } \\
& e=\text { eccentricity } \\
& E=\text { modulus of elasticity } \\
& f=\text { stress } \\
& F=\text { a multiplier } \\
& h=\text { height of column } \\
& I=\text { moment of inertia } \\
& K=\text { stiffness } \\
& L=\text { span length } \\
& M=\text { moment } \\
& M_{A B}=\text { end moment at joint } A \text { of member } A B \\
& M^{F}=\text { fixed-end moment } \\
& n=\text { ratio of } E_{s} \\
& N=\text { actual axial load on column section } \\
& p=\text { percentage of reinforcement } \\
& P=\text { equivalent axial load on column section } \\
& r=\text { a ratio } \\
& R=\text { radius of gyration, or angle of joint translation } \\
& t=\text { depth of flange, or overall dimension of column section } \\
& U=\text { unbalanced moment } \\
& v=\text { relative shear in columns } \\
& V=\text { total shear } \\
& w=\text { load per linear foot } \\
& W=\text { load on a span, or wind pressure } \\
& \theta=\text { angle of rotation } \\
& \text { nis }
\end{aligned}
$$

If a load, W, is placed on a simply supported beam $A B$ with span L as in Fig. 1(a), moments in the beam may be computed as the product of a coefficient and $W L$. The coefficients are independent of adjacent beams.

When the load is applied on $A B$, the beam will deflect and the tangents at the ends of it will rotate through angles denoted as θ_{A} and θ_{R}. The designer need not be concerned with these angles if the beam ends are free to rotate.

Assume that $A B$ is restrained at A in such a manner that the angle change at A is smaller than θ_{A}. The restraint may be represented by a moment $M_{A B}$, as illustrated in Fig. 1(b). Various degrees of restraint may be considered but the most important of these is the one illustrated in Fig. 1(c) where the angle changes are zero at both supports. In this case $A B$ is said to have fixed ends, and the restraining moments are called fixed-end moments, $M_{A B}^{F}$ and $M_{B A}^{F}$.

Fig. 1-Beam with various degrees of restraint.

The beam with fixed ends has characteristics resembling those of simply supported beams. The following statements apply to both types of beams: Moments may be computed as the product of a coefficient and WL. The coefficients are independent of adjacent beams.

The fixed-end moment is particularly useful in beam design since it is independent of other members in the frame and also is a major part of the actual end moment in the beam. One objective in frame analysis is to determine the minor correction to the fixed-end moment to give the actual moment. When the correction is relatively small, as is often the case, it may be determined either by quick approximate procedures or by judgment.
determination of fixed-end moments
The procedure to be illustrated is typical for all types of loading. Assume the problem is to determine the moments required to "fix" the ends A and B of a beam with span L supporting a load, W, placed a distance of $a L$ from A.

To solve this problem, first place W on a beam $A B$ considered simply supported as in Fig. 1(a). The angle changes in this beam are denoted as θ_{A} and θ_{B}. Then, as shown in Fig. 1(c), apply two end moments, $M_{A B}^{F}$ and $M_{B A}^{F}$, of such direction and magnitude that the angle changes θ_{A} and θ_{B} are eliminated.

Angle changes and deflections may be determined by application of the two moment-area principles. Their use will be illustrated, but for a complete explanation refer to standard textbooks on structural theory.*

The procedure in this problem is as follows: For the load W acting alone, determine the moment curve in Fig. 2(a), assuming the beam to be simply supported. Let E denote modulus of elasticity and I denote moment of inertia. Divide all M-ordinates in Fig. 2(a) by the product of $E I$ which gives the so-called " $\frac{M}{E I}$-diagram." Similarly, as in Fig. 2(b), draw an $\frac{M}{E I}$-diagram for $M_{A B}^{F}$ and $M_{B A}^{F}$, which are the unknown quantities. Note that M denotes moments at any point in the beam considered simply supported.

The first moment-area principle states that the angle between the tangents at any two points on a beam is equal to the area of the $\frac{\mathrm{M}}{\mathrm{EI}}$-diagram between the two points. Since the tangents at A and B in the beams with fixed ends are assumed not to rotate, the angle between them equals zero. Both E and I are considered constant in this problem; therefore the product of $E I$ cancels out, and we may write
from which

$$
-1 / 2 M_{A B}^{F} L-1 / 2 M_{B A}^{F} L+1 / 2 W a(1-a) L^{2}=0,0
$$

$$
\begin{equation*}
M_{A B}^{F}+M_{B A}^{F}=a(1-a) W L \tag{1}
\end{equation*}
$$

The second moment-area principle states that the deflection of any point on a beam measured from the tangent at any other point equals the moment about the first point of the $\frac{\mathrm{M}}{\mathrm{EI}}$-diagram between the two points. The deflection of A measured from the tangent at B equals zero; therefore, canceling the constant product of $E I$ and taking moments about A, we have

$$
-1 / 2 M_{A B}^{F} L \times 1 / 3 L-1 / 2 M_{B A}^{F} L \times 2 / 3 L+1 / 2 W a(1-a) L^{2} \times 1 / 3(1+a) L=0,
$$

from which

$$
\begin{equation*}
M_{A B}^{F}+2 M_{B A}^{F}=a(1-a)(1+a) W L \tag{2}
\end{equation*}
$$

Subtracting equation (1) from equation (2) gives

$$
\left.\begin{array}{l}
M_{B A}^{F}=a^{2}(1-a) W L \tag{3}\\
M_{A B}^{F}=a(1-a)^{2} W L
\end{array}\right\}
$$

Similarly,

[^1]

Fig. 2-Moment curves for vertical load and restraint moments.
It is seen that $M_{A B}^{F}$ and $M_{B A}^{F}$ equal the product of $W L$ and a coefficient that is a function of the type and position of the loading on span AB. Table 1 contains such coefficients for 15 types of loading on beams with fixed ends and constant moment of inertia. Coefficients are given so that moments may be computed also at intermediate points of the beams. For beams with variable I, similar data are available in Handbook of Frame Constants and Continuous Concrete Bridges. ${ }^{\circ}$

examples of fixed-end moments

The four beams in Fig. 3 are assumed to have fixed ends and a constant section throughout each beam. Moments at ends and at midspan are determined by using coefficients in Table 1. Time may be saved by selecting numerical values from Table $2,{ }^{\circ}$ which gives results without the use of a slide rule.

Fig. 3 - Moments in four beams with fixed ends.

[^2]table I. coefficients for moments in beams with fixed ends
moments in beams of constant section and with fixed ends

	5
	6
4	

$$
M=m \times W \times L
$$

$m=$ coefficient taken from diagram
$W=$ total load on beam
$L=$ length of beam
$a=$ fraction less than 1.00

table 2. moments in beams with fixed ends

Note that end moments for total load (TL) are computed in Fig. 3 as a coefficient multiplied by WL. All other values equal certain proportions of the moments in the first column.

It has been shown in Section 2, "Determination of Fixed-End Moments," that moments at fixed ends may be determined by multiplying the product of load and span by a coefficient. Since ends of beams in buildings are not fixed, the fixed-end moments must be modified to suit whatever rotation takes place at the joints. The effect of rotating one end of a beam will now be discussed, including the concepts of stiffness and carry-over factor.

In the member $A B$ in Fig. $4(\mathrm{a})$, joint A is fixed and there is no load on the beam between A and B. Applying a moment $M_{B A}$ at B will cause a change of angle, θ_{B}, and induce a resisting moment $M_{A B}$ at A. Consider the problem to determine the relationship between $M_{B A}$ and θ_{B}, and between $M_{A B}$ and $M_{B A}$.

The moment diagrams corresponding to $M_{A B}$ and $M_{B A}$ are shown in Fig. 4(b) and then divided into two constitutent $\frac{M}{E I}$-diagrams as in Fig. 4(c) and $4(\mathrm{~d})$. Since the rotation of B creates tension on top of the beam at A, $M_{A B}$ is negative, while $M_{B A}$, producing tension on the bottom of the beam, is positive. According to the first of the moment-area principles, the area of the $\frac{M}{E I}$-diagrams between A and B equals the angle θ_{B} :

$$
-\frac{1 / 2 M_{A B}}{E I} \times L+\frac{1 / 2 M_{B A}}{E I} \times L=\theta_{B} .
$$

According to the second principle, the moment of the $\frac{M}{E I}$-diagrams about A equals the deflection of A measured from the tangent at B :

$$
-\frac{1 / 2 M_{A B} L}{E I} \times 1 / 3 L+\frac{1 / 2 M_{B A} L}{E I} \times 2 / 3 L=\theta_{B} L .
$$

Fig. 4-Moments in beam with one fixed end, other end being rotated.

[^3]Inserting $K=\frac{4 E I}{L}$ and rearranging give

$$
\begin{aligned}
& -2 M_{A B}+2 M_{B A}=K \theta_{B} ; \\
& -2 M_{A B}+4 M_{B A}=3 K \theta_{B} ;
\end{aligned}
$$

from which

$$
\begin{aligned}
& M_{B A}=K \theta_{B} ; \\
& M_{A B}=1 / 2 M_{B A} .
\end{aligned}
$$

K is called the stiffness of the member. For members with constant section, K equals $\frac{4 E I}{L}$, which is referred to as the absolute value. A relative value of $K=\frac{I}{L}$ is preferred when E is constant throughout a frame. It is seen by inspection of the two equations derived that

1 . The stiffness K at B equals the moment at B required to give B a unit rotation when A is fixed.
2. The moment required to rotate B through a given angle is proportional to the stiffness K.
3. Applying a moment $M_{B A}$ at B will induce at A a moment $M_{A B}=$ $1 / 2 M_{B A}$. The factor of $1 / 2$ is called "the carry-over factor."

The concepts of stiffness and carry-over factor together with the concept of fixed-end moment are used in the procedure of analysis known as moment distribution.

5

tables of stiffness for beams and columns
The relative stiffness of all beams and columns must be established regardless of the analytical method used. Stiffnesses are functions of cross-sectional dimensions, but are not initially known and must be estimated. The selection of stiffness factors is simplified by use of Tables 3 and 4. The specific assumptions on which these tables are based are discussed in this section and also in Section 18, "Effect of Variation in Stiffness."

For beams, the question arises regarding the effect of flange on stiffness. The ACI Code specifies that in computing the value of I for relative stiffness of beams, the reinforcement may be neglected, but allowance shall be made for the effect of flange in T-shaped sections.

One procedure is to compute I for a T-beam as the product of $1 / 12 b^{\prime} d^{3}$ and a coefficient C, values of which may be selected from Fig. 5 . The width of the web is denoted as b^{\prime} and the total beam depth as d. Stiffness equals $C\left(\frac{1 / 12 b^{\prime} d^{3}}{L}\right)$ and the value of $I=1 / 12 b^{\prime} d^{9}$ may be selected from Table 3. It is often difficult to select the flange width, b, and the assumption that the entire flange width available is fully effective across the span may be questionable. Therefore, results obtained by using Fig. 5 are only as accurate as the assumptions made.

[^4]table 3. stiffness of beams
values of K for T-beams
$$
K=\frac{2 I^{*}}{10 L}
$$
$$
d=\text { depth } \quad b^{\prime}=\text { width of web }
$$
$$
I=\frac{b^{\prime} d^{3}}{12}
$$

*See page 20 for explanation of coefficient 2 in numerator. Coefficient 10 in denominator is introduced simply to reduce the magnitude of relative stiffness values.
table 4. stiffness of columns
values of K for columns $\quad K=\frac{I}{10 h} \quad d=$ depth $\quad b=$ width $\quad I=\frac{b d^{3}}{12}$

*See footnote to Table 3.

Fig. 5-Coefficients for moment of inertia of T-beams.
A quicker and usually acceptable procedure in building design is to select K for T-beams from Table 3. Allowance has been made for effect of flange by doubling the moment of inertia of the gross web section. Fig. 5 indicates that for values of $\frac{t}{d}$ between 0.2 and 0.4 , a multiplier of 2 corresponds closely to a flange width equal to six times the web width. This will be considered a reasonable allowance for most T-beams. As seen from Fig. 5, variations in depth ratio, $\frac{t}{d}$, have relatively little effect on I. For rectangular beams the factor of 2 in Table 3 should be omitted.

Table 4 contains relative stiffnesses for columns computed on basis of gross concrete section, neglecting reinforcement as is done for beams. This is in accordance with Section 702 of the 1956 edition of the ACI Code. Other building codes, such as the 1936 edition of the ACI Code, required that allowance be made for reinforcement in columns. If this is to be done, the best procedure is probably to add a percentage to the I and K values taken from Table 4. An increase of 10 per cent is considered reasonable for usual column sections.

Two sign conventions are in general use. One must be chosen and used throughout the operation of moment distribution. Fixed-end moments for gravity loads may be recorded either as (1) negative on both sides of a joint, or (2) negative on one side of the joint and positive on the other side. Both have advantages. The choice between them depends on the type of problem. Convention (1) is usually applied to problems involving distribution within a single level. It is identical to the usual design concept that considers moments to be negative when they produce tension in the top of beams. However, (2) is preferred when moments are distributed from floor to floor." Convention (1) has been adopted here

One simple, sure way to determine signs is to visualize curvature of beams and rotation of joints. In accordance with the sign convention chosen, moments are negative in "humps" (tension in top) and positive in "sags" (tension in bottom).

For illustration, a fixed-ended beam when loaded conforms to the shape indicated in Fig. 6(a). The central portion sags (plus) and the outer portions hump (minus). Therefore, moments at fixed ends are negative in horizontal beams with gravity loading.

Examples of clockwise and counterclockwise rotation about a central support, B, of a continuous, fixed-ended beam is illustrated in Fig. 6(b) and

Fig. 6 - Signs illustrated by means of curvature and deflection of beams.
$6(c)$. The beam sags on one side and humps on the other side of the support. It can readily be seen that the sag adjacent to B would be on the span that had the greater fixed-end moment at B. When the beam sags at one end of a member because of joint rotation, it will hump at the opposite end.

The fundamental sign concepts illustrated in Fig. 6 are sufficient for the type of analysis in this text and will be the sign convention used in the following sections.

7 moment distribution at one joint

Consider the frame in Fig. 7(a), which consists of four members fixed at their far ends. Apply at their common end, joint B, an external moment U. This moment will rotate joint B until the sum of the resisting moments induced in the four members is equal to U. Since all members are rigidly con-

[^5]
nected at B, each member will rotate through the same angle at this joint. The problem is to determine the moments induced at both ends of each of the four members.

First compute the relative stiffnesses $K=\frac{I}{L}$ for all members; then their sum, ΣK; and finally the four ratios of K divided by ΣK. These ratios are called " distribution factors" and will be denoted at $D_{B A}, D_{B C}, D_{B D}$ and $D_{B E}$. It will be shown that the moments induced in the beams at B, called "distributed moments," equal

$$
\begin{aligned}
& M_{B A}=D_{B A} \times U ; \\
& M_{B C}=D_{B O} \times U ; \\
& M_{B D}=D_{B D} \times U ; \\
& M_{B E}=D_{B E} \times U .
\end{aligned}
$$

Summation: $\Sigma M_{B X}=U \Sigma D_{B X}=U$.
It has been stated that the sum of the distributed moments at B must equal the external moment U, or that $\Sigma M_{B X}=U$. This requirement is satisfied since the sum of the four distribution factors $\Sigma D_{B X}$ equals unity. It has been shown in Section 4, "Stiffness and Carry-over Factor," that moments
required to produce a given angle change are proportional to the stiffness K. This requirement is also satisfied since the D-factors are proportional to the K-factors. Therefore, the distributed moment M_{BX} equals U multiplied by the distribution factor D_{Bx}.

According to one of the equations derived in Section 4 for a prismatic member, half of the distributed moment is "carried over" to the opposite fixed end.

8/example of moment distribution at one joint
The frame in Fig. 7(b) is the same as that in Fig. 7(a), but numerical values have been inserted. Sizes and lengths of beams and columns are given for which stiffnesses may be selected from Tables 3 and 4 . Joint B is being rotated clockwise by an external moment, $U=69 \mathrm{ft}$.kips. The problem is to determine the distributed moments and the carried-over moments.

Initially, calculate the sum of the four stiffnesses, $\Sigma K=146+73+$ $133+163=515$, and the distribution factors, $D=\frac{K}{\Sigma K}$. These are recorded in Fig. 7(b) and, it should be noted, add up to unity around a joint. The distributed moments induced at B in Fig. 7(c) equal $U D_{B X}$, which gives 19 and 18 in the beams, and 10 and 22 in the columns. The four distributed moments must add up to 69 . The rotation of joint B also produces moments at the opposite fixed ends of all the members. These carry-over moments are half of the distributed moment.

The sketch of the distorted frame in Fig. 7(a) indicates that the clockwise rotation of joint B creates a hump to the left, but a sag to the right. Therefore, 19 is negative, but 18 is positive. There is also a sag at A and a hump at D; therefore the carried-over moments are +10 at A and -9 at D. No signs are given for the column moments.

In moment distribution, U is called "unbalanced moment" and is computed as the numerical difference between adjacent fixed-end moments. For illustration, let beams $A B$ and $B D$ in Fig. 7 be loaded as shown in the second and third beam in Fig. 3. The fixed-end moments for total load are $M_{B A}^{F}=78$, and $M_{B D}^{F}=147$. The numerical difference is $U=69 \mathrm{ft}$.kips.

limitations in two-cycle moment distribution

The procedure described in Sections 7 and 8 in regard to moment distribution at one joint is an elemental part of the general procedure, in which many joints are involved. The entire frame may be divided into "unit frames," each of which is treated as in Fig. 7. Each joint may be rotated and relocked one or more times. One operation of rotating and relocking corresponds to what is known as a "cycle." The main problem in these operations is the recording of calculations. For the general case involving distribution of moments between various levels, a type of recording is discussed and illustrated in Concrete Building Frames Analyzed by Moment Distribution."

The scope of this text is limited to that type of building frame in which

[^6]the following assumption is permissible, as stated in part in Section 702 of the ACI Code under the heading "Conditions of Design": ". . . the far ends of the columns may be assumed as fixed." This assumption is accepted generally and simplifies the moment analysis to a great extent. As a result, beams in one floor may be designed without regard to those above and below. Also, analytical work is simplified. All building frame analyses for vertical load discussed in this text are based on this assumption.

Fig. 8 contains five groups of calculations for moments at ends of four beams. The loads on the beams are shown in Fig. 3, in which moments have been computed for beams with fixed ends. Since stiffnesses are not known beforehand, it will be assumed that they are all equal. In this case, the stiffness ratio or distribution factor for each member at any joint equals 1 divided by the number of all adjacent members, ${ }^{\text {a }}$ recorded as $1 / 3$ or $1 / 4$ in Fig. 8. The problem is to determine maximum end moments in the beams.

To determine maximum end moment at A, place total load on $A B$ and dead load on $B C$ as shown in (A). Since B is considered fixed, the end moments at B are 172 to the left and 37 to the right. The difference is $U=135$. When B is released, the moment distributed to the left is $U D=135 \times 1 / 4$; and the moment carried to A while it remains fixed is $U D \times 1 / 2=135 \times 1 / 4$ $X 1 / 2=17$. Refer to Fig. 6(c) for a deflection curve illustrating this case. The counterclockwise rotation of joint B creates a hump in the beam at A that results in a negative value for the carry-over moment. This value is written in Fig. 8(A), but neither the external moment U nor the distributed moment $U D$ is recorded. Joint B is then relocked in its new position.

The next step is to examine A, which so far has been considered locked. The original fixed-end moment is -172 , but the release and rotation of B transfers an additional moment to A. At this stage, the modified total fixed-end moment is $-172-17=-189$. Since there is no fixedend moment to the left of A, U at A equals 189. Releasing A and permitting it to rotate induces a distributed moment at A equal to $U D=189 \times$ $1 / 3=63$. When joint A rotates clockwise, it tends to create a sag in the beam at A, which results in a positive moment of 63 and a final maximum moment at A of $-189+63=-126 \mathrm{ft} . k i p s$.

The procedure explained in the last two paragraphs takes much longer to describe than to perform, and the explanation is superfluous for designers who are familiar with moment distribution. In Fig. 8, the only new feature is the manner of recording and the arrangement of the calculations. The full advantage of the modification proposed will be discussed later, but first a brief description will be given in connection with group (B) in Fig. 8.

To determine moments at B, place loading as illustrated in Fig. 8(B),

[^7]and release joints A and C. The figure clearly presents the computation of the two moments, 29 and 1 , carried over to B. When A and C are released, they rotate so as to create a hump on both sides of the fixed joint B. Therefore, both 29 and 1 are negative. While B is still considered fixed, the modified total fixed-end moments at B are -201 to the left and -79 to the right. The unbalanced moment at B is numerically equal to $201-79=122$. It is multiplied by the distribution factor of $1 / 4$ at either side when joint B is released. In regard to signs, refer to Fig. 6(c) for the counterclockwise rotation of joint B. Distributed moments at columns C, D and E are determined by the same procedure.

The operations illustrated in Fig. 8 cover two complete cycles of distribution, which in the ordinary type of recording means that moments are distributed twice. However, in Fig. 8 only one distribution is in evidence, because the usual two distributions have been combined in one operation. Moments are carried over first and are included with fixed-end moments before the distribution is made.

One advantage of the proposed arrangement is that it automatically limits the analytical work to the degree required for reasonable accuracy. Two cycles of distribution are all that are needed when columns are assumed fixed at ends above and below the floor considered. Designers who fail to

Fig. 8 - Moment distribution illustrated in its various elements.
realize this often include three or even four cycles of distribution at considerable waste of time.

In Fig. 8, the five groups of calculations have five different arrangements of load. The total load is carried on spans adjacent to the particular joint at which maximum moments are to be computed, but dead load only is carried on the next adjacent spans. The calculations are so arranged that all five groups in Fig. 8 can be consolidated into one single group, as has been done in Fig. 9.

Note that all the moments in line 7 of Fig. 9 are maximum values and that it requires five types of loading to produce them. Computing moments as in Fig. 9, therefore, will save considerable time. In addition, some of the blank spaces in Fig. 9 are available for a quick, convenient determination of maximum moments at midspan. Such midspan moments, which ordinarily are determined only after a rather tedious set of calculations, may be recorded directly in Fig. 9. This operation is illustrated in Fig. 10 and described in Section 11, "Maximum Moments at Midspan."

The arrangement suggested accommodates any type of loading, whether uniform or concentrated, symmetrical or unsymmetrical. It is effective for any combination of stiffnesses of the various beams and columns, and can be used also for haunched beams and flared columns. For highly irregular cases in which it is necessary to discard the assumption of columns' being fixed above and below, the fundamental calculations remain unchanged. The proposed method needs merely to be extended, not to be discarded.

It may also be considered an advantage to start with the fixed-end moments, which generally make up the bulk of the final moments. In many instances, corrections may not need to be added to the fixed-end moments, or they may be estimated. If the corrections must be computed, calculations without the use of a slide rule will often be sufficient. The calculations that follow the recording of fixed-end moments are relatively unimportant and may be made with great speed at little risk of serious error.

Yet another advantage results from the use of fixed-end moments. When the analysis begins, cross-sectional dimensions must be estimated. If there is any doubt about sizes of beams, the fixed-end moments in line 3 of Fig. 9 should be computed first and used for preliminary design. Stiffnesses may then be selected from Tables 3 and 4 and stiffness ratios recorded in line 1 of Fig. 9. If this is done, it will seldom be necessary to revise the distribution of moments. Another convenient use of fixed-end moments is discussed in Section 17, "Point of Inflection."

Fig. 9-Special arrangement for building frames.

Fig. 10 - Complete schedule including maximum moments at midspan.

The calculations recorded in Fig. 9 are repeated in Fig. 10 and others are added for the determination of maximum moments at midspan.

The usual procedure for calculating midspan moments is to consider two loading conditions, in each of which alternate spans have live loads. Since the object is to determine end moments for each of these loadings, this step involves calculations occupying approximately twice the space given in Fig. 9. The average value of moments at opposite ends of each beam is finally computed and deducted from the midspan moment in beams considered simply supported.

It is much faster to determine maximum moments at midspan, as in Fig. 10. The positive midspan moments shown as $99,73,85$ and 63 are taken from the data in Fig. 3 for beams with fixed ends. Certain corrections are to be added to these moments in order to obtain the final maximum moments at midspan.

The procedure will be illustrated for span $A B$. Multiply -17 at A by $-1 / 2(1+1 / 3)$, in which $1 / 3$ is the distribution factor at A, and record the result, +11 . Multiply -29 at B by $-1 / 2(1+1 / 4)$, in which $1 / 4$ is the distribution factor at B, and record the result, +18 . The sum, $+99+11+18=$ +128 , is the maximum moment at midspan. All the other corrections are determined in the same manner. An additional example is given in Section 19 for haunched beams, to which reference is made for explanation and derivation. The corrections for prismatic beams in Fig. 10 are simply a special case of those discussed in Section 19 for haunched beams.

The accuracy of the two-cycle procedure in Fig. 10 is illustrated in Fig. 11. All moments in Fig. 11 are based on the fixed-ended beams taken from Fig. 3, the stiffness ratios taken from Fig. 10, and on the assumption that columns are fixed at ends above and below the floor considered. The results of both the two-cycle and the four-cycle method of moment distribution are

Fig. 11-Accuracy of two-cycle procedure.

[^8]in close agreement for this example. However, the determination of maximum moment at midspan assumes that rotation in adjacent joints is relatively small, with negligible effect on midspan moment. When adjacent joints have large unbalanced moments and are very flexible, consideration should be given to the carried-over moment.
minimum moments at midspan
In the frame analyzed in Fig. 10, the second span from the left, span $B C$, is only 14 ft . long and is flanked by much longer spans. It is possible that negative moments may extend across the short intermediate span. This possibility will now be investigated.

The loading in Fig. 12 has dead load only on span $B C$ and total load on the adjacent spans. The end moments of $-172,-37$ and -147 , together with the midspan moment +34 , are taken from Fig. 3. The same fixed-end moments as those in Fig. 10 are used, but in a different arrangement.

The procedure is the same as that described in previous sections. For further explanation of Fig. 12, consider B fixed while C is permitted to rotate. The unbalanced moment at $C, 147-37=110$, is to be multiplied by $1 / 4 \times 1 / 2$. The result, 14 , is the moment carried to B. Since the individual rotations of B and C create sag at the respective opposite joints, the signs of the carry-over moments are positive. Multiply +14 by $-1 / 2(1+1 / 4)$ and +17 by $-1 / 2(1+1 / 4)$. Record the results and add them to +34 ; this gives a minimum moment of +14 at midspan. Similarly, the minimum moment at midspan of $D E$ is +28 .

These moments are much smaller than those recorded in Fig. 10 but they are still positive. With certain framing proportions, however, the minimum moments are negative. The matter is discussed further in Section 17, "Point of Inflection," and Fig. 12 is referred to again in Section 21, "Determination of Column Moments."

The same consideration should be given to carried-over moments from very flexible joints as that mentioned at the end of Section 11.

Fig. 12 - Minimum moments at midspan.
13/clear span and center-to-center span
In analysis of frames, members are usually represented by their centerlines. The ACI Code specifies that "in analysis of continuous frames, center-to-

Fig. 13-Clear span versus center-tocenter span.

center distances may be used in the determination of moments. Moments of faces of supports may be used for design of beams and girders."

These simplifications in design imply that reactions are concentrated at the column axes and that the moments of inertia at the ends of the beams and girders are unaffected by the stiffening effect of the adjoining supports. For average design conditions, the error introduced by neglecting these factors is small. However, it should be pointed out that while these assumptions yield a conservative value for moment at the centerline, they underestimate the critical moments at the face of the support. For this reason, corrections should be applied to the moment curve determined on the basis of center-tocenter distances, especially when the width of the support is large.

Other than a rigorous, two-dimensional analysis, no exact, easily applied method is available for computing the correction. Such accuracy, however, is unnecessary. In all cases, the magnitude of the correction can be established on the basis of limiting assumptions.

With respect to the distribution of the reaction over the column, the centroid of the reaction must occur between the face of the column and its axis. If it is assumed that the reaction is concentrated at the face of the support, but that the span of the beam is still measured from center to center of columns, the correction applied at b to the theoretical moment curve shown in Fig. 13 is $1 / 4 V L a^{2}$. For usual values of a, this correction is insignificant and will be ignored.

On the other hand, the effect of the restraint imparted by the column is more pronounced. The use of center-to-center span distance assumes that the beam is free to deflect at b. This movement is restricted by the column. The effect of such restriction can be approximated by assuming that the moment of inertia of the beam over the column varies. A reasonable assumption is that the moment of inertia is infinite in this area. On this basis the moment at b computed by means of Table 56 in Handbook of Frame Constants is $1 / \mathrm{VLa}$ greater than that indicated by the theoretical curve in Fig. 13. This correction applies along the entire length of the beam and therefore the
modified moment curve is $1 / 6 V L a$ higher than the theoretical curve. This corresponds to a reduction of the moment at the column face of $1 / 3 V L a$.

For columns, it appears reasonable to take the length equal to the story height. Theoretical column moments obtained in this manner are larger than those existing at the top and bottom of the beams. This will be considered in the discussion of column moments given in Section 20, "Bending in Columns."

shear in continuous beams

Shear at the end of a beam that is part of a frame is determined as the sum of the shear in the beam considered simply supported and a correction due to the difference between end moments produced by the frame action. The correction is usually small compared with the simple beam shear, especially in interior spans.

In end spans the correction may be obtained from the moment calculations in Fig. 10. As an illustration: In span $A B$, the end moments are 171 and 126. The difference between them is 45 , and the shear correction is 45 divided by the span length ($\mathrm{L}=23 \mathrm{ft} .4 \mathrm{in}$.), which equals 1.9 kips . The end shear at B in the beam $A B$ considered simply supported is 37.5 kips taken from loads in Fig. 3. Therefore, the total shear at B is $37.5+1.9=$ 39.4 kips; at \mathbf{A} it is $37.5-1.9=35.6$ kips. Similarly, the shear at D in $D E$ is $33.2+\frac{151-89}{18}=33.2+3.4=36.6$ kips.

For interior beams the loading conditions for maximum moments are not quite as favorable for determination of maximum shears. For illustration, consider the problem to determine maximum shear at D in $C D$. The shear in the simply supported beam is 33.1 kips . In Fig. 10, 157 ft .kips is the maximum moment at end D, but 137 ft .kips at C is not the moment due to the loading that will result in maximum shear at D. The moment at C is too large. Therefore, computing the corrections as $\frac{157-137}{22.67}=0.9 \mathrm{kips}$ is not on the safe side. The correction is small in comparison with the figure it modifies. As a result, it is often sufficient to use some rough approximations such as twice its value. In this case, the shear would be $33.1+(2 \times 0.9)=$ 34.9 kips.

It may be necessary under special circumstances to determine the shear correction accurately. The end moment $M_{C D}$ to be substituted for 137 ft .kips

Fig. 14 - End moment for shear determination.
in the example above may be easily computed as shown in Fig. 14. The fixedend moments in Fig. 14 are available from Fig. 10 and the distribution shown is the procedure explained in connection with Fig. 8. The shear correction equals $\frac{157-117}{22.67}=1.8$ kips. This represents only 5 per cent of the total shear, $33.1+1.8=34.9 \mathrm{kips}$.

15 example of reduction in theoretical moments

As discussed in Section 13, "Clear Span and Center-to-Center Span," moments determined on basis of centerline distances should be reduced at the face of columns before being used for proportioning of the members. It was recommended that the reduction be $1 / 3 V L a$ for end moments and $1 / 6 V L a$ for positive moments. V is the end shear and may for this purpose be taken as the shear in simply supported beams. The width of support, $a L$, in this example will be taken as 20 in . for all five columns.

Fig. 15 - Deductions in theoretical moments and proportioning of reinforcement.
The theoretical moments taken from Fig. 10 are recorded in Fig. 15, with end shears determined from the loads and spans (minus 20 in .) taken from Fig. 3. Values for the ends and midspans are computed and deducted from the theoretical moments.

16/proportioning of reinforcement in beams

To continue the example in Section 15, consider the problem to proportion all tensile reinforcement for $f_{s}=20,000 \mathrm{psi}$ and $d=21 \mathrm{in}$. by the accepted straightline theory of flexure. The first four lines in Fig. 15 were discussed in Section 15. The areas and arrangement of tensile reinforcement are recorded in the next four lines. Negative reinforcement is given first and consists of trussed bars with the exception of the first and last items, which are short, straight top bars. Positive reinforcement is given in the next two lines for trussed bars and straight bottom bars, respectively.

Comparing areas required with areas provided, it is seen that the latter is often much larger than the former. The most conspicuous fact is the deviation from the customary rule-of-thumb of "bending up one-half of the bars." Actually, a far greater proportion of positive reinforcement is bent.

17. point of inflection

The designer should specify where to bend up bars and how far negative reinforcement shall extend into adjacent spans. The generally adopted rule is that reinforcing bars shall be extended at least 12 diameters beyond the point of inflection or beyond the point at which they are no longer needed to resist stress. In the discussion that follows, special attention is given to negative reinforcement.

The problem is to determine the point of inflection for negative moments near B in beam $B C$. Refer to Fig. 10.

The final maximum moment $M_{B C}$ is 109 and with the original fixed-end moment $M_{B C}^{F}$ of 78 has a ratio of $109 \div 78=1.4$. The greater portion of the loading on $B C$ is concentrated load at midspan. Locate this type of loading in Table 5 and proceed in the line marked "Neg. mom." to the right until the ratio of 1.4 is reached. Just above that point on the adjacent scale, the value of 0.35 appears. This signifies that the point of inflection is a distance of $0.35 L$ from the support, L being the span length.

Span $B C$ is particularly short in comparison with the adjacent spans. Under such circumstances, it is possible that a greater distance to the point of inflection may be obtained with minimum loading on BC. This loading case is treated in Fig. 12, from which the ratio of final moment to fixed-end moment may be computed as $68 \div 37=1.8$. The value in Table 5 for this ratio is 0.45 L and is farther from the support than the point based on maximum loading. Therefore, negative reinforcement must extend at least 12 diameters beyond the 0.45 -point of the span.

The construction of the scales in Table 5 merits a brief explanation. Fig. 16 illustrates the method of construction for a concentrated load at midspan.
table 5. points of inflection

Fig. 16 - Point of inflection.

The heavy white line is the moment curve in a beam with fixed ends, and the point of inflection for this curve is at the quarter-point. If M^{F} is the fixedend moment and $r M^{F}$ is the final moment in the beam, the distance to the point of inflection must be $0.25 r L$. This determines the relationship between the scales in Table 5.

Distances to the point of inflection for positive moments are determined in a similar way. Data for several types of loading are given in Table 5. In all instances, actual moments whether at end or at midspan are to be divided by fixed-end moments. The data in Table 5 are correct only for cases in which the moment curves are symmetrical. However, it is usually satisfactory to use Table 5 for cases of dissymmetry. It is applicable for members of constant or variable moment of inertia and may also be used to determine where a certain percentage of the total reinforcement is no longer needed.

Returning to the example in this section, assume that two negative bars extend from B to midspan of $B C$ and can carry a moment of 60 ft .kips. Compute the ratio of $\frac{109-60}{78}=0.63$, which corresponds to $0.16 L$ in Table 5. This is the point at which the two bars can carry the tensile stress without help from other trussed bars. The latter cannot be bent down closer to the support than $0.16 L$ plus 12 diameters.

It was stated in Section 10 (page 24) that "since stiffnesses are not known beforehand, it will be assumed that they are all equal. In this case, the stiffness ratio or distribution factor for each member at any joint equals 1 divided by the number of all adjacent members." It is of interest to examine the effect a change in stiffness may have on the results of an analysis.

Inspection of Table 4 indicates that column stiffness is approximately doubled if the dimension of a square column is increased from 12 to 14 in . or from 22 to 26 in . This shows that column stiffness is quite sensitive to change in column size. It is not unusual for a designer to increase the column

Fig. 17 - Variation in stiffness affecting moments in beams.

Fig. 18-Stifness of floor sustem with two beams per column.
sizes estimated by 2 or even 4 in . when making allowance for bending moment in columns. As a result, the stiffnesses and the analysis may have to be back-checked and perhaps revised.

The effect of variations in stiffness is illustrated in Fig. 17 for ratios of columns to beam stiffness of $0.5,1.0,2.0$ and 4.0. The tabulated values indjcate that some moments, especially those in exterior spans, are sensitive to changes in column stiffness, whereas others are not. It is advisable to be sure that appropriate stiffness values are used in the analysis.

Some question may arise as to what moment of inertia should be adopted for a floor system such as that in Fig. 18. Some designers compute I only for the beams marked a; others use the sum of I-values for beams marked a and i. The former procedure gives an I that is too small and the latter gives an I that is too large. The intermediate beams contribute to the actual I for the floor construction, the amount depending on the torsional stiffness of the girder.

The beam marked i is a part of the frame and its stiffness (or part of it) must be included in the I-value for the floor construction. It is probably best to make all the beams identical. Select the K-value for one beam from Table 3 and use twice this value for stiffness of one panel of the floor in Fig. 18.
haunched beams
Moments in continuous beams are usually much greater at ends than at midspan. It is unfortunate that only the web is available to take compression at the ends where the moments are greater. As a result, there is a tendency

Fig. 19 - Haunched beam.

to deepen the web at the supports and to use haunched beams. The ACI Code specifies that if this is done, "the effect of haunches shall be considered both in determining bending moments and in computing stresses."

Haunching beams at their ends changes fixed-end moments, stiffness, and carry-over factor. For illustration, compare the haunched beam in Fig. 19 with a straight beam. The following values obtain:

Straight Haunched

The changes due to the haunches are so great that they cannot be ignored. Coefficients for haunched members may be selected from Handbook of Frame Constants. Many examples involving haunched members are given in One-Story Concrete Frames Analyzed by Moment Distribution.*

An example of analysis for haunched beams will now be given. The beam loading and span lengths in this example are the same as in Fig. 3. Assume that all beams are symmetrically haunched, that the ratio of maximum depth to minimum depth of beam is 1.5 , and that the length of haunch divided by length of span is 0.17 in all beams. Under these circumstances, it can be shown that all the fixed-end moments are approximately 12 per cent greater in the haunched beams than in the prismatic beams. The 12 per cent increase will be used in this example. Moment coefficients for more accurate work may be selected from the references given in the preceding paragraph. * The stiffness of 1.5 and the carry-over factor of 0.6 were selected from the same data. \dagger

In this example all beam stiffnesses are increased 50 per cent because of the haunches. The stiffness ratios or distribution factors equal

$$
\frac{1.5}{1.5+1.0+1.0}=0.4 \text { for exterior end of exterior beams; }
$$

$\frac{1.5}{1.5+1.5+1.0+1.0}=0.3$ for all other ends of beams.
The moments in Fig. 20, when distributed and carried over from exterior joints, are multiplied by $0.4 \times 0.6=0.24$. In all other cases multiply by $0.3 \times 0.6=0.18$. It is seen that the procedure is exactly the same as for prismatic members. The two corrections for maximum midspan moment and the derivation of the corrections +15 and +22 may be computed as illustrated in Fig. 20. For example, the correction originating from -27 at A equals $\frac{27}{2}\left(\frac{1}{0.6}+0.4-1.0\right)$. The values of 0.4 and 0.3 are distribution factors, and 0.6 is the carry-over factor.

[^9]

Fig. 20 - Haunched beam, distribution of moments.

Fig. 21 - Maximum midspan moment by ordinary method.
The ordinary method is shown in Fig. 21. It is to determine the end moments and deduct their average value from the midspan moment in $A B$ considered simply supported. The fixed-end moments are based on a loading pattern that produces maximum positive moment at midspan of $A B$. The result, +115 , is the actual maximum midspan moment.

A more convenient procedure is to add two corrections to the midspan moment of +78 . From Fig. 21, it is seen that the two corrections equal

$$
\begin{aligned}
& \frac{+77.2-27.4+11.0}{2}+\frac{+45.6-46.3+13.9}{2} \\
= & \frac{+77.2-46.3+13.9}{2}+\frac{+45.6-27.4+11.0}{2} \\
= & \frac{+77.2-77.2 \times 0.6+77.2 \times 0.6 \times 0.3}{2} \\
+ & \frac{+45.6-45.6 \times 0.6+45.6 \times 0.6 \times 0.4}{2} \\
= & \frac{+77.2 \times 0.6}{2}\left(\frac{1}{0.6}-1+0.3\right)+\frac{+45.6 \times 0.6}{2}\left(\frac{1}{0.6}-1+0.4\right) \\
= & \frac{+46.3}{2}\left(\frac{1}{0.6}+0.3-1\right)+\frac{+27.4}{2}\left(\frac{1}{0.6}+0.4-1\right) \\
= & 14.4+22.3, \text { say, } 15+22 .
\end{aligned}
$$

Note that 46.3 and 27.4 have been calculated and are recorded as -46 and -27 in Fig. 20. These values must be multiplied by the quantities as shown. The result is the two corrections calculated above, which added to
+78 give the final moment, +115 . Since the carry-over factor is $1 / 2$ in prismatic beams, the quantity within the parentheses becomes, for prismatic beams, 1 plus the distribution factor.

20/bending in columns

The two subjects discussed in this section are (1) determination of moments in columns, and (2) proportioning of column sections subject to combined bending and axial load.

Section 1108 of the 1956 ACI Code states: "In computing moments in columns, the far ends may be considered fixed. Columns shall be designed to resist the axial forces from loads on all floors plus the maximum bending due to loads on a single adjacent span of the floor under consideration.
"Resistance to bending moments at any floor level shall be provided by distributing the moment between the columns immediately above and below the given floor in proportion to their relative stiffnesses and conditions of restraint."

The simplest procedure is to use the moments obtained from the regular beam analysis illustrated in Fig. 10. Greater moments may be produced in the exterior columns, but it is doubtful whether the effort required to calculate these is justifiable.

It is generally conceded that moments cannot be determined in columns with the same degree of accuracy as in beams. A beam moment is obtained as the sum of fixed-end moment and an additional term or a correction derived by analysis. But a column moment equals the corrections obtained by analysis and is far more sensitive to changes in assumptions and much more susceptible to faulty analysis.

In addition, columns appear to have a marked ability to "select" the amount of moment they are capable of supporting. Consider for illustration a column supporting an axial load and assume that one end of it is also being subjected to a gradually increasing rotation. At a certain stage of the rotation, the column section may be overstressed, and it may crack or yield. When this occurs, there is a.sudden drop in the moment required to produce the rotation.

These two arguments are representative of a group from which the following conclusion may be drawn: The elastic theory is not at present close enough in accordance with facts to justify an elaborate procedure for determination of moments in columns. For multistory buildings, it is considered satisfactory to compute column moments under the same assumption used for beam moments. As previously stated, far ends of columns are fixed above and below the floor at which moments are to be determined. The procedure is illustrated in Section 21, "Determination of Column Moments."

In regard to proportioning of column sections, the 1956 ACI Code permits the use of the assumption that gross concrete section may be considered effective even if some of it is in tension because of a relatively large bending moment. The Code does not allow this assumption to be used for eccentricities greater than two-thirds the dimension of the column section.

Proportioning may be made simple if concrete is considered "uncracked,"
or effective in both compression and tension. When the design is based on the assumption of a "cracked section," proportioning of column sections is always cumbersome and difficult, especially in corner columns where there is bending in two directions. The former assumption is by far the more desirable one from the viewpoint of the professional engineer. This in itself is significant.

It may be argued that analysis and proportioning should both be made under the same assumption of either cracked or uncracked section. The common procedure is to use gross section for stiffnesses in the analysis. It would be difficult to determine the stiffness under any other assumption. The 1956 ACI Code allows "any reasonable assumption for computing the relative stiffnesses of columns and floor systems," provided that it is consistent throughout the analysis.

21.determination of column moments

From the considerations in Section 20, column moments will be determined on the basis of the assumption underlying the calculations made for beams in Fig. 10. Moments in exterior columns may then be taken directly from this figure. For illustration, the moment at the exterior end of beam $A B$ is 126. This moment must equal the sum of the moments in the columns at A and should be distributed to them in proportion to their stiffness ratios or distribution factors.

The moments in interior columns are not recorded in Fig. 10 because the end moments are based on live load on both sides of each individual joint. Most codes specify that column moments be computed for unbalanced floor loading, that is, live load on one side only.

Fig. 12 serves the additional purpose of obtaining moments in interior columns produced by unbalanced floor loading. Live load is placed on the alternate long spans in Fig. 12. The fixed-end moments are the same as in Fig. 10, but arranged differently.

Irregularities in spans or loading may be great enough to necessitate an analysis for beams more extensive than that shown in Fig. 10. The general form of moment distribution may be used and should be employed for both beams and columns. For a detailed description of a loading pattern arranged to give maximum moments in columns, refer to Concrete Building. Frames Analyzed by Moment Distribution, page 8.

22/design of column sections subject to combined bending and axial load

For uncracked sections, Section 1109 of the 1956 ACI Code gives a new form of the formula for proportioning columns.

The 1951 ACI Code formula (28) was: $P=N\left(1+\frac{C D e}{t}\right)$.
The 1956 ACI Code formula (18) is: $\frac{f_{a}}{F_{a}}+\frac{f_{b}}{F_{b}} \leqq 1.00$.

The 1956 ACI Code limits the ratio of eccentricity, $\frac{e}{t}$, to $2 / 3$; its former limit was 1.0.

Formula (20) of the 1956 Code is: $P=N\left(1+\frac{B e}{t}\right)$.
The old values $C D$ are combined in the single symbol B. This formula can be used in both preliminary selection and final design of the column. The 1951 Code formula (28) is more convenient for column design, but the 1956 ACI Code formula (18) is more advantageous for investigation of stresses.

A derivation of the 1951 ACI method is presented in the ACI Reinforced Concrete Design Handbook (Second Edition, 1955) on page 98, with further information on page 31.

To illustrate that the 1951 and 1956 formulas give the same results, the following derivation is presented:

Concrete: $f_{a}=$ actual axial stress;
$f_{b}=$ actual bending stress;
$F_{a}=$ allowable axial stress when no bending stress exists;
$F_{b}=$ allowable bending stress when no axial stress exists;
$f_{p}=$ allowable stress for combination of axial compression and flexure;
$f_{c}^{\prime}=$ ultimate compressive strength.
Steel: $\quad f_{s}=$ allowable stress in vertical column reinforcement. Supplementary notation is given on page 7 .

In the 1951 formula (28), the allowable equivalent axial load, combining the effects of axial load and moment, is:

$$
\begin{equation*}
P=N\left(1+\frac{C D e}{t}\right) \tag{28}
\end{equation*}
$$

For an axially loaded column:

$$
\begin{equation*}
P=F_{a} A[1+(n-1) p] . \tag{1}
\end{equation*}
$$

Equating formulas (28) and (1):

$$
\begin{equation*}
N\left(1+\frac{C D e}{t}\right)=F_{a} A[1+(n-1) p] \tag{2}
\end{equation*}
$$

This can be written as:

$$
\begin{equation*}
\frac{N}{A}\left[\frac{1+\frac{D e}{t}}{1+(n-1) p}\right]=F_{a}\left(\frac{1+\frac{D e}{t}}{1+\frac{C D e}{t}}\right) \tag{3}
\end{equation*}
$$

When the entire concrete area, A, is considered effective in a section subject to an eccentric force N at a distance e from the centerline, the total extreme fiber stress is expressed as:

$$
\begin{equation*}
f_{c}=f_{a}+f_{b}=\frac{N}{A[1+(n-1) p]}+\frac{N e t}{2 I} . \tag{4}
\end{equation*}
$$

The moment of inertia equals:

$$
\begin{equation*}
I=R^{2} A[1+(n-1) p], \tag{5}
\end{equation*}
$$

and $\frac{t^{2}}{2 R^{2}}$ is denoted as D.

Inserting (5) and (6) into (4) gives:

$$
\begin{equation*}
f_{c}=f_{a}+f_{b}=\frac{N}{A}\left[\frac{1+\frac{D e}{t}}{1+(n-1) p}\right] \tag{7}
\end{equation*}
$$

The objective of design is to make the actual and allowable stresses equal, that is, $f_{c} \leqq f_{p}$. Then, from formulas (3) and (7):

$$
\begin{equation*}
f_{p}=F_{a}\left(\frac{1+\frac{D e}{t}}{1+\frac{C D e}{t}}\right) \tag{8}
\end{equation*}
$$

This is formula (29) of the 1951 ACI Code except that the term F_{a} has been used instead of f_{a} to avoid conflict of terminology.

By definition, $C=\frac{F_{a}}{F_{b}}$.
Therefore,

$$
\begin{equation*}
f_{p}=\frac{1+\frac{D e}{t}}{\frac{1}{F_{a}}+\frac{D e}{F_{b} t}} . \tag{10}
\end{equation*}
$$

Multiply numerator and denominator by $\frac{N}{A[1+(n-1) p]}$:

$$
\begin{equation*}
f_{p}=\frac{\frac{N}{A}\left[\frac{1+\frac{D e}{t}}{1+(n-1) p}\right]}{\frac{N}{F_{a} A[1+(n-1) p]}+\frac{N D e}{A[1+(n-1) p] F_{b} t}} \tag{11}
\end{equation*}
$$

Substituting (4), (5), (6) and (7) into (11) gives:

$$
\begin{equation*}
f_{p}=\frac{f_{a}+f_{b}}{\frac{f_{a}}{F_{a}}+\frac{f_{b}}{F_{b}}} \tag{12}
\end{equation*}
$$

Equation (12) can be transposed as follows to show the ratio of actual to allowable stress:

$$
\begin{equation*}
\frac{f_{a}}{F_{a}}+\frac{f_{b}}{F_{b}}=\frac{f_{a}+f_{b}}{f_{p}} \tag{13}
\end{equation*}
$$

Now the sum of the actual stresses, f_{a} and f_{b}, should be less than the allowable stress, f_{p}; therefore the column should be proportioned so that:

$$
\begin{equation*}
\frac{f_{a}}{F_{a}}+\frac{f_{b}}{F_{b}} \leqq 1.00 \tag{14}
\end{equation*}
$$

This is the same as formula (18) of the 1956 ACI Code, which was to be demonstrated.

23/proportioning of a column section

Consider the problem to design a $20-\mathrm{in}$. square section with a 17 -in. spiral core subject to an axial load, $N=200 \mathrm{kips}$, combined with a moment $M=70 \mathrm{ft}$ kips. Use intermediate-grade bars, $f^{\prime}{ }_{\mathrm{c}}=3,000 \mathrm{psi}$, hot rolled spiral, and select column section from Tables 20, 21 and 22 for spiral columns in the Reinforced Concrete Design Handbook, pages 61-63. These tables are based on the 1951. ACI Code.

Compute $e=\frac{70 \times 12}{200}=4.2 \mathrm{in}$.
Then $\frac{e}{t}=\frac{4.2}{20}=0.21=$ less than 0.67 .
From Table 7, for $g=0.75$ and in the group headed "Square Sections with Spirals," it is seen that $D=6.2$ is a good average covering a wide range of values of $(n-1) p$.
table 6. coefficients f_{a} and C for design of columns
values of $f_{a}=\frac{0.225 f^{\prime} c+f_{s} p}{1+(n-1) p}$ for spiral columns; 0.8 times this value for tied columns

f_{c}^{\prime}	n	Tied Columns						Spiral Columns									
								Values of p									
		0.010	0.015	0.020	0.025	0.030	0.040	0.010	0.045	0.020	0.025	0.030	0.040	0.050	0.060	0.070	0.080
		$f_{8}=16,000$															
2000	15	428	456	481	504	524	559	535	570	602	630	655	699	735	766	793	816
2500	12	521	551	579	604	627	668	651	689	723	755	784	835	879	917	950	980
3000	10	613	645	675	702	728	774	766	806	843	878	909	967 1159	1017	1062	1101	1137
3750	8	750	785	817	8847	875	927	938	981	1021	1059	1094	1159	1218	1270	1318	1361
5000	6	979	1016	1051	1084	1117	1177	1224	1270	1314	1356	1396	1471	1540	1604	1663	1718
		$f_{s}=20,000$															
2000	15	456	496	531	563	592	641	570	620	664	704	739	801	853	897	934	967
2500	12	550	592	631	667	699	757	687	740	789	833	874	946	1008	1062	1109	1150
3000	10	642	687	729	767	803	868	803	859	911	959	1004	1085	1155	1218	1273	1323
3750	8	780	828	873	915	955	1027	975	1035	1091	1144	1193	1284	1366	1439	1506	1567
5000	6	1010	1060	1109	1156	1200	1283	1262	1326	1386	1444	1500	1604	1700	1788	1870	1946

values of $C=\frac{f_{0}}{0.45 f^{\prime}{ }_{c}}$

$f^{\prime} \cdot$	n	Tied Columns						Spiral Columns									
								Values of p									
		0.010	0.015	0.020	0.025	0.030	0.040	0.010	0.015	0.020	0.025	0.030	0.040	0.050	0.060	0.070	0080
		$f_{s}=16,000$															
2000	15	0.48	0.51	0.53	0.56	0.58	0.62	0.59	0.63	0.67	0.70	0.73	0.78	0.82	0.85	0.88	0.91
2500	12	0.46	0.49	0.51	0.54	0.56	0.59	0.58	0.61	0.64	0.67	0.70	0.74	0.78	0.82	0.84	0.87
3000	10	0.45	0.48	0.50	0.52	0.54	0.57	0.57	0.60	0.62	0.65	0.67	0.72	0.75	0.79	0.82	0.84
3750	8	0.44	0.46	0.48	0.50	0.52	0.55	0.56	0.58	0.61	0.63	0.65	0.69	0.72	0.75	0.78	0.81
5000	6	0.44	0.45	0.47	0.48	0.50	0.52	0.54	0.56	0.58	0.60	0.62	0.65	0.68			0.76
		$f_{8}=20,000$															
2000	15	0.51	0.55	0.59	0.63	0.66	0.71	0.63	0.69	0.74	0.78	0.82	0.89	0.95	1.00	1.04	1.07
2500	12	0.49	0.53	0.56	0.59	0.62	0.67	0.61	0.66	0.70	0.74	0.78	0.84	0.90	0.94	0.99	1.02
3000	10	0.48	0.51	0.54	0.57	0.59	0.64	0.59	0.64	0.67	0.71	0.74	0.80	0.86	0.90	0.94	0.98
3750	8	0.46	0.49	0.52	0.54	0.57	0.61	0.58	0.61	0.65	0.68	0.71	0.76	0.81	0.85	0.89	0.93
5000	6	0.45	0.47	0.49	0.51	0.53	0.57	0.56	0.59	0.62	0.64	0.67	0.71	0.76	0.79	0.83	0.86

table 7. coefficients D for design of columns

$\begin{aligned} & \text { (} D=\frac{1+(n-1) p}{\frac{1}{6}+\frac{1}{2}(n-1) p g^{2}} \\ & D=\frac{1+(n-1) p}{\frac{1}{6}+\frac{1}{4}(n-1) p q^{2}} \\ & \left(D=\frac{1+(n-1) p}{\frac{1}{8}+\frac{1}{4}(n-1) p q^{2}}\right. \end{aligned}$							values of $D=\frac{t^{2}}{2 R^{2}}$ which R. = radius of gyration $=\frac{A_{\theta}}{A_{\theta}}$, in which $A_{\theta}=$ gross area of concrete section All reinforcement is arranged symmetrically										
θ	$(n-1) p$																
	0.0	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80
	Rectangular Sections with Ties																
1.00	6.0	5.5	5.1	4.8	4.5	4.3	4:1	4.0	3.8	3.7	3.6	3.5	3.4	3.4	3.3	3.2	3.2
0.95	6.0	5.5	5.2	4.9	4.7	4.5	4.3	4.2	4.0	3.9	3.8	3.7	3.7	3.6	3.5	3.5	3.4
0.90	6.0	5.6	5.3	5.1	4.8	4.7	4.5	4.4	4.3	4.2	4.1	4.0	3.9	3.8	3.8	3.7	3.7
0.85	6.0	5.7	5.4	5.2	5.0	4.9	4.7	4.6	4.5	4.4	4.3	42	4.2	4.1	4.1	4.0	4.0
0.80	6.0	5.7	5.5	5.4	5.2	5.1	4.9	4.8	4.7	4.7	4.6	4.5	4.5	4.4	4.3	4.3	4.3
0.75	6.0	5.8	5.6	5.5	5.4	5.3	5.2	5.1	5.0	4.9	4.9	4.8	4.8	4.7	4.7	4.6	4.6
0.70	6.0	5.9	5.7	5.6	5.6	5.5	5.4	5.3	5.3	5.2	5.2	5.1	5.1	5.1	5.0	5.0	5.0
0.65	6.0	5.9	5.9	5.8	5.7	5.7	5.6	5.6	5.6	5.5	5.5	5. 5	5.4	5.4	5.4 5.8	5.4	5.4
0.60	6.0	6.0	6.0	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.8	5.8	5.8	5.8	5.8	5.8	5.8
	Square Sections with Spirals																
1.00	6.0	5.9	5.7	5.6	5.5	5.5	5.4	5.3	5.3	5.2	5.1	5.1	5.1	5.0	5.0	4.9	4.9
0.95	6.0	5.9	5.8	5.7	5.7	5.6	5.5	5.5	5.5	5.4	5.4	5.3	5.3	5.3	5.2	5.2	5.2
0.90	6.0	5.9	5.9	5.8	5.8	5.7	5.7	5.7	5.7	5.6	5.6	5.6	5.5	5.5	5.5	5.5	5.5
0.85	6.0	6.0	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8
0.80	6.0	6.0	6.0	6.0	6.0	6.0	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1
0.75	6.0	6.0	6.1	6.1	6.2	6.2	6.2	6.3	6.3	6.3	6.3	6.4	6.4	6.4	6.4	6.4	6.4
0.70	6.0	6.1	6.1	6.2	6.3	6.3	6.4	6.4	6.5	6.5	6.6	6.6	6.7	6.7	6.7	6.8	6.8
0.65	6.0	6.1	6.2	6.3	6.4	6.5	6.5	6.6	6.7	6.8	6.8	6.9	7.0	7.0	7.1	7.1	7.2
0.60	6.0	6.1	6.3	6.4	6.5	6.6	6.7	6.8	6.9	7.0	7.1	7.2	7.2	7.3	7.4	7.5	7.5
	Round Sections with Spirals																
1.00	8.0	7.6	7.3	7.1	6.9	6.7	6.5	6.4	6.2	6.1	6.0	5.9	5.8	5.7	5.7	5.6	5.5
0.95	8.0	7.7	7.5	7.2	7.1	6.9	6.7	6.6	6.5	6.4	6.3	6.2	6.1	6.1	6.0	6.0	5.9
0.90	8.0	7.8	7.6	7.4	7.3	7.1	7.0	6.9	6.8	6.7	6.6	6.6	6.5	6.4	6.4	6.3	6.3
0.85	8.0	7.8	7.7	7.6	7.4	7.3	7.3	7.2	7.1	7.0	7.0	6.9	6.9	6.8	6.8	6.7	6.7
0.80	8.0	7.9	7.8	7.7	7.6	7.6	7.5	7.5	7.4	7.4	7.3	7.3	7.2	7.2	7.2	7.1	7.1
0.75	8.0	7.9	7.9	7.9	7.8	7.8	7.8	7.7	7.7	7.7	7.7	7.7	7.6	7.6	7.6	7.6	7.6
0.70	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.1	8.1	8.1	8.1	8.1	B. 1	8.1
0.65	8.0	8.1	8.1	8.2	8.2	8.3	8.3	8.3	8.4	8.4	8.4	8.5	8.5	8.5	8.5	8.6	8.6
0.60	8.0	8.1	8.2	8.3	8.4	8.5	8.6	8.6	8.7	8.8	8.8	8.9	8.9	9.0	9.0	9.1	9.1

Refer to Table 6 in the group headed "Values of C " for spiral columns, $f_{s}=16,000$ and $f_{c}^{\prime}=3,000$. Select $C=0.65$ (estimating $p=0.025$).
$\begin{aligned} \text { Compute: } & C D \frac{M}{t}=0.65 \times 6.2\left(\frac{70 \times 12}{20}\right) & =169 \mathrm{kips} \\ \text { Add: } & & =200 \mathrm{kips}\end{aligned}$
Design section for total load: $\quad P=369$ kips
From Table 20 (Handbook), load on concrete $=270 \mathrm{kips}$
Balance to be carried by longitudinal bars $=99 \mathrm{kips}$
From Table 21 (Handbook), select eight No. 8 bars: 101 kips. Select spiral from Table 22 (Handbook): $5 / 8$-in. round rod at $23 / 4-\mathrm{in}$. pitch.

Since p actually equals 0.016 , the value of C taken from Table 6 should be reduced from 0.65 to 0.60 . This reduces the term $C D \frac{M}{t}$ by 13 kips . The load to be carried by the bars becomes 86 kips, and the number of No. 8 bars may be reduced from eight to seven.

It is customary in office work to "run down" column loads in a column schedule. This arrangement may still be retained when bending is included. Space should be allowed for recording of the bending term, $C D \frac{M}{t}$; the axial load, N; and the summation of these terms, P. The value of M is taken from Fig. 10 or 12; of C from Table 6; and of D from Table 7. In the case of bending in two directions, there will be two terms of the type $C D \frac{M}{t}$, one for each direction, and P will be the sum of three items. This type of proportioning of columns is quick and simple.
moments in one-way slabs and joists
For design of ordinary one-way slabs, it is not customary to use a regular moment analysis. Moments in slabs are usually determined by means of arbitrary coefficients. Such coefficients may also be useful for beams of approximately equal spans with uniformly distributed loads.

Boase and Howell have presented extensive tables of moment coefficients. ${ }^{\circ}$ One of their tables, reproduced as Table 8, is based on the following assumptions:

Spans are all of the same length.
Horizontal members have the same stiffness.
Vertical members have the same stiffness.
Vertical members are fixed at ends above and below the floor considered.
Load is uniformly distributed.
Ratio of live to dead load is the same in all beams.
Coefficients are tabulated separately for frames with two spans, three spans, and four or more spans. Five ratios of live to dead load and seven ratios of column to beam stiffness are included. The coefficients are to be multiplied by the product of unit load, w, and the square of span length, L. In accordance with the ACI Code specifications for the application of prescribed moment coefficients, it is recommended that for positive moments, L be taken as clear span; and that for negative moments, L be taken as the average for two adjacent clear spans. The ratio of the longer to the shorter of two adjacent spans shall not exceed 1.20.

The use of Table 8 enables the designer to ascertain at a glance how a change in stiffness affects the results. For slabs and joists, he may then select stiffness ratios in such a manner that his design is reasonably conservative.

The procedure outlined for one-way slabs and joists is also useful for a number of other cases involving beams with uniform load and approximately equal spans. Further refinements and additional tables have been introduced, including three types of concentrated loading. For detailed description and illustrative examples, refer to the appendix of Reinforced Concrete Design Handbook.

[^10]table 8. moment coefficients for slabs and joists
maximum moment coefficients, C_{1}

$M=C_{1}\left(w_{d e a d}+w_{i v e}\right) L^{2}$ where $:\left\{\begin{array}{l}M=\text { Moment in ft.kips } \\ w_{i v e}=\text { Uniform live load in kips per } \mathrm{ft} . \\ w_{d e a d}=\text { Uniform dead load in kips per } \mathrm{ft} . \\ L \quad=\text { Span in } \mathrm{ft} .\end{array}\right.$

$\frac{w_{\text {ive }}}{w_{\text {dead }}}$	$\frac{\Sigma K_{\text {col }} .}{K_{b e a m}}$	FOUR OR MORE SPAN FRAMES																
		ItERIOR SPAN				st INTERIOR SPAN												
						2nd INTERIOR SPAN	\bigcirc											
		T	r		1							,				1)	r
		Max.	$\underset{+}{\operatorname{Max}}$	$\underset{+}{M i n}$	Max.	Max.	$\stackrel{\text { Max. }}{+}$	$\begin{gathered} \operatorname{Min} . \\ + \end{gathered}$	Max.	Max.	Max. $+$	Min. $+$	Max.	Max.				
0	0	0	+.072	+.072	$-.106$	-. 106	+.034	+. 034	$-.077$	-. 077	+. 044	+. 044	-. 085	-. 080				
	0.5	-. 030	$+.060$	$+.060$	-. 101	$-.095$	$+.038$	$+.038$	-. 080	-. 081	$+.043$	$+.043$	-. 084	-. 084				
	1	-. 044	+. 054	$+.054$	-. 098	-. 090	+.039	$+.039$	-. 081	-. 088	$+.042$	+.042	$-.084$	$-.084$				
	2	$-.057$	+.050 +046	+.050 +046	-.094 -.090	-.087 -.085	+.041	+.041	-.082 -.083	-.083 --.083	+.042 + +	+.042 + +042	-.083 -.083	-.083 --.083				
	8	-.067	+.046	+.046	-.090	-. 085	+ +042	+.042 + +	--.083	-..083	+.042	+.042	-. -.083	-. -.083				
	Infinity	-. 083	+. 042	+.042	-. 083	-. 083	+. 042	+. 042	$-.083$	-. 083	+. 042	+. 042	$-.083$	--. 083				
0.5	0	0	+. 081	$+.039$	$-.110$	--. 110	+. 049	$+.007$	-. 088	-. 088	$+.057$	+. 016	-. 094	-. 094				
	0.5	-. 033	$+.065$	+.035	$-.104$	$-.099$	+. 048	$+.016$	-. 088	-. 088	+. 052	+. 019	-. 0.091	$-.091$				
	1	-. 046	+. 058	+. 033	$-.100$	-. 094	+. 047	+. 019	$-.087$	-. 088	+. 049	+. 021	--. 089	$-.089$				
	2	$-.060$	+. 052	+.031	$-.095$	$-.090$	+. 045	+. 022	$-.086$	--. 087	$+.047$	$+.023$	-. 087	$-.087$				
		-. 069	+.048	+. 029	$-.091$	-. 088	+. 044	$+.025$	$-.085$	-. 086	$+.044$	+. 0225	-. 086	-. 086				
	8	$-.076$	$+.045$	+.029	-. 088	-. 085	+. 043	$+.026$	$-.085$	-. 085	$+.043$	$+.026$	-. 085	-. 085				
	Infinity	-. 083	+. 042	+.028	-. 083	-. 083	+. 042	$+.028$	-. 083	$-.083$	+. 042	+. 028	$-.083$	-. 083				
1	0	,	+.085	$+.023$	$-.113$	$-.113$	+. 056	-. 006	$-.094$	-. 094	+. 063	+. 002	-. 099	-. 099				
	0.5	-. 034	+. 068	+.022	$-.105$	-. 101	+. 052	+. 004	-. 091	-. 092	+. 057	+. 008	-. 0995	-. 095				
	1	-. 048	$+.060$	+.022	-. 100	-. 096	+. 050	+. 009	-. 090	-. 0.091	+. 052	+. 011	-. 092	-. 092				
	2	-. 061	$+.053$		-. 095	-. 091	+.048	$+.013$	-. 088	-. 089	$+.049$	$+.014$	-. 089	-. 089				
	4	-. 070	$+.048$	$+.021$	-. 0981	-. 088	+. 046	$+.016$	-. 087	-. 0.087	+. 046	+. 017	-. 087	-. 087				
	8	-. 076	$+.045$	+. 021	-. 088	-. 086	+. 044	$+.018$	-. 085	--. 085		$+.018$	-. 085	-. 085				
	Infinity	-. 083	+. 042	+. 021	$-.083$	$-.083$	+. 042	+. 021	-. 083	-. 083	$+.042$	+. 021	-. 083	$-.083$				
2	05		$+.090$	$+.007$	--. 115	-. 115	+. 064	-. 019	$-.099$	-. 099	$+.070$	-. 011	-. 104	$-.104$				
	0.5	-. 035	+. 070	+.009	-. 106	-. 103	+.057	$-.007$	$-.095$	-. 096	+. 061	-. 004	-. 098	-. 098				
	1	-. 050	$+.062$	+. 011	$-.101$	-. 098	+. 054	-. 001	-. 093	-. 0964	+. 056	0	-. 095	-. 095				
		-. 063	+. 054	$+.013$	$-.096$	-. 093	+. 050	+. 004	$-.090$	-. 091	+. 051	$+.005$	-. 091	-. 091				
	4	-. 0.071	+. 049	+. 013	-. 091	-. 089	+. 047	+. 008	-. 088	-. 088	+. 047	+.008	-. 088	-. 088				
	8	$-.077$	$+.046$	+. 013	-. 088	-. 086	+. 045	+. 011	-. 086	-. 088	+.045	+. 011	-. 086	-. 086				
	Infinity	-.083	+. 042	$+.014$	-. 083	-. 083	+. 042	$+.014$	-. 083	-. 083	+.042	$+.014$	-. 083	$-.083$				
3	0	0	+.092	-. 002	-. 116	-. 116	+. 068	-. 026	-. 102	-. 102	+. 073	-. 018	-. 106	-. 106				
	0.5	$-.036$	+. 071	+. 003	$-.107$	-. 104	$+.060$	-. 012	-. 097	-. 098	+. 063	-. 010	$-.100$	$-.100$				
	1	-. 050	+. 063	+. 005	-. 101	-. 099	$+.055$	-. 006	-. 094	-. 095	+. 057	-. 005	-. 096	-. 096				
	2	-. 064	$+.055$	$+.007$	$-.096$	-. 094	+. 051	0	-. 091	-. 092	+. 052	0	-. 092	-. 092				
	4	-. 072	+. 049	$+.008$	-. 091	$-.090$	+. 048	+. 004	-. 089	-. 089	+. 048	+. 004	-. 089	-. 089				
	8	-. 077	$+.046$	$+.009$	-. 088	-. 087	+. 045	$+.007$	-. 086	-. 087	$+.045$	$+.007$	-. 088	-. 087				
	Infinity	-.083	+.042	+.010	$-.083$	-. 083	+. 042	+. 010	-. 083	$-.083$	+. 042	$+.010$	-.083	-. 083				

introduction

Some theoretical treatises on wind pressure are confined to the simple case in which a single bent in a building is subject to a known wind pressure. However, the amount of pressure acting on each bent is generally not known beforehand.

In a wind-pressure problem, it is essential first to ascertain the pressure on each individual bent. This is particularly important in reinforced concrete construction because all concrete members are integrally and rigidly connected with adjacent members. Also, all bents extending in a given direction cooperate in resisting the wind pressure acting in that direction.

The share of wind pressure resisted by each bent in a building is a function of the pressure necessary to give the bent a unit deflection. The relationship between pressure and deflection may make it difficult to solve the problem in its general form. A special, simplified way to solve the problem is presented in this text. ${ }^{*}$

Consider a floor in which all joints are part of bents that cooperate in resisting a given total wind pressure, W, acting above that floor. Each joint

Fig. 22 - Framing plan of floor.

[^11]| t | Joint coefficient | Columins
 Shear, Moment kips fl.kips | ams | | $\left[\begin{array}{l} 1 \\ \frac{1}{\circ} \end{array}\right.$ | Joint coefficient | | beams | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \% | | | Toment | shiarr, kips | | | | mon | Shear; |
| | $4 \times 0+0+1$ | 6.5 | 65.0 | | E. 1 | | sameasjoint | Bi | |
| | | | | 6.2 | | | | | 9.3 |
| | $4 \times 1+1+4+0,00$ | | | 5.9 | | | | | 9.3 |
| A3 | A2. 80 | same as joint | A 2 | | $E 3$ | B2 | same as joint | B2 | 9.3 |
| | AZ 80 | same as joint | A2 | 5.9 | | | sam | B! | |
| 4.5 | A2. . 80 | same as join | A2 | | FI | 3.18 | $3.78 \times 4 \times 20=302$ | | |
| 46 | Al 44 | Sa | AI | | | | same as joint | 31 | |
| | 4.08 | $4.08 \times 8 \times 20=653$ | | | | B2 1.26 | same as joint | B2 | |
| 81 | $\begin{aligned} & 0+1.5 \\ & 4.5+4+4=0 \end{aligned}$ | | 93.0 | | | 6 | | B2 | 9.3 |
| B? | $\begin{gathered} 1.5+1.5 \\ 8 x_{1.5+1.5+8+8^{1}} . \end{gathered}$ | 18.5 92.5
 same as joint | 92.5 | | F4 | B1 6.63 | satme as joint | B! | |
| B.3 | $\begin{array}{lll}\text { B2 } & 1.26\end{array}$ | | | | 3.78 | | $3.78 \times .3 \times 20=227$ | | |
| B4 | B2 1.26 | sa | B2 | | 61 | | me as joint | B1. | |
| 35 | 321.26 | same as jo | B2 | | 63 | | same asjoint | B2 | |
| B6 | B1 . 63 | samie as join | B) | | | B2 1.2.6 | same as joint | B2 | 9.3 |
| | | $6.30 \times 7 \times 20=882$ | | | $6{ }_{6}^{63}$ | BI | same as joint | B1 | |
| Cl | | same as inint | B1 | | - 3.78 | | $3.78 \times 2 \times 20=1.51$ | | |
| C? | B2 1.26 | same as joint | B2 | | | | | B1 | 9,3 |
| C3 | $5+0$ | | ${ }_{101.0}^{10}$ | | | | same as joint | B2 | |
| | | $10.1 \mid 50.5$ | 10 O | | | B2 1.26 | same as joint | 82 | |
| cs | B2 I.?6 | same as joint same as joint | B2. | | H4 | | same as joint | B1 | |
| c6. | B1 .63 | | B1 | | | 3.78 | $3.788 \times 1 \times 20 \times 76$ | | |
| | 16 | $5.16 \times 6 \times 20=620$ | | | (1-OAA) 133 | | | | |
| D1 | | sameas joint | B1 | | J2. (A2:0.80) 2.40 | | | 176.5 | |
| | | same as joint | B2 | | | ($A 2: 0.80) 2.40$ | sameasjoint | | |
| | | | | | | | | ${ }^{1} 2$ | |
| 03 | B2 | same as joint | B2 | | | ($\mathrm{A}: 0.44) 1.33$ | same as joint \dagger J | | |
| D4 | | 15.9\| 79.5 | $\begin{aligned} & 95.0 \\ & 64.0 \end{aligned}$ | 6.2 | (2.48) 7.46 | | $7.46 \times 0 \times 20=00$ | | |
| 05 | | $\left.\begin{array}{ll}\text { same as joint } & A 2 \\ \text { same as joint } & \text { Al }\end{array}\right]$ | | 6.2 | Sum of all joint coefficients: 43.59 Moment of joint coefficients with respect to bentJ: 345 Eccentricity of joint coefficients: $80.0-\frac{34.58}{43.50}=0.6 .6$ | | | | |
| | | | | | | | | | | | | | | |
| D6 | A1 . 44 | | | | | | | | | | | | | |
| | 5.47 | $5.47 \times 5 \times 20=547$ | | | Factor for joint coefficients: $\frac{640.0}{43.59}-14.7 \mathrm{kips}$ | | | | |

Fig. 23 - Tabulation of wind-pressure calculations.
in the floor is the intersection of one or two columns with one or two beams, or its equivalent portion of floor construction. The concept of "joint" will in this connection include physical properties such as stiffnesses of the adjacent members in the direction of the wind pressure.

A joint taken in this enlarged sense is illustrated in Fig. 26 with certain theoretical derivations. On the basis of certain assumptions, it can be demonstrated that the resistance of a joint against deformation or deflection may be expressed as a function of the $\frac{I}{L}$ values of the members at the joint. The
particular function of the stiffnesses will be called the "joint coefficient." If the coefficient for any joint in the floor is denoted as v_{x} and the sum of all coefficients in the floor considered is Σv_{x}, the share of the wind pressure carried by each joint is $\left(\frac{v_{x}}{\Sigma v_{x}}\right) W$. An illustration for a complete floor level is given in Figs. 22 and 23.

Total shear in a story, caused by wind pressure, may be distributed to each joint in the floor below by means of a particularly simple set of calculations. However, the centroid of wind shear and that of all joint coefficients must coincide. This may generally be accomplished by altering certain beam or column sizes. If joint coefficients cannot be adjusted sufficiently, a correction for the eccentricity may be introduced as illustrated in Figs. 24 and 25.

The treatment of wind pressure given in this text is sufficient and adequate for design of wind pressure on all reinforced concrete buildings except tall, towerlike structures. For these, refer to publications listed in the bibliography; for example, see reference 31 , which uses an exhaustive analysis based on the elastic theory, the conventional theory for reinforced concrete design.

The procedures presented for wind pressure are also useful for investigation of earthquake stresses, provided the design can be based on the assumption of "static loading," in which the effect of an earthquake shock is assumed to be equivalent to a static horizontal load similar to wind pressure. For earthquake design based on the "dynamic-loading" assumption, refer to publications in the bibliography; for example, reference 35.

Fig. 24 - Moments of inertia of columns resisting eccentric wind pressure.

Fig. 25 - Determination of shear due to eccentric wind pressure.

Fig. 22 is a framing plan for a floor 20 stories below the roof of a building in which each story is 10 ft . high. The direction of the wind is east-west and its intensity is 20 psf . All bays are 20 ft . long. The relative stiffnesses, $K=\frac{I}{L}$, of the members of the floor in the east-west direction are:

Type of member	Relative stifness
Spandrel beams	$20 \div 20=1.0$
Interior beams	$30 \div 20=1.5$
Wall columns	$40 \div 10=4.0$
Interior columns	$80 \div 10=8.0$

The distribution of wind pressure to columns above each joint in the floor considered will be determined.

The total shear due to wind pressure above the floor is $W=(8 \times 20)$ $\times(20 \times 10) \times 20=640 \mathrm{kips}$, and its centroid lies midway between bents A and J, that is, 80 ft . from J.

The nine bents from A to J in the east-west direction resist wind pressure. Each column in Fig. 22 will carry a certain portion of the 640 kips. Resistance of each joint or the shear induced in each column above is proportional to a joint coefficient. The following expression is derived in Section $29:$

$$
v_{x}=K \text { for column }\left(\frac{\text { sum of } K \text {-values for adjacent beams }}{\text { sum of } K \text {-values for adjacent members }}\right) .
$$

As mentioned in Section 25, the portion of W that is resisted by each column is $\left(\frac{v_{x}}{\Sigma v_{x}}\right) W$. Calculations may conveniently be arranged as shown in Fig. 23. The nine bents, A to J, are tabulated separately, and each group is subdivided to provide space for individual joints in that bent. Joint coefficients are computed in the second column with a summation for each bent.

The relative resistance of each bent against horizontal displacement is proportional to the summation of joint coefficients for that bent. If the center of gravity of these nine resistances coincides with the centroid of the shear due to wind pressure, the wind pressure will give the floor a parallel displacement. If it does not coincide, a parallel displacement must be combined with a rotation of the floor as a whole about some vertical axis.

The joint coefficients in bent J based on the original K-values are in parentheses and their sum is 2.48 . This value together with the other eight summations gives a centroid of resistance that is 89.5 ft . " from bent J. Since the wind-pressure component lies 80 ft . from J, the object is to eliminate the eccentricity of 9.5 ft . This may be done by adjusting sizes of certain beams and columns. The adjustment will be made in the J-bent because it is farthest from the centroid, which gives the change in J relatively greater weight. It is assumed that structural changes in bent J are not objectionable from an architectural viewpoint.

[^12]In Fig. 23, the joint coefficients in the J-bent have been trebled; their new summation is 7.46. This value in conjunction with the other eight summations, which remain unchanged, gives a centroid of resistance that is 79.4 ft . from J. The eccentricity of 0.6 ft . is considered negligible. Calculations are needed to ascertain what changes in dimensions will be necessary to produce the new K-values recorded for the J-bent. This is settled by a procedure of trial and error and does not involve wind-pressure theory.

After the adjustment is made in the J-bent and the eccentricity is made negligible, the sum of all joint coefficients in Fig. 23 is 43.59. Each unit of bent resistance must withstand a wind pressure equal to $640 \div 43.59=14.7$ kips. Multiplying each individual joint coefficient in Fig. 23 by 14.7 gives the portion of wind pressure withstood by each joint or the wind shear resisted by each column above.

Column moments are taken as column shear multiplied by one-half the column height. At each joint, the sum of column moments equals the sum of beam moments and is distributed to the beams in proportion to their K-values. Beam shears are taken as the sum of the two end moments in the beam divided by the length of the beam.

At columns C3 and C4, it is assumed that there is not enough torsional stiffness in the lateral girders at the opening to transmit bending to the east-west beams. As a iesult, credit is given only for beams to one side of the column. The beam moments at $D 4$ vary according to the stiffness of the spandrel and interior beams.

A brief discussion must be added in regard to the adjustment in bent J. The stiffening of this bent may cause the beam shears to increase greatly. The increased uplift on the windward side of such a bent may approach the point at which there is insufficient dead load available to counteract the uplift. This may be remedied by removing some of the stiffness from such bents to adjacent bents.

An interesting point may be demonstrated by making a similar analysis with smaller K -values for the columns at another typical floor several stories above the one considered. It will show that the percentage of wind pressure carried by each bent remains surprisingly uniform even when all K-values are one-fourth of their original value. This uniformity in distribution greatly reduces the analytical work required for a group of typical floors.
eccentric wind pressure on a building
Consider the example in Section 26, but assume that the joint coefficients for the J-bent remain unchanged. Their sum equals 2.48 (see Fig. 23) and the sum of all joint coefficients equals 38.61. The centroid of resistance is $3,458 \div 38.61=89.5 \mathrm{ft}$. from J, and the wind-pressure eccentricity is $e=9.5 \mathrm{ft}$. Under these assumptions, determine the shear induced in all the columns by a wind pressure of $W=640 \mathrm{kips}$.

If the wind pressure had been concentric, all joint coefficients would have been multiplied by the same factor, $\frac{W}{\sum v_{x}}=\frac{640}{38.61}=16.6$. All joints would then be given the same translation. In the case of eccentric pressure,
the floor will get both a translation and a rotation about some vertical axis. It is proposed to account for the combined effect by a method that amounts to using a multiplier equal to

$$
F=\frac{W}{\Sigma v_{x}}+\frac{W e x}{I_{x}+I_{y}},
$$

in which
$\Sigma v_{x}=$ sum of all joint coefficients in the x-bents (east-west);
$x=$ distance from any x-bent to centroid of joint coefficients;
$I_{x}=$ moment of inertia of joint coefficients about their centroid;
$I_{y}=$ the same as I_{x} but for bents in the perpendicular direction.
Values of I_{x} and I_{y} are computed in Fig. 24, in which joint coefficients, v_{x} are taken from Fig. 23. The calculations leading to v_{y} and y for bents $1,3,4$ and 6 (running north-south) are not shown, but may be derived in the same manner from the data in Section 26. K-values for the floor slab are low and are ignored since its stiffness is small in comparison with the stiffness of the beams. Therefore, bents 2 and 5 do not appear in Fig. 24.

Inserting numerical values in the above formula for F gives:

$$
F=\frac{640}{38.61}+\frac{640 \times 9.5 \times x}{114,700}=16.6+0.053 x
$$

Values of F are computed in Fig. 25. The next step is to determine column shears by multiplying joint coefficients in Fig. 23 by corresponding values of F in Fig. 25. These calculations will not be illustrated here. It is of more interest to compare results obtained by eccentric and concentric analysis.

In the example in which the J-bent is stiffened, all joint coefficients are multiplied by 14.7. But if the low K-values are maintained in J, all joint coefficients are to be multiplied by F taken from Fig. 25. The ratio of $F \div 14.7$ compares the column shears in the two examples. It is seen that changing from concentric to eccentric wind pressure reduces the shear by 12 per cent in bent A and increases it by 38 per cent in bent H. These changes have been brought about merely by varying the sizes of members in the J-bent.

28 warping of floors

Bents subject to wind pressure have deflection due to shear and moment. Shear deflection signifies that floors are translated but not tilted, and originates in bending deformation of columns. Moment deflection, signifying that floors are tilted, is caused by change in column length. The latter type of deflection cannot be disregarded in tall, towerlike structures but has been ignored in the procedure employed in Sections 26 and 27.

One point in regard to moment deflection and its effect on reinforced concrete bents deserves brief attention. Refer for illustration to the calculations for bent B in Fig. 23. The shear is 9.3 kips in all beams, both interior and exterior. Since shears have opposite directions in beam ends adjacent to interior columns, the wind pressure creates no additional axial load in the interior columns. However, in exterior columns, an axial load of 9.3 kips is added to the gravity load in the column on the leeward side and deducted on
the windward side. The result is a nonuniform change in length of column; the floor warps and a secondary distribution of moments and shears takes place.

Ordinarily the effect of warping is not of any consequence, but it may sometimes be desirable to approach the ideal condition in which there is no warping of floors. To do this, it is necessary to adjust dimensions in the bents so that interior beams carry much more shear than exterior beams. This can be accomplished by making the coefficients at interior joints large in comparison with those for exterior joints. Suitable dimensions are established by trial. The purpose is to make the additional column load due to wind pressure proportional to the distance of the columns from the midpoint of the bent.

Such refinements as those described in this section are considered justifiable only in relatively tall buildings, especially if the outer spans are comparatively short and their stiffnesses great.

29/derivation of formula for joint coefficient

A, B, C, D and F in Fig. 26 are joints in a bent that is deformed by bending due to wind pressure. During the investigation of the conditions around joint A, the following assumptions were made and incorporated in Fig. 26:

1. Joints F, A and C lie on a straight line.
2. Joints B, A and D lie on a straight line.
3. The angle change, θ_{A}, is the same at F, A and C, θ_{A} being measured from a horizontal line.

Fig. 26 - Frame deformed by wind pressure.
4. The angle change, θ_{A}, is the same at B, A and D, θ_{A} being measured from a vertical line.
The part of the bent included in Fig. 26 is distorted under wind pressure as shown diagrammatically, and angle R represents the translation of joints. Combined angle change at ends of columns is $R-\theta_{A}$, while the angle change at ends of beams is θ_{A}.

It can be shown by application of the formulas derived in Section 4, "Stiffness and Carry-over Factor," that:

$$
\begin{aligned}
& M_{A C}=2 E K_{A C}\left(2 \theta_{A}+\theta_{A}\right)=6 E K_{A} \theta_{A} . \\
& M_{A F}=2 E K_{A F}\left(2 \theta_{A}+\theta_{A}\right)=6 E K_{A F} \theta_{A} .
\end{aligned}
$$

As indicated in Fig. 26 (a), the moments in the beams tend to rotate joint A in one direction and the moments in the columns tend to rotate A in the opposite direction. Changing sign and substituting $R-\theta_{A}$ for θ_{A} give:

$$
\begin{aligned}
& M_{A B}=-6 E K_{A B}\left(R-\theta_{A}\right)=6 E K_{A B} \theta_{A}-6 E K_{A B} R . \\
& M_{A D}=-6 E K_{A D}\left(R-\theta_{A}\right)=6 E K_{A D} \theta_{A}-6 E K_{A D} R .
\end{aligned}
$$

Since joint A is in equilibrium, the sum of the four moments must equal zero, or:
$\Sigma M_{A X}=6 E \theta_{A} \Sigma K_{A X}-6 E R\left(K_{A B}+K_{A D}\right)=0$, from which

$$
\theta_{A}=R\left(\frac{K_{A B}+K_{A D}}{\sum K_{A X}}\right) .
$$

Inserting this expression for θ_{A} in the formula for $M_{A B}$ gives:

$$
M_{A B}=6 E R K_{A B}\left(\frac{K_{A B}+K_{A D}}{\sum K_{A X}}\right)-6 E R K_{A B}=6 E R K_{A B}\left(\frac{K_{A C}+K_{A F}}{\Sigma K_{A X}}\right)
$$

If the shear in column $A B$ is denoted as $V_{A B}$,

$$
V_{A B}=\frac{2}{h} \times M_{A B}=\left(\frac{12 E R}{h}\right) K_{A B}\left(\frac{K_{A C}+K_{A F}}{\Sigma K_{A X}}\right) ;
$$

and when $\frac{R}{h}$ is considered constant for all columns in a story, the relative value of shear in a column $A B$ is

$$
v_{A B}=K_{A B} \frac{K_{A C}+K_{A F}}{\Sigma K_{A X}}
$$

$K_{A C}$ and $K_{A F}$ are $\frac{I}{L}$-values for the beams adjacent to $A ; \Sigma K_{A X}$ is the sum of $\frac{I}{L}$-values for all members adjacent to A. For column $A D$ below A, substitute $K_{A D}$ for $K_{A B}$.

When relative values of shear in columns and the total wind shear are known, shears and subsequently moments may be calculated in the columns. Shears and moments may then be determined in the beams as illustrated in Fig. 23.

vertical load analysis

1. W. M. Wilson, F. E. Richart, and Camillo Weiss, Analysis of Statically Indeterminate Structures by the Slope-Deflection Method, Bulletin 108, University of Illinois Engineering Experiment Station, November 1918.
2. F. E. Richart, "A Study of Bending Moments in Columns," Proceedings of the Twentieth Annual Convention, American Concrete Institute, Vol. 20, 1924, pages 495-522 (including discussion).
3. Hardy Cross, "Continuity as a Factor in Reinforced Concrete Design," Proceedings of the Twenty-fifth Annual Convention, American Concrete Institute, Vol. 25, 1929, pages 669-711 (including discussion).
4. Hardy Cross, "Simplified Rigid Frame Design," Proceedings, Amercan Concrete Institute, Vol. 26, 1930, pages 170-183.
5. Hardy Cross, The Column Analogy, Vol. 22, Bulletin 215, University of Illinois Engineering Experiment Station, October 1930.
6. Hardy Cross, "Analysis of Continuous Frames by Distributing Fixed-End Moments," Transactions of the American Society of Civil Engineers, Vol. 96, 1932, pages 1-156 (including discussion).
7. Hardy Cross and Newlin Dolbey Morgan, Continuous Frames of Reinforced Concrete. New York, John Wiley \& Sons, Inc., 1932.
8. Thor Germundsson, "Design of Continuous Frames Having Variable Moment of Inertia," Civil Engineering, Vol. 2, No. 10, October 1932, pages 647-648.
9. L. T. Evans, Handbook of Rigid Frame Analysis. Ann Arbor, Mich., Edwards Brothers, Inc., 1934.
10. T. Y. Lin, "A Direct Method of Moment Distribution," Proceedings of the American Society of Civil Engineers, Vol. 60, December 1934, pages 1451-1461. (See discussion by L. E. Grinter, et al., Proceedings, Vol. 61, March 1935, pages 425-435.)
11. John Ira Parcel and George Alfred Maney, An Elementary Treatise on Statically Indeterminate Stresses (Second Edition). New York, John Wiley \& Sons, Inc., 1936.
12. Hardy Cross, "The Relation of Analysis to Structural Design," Transactions of the American Society of Civil Engineers, Vol. 101, 1936, pages 1363-1374 (including discussion).
13. L. E. Grinter, "Analysis of Continuous Frames by Balancing Angle Changes," Transactions of the American Society of Civil Engineers, Vol. 102, 1937, pages 1020-1067 (including discussion).
14. F. Kruys, "Influence Lines by Moment Distribution," Engineering News-Record, Vol. 120, January 20, 1938, pages 112-113.
15. G. A. Maney, "Should the Type of Indeterminate Problem Determine Its Method of Solution?," Proceedings, American Concrete Institute, Vol. 34, 1938, pages 605-622.
16. Linton Eli Grinter, Automatic Design of Continuous Frames in Steel and Reinforced Concrete. New York, The Macmillan Co., 1939.
17. Ralph W. Stewart, "Relative Flexure Factors for Analyzing Continuous Structures," Transactions of the American Society of Civil Engineers, Vol. 104, 1939, pages 521-539 (including discussion).
18. A. Amirikian, Analysis of Rigid Frames. Washington, D.C., U.S. Government Printing Office, 1942.
19. Hale Sutherland and Raymond C. Reese, Introduction to Reinforced Concrete Design (Second Edition). New York, John Wiley \& Sons, Inc., 1943.
20. Clyde T. Morris and Samuel T. Carpenter, Structural Frameworks. New York, John Wiley \& Sons, Inc., 1943.
21. L. C. Maugh, Statically Indeterminate Structures. New York, John Wiley \& Sons, Inc., 1946.
22. Dean Peabody, Jr., The Design of Reinforced Concrete Structures (Second Edition). New York, John Wiley \& Sons, Inc., 1948.
23. Adolf Kleinlogel, Rigid Frame Formulas (Tr. from the German, Eleventh Edition. Based on a translation by F. S. Morgenroth), New York, Frederick Ungar Publishing Co., 1952.
24. L. W. Crandall, George Evans, Erik Sallid, H. L. Neve and Samuel Judd, Reinforced Concrete Design Data, Engineering Monograph No. 10, Denver, Colo., U.S. Bureau of Reclamation, October 1952.
25. Clifford D. Williams and Charles E. Cutts, Structural Design in Reinforced Concrete. New York, The Ronald Press Co., 1954.
26. Chu-Kia Wang and Clarence Lewis Eckel, Elementary Theory of Structures. New York, McGraw-Hill Book Co., 1957.

wind and earthquake stress analysis

27. R. Fleming, Wind Stresses in Buildings. New York, John Wiley \& Sons, Inc., 1930.
28. Elwyn E. Seelye, "Wind on Tall Buildings," Engineering NewsRecord, Vol. 104, March 20, 1930, pages 481-483.
29. Albert Smith, "Basis of Design for Hurricane Exposure," Proceedings, American Concrete Institute, Vol. 27, 1931, pages 903-924.
30. W. S. Gray, "Wind Stresses on Portal Frames," Concrete and Constructional Engineering, Vol. 27, 1932, pages 623-631.
31. L. J. Mensch, "Deflections and Vibrations in High Buildings," Proceedings, American Concrete Institute, Vol. 28, 1932, pages 387-404.
32. R. Fleming, "Wind-Stress Analysis and Moment Distribution," Engineering News-Record, Vol. 110, February 9, 1933, pages 194195.
33. Albert Smith, "Wind-Bracing Problems," Journal of the Western Society of Engineers, Vol. 38, February 1933, pages 1-18.
34. L. E. Grinter, "Wind Stress Analysis Simplified," Transactions of the American Society of Civil Engineers, Vol. 99, 1934, pages 610669 (including discussion).
35. Jacob J. Creskoff, "Earthquakes and Reinforced Concrete," Proceedings, American Concrete Institute, Vol. 33, 1937, pages 223249.
36. John B. Wilbur, "Distribution of Wind Loads to the Bents of a Building," Journal of the Boston Society of Civil Engineers, Vol. 22, October 1935, pages 253-259.
37. A. Floris, "Lateral Resistance of Buildings," Engineering NewsRecord, Vol. 121, July 14, 1938, page 59.

[^0]: ${ }^{\circ}$ See reference 3.

[^1]: ${ }^{\circ}$ For instance, see reference 11.
 ${ }^{0}$ Moments M^{F} are here considered numerical values. Fixed-end moments due to gravty loads create tension in top fibers of beams and will subsequently be defined as negative quantities.

[^2]: ${ }^{\circ}$ Both publications are available only in the United States and Canada from the Portland Cement Association.
 ${ }^{\circ}$ Reproduced from Reinforced Concrete Design Handbook, published by the American Concrete Institute, Detroit, Mich.

[^3]: ${ }^{\circ} M_{A B}$ and $M_{B A}$ are considered numerical values.

[^4]: *The value of $1 / 2$ applies to prismatic members only. For other types of members, values of carry-over factors may be selected from Handbook of Frame Constants and Continuous Concrete Bridges, available only in the United States and Canada from the Portland Cement Association. These publications also give stiffness factors.

[^5]: ${ }^{\circ}$ As illustrated in Moment Distribution Applied to Continuous Concrete Structures and Concrete Building Frames Analyzed by Moment Distribution, available only in the United States and Canada from the Portland Cement Association.

[^6]: ${ }^{\circ}$ Available only in the United States and Canada from the Portland Cement Association.

[^7]: ${ }^{6}$ The general expression is distribution factor $=\frac{\text { stiffness of member }}{\text { sum of stiffnesses of all members at joint }}$.
 For further discussion, see Sections 5 and 18.

[^8]: ${ }^{9}$ In certain irregular cases, it may be necessary to determine maximum positive moment at points other than at midspan.

[^9]: ${ }^{\circ}$ Available only in the United States and Canada from the Portland Cement Association.
 ${ }^{\circ}$ These coefficients were obtained by plotting the values given in Tables 42,43 and 44 in the Handbook of Frame Constants, page 19, and interpolating. The use of these tables is discussed in the handbook.
 \dagger Note that stiffness for prismatic members is given as 4 in Table 52a of the Handbook of Frame Constants, page 22, but it is, of course, only the relative value with which we are concerned.

[^10]: o"Design Coefficients for Building Frames," American Concrete Institute Journal, September 1939. The tables are republished, enlarged and elaborated in the appendix to the ACI Reinforced Concrete Design Handbook, pages 103-120.

[^11]: ${ }^{\circ}$ See reference 29 ; also reference 28 .

[^12]: ${ }^{\circ}$ Computed as $\frac{\Sigma \text { (joint coefficients times distance from J) }}{\Sigma(\text { joint coefficients) }}$

