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preface

Continuous-frame analysis is a very important design sub-
ject for the structural engineer. In this fleld, he is con-
fronted with the conflicting requirements of achieving
sufficient accuracy and at the same time expending a
minimum of effort and calculation. For this purpose, there
are many analytical procedures available, such as the
methods of elastic weights, virtual work, slope deflection
and moment distribution, Each has certain advantages
that make it specifically adaptable for particular conditions.
In this text, moment distribution is treated in a manner
suitable for office practice.

Interest in moment distribution had its origin in the
presentation by Hardy Cross in 1929.* His method is ap-
plicable to even the most complicated frame problems.
However, a condensed form was needed for ordinary build-
ing frame design in order to standardize certain features
incidental to the analysis.

The moment-distribution procedure offered in this text
is not a new method. However, it has been limited to two
cycles for ordinary building frames. The two-cycle method
of moment distribution has been tested over a period of
years in the analysis of numerous building frames and in
other work, The results have shown that the method speed
and accuracy are of great assistance to designers. Some may
choose to acquire a working knowledge of the mechanical
details, which are readily learned and remembered. Others
will consider it sufficient to use arbitrary coeflicients. They
will benefit by giving consideration to the tables included
in this text for fixed-end moments, stiffness, points of in-
flection, and design of columns. These tables are also ad-
vantageous for those who continue to use individual types
of analysis.

Section 22, “Design of Column Sections Subject to
Combined Bending and Axial Load,” has heen revised for
this edition. If designers adopt the procedure proposed,
design of column sections subject to bending should he
reduced from a time-consuming problem to. one of simple
routine.

Designers who do not wish to study the preliminary
explanation and derivation may tum immediately to Sec-
tion 10. However, & working knowledge of Tables 1 through

*See reférence 3.



4 is needed. The special arrangement for two-cycle moment
distribution is described in Sections 10 and 11. Subsequent
sections treat supplementary problems.

The second part of this book, which is concerned with
wind-stress analysis, is the same as in the previous edition.

The chronological list of references, pages 55-50, has
been revised and brought up to date.

Miscellaneous changes in wording and references have
heen made in the text fo incorporate code and handbook
revisions and to include experience accumulated since the
third edition was published.
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This publication is based on the facts, tests, and authorities stated
herein. It is intended for the use of professional personnel compe-
tent to evaluate the significance and limitations of the reported
findings and who will accept responsibility for the application of
the maierial it contains. Obviously, the Portland Cement Associa-
tion disclaims any and all responsibility for application of the
stated principles ot for the accuracy of any of the sources other
than work performed or information developed by the Associa-
tion.



notations

a=
A=
b:
b =
C:
d=

If

fraction less than 1.00

area

width of compressive zone
width of web in T-beam

a coeflicient

depth of a section
distribution factor, or a ratio
eccentricity

= modulus of elasticity

= stress

n =
N =
p=
P =
r =
R =
t—
U=
U=
V=
w =
W =
g =

= a multiplier

height of column
moment of inertia
stiffness

span length
moment

= end moment at joint A of member AB
= fixed-end moment

ratio of %‘Z—

actual axial load on column section
percentage of reinforcement

equivalent axial load on column section

a ratio

radius of gyration, or angle of joint translation
depth of flange, or overall dimension of column section
unbalanced moment

relative shear in columns

total shear

load per linear foot

load on a span, or wind pressure

angle of rotation






1/ the concept of fixed-end moment

If a load, W, is placed on a simply supported beam AB with span L as in
Fig. 1{a), moments in the beam may be computed as the product of a coeffi-
cient and WL. The coeflicients are independent of adjacent beams.

When the load is applied on AB, the beam will deflect and the tangents
at the ends of it will rotate through angles denoted as 8, and 5. The designer
need not be concerned with these angles if the beam ends are free to rotate.

Assume that AB is restrained at A in such a manner that the angle
change at A is smaller than 4,. The restraint may be represented by a mo-
ment M4, as illustrated in Fig. 1(b). Various degrees of restraint may be
considered but the most important of these is the one illustrated in Fig. 1(c)
where the angle changes are zero at both supports. In this case AB is said to
have fixed ends, and the restraining moments are called fixed-end moments,
M%; and ME,.

Fig. 1 — Beam with various degrees of
restraint,

The beam with fixed ends has characteristics resembling those of simply
supported beams. The following statements apply to both types of beams:
Moments may be computed as the product of a coefficient and WL. The co-
efficients are independent of adjacent beams.

The fixed-end moment is particularly useful in beam design since it is
independent of other members in the frame and also is a major part of the
actual end moment in the beam. One objective in frame analysis is to deter-
mine the minor correction to the fixed-end moment to give the actual mo-
ment. When the correction is relatively small, as is often the case, it may be
determined either by quick approximate procedures or by judgment.



2 / determination of fixed-end moments

The procedure to be illustrated is typical for all types of loading. Assume
the problem is to determine the moments required to “fix” the ends A and B
of a beam with span L supporting a load, W, placed a distance of ¢L from A.

To solve this problem, first place W on a beam AB considered simply
supported as in Fig. 1(a). The angle changes in this beam are denoted as
64 and 8. Then, as shown in Fig. 1(c¢), apply two end moments, M%; and
M§,, of such direction and magnitude that the angle changes ¢, and 6, are
eliminated.

Angle changes and deflections may be determined by application of the
two moment-area principles. Their use will be illustrated, but for a complete
explanation refer to standard textbooks on structural theory.*

The procedure in this problem is as follows: For the load W acting
alone, determine the moment curve in Fig. £(a), assuming the beam to be
simply supported. Let F denote modulus of elasticity and I denote moment
of inertia. Divide all M-ordinates in Fig. 2(a) by the product of EI which

gives the so-called —%-diagram.” Similarly, as in Fig. 2(b), draw an %If- dia-

gram for M5, and M¥E,, which are the unknown quantities, Note that M de-
notes moments at any point in the beam considered simply supported.
The frst moment-area principle states that the angle between the tan-

gents at any two poinis on a beam is equal to the area of the -%Il--diagmm

hotipeen the #Hpo nainte Sinee the tanoente at A and B in the haame with
CEPWEEH il PWO POWLS. SINCT IS WGNERSHIS di 4 dlll O I U0 OCallns Wikl

fixed ends are assumed not to rotate, the angle between them equals zero.
Both E and I are considered constant in this problem; therefore the product
of EI cancels out, and we may write
—YeMiaL — BME,L + %Wa(l —a)L* =0,°°
from which
Mz + M, —=a{l—a)WL. {1
The second moment-area principle states that the deflection of any point
on a beam measured from the tangent at any other point equals the moment

about the first point of the %-diagram between the two points. The deflec-

tion of A measured from the tangent at B equals zero; therefore, canceling
the constant product of EI and taking moments about A, we have
— 1ML X 8L — MR, L X BL + %Wa(l — a)L? X 4(1+a)L =0,

from which
M, 4 2M%, =a(l —a) (14 a)WL. (2)
Subtracting equation (1) from equation (2) gives
M%, = a*(1 —a)WL.
Similarly, (3)
Mip =a(l —a)*WL.

*For instance, see reference 11.

**Moments M are here considered numerical values, Fixed-end moments due to grav-
ity loads create tension in top fibers of beams and will subsequently be defined as
negative quantities,
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Fig. 2 — Moment curves for vertical load and restraint moments.

It is seen that M%; and M%, equal the product of WL and a coeflicient
that is a function of the type and position of the loading on span AB. Table 1
contains such coefficients for 15 types of loading on beams with fixed ends
and constant moment of inertia. Coefficients are given so that moments may
be computed also at intermediate points of the beams. For beams with
variable I, similar data are available in Handbook of Frame Constants and
Continuous Concrete Bridges.®

yexumplos of fixed-end moments

The four beams in Fig. 3 are assumed to have fixed ends and a constant sec-
tion throughout each beam, Moments at ends and at midspan are determined
by using coefficients in Table 1. Time may be saved by selecting numerical
values from Table 2,%* which gives results without the use of a slide rule.

H U
Cong | “iaxt ) 141 A 0 .
Unif |z eo0ees 3’ AL 18{0 0
Tota! Vid | O

Cone | %= 3851400
Umf [ x01=14.00"

14 R E 48«7 : R ECALE
1 . LBAP2.6T" k 3100« 3
Ll _to 013 i
TYUR" -

[

i { L2 x18.00 M| as|onxiod
2 T nif | Yox0as 1800 06 s 90

{
1'1‘LJ1‘1‘ let\ltl g ot q
18«

Fig. 3 — Momants in four beams with fixed ends.

*Both publications are available only in the United States and Canada from the
Portland Cement Association,
*#Reproduced from Reinforced Concrete Design Handbook, published by the American
Concrete Institute, Detroit, Mich.
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table 1. cosfficlants for moments in beams with fixed ends

moments in heams of constant section and with fixed ends
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M=mx WXL
m = coeflicient taken from diagram
W = total load on beam
I. = length of beam
a = fraction less than 1.00
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EXAMPLE Fixed-end moments:

03x07%{10.0)20=29.4 | 032x07(10.0)20=12.6
%2(15 % 20) 20=50.0 | %2 (1.5 % 20) 20=50.0
Yo (%20.6x20) 20= 8.0 | Fo(%x06x20)20=12.0

Mip=87.4 fLKip. MMfme
kip.




table 2. moments in beams with fixed ends

L/ w . w
1. uniform load 2. concentrated load 4
7 at midspan Z
Fixed end momenta: Table values M =%qu‘ Fixed end moments: Table values M -1BWL
Midspan moments: Table values X 0.5 M -=214wL‘ Midspan moments? Table values M =%WL
Uniform Load w in kips per ft, Concentrated Load W in kips
For following loade use table vafuss directly For following loads use table vafuss directly
Span
S}f" 1]2}3|4|6js|7|s]|9]0 H 10| 20| 30| 40| 50 |60} 70]80]|90] 100
For foilowing loads use table values divided by 10 For foilowing loads use table values divided by 10
0.1{ 02|03 ][04 05] 06 07| 08 09 10 1|2]ala|s|e]7/8]|9]n
5-0" 2.08| 4.17| 6.25) 8,33{104 [12.5/14.6/16.7|18.7|20.8 5-0" 6.3 112,5 (18,8 |25.0 [31.3 |37.5/43.8 50.056.3152.
5-3" | 2.30| 4.59 6.89| 9.,19{11.5 |13.8!16.1|18,4|20.7/23.0 5’-3'.' 6.6 113.1 [19.7 |26.3 (32.8 139.4|45.9{52,5/59.165.
56" 2.52| 5.04| 7.56|10.1 |12.6 |15.1|17.6/20.2{22.7|25.2 58 6.9 [13.8 |20.6 |27.5 |34.4 |41.3/48.1
'—9” | 2.76| 5,51 8,27|11,0 13,8 [16.5]19,3|22,0/24,8/27.6 5-9" | 7.2 {14.4 (21.6 |28.8 |35.9 [43.1/50.3
6-0" § 3.00{ 6.00| 9.00/12.0 [15.0 |18,0[21.0/24.0{27.0(30.0 6"0: 7.5 |15.0 |22.5 |30.0 (37.5 |45,0{52.5
53" 3.26] 6.51| 9.77(13.0 |16.3 [19.5(22.8/26.0/29.3:32.6 6-3 7.8 [15,6 (23,4 (31,3 |39.1 [46.9(54.7
6’6" 3.52| 7,04{10,6 (14,1 |17.6 |21,1(24,6/128.2(31.7/35.2 6’—6: 8.1 116.3 |24.4 |32.5 |40.6 |48.8|56.9
6'-9" | 3.80 7.59|11.4 [15.2 |19,0 |22,8]26.6/30.4(34.2|38.0 -9 8.4 116.9 |25.3 |33.8 [42.2 (50.6(59.1
7-0" | 4.08) 8.17|12.3 116.3 120.4 (24.5(28.6(32.7|36.8/40.8 7-0" | 8.8 |17.5 |26.3 (35.0 (43.8 |52.5(61.3
-3 4.38| 8.76(13.1 [17.5 [21.9 |26.3]|30.7(35.0{39.4|43.8 -3 9.1 (18,1 [27.2 |36.3 |45.3 |54.4/63,4
7-6' | 4.69( 9.38/14.1 |18.8 123.4 [28.1|32.8|37.6/42.2(46.9 7-6" || 9.4 [18.8 [28.1 |37.5 [46.9 {56,3(65.6]
7'-9° 5.01(10.0 |15.0 (20,0 [25.0 (30,0(35,0(40.0(45.0(50.1 79" 9.7 119.4 [29.1 |38.8 [48.4 |58.1|67.8
80" 5.33110,7 |16,0 [21.3 26,7 {32.0(37.3|42.7(48.0(53.3 8-0" [10.0 [20.0 [30.0 {40.0 |60.0 |60.0(70.0|
-37 || 5,67/11.3 [17.0 |22,7 |28.4 |34.0(39,7[45.4|51.1|56.7 8-3" 110.3 20,6 [30,9 |41.3 |51.6 [61.9(72.2
86" 6.02{12.0 [18.1 (24,1 |130,1 [36.1]42,2(48.2154.2|60.2 &6 (10,6 |21.3 }31.9 [42,5 |53.1 |63.8(74.4{85.0,95.6] 10
B-97 | 6.38/12.8 ]19.1 |26.6 (31.9 |38.3/44.7|51.0|57.4(63.8 g-3* [10.9 |21.9 |32.B {43.8 |54.7 |65.6(76.6(87.
= 6.75(13.6 |20.3 127.0 |33.7 |40.5/47.3|54.0/60.8/67.56 '—0* 111.3 |22.5 |33.8 [45.0 |656.3 |67.5|78.8]90
'—3" I 7.13(14.3 |21.4 ]28.5 |35.6 [42.8|49.9(57.0(64.2|71.2 9-3" [11.6 |23.1 |34.7 [46.3 |57.8 |69.4|80.9(02.
¥-6" | 7.52(15.0 [22. L1 137.6 [45.1|162.6|60.2|67.7|75.2 9'—6" (11,9 |23.8 |35.6 [47.5 |59.4 |71.3]83.1|95.
94" 7.92(15.8 |23.8 [31.7 |39.6 |47.5/56.5(63.4|71.3{79.2 ¥-g* 112.2 |24.4 |36.6 (48.8 |60.9 [73.1|85.3|97
1007 8.33/16.7 [25.0 |33.3 141.7 |50.0(58,3(66.7|75.0|83.3 10'=0" (12,6 [25.0 [37.56 |50.0 [62.5 [75.0|87.5
10°-6" 1 9,19/18.4 (27.6 |36.8 |45.9 |55.1(64.3{73.5(82.7:91,9 10°-6* 1131 |76.3 |39.4 |52.6 |65.6 |78.8(91.9)
10" 10.1 [20.2 |30. ! 0.4 |60.5/70.6;80.7(90.8/ 101 110" (13,8 (27.5 |41.3 |55.0 {68.8 |B2.5/96.3
116" 11,0 [22.0 .1 |44.1 (66.1 |56.1|77.2{86.2(99.2| 110 1V-6" [14.4 (28.8 [43.1 |57.5 {71.8 {86.3| 101
120" [12.0 {24,0 |36,0 48.0 (60,0 |72.0/84.0|96.0] 108[ 120 12-9* [156.0 [30.0 |45,0 {60,0 |75.0 [90.0| 105
2-6" 13,0 [26.0 |39.1 352.1 |65.1 |78.1]91.2) 104{ 117[ 130 12-6" (15,6 |31,3 [46.9 |62.5 (78.1 |93.8]| 109
130" |14.1 |28.2 |42.2 156.3 |70.4 |84.5)98,6) 113] 127| tH 130" [16.3 [32,5 |48.8 |65.0 (81.3 |97.5] 114
136" [[15.2 |30.4 |45.6 .8 [76.9 [91.1) 106 122] 137} 152 13-6" (16,9 |33.8 |50,6 |67.5 (84.4 | 101| 118
140" 16,3 132.7 [49.0 |65.3 |81.7 [98.0] 114; 131] 147| 163 140" [17.5 (36.0 52.6 {70.0 |87.5 | 105
1467 [117.5 [35.0 (52,6 [70.1 |87.6 | 105] 123] 140| 1568 176 146" [[18.1 |36.3 [54.4 {72.6 [90.6 | 109] 127
15'~0" [118.8 137.5 |56.3 175.0 (93.8 [ 113[ 131] 150] 169( 188 15-0" |[18.8 (37.5 [56.3 {75.0 |93.8 | 112 131
156" 20,0 (40,0 [60.1 |80.1 | 100 | 120( 140 160| 180) 200 16'-6" |[19.4 |38.8 (58.1 |77.5 [96.9 | 116[ 136
16'-0" 21,3 [42.7 |64.0 |85.3 | 107 | 128[ 149( 171] 192| 213 16-0" [20.0 |40.0 |60.0 |80.0 | 100 | 120] 140
6'-6" [|22,7 [45.4 |68.1 190.8 | 113 | 136| 159| 182| 204( 227 166" [20.6 141.3 (61.9 ]B2.5 | 103 | 124] 144
17-07 [124.1 |48.2 (72,2 |96.3 | 120 | 146{ 169] 193] 217| 241 170" j(21.3 (42,6 |63.8 185.0 | 106 | 128] 149
176" ||25.5 {51.0 |76.6 | 102 | 128 | 153( 179| 204| 230( 255 176" [[21.9 [43.8 (65,6 {87.6 | 109 | 131 153]1
18-0" 127.0 |64.0 [81.0 | 108 | 135 | 162( 189 216| 243 270 180" [[22,5 |45.0 [67.5 (90,0 | 112 | 135/ 158
186" [28.5 |57.0 |85.6 | 114 | 143 | 171| 200 228| 257( 286 | 186" [[23.1 |46.3 (69.4 [92.6 | 116 | 139] 162
190" }30.1 (60.2 [90.3 | 120 | 160 | 181 211 241] 271| 301 190" [[23.8 (47,56 |71.3 [95.0 | 119 | 142] 166
196" [31.7 |63.4 (951 | 127 | 158 [ 190 254| 285| 7 196" [|24.4 |48.8 |73.1 |9756 {1 146/ 171
~0" §33.3 [66.7 | 100 | 133 | 167 | 200| 233( 267] 300| 333 | 20°-0" (125.0 |50.0 |75.0 | 100 | 126 | 150| 174
20°-6" ]36.0 {70.0 | 105 140 | 175 | 210} 245| 280} 315 350 | 20°-6" |125.6 |51.3 [76.9 [ 103 | 128 154(179
1’-0" 36,8 [73.6 | 110 ] 147 | 1 221f 257| 204{ 331368 | 210" [126.3 62,5 78.8 | 105 | 131 | 158 184
21-6" 38,5 177.0 [ 11631 193 | 231] 270( 308] 347386 | 216" [126.9 |53.8 [80.6 | 108 | 134 | 161| 188
22'-0" 40,3 [80.7 | 121 | 161 § 202 | 242{ 282 323| 363| 403 22'-0" ||27.5 |66.0 [B2.5 | 110 | 138 | 165/ 192
22'-6" 42,2 |84.4 | 127 | 169 [ 211 | 2563| 205 338| 380| 422 ‘-6 [28.1 |66.3 |84.4 | 113 | 141 | 149] 197
23-0" |44.1 (8B.2 | 132 | 176 | 220 | 264| 305 3563| 397 441 23'-0" 28,8 |57.5 [86.3 | 115 144 [ 172| 201
236" ||46.0 [92.0 | 138 | 184 | 230 | 276| 322 368| 414| 460 | 23'-6" |29.4 {58.8 (88.1 | 118 | 147 | 176| 206
24'-0" 148.0 (96.0 | 144 | 192 | 240 | 288| 336| 384/ 432{ 480 24'-0" 30,0 |60.0 [90.0 | 120 | 159 | 180| 210
246" 150.0 | 100 | 150 | 200 | 250 | 300( 350| 400( 450( 500 24-6" 130.6 (61.3 |9L.9 | 123 | 153 | 184] 214
26-0" 62.1 | 104 | 166 | 208 | 260 | 312| 365| 417 469 621 26'-0" (131.3 |62.5 [93,8 | 125 | 166 | 188| 219
25'-6" 154.2 | 108 | 163 | 217 | 271 | 325| 379| 434{ 488| 542 2567 [31.9 |63.8 (45,6 | 128 | 159 | 191] 223
26'-0" |56.3 | 113 | 169 | 225 | 282 394| 461| 507 663 26'-0" (32,5 |65.0 [97.5 | 130 | 162 | 195] 228
26'6" ||68.5 | 117 | 176 | 234 | 293 | 361) 410| 468] 527| 685 26'-6" [133.1 |66.3 (99.4 | 133 | 166 | 199 232
270" [60.8 | 122 | 182 | 243 | 304 | 365| 425; 486] 547 608 7'~0" [33.8 [67.5 | 101 | 136 | 169 | 202] 236
276" 163.0 [ 126 | 189 | 252 | 315 | 378] 441{ 504; 567| 630 27'—6" (34.4 168.8 [ 103 | 138 | 172 | 206] 241
e~0" (68.3 | 131 | 196 | 261 | 327 | 392( 457 523| 688 653 200 ||35.0 {70.0 | 105 | 140 | 176 | 210| 245
206" [67.7 | 135 203 | 271 | 338 | 406( 474| 542 677 | 286" ||35.6 [71.3 | 107 | 143 | 178 | 214| 249
20-0" 70,1 © 140 | 210 | 280 | 350 | 420( 491 561| 631 701 29'-Q" [|36.3 |72.5 | 109 | 146 | 181 | 218| 254
206" [72.5 | 145 | 218 | 290 | 363 | 435( 508| 6BO| 653] 725 296" [36.9 |73.8 | 111 | 148 | 184 | 221| 258
30'-0" {I75.0 | 150 | 225 | 300 | 375 | 450| 526 600| 675 750 200" 137.5 |75.0 | 113 | 150 | 188 | 225| 262




3. concentrated loads
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at third points “ v
Fixed end moments: Table values M= %WL

Midspan moments: Table values X} 0.5 M= %WL
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4. concentrated loads AT 7
at fourth points 7 R AR AN AR
Fixad end moments: Table values M = ‘%WL
Midspan momenta: Table values % 0.6 M= ;EWL

Concentrated Load W in kips Concentrated Load ¥ in kips

For following tnads use table values directiy For foiiowing inads vse tabie vaiuaes directly
Span 1020 | 30| 40 | 50 |60[70[80]90[t00 | S5 10 [ 20 30| 40 | 50 | 60| 70]80]90]100
For following loads use table values divided by 10 Far following loads use tabfe values divided by 10
12 3]4|s5|s6]7]8]sfr0 2|3 4]|s]e]7/8]9]0
5-0" 8.6 |11.1 [16,7 |22.2 |27.8 [33.2/38.9(44.4|50.0|56.6 50 5.2 (10.4 |15.6 (20.8 |26.0 [31.2)36.5|41.7/46.9(52.1
5-3* 6.8 [11.7 117.5 |23.3 |20,2 |35.0|40.8(46.7|52.5/58.3 5'-3" 5.5 (10.9 1164 {21.9 |27,3 |32.8|38.3{43.8149.2(54.7
56" 6.1 |12.2 |18.3 |24.4 |20.6 {36.7,42.8148.8{55,0/61.1 56" 6.7 |11.5 |17.2 |22.3 |28.6 |34.4|40.1|45.851.657.3
5-8" | 6.4 128 [15.2 |25.6 [31.9 |38.3]44.7/51.1|57.5/63.9 597 6.0 [12.0 [18.0 '24.0 |20.9 [35.6[41.9[47.9(53.9/60.0
60" 8.7 [13.3 |20.0 [26.7 |33.3 [40.0(46.7]53.3|60.0/66.7 §-0* 6.3 112.5 [18.8 (25,0 |31,3 (37.5{43.8]{50.0:56.3/62.5
-3" [ 6.9 [13.9 |20.8 {27.8 |34,7 |41,7(48.6|55.6(62.5/69.4 &-3" | 6.5 [13.0 |19.5 [26.0 132.6 |39.1(45.6/52.1/68,6/65.1
6'—6" 7.2 |14.4 [21.7 [28.9 |36.1 |43.3|50.6(57.8/65.0|172.2 6'-6" 6.8 [13.5 |20.3 127.1 {33.9 140.5;47.4|54.2/60.0(67.7
6'-9" 7.5 16,0 |22,5 [30.0 |37.5 [45.0/52.5|60.0|67.5|75.0 6-9* 7.0 14,1 |21.1 (28,1 |36.2 (42,2]49,2,56.3/63.3/70.3
7-0° | 7.8 [15.6 [23.3 |31.1 (36.9 |46.7|54.4/62.2|70.0/77.8 7-0" || 7.3 |14.6 ;21.9 |29.2 |36.5 [43.8]51,0/58,3/66.672.9
-3 8.1 [16.1 124.2 ;32,2 |40.3 [48.3(56.4|64.4|72.5/80.6 -3 7.6 [16.1 [22.7 130.2 {37.8 |45.3(62.9/60.4/68.0,75.5
76" | 8.3 [16.7 |25.0 [33.3 |41.7 |50.0|58.3|66.7(75.0/183.3 767 | 7.8 |15.6 |23.4 {31.3 |39.1 |46.9]|54.7|62.5/70.3)78.1
7-9¢ 8.6 |17.2 |126.8 |34.4 |43.1 |51.7!60.3(68.9;77.5/86.1 797 8.1 [16.1 (24,2 |132,3 |40.4 (48.4|56.5(64.6/72.7(80.7
80" 8.9 [17.8 |126.7 |36.6 [44.4 |63.3]62.2/71.1,80.0/88.9 8-0" 8.3 16,7 |25.0 |23.3 [41.7 |50.0/58.3,66.7|75,0{83.3
8-3" | 5.2 [18.3 |27.5 [36.7 |45.8 |55.0/64.2]73.3{B2.5/01.7 B'-3" | 8.6 |17.2 {25.8 |34.4 [43.0 {51,6/60.2{68.7|77.3i86.9
B’-6" 9.4 1189 (28.3 |37.8 [47.2 |56.7|66.1{75.6|85.0{94.4 8'-6* | B.9 (17.7 |26.6 [35.4 |44.3 [53.1|62.0(70.879.7188.5
8’9 9.7 |19.4 |29,2 138.9 (48.6 |58.3|68.1|77.8|87.597.2 8'-9* 9.1 118.2 |27.3 [36.5 (45.6 |54.7|63.8/72,9[82.0/91.1
¥-0" [[10.0 |20.0 |30.0 (40.0 |60.0 |60,070,0/80.0(90.01 100 | 90”7 | 9.4 [18.8 [28.1 (37.5 |46.9 |56.3|65.6/75.0/84.4/93.8
%-3* [10.3 120.6 130.8 |41.1 |51.4 |61.7|71.9(82.2|92.5] 103 9-37 | 9.6 |10.3 128.9 (38.5 (48,2 |57.8/67.4|77.1]86.7/06.4
¥-6" 110.6 21,1 |31.7 |42.2 {52.8 |63,3(73.9(84.4/95.0| 106 9'-6" | 9.9 19,8 |28.7 139.6 [49.5 |59.4/60.3{79.2189.1[99.0
¢-9* [10.8 |21.7 {32.5 [43.3 54,2 (65.0/75.8(86.7|97.5] 108 9-9" 10,2 (20,3 |30.56 |40.6 |60.8 [60.5(71.1|81.291.4| 102
10°-0" 11,1 |22.2 [33.3 |44.4 |55.6 |66.7|77.8/88,9) 100|111 100" 1104 |20.8 |31,3 |41.7 [52.1 |62.5|72.9(83.3)93.8| 104
106" 1.7 123.3 (35,0 {46.7 {58.3 (70.0(81.793.3) 106/ 117 | 10’-6" [10.9 |21.9 |32.8 [43:8 (54.7 |65.6/76.6|87.5/98.4| 109
11°-0" 12,2 |24.4 |36.7 [48.9 [61.1 |73.3|85.6]97.8| 110[ 122 11'43: 11.6 |22.9 |34.4 |45.8 |57.3 |68.7]80.2/91.7] 103} 11
116" §12.8 125.6 |38.3 (51.1 [63.9 176.7)89.4] 102 1151 128 i1-6" 2.0 |24.0 |35,9 [47.9 |569.9 {71,9183.9/95.8) 108[ 120
120" 13,3 (26,7 {40.0 {53.3 [66.7 {80.0{93.3| 107] 120i 133 12-4* [+2.,56 |26.0 |37.5 [50.0 |62.5 {75.0/87.6 1001 113|125
12°-6" 1139 |27.8 [41.7 156.6 [69.4 {83.3{97.2| 111] 125| 139 12-6" [13.0 (26,0 [39.1 |52.1 |65.1 178.1)91.1; 104/ 117§ 130
$37-0" {14.4 |28.9 (43.3 |57.8 |72.2 [36.7] 101| 116] 130] 144 1¥-0" 113.5 |27.1 |40.6 |54.2 |67.7 181.3]94.8: 108|122 135
13-6" 1156.0 |30.0 |45.0 |60.0 |75.0 |90.0{ 105| 120] 135] 150 13°-6" 14,1 128.1 (42,2 |56.3 |70.3 (84.4{98.4] 113]127| 141
14'-0" I15,6 [31.1 |46.7 |62.2 |77.8 |93.3| 109] 124] 140| 156 14°-07 (14,6 129.2 143.7 |58.3 |72.9 |87.5] 102 17| 131| 14
14~6" [16.1 |32.2 |48.3 |64.4 |80.6 196.7/ 113{ 129| 145 161 14°-6" 15,1 |30.2 [45.3 |60.4 |76.5 (90.6] 106| 121! 136 151
15-0" 16,7 133.3 |50.0 |66.7 |B3.3 | 100 117 133] 150] 167 150" 15,6 |31.3 |46.% (62.5 {78.1 |93.8| 109] 125t 141] 156
156" 17,2 |34.4 |51.7 |68.9 {861 | 103 121] 138] 155 172 165-6* J16.1 |32.3 {48.4 |64.6 |80.7 |96.9) 113] 129] 145] 161
18-0" 117.8 356 [53.3 |71.1 [88.9 | 107] 124 142 160 178 | 16-0° [16.7 133.3 [50.0 166.7 [83.3 [ 100] 117 133] 180|167
16°-6" |118.3 |36.7 |55.0 [73.3 |91.7 | 110| 128| 147| 165} 183 16'-6" |117.2 |34.4 [51.6 [68.8 |85.9 | 103| 120{ 138] 155 172
17-0" |118.9 (37.8 |56.7 |75.6 84.4 | 113]| 132| 151| 170] 189 17-0" |17.7 |35.4 |53.1 |70.8 (88.5 | 106] 124] 142| 159[177
176" |19.4 |38.9 (58.3 |77.8 |97.2 | 117| 136| 156] 175] 184 17'-6" 118.2 [36.5 |54.7 |72.9 (91.1 | 109] 128| 146/ 164|182
18'~-0" |20.0 (40.0 |60.0 |80.0 | 100 | 120| 140( 1601 180| 200 18'-0" |18.8 |37.5 |56.3 |75.0 |93.8 | 113| 131] 150! 160 188
18°-6" |120.6 [41.1 [61.7 82,2 | 103 | 123} 144] 164} 185| 206 186" [19.3 (38.5 |57.8 (77.1 [96.4 | 116| 135] 154[ 173 193
19'-0" |21,1 [42.2 [63.3 |84.4 | 106 | 127| 148| 169] 190[ 211 19°-0" 19,8 [39.6 (59.4 (79.2 {99.0 | 118| 139) 158 178} 198
196" |21.7 |43.3 |66.0 |86.7 | 108 | 130| 152] 173] 195| 217 196" 20,3 140.6 |60.9 |81.3 | 102 | 122! 142 163| 183] 203
20'-6" 22,2 (44.4 |66.G {88.8 | 111 | 133] 156; 178 200 222 | 20--0* [|20.8 {41.7 |62.5 {83.3 | 104 | 128] 146 167 187) 208
206" [122:8 145.6 [68.3 |9t.1 | 114 [ 137| 159! 182| 205] 228 20-8" 21,4 [42.7 (64.1 |85.4 | 107 128| 149] 171] 192) 214
210" y23.3 (46.7 [70.0 [93.3 | 117 | 140] 163] 167] 210) 233 | 21-0° |21.9 [43.B (65.6 [87.5 | 109 | 131] 1563} 175] 197 219
21°-6* 123.9 [47.8 |71.7 [95.6 | 119 | 143 167] 191] 215| 239 21-6" 22,4 (44,8 [67.2 |89.6 | 112 | 134 57| 179] 202| 224
220" 124.4 148.9 |73.3 |97.8 | 122 | 147! 171] 196| 220| 244 22'-0" |22.9 |45.8 |68.8 |91.7 | 115 | 138| 160{ 183 206|229
226" 1250 [50.0 [75.0 [ 100 | 125 | 150 175[ 200| 226| 250 22'-6" 234 |46.9 (70.3 |93.8 | 117 | 141 184 188] 211|234
230" ||25.6 |51.1 |76.7 | 102 | 128 | 1563| 179] 204( 230 256 23'-0" |24.0 147.9 (71.8 |95.8 | 120 | 144] 168 192| 216 240
236" (26,1 [62.2 |78.3 | 104 | 131 | 157} 183 209| 235| 261 236" |24.5 |49.0 |73.4 |97.0 | 122 | 147| 171] 196] 220 248
240" 26,7 [53.3 [80.0 | 107 | 133 | 160] 187| 213| 240| 267 24'-0* 126,0 |80.0 |75.0 | 100 | 125 | 150| 175| 200 225/ 250
24°-6" [27.2 |54.4 |B1.7 | 108 | 136 | 163] 191| 218| 245,272 | 24’6 |25.5 [51.0 [76.6 | 102 | 128 | 153[ 179| 204] 230/ 255
25-0" [27.8 |55.6 |83.3 | 111 | 139 ; 167) 194 222| 2501278 | 25'-0" |26.0 [52.1 [78.1 | 104 | 130 | 156| 132| 208] 234 260
25-67 28.3 56.7 |85.0 | 113 | 142 | 170] 198) 207| 265 283 | 25'-6* |26.6 |53.1 |79.7 | 106 | 133 | 159| 186] 212| 23¢| 266
26-0" 28,5 157.8 (86,7 § 116 | 144 | 173] 202) 231| 260] 265 | 26'-0° [27.1 [54.2 |B1.2 | 108 | 135 | 162 190] 217 244 271
26'-6" |129.4 (58,9 |88.3 | 118 | 147 | 177| 206| 236| 265 294 26'-6" |27.6 {55.2 |82.8 | 110 | 138 | 166| 193] 221| 248/ 276
27'-0" {30.0 160.0 [90.0 | 120 { 150 | 180| 210] 240| 270! 300 27'-0" |128.1 |56.3 [84.4 | 112 | 141 | 169| 197| 225( 243( 281
276" 30,6 |61.1 91,7 | 122 153 | 183| 214] 244] 275 306 27'-6* 28,6 |57.3 [85.9 | 115 | 143 | 172| 200| 229( 258( 286
28°-0" [31.1 |62.2 |93.3 | 124 | 156 | 187| 218| 248( 280{ 311 28'-0" 129.2 158.3 |87.5 | 117 | 146 | 175| 204| 233] 262{ 292
28°—8" [131.7 |63.3 05.0 | 127 ! 158 | 190 222| 253 286 317 | 28'-6" [29.7 |59.4 (9.1 | 119 | 148 | 178) 208| 238] 267 297
20" 1132.2 |64.4 (96.7 | 129 | 161 | 193] 226| 258} 290| 322 29'-0" |30.2 |60.4 [90.6 | 121 | 151 | 181] 211 242 272 302
25'—67 132,84 165.6 {98.3 | 131 | 164 | 197| 229] 262| 295/ 328 29'—g* 30,7 [61.5 192.2 | 123 | 154 | 184| 215| 246|277, 307
30'—0" [33.3 |66.7 | 100 | £33 | 167 { 200| 233] 267} 300| 333 30'-0" |31.3 [62.5 {93.8 | 125 | 156 | 188| 219/ 250( 281} 313
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Note that end moments for total load (TL) are computed in Fig. 3 as a
coefficient multiplied by WL. All other values equal certain proportions of
the moments in the first column,

stiffness and carry-over factor

It has been shown in Section 2, “Determination of Fixed-End Moments,”

tha o aF Road A ey
that moments at fixed ends may be determined by multiplying the product

of Ioad and span by a coefficient. Since ends of beams in buildings are not
fixed, the fixed-end moments must be modified to suit whatever rotation
takes place at the joints. The effect of rotating one end of a beam will now
be discussed, including the concepts of stiffness and ecarry-over factor.

In the member AB in Fig 4(a) joint A is fixed and there is no load on
the beam between A and B. npplylug a moment Mp, at B will cause a L}iaugc
of angle, 05, and induce a resisting moment M, at A. Consider the problem
to determine the relationship between Mg, and 6, and between M,, and
MBA.

The moment diagrams corresponding to M, and Mjp, are shown in
Fig. 4(b) and then divided into two constitutent % -diagrams as in Fig, 4(¢)

and 4(d). Since the rotation of B creates tension on top of the beam at A,
M .5 is negative, while My,, producing tension on the bottom of the beam,
is positive. According to the first of the moment-area principles, the area of

the % -diagrams between A and B equals the angle f5:
_ */21va3 w% L +72m,}m Y L=08,"°
According to the second pnnclple the moment of the 77 M dlagrams about A

equals the deflection of A measured from the tangent at B:
1
— Mank s yr, 4 AL o yr =0,

- Neaative

Fig. 4 — Moments in beam with one fixed end, other end being rotated,
*Mas and Msa are considered numerical values,
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5

Inserting K — AET and rearranging give

L
— 2M.ur 4+ EMps = KQB;
— ZMAB + 4MBA = SKBE;
from which
MBA = KBB;
Mp—= 1Mz,
K is called the stiffness of the member. For members with constant
section, K equals %, which is referred to as the absolute value. A relative
value of K = I is preferred when E is constant throughout a frame. It is

L

seen by inspection of the two equations derived that

1. The stiffness K at B equals the moment at B required to give B a
unit rotation when A is fixed.

2. The moment required to rotate B through a given angle is propor-
tional to the stiffness K.

3. Applying a moment Mg, at B will induce at A a moment M, =
14Mg,. The factor of 1 is called “the carry-over factor.”*

The concepts of stiffness and carry-over factor together with the concept
of fixed-end moment are used in the procedure of analysis known as moment
distribution.

tables of stiffness for beams and columns

The relative stiffness of all beams and columns must be established regard-
less of the analytical method used. Stiffnesses are functions of cross-sectional
dimensions, but are not initially known and must be estimated. The selec-
tion of stiffness factors is simplified by use of Tables 3 and 4. The specific
assumptions on which these tables are based are discussed in this section
and also in Section 18, “Effect of Variation in Stiffness.”

For beams, the question arises regarding the effect of flange on stiffness.
The ACI Code specifies that in computing the value of I for relative stiffness
of beams, the reinforcement may be neglected, but allowance shall be made
for the effect of llange in T-shaped sections.

One procedure is to compute I for a T-beam as the product of 14,b'd*
and a coefficient C, values of which may be selected from Fig. 5. The width
of the web is denoted as b’ and the total beam depth as d. Stiffness equals

Yiob'd? ‘s
C e and the value of I = 14,b'd* may be selected from Table 3.

It is often difficult to select the flange width, b, and the assumption that the

entire flange width available is fully effective across the span may be ques-

tionable. Therefore, results obtained by using Fig. 5 are only as accurate as
the assumptions made.

*The value of 15 applies to prismatic members only. For other types of members, values

of carry-over factors may%e selected from Handbook of Frame Constants and Con-

tinuous Concrete Bridges, available only in the United States and Canada from the
Portland Cement Association. These publications also give stiffness factors,
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table 3. stiffness of beams

2 . . b'd®
values of K for T-beams K= 10L d = depth b = width of web I = 12
L : Length of beam {feet) L : Length of beam (feet)
4 | v d b I

I 8l |12]1a |16}z |2a]| a0 8 101214 16|20 24 | 30

6 266 6 8 4 4 3 3 2 2 8| 9216 || 230[ 186 166! 130 116] 90| 75
8 1 ol 7| o s 4 3 3 2 10 | 11520 || 290( 230| 190! 165 145| 116| 95| 76
10 aorll 1} 9o 7 6 6| 4 4 3 113 13248 || 330( 265/ 220] 190 165 130| 110| 90
g |13 49l 12l 10 8 7| & & 4 3| g4 |13| 14978 )1 375 300| 260) 215 185 150 128) 100
13 es6 /i 14] 11| 9f 8 7| & & 4 15 | 17280 || 430( 345| 200! 245| 215| 175| 145] 115
15 sl 16 13 11l 9o 8 & 5 4 17 | 19584 || 490| 390| a25] 280| 245| 195( 165] 130
17 7254 18] 1s8f 12 10| 9 7| 6 5 19 | 21888 || 545) 440 365 315 275 220| 180] 145
19 g}l 20 16{ 14 12] 10| 8 7 5 21 | 24192 || 605| 485| 405] 345 240{ 200{ 160
5 600f 13| 10 8 7| 6| & 4 3 8 | 11717 || 298] 235| 195| 165| 145 115[ 1 80
8 e67 1l 17| 13| 1 10l 8l 7 6 4 10 | 14847 || 365| 205| 245 210| 185 145| 120 100
10 83z] 21| 17| 14| 12| 10| 8 7 8 113] 16844 || 420| 335( 280| 240| 210| 170] 140{ 110
w0 | 113 g8l 24l 1o 16 14] 12| 10 8 &1 o5 [137| 19041 (| 475 380| 315 270| 24D) 190/ 160} 125
13 1082 §( 27| 22| 18] 1s[ 14| 11| 9 7 15 | 21970 || 550| 440; 365| 315| 278 220( 185; 145
15| 1250 31| 25 21} 18| 16| 13| 10{ 8 17 | 24809 || 620| 60| 415| 385| 310| 250{ 205] 165
17| 1417 || 35| 28 o241 2 18] 14| 12| 9 19 | 27820 || 6as| 655| 465| 400| 350| 280) 230] 185
19 1583 {| 40| 32 26, 23( 20 16[ 13[ 1 21 | 30758 || 770 616] 515| 440( 385| 310 266] 205
6 g64 | 22| 17; 14| 12] 11| o 7 6 14625 [| 365| 295| 245| 210| 185 145} 120{ 100
8| 162 29| 23 19| 16 14| 12| 10 & 10 | 18203 || 455 365( 305| 260| 230] 185 150| 120
10 1440 [ 36! 29 24| 21 18] 14] 12| 10 114 21037 || 525 420( 350{ 300; 265| 210| 175| 140
. 118l 166l 413 33| 28] 24i 211 17l 14] 1] o | 13| 23781 || 595; 475| 395| 3401 295 240 160
12 1937 1872|| 47 37| 31| 271 23] 19) 18] 12 ] = | 16| 27440 || 685} 550| 455) 390} 345 275| 230 185
16 21601 s4| 43 38| 31] 27 22| 18] 14 17 | 31099 || 775! 620( 520( 445/ 390] 310] 260| 205
17| 2448 61| 49 41 35 31 28 20 16 19 | 34757 [} 870] 695| 580| 495] 435] 380] 290 230
19 2736 68| 55 46] 39| 34| 27| 23| 18 2% | 3a416 |f 960{ 770| 640 550] 480] 366! 320( 265
6 tarz |l 34| 27 23 20 17[ 14 114 9 81 18000 [| 450] 360| 300 255} 225! 180| 150 120
8| 1820| 46| 37[ 30| 26| 23| 18 15 12 10 | 22500 || 565| 450! 376( 320| 280( 225| 190| 150
10| 2871l 57| 46| 38| 33| 29! 23 19 15 114 25875 i| 645| 520; 430( 370| 325( 260| 215| 175
14 | 114 26304 66 53| 44\ 38l 33| 26] 22| 18 [ 5, | 13') 29200 || 73D| 585( 490| 420| 365( 285) 245 195
137 2073 74 50| 42{ 37| 30{ 25 20 15 | 33750 || 845| 675 665| 480| 420| 340| 280 225
16] 3430l esl 691 b7 49! 43 20| 23 17 | 38250 || 955| 765 640| 645| 480 385| 320 255
17| 3887 | 97| 78 65 40| 39| 32| 28 19 | 42750 |[1070| 855 715| 610| 535| 430| 355| 285
10 | 4345 (i fo0| 87| 72| 62| 54| 43| 38 29 21 | 47250 [[1180( 945| 790( 675| B90[ 475) 385( 315
61 2,8l 51| 41| 34| 29| 26( 20 17| 14 8 | 31104 || 780] 620| s20( 445| 380 310] 260; 205
g 273 55| 46/ 39| 34( 27| 23| 18 10 | 38880 || 970| 780| 650| 655] 485) 390 325t 260

10! a3yl as e8| 57| 49| 43| 34| 28 23 13| 44712 |[1120| 895 745| 640| 560| 445| 375
46 | 113 3esY o8l 66| 56 40 390 a3l 28| .. |137| b0544 [1260[1010( 840 505| 420| 335
13| 4437l 111] 89| 74| 63| 85| 44 37 20 15 | 58320 {|1460[1170| 970] 835| 730| 685| 485( 390
15| 5120 128 102( 85| 73, 64| bB1; 43 34 17 | 66096 {|1650/1320/1100f 45| 826( 660 550( 440
17t 5803 || 145] 116) 97 73| 58! 48] 39 19 | 73872 {|1850(1480/1230{1060| 925] 740 615( 490
19| 6486 | 162] 130 108] 93} 81| 65; &4 43 21 | 81648 [[2040{1630[1360({1170[1020 B15] 68D 845
61 206 73] sa8| 49| 42| 36 20! 24| 19 8 | 49302 {1230 9%0| 825t 705] 615| 495 410 330
a{ a3ses| o7 78| 65 o6 49| 39 32| 26 10 | 61740 |[1540/1230|10304 880| 770| 615 615( 410
10 | 4860 122] o7 st 69| 61| 48] 41| 32 113 71001 [[1780[1420/1 1801010 890| 710! B90( 475
g | 114 5589 [ 140 112| 93 B0 7of 66} 47| 37§ .o | 13| 80262 (2010[1610(134011501000| B0S) 670| 536
13 628 || 158 126 105| 90 78| 63; 63| 42 16 | 92510 |[2320|1850(1540{1320/1160| 825] 770( 615
16| 7290 |[ 182| 146( 122 104 91 73| 61| 4¢ 17 | 104958 ([2620(2100(1750{1500{1310/1050| 875( 700
17 | g262 |[ 207| 165 138( 118] 103 83] 68| 55 19 | 117306 [2930/2350/1950(1680]1470/1170| 975| 760
19 | 9234 || 231) 185( 154{ 132! 116] 92} 77| &2 21 | 129654 ||3240(2590(2160;1860(1620/1300/1080| 865
6! 4000l 100l &0l 67 b7 B0l 40) 33| 27 8| 73728 [/18401470]12230{1060| 920 735| 615] 490
8| 5233 133] 107| 88| 76! 67| B3| 44| 36 10| 92160 |[2300{1840(1540{1320[1150| 920| 770| 615
10| 6667 || 167| 133 111| o6 83| 67| &6 44 114] 105984 ||2650/2120/1770/1510[1320!1060| 885 705
op | 113 7ea7 || 192 128 1100 96 77 64| 61 | 45 [ 33°| 119808 |[3060|2400|2000.1710(1500/1200(1000( 800
13°| 8667 || 217| 173 144| 124} 108| 87 16 | 138240 |[3460|2760/2300(1970{1730(1380|1150] 920
i5 | 10000 || 250| 200| 167| 143; 125( 100; 83| 67 17 | 156672 ||3920(3130/2610(2240]1960|1570|1210]1040
17 | 11333 || 283| 227} 89| 162] 142| 113] o4 76 19 | 175104 |4380(3500|2920(25602190(1750|1460:1170
19 { 12667 || 317| 263 211( 181] 168( 127| 106 84 21 | 193536 |[4840{3870(3230(2760{2420]1940/1610{1290
6| 5324 |l 133 108] 89) 78! 67| B3| 44| 36 8 | 104976 [12620|2100(1750(1600{1310{1050| 875| 700
8| 7099 [| 177| 1427 118] 101 89| 71| B9 47 10 | 131220 ||3280(2620/2190(1380]164011310|1090( 875
10| as7all 2221 177) 148l 127] 111 89l 74l 59 113 150003 {fa770|3020|2510/2160(1890(151011260(1010
g | 14| 10204 || 26| 204] 170( 146| 128] 102| 85| €8 | 4 | 137 170586 ||4260|341012840(2440(2130:1710!1420/1140
137} 11535 |[ 288( 231] 192( 166| 144( 11 6| 77 16 | 196830 {492013340(3260,2810|2460(1970(1640/1310
16 | 13310 || 333| 266| 222( 180 133) 1 17 | 223074 ||5680/4460|3720(3190(2790|2230( 18601490
171 16085 || 377| 302| 251| 215 189} 151] 126! 101 19 | 249318 |\6230/4990(4160(3560[3120|2490{2080/1660
19 ] te8s9 || 421 337[ 281} 21| 211| 168] 141 112 21 | 278562 ||6890(6510,4590(3940(3440|2760( 2300|1840

*See page 20 for explanation of coefficient 2 in numerator. Coefficient 10 in denominater is introduced simply
to reduce the mognitude of relative stiffnass values.
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table 4. stiffness of columns

I . bd?
values of K for columns = ok d =depth b= width =15
% : Height of column (feat) k ; Height of column (feet)
d b I d b I
8 ofto]t[1z2]14]16] 20 g8 |olwo|1n]12)14]|18] 20
i0 s27fl s o 4 4 4 3] 3 2 12 | 13824 || 175] 156/ 140 125) 115 100] 85| 70
12 siz]| 6 6 5 6 4 4 3 3 14 { 16128 || 200| 180] 160| 145| 135[ 115) 100| 80
14 so7| 7| 7| 8 s & 4 4 3 18 | 20738 |[ 260| 230| 205( 190) 175( 150| 130 105
s |18 766( 100 o 8§ 7| 8 s b 4| ,, |22| 25344 4 315 280 258| 230f 210| 180( 160f 125
22 939 12| 10/ 9 9 8 v 6 & 26 | 29052 ([ 37s| 335] 300) 270| 250) 215| 185| 150
26| 1109 14] 12) 11| 10| 9 8 7| 6 30 [ 34560 || 430| 385] 345) 315| 290| 245] 215| 175
30 1280 16| 714{ 13| 12| 11| 5 8 & 36 | 41472 || 520 415 375 345| 205[ 260| 206
36 1836 18 17| 16/ 4| 13[ 11| 10] 8 42 | 48384 || 605| B40| 485| 440| 405! 345 300 240
10 83all 100 o 8 8 7 € 8 4 12 | 17576 |} 220] 195/ 175( 160} 145| 125 110 @p
121 10001 13 1| w0 o 8 71 6 b 14 | 20505 || 255| 230| 205( 185] 170| 145 130| 105
14| #i67{ 15 13 12 1] 10 8 7 & 18 | 26364 || 330| 295) 265) 240 220| 150] 165; 130
10 | 18| 1500 19| 17| 15 14 13} 13| 9 8| o [22| 32223 || 405| 60| acqr 295| 270} 230( 200( 160
22 1833 || 23| 20| 18] 17| 5 13| 11| ¢ 26 | 3sos1 ([ 475| 426 380( 345) 215| 270| 240 190
261 2167 27| 24f 22 20 18 16| 14| 11 30 | 43940 || 550} 490( 440| 400 365 3151 275| 220
30 2500 31| 28] 25/ 23| 21| 18 6| 13 36 | s2ves f| 660[ 585| 525( 480( 440| 375 330] 286
36| 3000l 38| 33 30| 27 25| 21| 9] 15 42 | 61616 [§ 770| 685) 615 560] 515{ 440| 385( 310
10| 1440 18f 16/ 14 13 12| 10| 9 7 12 | 218562 [| 275) 245 220| 200 185 165( 135( 110
12 1728 22/ 19| 17| 18| 14| 12 11| o9 14 1 25611 || 220| 285| 256( 235| 215 185} 160| 130
14 o2oiel] 25 22[ 20 18] 17| 14} 13| 10 18 | 32928 || 410 365] 330| 300| 275] 235] 205| 165
g | 18| 20929 3 29| 260 24] 221 19) 160 13| o, | 22| 40245 || 505| 445) 4007 365| 335| 285 250) 200
T 22 3168 40| Jdb| dZ] 29) 23] 2 18 = 2b Arbbd |1 bYb| b3l 475 440] S9b] 40| 29D] 240
26 | aras | 47| 42| a7l 34| 31 27 23 19 30 | 54880 || 685| 610 550| 500| 455| 390: 345) 275
a0 | 4320 54| 48| 43| 39 36 31| 27| 22 36 | 65856 || 825| 730| e60| 600| 550 470} 410| 330
36| 5184 s s8] 52| 47| 43] 37/ 32| 26 42 | 76832 || 960f 855| 770| 700( 640| 550 480| 385
10 2087 25/ 25/ 23| 21| 19| 16| 14] 11 121 27000 || 340( 200| 270| 245 225 195| 170| 135
12| 2744 || 34| 30/ 27| 25| 23| 20| 17 14 14 | 31500 |t 395( 350| 315| 285 265| 225| 195 160
141 3201 | 40| 38| 32| 20l 27| 23 20 16 18 | 40500 || 50| 450| 405] 370] 340( 200] 255 205
14 |18] auisl si| as| 41| 370 34f 200 28 21 | . | 22| 40500 || 620| 550| 495! 450[ 415| 355| 310| 250
221 5031 || 63| 56| 50| 46| 42| 36t 3| 25 26 | 58500 || 730| 650] s8s| 630| 490| 420| 365{ 295
26 | s5945( 74l 66| B9 s0| 42| 37] 30 30 | 67500 || B45( 750| 675! 615] 565 480( 420} 340
30| 6860 86 76| 68| B2 57| 49 43 34 36 | 81000 [1010| H00; 810| 735) 675 58| 605 405
36| 8232 | 103] 91| 82 75| 69| 69| 5 4 42 | 94500 [[1180}1050( 845| 860] 790| 675] 590| 475
10| 3413 43| 38| 34{ 31| 28 24| 21| 17 12 | 32768 )| 410 365] 330 300| 275/ 235| 205! 165
12| 4oss || s1| 46| 41 37| 34 29] 26 20 14 | 38220 (3 480( 425( 380 350| 320] 275| 240| 190
141 4779 60| 53 481 43| 40| 34/ 30| 24 18 | 40152 (] 615) 645! 490| 445| 4107 350| 306 245
16 | 18| 6€144| 77| es| 61| =6 51| 44| 38 31| ., | 22| 60075 i 750| 670] GOO| B45] 500| 430| 375| 300
22| 7500 94| e3| 75| e8| 63 47/ 38 26 1 70997 [| 85| 700} 710 645[ 580 505| 445] 365
o6 | aers) 111| o9 89 81| 74| 63| 55 44 30 § 81820 [f1020] 910| 820| 745| 685 685) 510| 410
30 | 10240 [ 128] 114 102| 937 85| 73| &4 51 36 | 98304 [[1230|1000| 985| a9s| B20| 700[ 615| 400
36 | 12288 || 154| 137| 123 112} 102] 88| 77| 61 42 | 114688 [[1430/1270|1150{1040| 955) 820| 718| 575
10| 4sso|l 61| 54| 49| 44| 41| 35/ 30| 24 12 39304 || 490| 435! 35| 355 330( 280[ 245 165
12| 832l 73| 6s| 58| 53| 49| 42 36| 20 14 | 45865 || 675 510) 460| 415 380( 330f 285 230
14 6804 | B! 76 62| 57| 49| 43 18 | 58956 || 735{ 655f 590| 635/ 490| 420} 370( 295
4 |18} ams| 108] o7| 7| 8o} 73| 62| o5 44 | 5, ) 22| 72057 (| 900| 800 720| 655( 600; 515( 450! 360
22 | 10692 || 134 119| 107] 97| 88| 76| 67[ s53 26 | 85159 [M1060| 945( 850} 775| 710 610| 630 425
26 | 12636 || 158] 140] 126{ 115| 106! 90| 7% 63 30 | 98260 {|[1230}1090( 985| 895| 820| 700| 615 490
30 | 14580 || 182| 162 146[ 133} 122) 104] 91 73 36 1 117912 Jl147041 310[1180(1070; 980| 840 735 590
36 | 17496 [{ 219| 194 175| 159| 146| 125/ 109 87 42 | 137564 [j1720(1530]1380(1250{1150] 9a5] 860| 690
10 6667 || 83] 74| 67| 61| 56 48] 42! 33 12 | 46656 || 585| 520| 465 425 390| 335| 290 235
i2| BOGO | 100] B9| 80| 73| 67 57 50 40 14 | 54432 || 680| B05| 545 495] 455) 390 340| 270
141 9333 117{ 104| 93| 85| 78| 67| 58| a7 18 | 69984 || 87s! 780| 700( 635] 585| 500 435| 350
20 |18] 1 150] 133} t20| 109} 100 75| 60 | .5 |22| 85836 {l1070( 9501 855l 780 715| 610 535] 430
22 | 14667 || 183| 163/ 147] 133} 122| 105 92 73 26 | 101088 |11260/112011010] $20| 840! 720| 630 505
26 | 17333 || 217| 193] 173{ 158} 144 124] 108 &7 30 | 116640 [[1460|1300(1170|1066] 970| 835| 730| 585
30 250 222| 200| 182| 167| 143] 125) 100 36 | 139968 [[1750(1560[1400/1270(1170[1000| 875 700
36 | 24000 || 300! 267| 240| 218| 200| 171] 150! 120 42 | 163296 [[2040{1810{1630]¢480(1360(1170|1020( 815
10} s8873i[111] 99| 89 81 74| 63 85 44 12 | b4872 || 685] 6107 550 500| 460| 390 34| 275
12 | 10648 || 133| 118 106| 97| 88| 7e[ 67 b3 14 | 64017 || 800| 710 640{ 580| 535| 455| 400/ 320
14 [ 12422 )| 155 138| 124) 113} 104] 89| 78| 62 18 1 82308 |[1030] 915( 825| 750| 665, 690) B15f 410
op | 1B 150721 200! 177| 160| 145| 133] 114 100] 80 | 45 | 22 | 100599 |1260{112011010| H15 840/ 720/ £30| 605
22 | 19521 || 244| 217| 195 177| 163] 139 122 93 26 | 118889 ((1490/1320(1190/1080| 990| 850 745| 595
26 | 23071 || 288 231] 210| 192t 165( 144 115 30 { 137180 [[1710/152¢]1370/1250]1140| 980| 856] 685
30 | <6620 || 333| 296| 266( 242| 222( 190 166! 133 36 | 164616 [2060/1830(1650/1500(1370|1180(1030] 825
36 | 31944 || 99| 355| 319( 200 266| 228 160 42 1 192052 |[2400|2130{1920{1760|1600|1370(1200] 960

*Sea foolnote to Table 3.
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Fig. 5 — Coefficients for moment of inertia of T-beams.

A quicker and usually acceptable procedure in building design is to

Selanl‘ I(' 'F{\t’ T,‘wanmn Fw—\m 'T‘n"\]n q A"niuanng lﬁnn l\ﬂgn mnr:ln -‘nv nﬂnn" nF
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flange by doubling the moment of inertia of the gross web section. Fig. 5
indicates that for values of é between 0.2 and 0.4, a multiplier of 2 corre-
sponds closely to a flange width equal to six times the web width. This will
be considered a reasonable allowance for most T-beams. As seen from Fig. 5,
variations in depth ratio, é, have relatively little effect on I. For rectangular
beams the factor of 2 in Table 3 should be omitted.

. Table 4 contains relative stiffnesses for columns computed on basis of
gross concrete section, neglecting reinforcement as is done for beams. This
is in accordance with Section 702 of the 1958 edition of the ACI Code. Other
building codes, such as the 1936 edition of the ACI Code, required that
allowance be made for reinforcement in columms. If this is to be done, the
best procedure is probably to add a percentage to the I and K values taken
from Table 4. An increase of 10 per cent is considered reasonable for usual
column sections.
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6 fsigns

Two sign conventions are in general use. One must be chosen and used
throughout the operation of moment distribution. Fixed-end moments for
gravity loads may be recorded either as (1) negative on both sides of a joint,
or {2) negative on one side of the joint and positive on the other side. Both
have advantages, The choice between them depends on the type of problem.
Convention (1) is usually applied to problems involving distribution within
a single level. It is identical to the usual design concept that considers mo-
ments to be negative when they produce tension in the top of beams. How-
ever, (2) is preferred when moments are distributed from floor to floor.”
Convention (1) has been adopted here.

One simple, sure way to determine signs is to visualize curvature of
beams and rotation of joints. In accordance with the sign convention chosen,
moments are negative in “humps” (tension in top) and positive in “sags”
(tension in bottom ).

For illustration, a fixed-ended beam when loaded conforms to the shape
indicated in Fig. 8(a ). The central portion sags (plus) and the outer portions
hump {minus). Therefore, moments at fixed ends are negative in horizontal
beams with gravity loading.

Examples of clockwise and counterclockwise rotation about a central
support, B, of a continuous, fixed-ended beam is illustrated in Fig. 6(b) and

Fig. 6 — Signs illustrated by means of curvature and deflection of beams.

6{c). The beam sags on one side and humps on the other side of the support.
It can readily be seen that the sag adjacent to B would be on the span that
had the greater fixed-end moment at B. When the beam sags at one end of a
member because of joint rotation, it will hump at the opposite end.

The fundamental sign concepts illustrated in Fig. 6 are sufficient for
the type of analysis in this text and will be the sign convention used in the
following sections. '

7 / moment distribution af one joint

Consider the frame in Fig. 7(a), which consists of four members fixed at
their far ends. Apply at their common end, joint B, an external moment U,

This moment will rotate joint B until the sum of the resisting moments in-
duced in the four members is equal to U. Since all members are rigidly con-

*As illustrated in Moment Distribution Applied fo Continuous Concrete Structures and
Concrete Building Frames Analyzed by Moment Distribution, available only in the
United States and Canada from the Portland Cement Association.
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Fig. 7~ Frame consisting of four
members with far ends fixed.

TITIT
(c)Distribution and carry-over moments

nected at B, each member will rotate through the same angle at this joint.
The problem is to determine the moments induced at both ends of each of
the four members.

I \
First compute the relative stiffnesses K — A for all members; then their

sum, ¥K; and finally the four ratios of K divided by =K. These ratios are
called “ distribution factors” and will be denoted at Day, Dgg, Dgp and Dy
It will be shown that the moments induced in the beams at B, called “dis-
tributed moments,” equal

Mps = Daay X U;
Mpe = Do X U;
Mpp = Dpp X U;
MBE‘ - DBE X U,

Summation: EMpy = USDgy = U,

It has been stated that the sum of the distributed moments at B must
equal the external moment U, or that SM,; = U. This requirement is sat-
isfied since the sum of the four distribution factors 2Dpy equals unity. It
has been shown in Section 4, “Stiffness and Carry-over Factor,” that moments
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required to produce a given angle change are proportional to the stiffness K.
This requirement is also satisfied since the D-factors are proportional to the
K-factors. Therefore, the distributed moment Mux equals U multiplied by
the distribution factor Dyx.

According to one of the equations derived in Section 4 for a prismatic
member, half of the distributed moment is “carried over” to the opposite
fixed end

22ATAL UL,

a/exumple of moment distribution at one joint

The frame in Fig. 7(b) is the same as that in Fig. 7{a}, but numerical values
have been inserted. Sizes and lengths of beams and columns are given for
which stiffnesses may be selected from Tables 3 and 4. Joint B is being ro-
tated clockwise by an external moment, U7 — 69 ftkips, The problem is to
determine the distributed moments and the carried-over moments.

Initially, calculate the sum of the four stiffnesses, EK =146 4 73 +
133 4 163 — 515, and the distribution factors, D = S.ISK These are recorded
in Fig. 7(b) and, it should be noted, add up to unity around a joint. The
distributed moments induced at B in Fig. 7(c¢) equal UDgy, which gives 19
and 18 in the beams, and 10 and 22 in the columns. The four distributed
moments must add up to 89, The rotation of joint B also produces moments
at the opposite fixed ends of all the members. These carry-over moments are
half of the distributed moment.

The sketch of the distorted frame in Fig. 7(a) indicates that the clock-
wise rotation of joint B creates a hump to the left, but a sag to the right.
Therefore, 19 is negative, but 18 is positive. There is also a sag at A and a
hump at D; therefore the carried-over moments are +10 at A and —9 at D.
No signs are given for the column moments.

Tn moment distribution, U is called “cnbalanced moment” and is com-
puted as the numerical difference between adjacent fixed-end moments, For
illustration, let beams AB and BD in Fig. 7 be loaded as shown in the second
and third beam in Fig. 3. The fixed-end moments for total load are M5, =78,
and M%,— 147. The numerical difference is U = 69 ft.kips.

‘ylimitutions in two-cycle moment distribution

The procedure described in Sections 7 and 8 in regard to moment distribu-
tion at one joint is an elemental part of the general procedure, in which many
joints are involved. The entire frame may be divided into “unit frames,”
each of which is treated as in Fig. 7. Each joint may be rotated and relocked
one or more times. One operation of rotating and relocking corresponds to
what is known as a “cycle.” The main problem in these operations is the
recording of calculations. For the general case involving distribution of mo-
ments between various levels, a type of recording is discussed and illustrated
in Concrete Building Frames Analyzed by Moment Distribution.”

The scope of this text is limited to that type of building frame in which

® Available only in the United States and Canada from the Portland Cement Association.
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the following assumption is permissible, as stated in part in Section 702 of
the ACI Code under the heading “Conditions of Design™: “. . . the far ends
of the columns may be assumed as fixed,” This assumption is accepted gen-
erally and simplifies the moment analysis to a great extent. As a result, beams
in one floor may be designed without regard to those above and below. Also,
analytical work is simplified. All building frame analyses for vertical load
discussed in this text are based on this assumption,

'lO/speciul arrangement of moment distribution for building frames

Fig. 8 contains five groups of caleulations for moments at ends of four beams.
The loads on the beams are shown in Fig. 3, in which moments have been

comnniited for beame with fixed snde Sinece ctiffnesces are nnt known hefare-
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hand, it will be assumed that they are all equal. In this case, the stiffness
ratio or distribution factor for each member at any joint equals 1 divided by
the number of all adfacent members,” recorded as 14 or 1 in Fig. 8 The
problem is to determine maximum end moments in the beams.

To determine maximum end moment at A, place total load on AB and
daad Inad on BC ac chowmn in (A \ Sineoe R i¢ nnnCIrInrnr‘ Bvord tha and mn.
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ments at B are 172 to the left and 37 to the right. The difference is U = 135,
When B is released, the moment distributed to the left is UD = 135 X 1;;
and the moment carried to A while it remains fixed is UD X} 1% = 135 ¢ 1,
X 1% = 17. Refer to Fig. 6(c) for a deflection curve illustrating this case.
The counterclockwise rotation of jeint B creates a hump in the beam at A

that vacnlie n nagativa wal Fon tha Ao it Mhisn sraloan

that results in a HNegative vaiie 101 uic Carry-over moment. 1iis vaiuc is
written in Fig., 8(A), but neither the external moment U nor the distrib-
uted moment UD is recorded. Joint B is then relocked in its new position.

The next step is to examine A, which so far has been considered
locked. The original fixed-end moment is —172, but the release and rota-
tion of B transfers an additional moment to A. At this stage, the modified

total fixed-end moment is —172 — 17 = —189. Since there is no fixed-

end moment to the left of A, U at A equals 189. Releasing A and permit-
ting it to rotate induces a distributed moment at A equal to UD = 189 X
14 = 63. When joint A rotates clockwise, it tends to create a sag in the
beam at A, which results in a positive moment of 63 and a final maximum
moment at A of—189 4 63 = —126 ft.kips.

Tha nranadiira aymlaimad n #ha lnok furs naraovanhe Falag seczah Lo vn
11i¢ procedure expiained in e iast (wo pa 1.:15 apILis taKes Muci 101ger

to describe than to perform, and the explanation is superflucus for designers
who are familiar with moment distribution. In Fig. 8, the only new feature
is the manner of recording and the arrangement of the calculations. The
full advantage of the modification proposed will be discussed later, but first
a brief description will be given in connection with group B) in Flg 8.

ad 1 RiMN

To determine moments at B, place loading as illustrated in Fig. 8(B),

“The general expression is
stiffness of member

distribution factor = sum of stiffnesses of all members at joint’
For further discussion, see Sections 5 and 18,
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and release joints A and C. The figure clearly presents the computation of
the two moments, 29 and 1, carried over to B. When A and C are released,
they rotate so as to create a hump on both sides of the fixed joint B. There-
fore, both 29 and 1 are negative. While B is still considered fixed, the modified
total fixed-end moments at B are —201 to the left and —79 to the right.
The unbalanced moment at B is numerically equal to 201 — 79 = 122, It is
multiplied by the distribution factor of Y, at either side when joint B is
released. In regard to signs, refer to Fig. 6(0) for the counterclockwise rota-
tion of joint B. Distributed moments at columns C, D and E are determined
by the same procedure,

The operations illustrated in Fig. 8 cover {wo complete cycles of distri-
bution, which in the ordinary type of recording means that moments are
distributed fwice. However, in Fig. 8 only one distribution is in evidence,
because the usual two distributions have been combined in one operation.
Moments are carried over first and are included with fixed-end moments
before the distribution is made.

One advantage of the proposed arrangement is that it automatically
limits the analytical work to the degree required for reasonable accuracy.

Two n}!n]pe of distribution are all that are needed when columns are assumed

Ca0s O USU IO alQ all HAal adie NGO WAL COIUINNIS A asSUllea

fixed at ends above and below the floor considered. Designers who fail to
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Fig. 8 — Moment distribution Hlustrated in #ts various elements,
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realize this often include three or even four cycles of distribution at consid-
erable waste of time.

In Fig. 8, the five groups of calculations have five different arrangements
of load. The total load is carried on spans adjacent to the particular joint at
which maximum moments are to be computed, but dead load only is carried
on the next adjacent spans, The calculations are so arranged that all five
groups in Fig. 8 can be consolidated into one single group, as has been done
in Fig, 9.

Note that all the moments in line 7 of Fig. 9 are maximum values and
that it requires five types of loading to produce them. Computing moments
as in Fig. 9, therefore, will save considerable time. In addition, some of the
blank spaces in Fig. 9 are available for a quick, convenient determination of
maximum moments at midspan. Such midspan moments, which ordinarily
are determined only after a rather tedious set of calculations, may be recorded
directly in Fig. 9. This operation is illustrated in Fig. 10 and described in
Section 11, “Maximum Moments at Midspan.”

The arrangement suggested accommodates any type of loading, whether
uniform or concentrated, symmetrical or unsymmetrical. It is effective for
anv combination of stiffnesses of the various beams and columns, and can

ally COLLIDNNRUL Ul SULRLLSSLS UL Wit Valiliue LALGRLRs 22 RATSLISS2S

be used also for haunched beams and flared columns. For highly irregular
cases in which it is necessary to discard the assumption of columns’ being
fixed above and below, the fundamental caleulations remain unchanged. The
proposed method needs merely to be extended, not to be discarded.

It may also be considered an advantage to start with the fixed-end
moments, which generally make up the bulk of the final moments. In many
instances, corrections may not need to be added to the fixed-end moments,
or they may be estimated. If the corrections must be computed, calculations
without the use of a slide rule will often be sufficient. The calculations that
follow the recording of fixed-end moments are relatively unimportant and
may be made with great speed at little risk of serious error.

Vat annther advantaee results from the use of fixed-end moments. When

10N Al a8 QALY OLiGimy DU0ARS LLRLAL RAA AR RIS 2R 11 IEsALIG L L.

the analysis begins, cross-sectional dimensions must be estimated. If there is
any doubt about sizes of beams, the fixed-end moments in line 3 of Fig. 9
should be computed first and used for preliminary design. Stifinesses may
then be selected from Tables 3 and 4 and stiffness ratios recorded in line 1
of Fig. 9. If this is done, it will seldom be necessary to revise the distribu-
tinn nf momente Another convenient nse of fxed-end moments is discusse
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in Section 17, “Point of Inflection.”

=9

Stiffness ratio
FE.M. dead load
F.E.M. total load
4,Carry-over

5. Addition

&. Distribution

T Max. moments

1.
z.
3.

Fig. 9 — Special arrangement for building frames.
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Column moments
Stiffress ratio
F.E.M. dead load
F.EM. total load

Column moments

Example: §{1+4) -

Fig. 10 — Complete schedule including maximum moments at midspan.

11/ maximum moments at midspan*

The calculations recorded in Fig. 9 are repeated in Fig. 10 and others are
added for the determination of maximum moments at midspan.

The usual procedure for caleulating midspan moments is to consider
two loading conditions, in each of which alternate spans have live loads.
Since the object is to determine end moments for each of these loadings, this

cfnn involves caleulationg occunving apnroximately twice the snace oiven
mvolves CaiCUiations ococupymg approxXimately twice 1Nge Space grven

in Fig. 9. The average value of moments at opposite ends of each beam is
finally computed and deducted from the midspan moment in beams consid-
ered simply supported,

It is much faster to determine maximum moments at midspan, as in
Fig. 10. The positive midspan moments shown as 99, 73, 85 and 63 are taken

freym tha dota in Fig 2 far hasme with Brod ande Pn'-—‘-r‘llﬂ neyrrantinae arn bo
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be added to these moments in order to obtain the final maximum moments
at midspan,

The procedure will be illustrated for span AB. Multiply —17 at A by
—1% {1+ 14), in which 14 is the distribution factor at A, and record the
result, 411, Multiply —29 at B by wl/{q(l + % ), in which % is the distri-
bution factor at u and record the I‘ESuu, -1—L(J The S, -1—:::1 + i1 + 18 =
+128, is the maximum moment at midspan. All the other corrections are
determined in the same manner. An additional example is given in Section
19 for haunched beams, to which reference is made for explanation and
derivation. The corrections for prismatic heams in Fig, 10 are simply a spe-
cial case of those discussed in Section 19 for haunched beams.

lﬂe aCCurdCY Ul' (ﬂe two- Lyblﬁ prOCeGUI'B lIl I‘lg .I.U 1.5 umbtrdteu m I‘Ig
11. All moments in Fig. 11 are based on the fixed-ended beams taken from
Fig. 3, the stiffness ratios taken from Fig. 10, and on the assumption that
columns are fixed at ends above and below the floor considered. The results
of both the two-cycle and the four-cycle method of moment distribution are

A B [¢ D

Mom _from two cycles V128 111 ]-108 [ %73 | -97 [-137 [+I6] [-157 '—"1‘5"1[1'%
c1a |-

Mam. from fourcycles| =130 | +127 [ -)72 | -100 | +72 | -95 [-137 | +100 | )59 [ -I51

Fig. 11 — Accuracy of two-cycle procedure.

*In certain irregular cases, it may be necessary to determine maximum positive moment
at points other than at midspan,
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in close agreement for this example. However, the determination of maxi-
mum moment at midspan assumes that rotation in adjacent joints is relatively
small, with negligible effect on midspan moment. When adjacent joints have
large unbalanced moments and are very flexible, consideration should be
given to the carried-over moment,

12/ minimum moments at midspan

In the frame analyzed in Fig, 10, the second span from the left, span BC, is
only 14 ft. long and is flanked by much longer spans. It is possible that nega-
tive moments may extend across the short intermediate span. This possibility
will now be investigated.

The loading in Fig. 12 has dead load only on span

the adjacent spans. The end moments of —172 —37 a d —147 together
with the midspan moment 434, are taken from Fig. 3. The same fixed-end
moments zs those in Fig, 10 are used, but in a different arrangement.

The procedure is the same as that described in previous sections. For
further explanation of Fig, 12, consider B fixed while C is permitted to rotate.

Lo ) My | P Y FO IS W L a7 __ 110 ) $inlind L.,
111(5 UllDdldllLCU lllUIl.lb'U.l. d.!. L, 1% — 3 — 11V, 1b lU 0g juuxtlpucu vy

1; % 1. The result, 14, is the moment carried to B. Since the individual
rotations of B and C create sag at the respective opposite joints, the signs of
the carry-over moments are positive, Multiply 414 by —14(1 + 14) and
+17 by —14{1 + 14 ). Record the results and add them to -+34; this gives
a minimum moment of 414 at midspan. Similarly, the minimum moment at
midspan of DE is 4-28,

These moments are much smaller than those recorded in Fig. 10 but they
are still positive. With certain framing proportions, however, the minimum
moments are negative. The matter is discussed further in Section 17, “Point
of Inflection,” and Fig. 12 is referred to again in Section 21, “Determination
of Column Moments,”

The same consideration should be given to carried-over moments from
very flexible joints as that mentioned at the end of Section 11.

B
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clear span and center-to-center span

In analysis of frames, members are usually represented by their centerlines.
The ACI Code specifies that “in analysis of continuous frames, center-to-
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Fig, 13—Clear span versus center-to-
center span.
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center distances may be used in the determination of moments. Moments of
taces of supports may be used for design of beams and girders.”

These simplifications in design imply that reactions are concentrated at
the column axes and that the moments of inertia at the ends of the beams
and girders are unaffected by the stiffening effect of the adjoining supports.
For average design conditions, the error introduced by neglecting these fac-
tors is small. However, it should be pointed out that while these assumptions
yield a conservative value for moment at the centerline, they underestimate
the critical moments at the face of the support. For this reason, corrections
should be applied to the moment curve determined on the basis of center-to-
center distances, especially when the width of the support is large.

Other than a rigorous, two-dimensional analysis, no exact, easily applied
method is available for computing the correction. Such accuracy, however,
is unnecessary. In all cases, the magnitude of the correction can be estab-
lished on the basis of limiting assumptions.

With respect to the distribution of the reaction over the column, the
centroid of the reaction must occur between the face of the column and its
axis, If it is assumed that the reaction is concentrated at the face of the sup-
port, but that the span of the beam is still measured from center to center
of columns, the correction applied at b to the theoretical moment curve
shown in Fig. 13 is 1} VLa®, "For usual values of a, this correction is insig-
nificant and will be ignored.

On the other hand, the effect of the restraint imparted by the column is
more pronounced. The use of center-to-center span distance assumes that the

beam is free to deflect at b. This movement is restricted by the column. The
effect of cuch restriction can he nhnrnrlmnfpﬂ ]’\U assuming that the maoment
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of inertia of the beam over the column varies. A reasonable assumption is
that the moment of inertia is infinite in this area. On this basis the moment
at b computed by means of Table 56 in Handbook of Frame Constants is
14 Vg greater than that indicated by the theoretical curve in Fig. 13, This
correction applies aleng the entire length of the heam and therefore the
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modified moment curve is 14 VLa higher than the theoretical curve. This
corresponds to a reduction of the moment at the column face of 34 VLa.
For columns, it appears reasonable to take the length equal to the story
height. Theoretical column moments obtained in this manner are larger than
those existing at the top and bottom of the beams. This will be considered in
the discussion of column moments given in Section 20, “Bending in Columns.”

14 /sheur in confinvaus heums

Shear at the end of a beam that is part of a frame is determined as the sum
of the shear in the beam considered simply supported and a correction due
to the difference between end moments produced by the frame action. The
correction is usually small compared with the simple beam shear, especially
in interior spans,

In end spans the correction may be obtained from the moment calcula-
tions in Fig, 10, As an illustration: In span AB, the end moments are 171
and 126, The difference between them is 45, and the shear correction is 45
divided by the span length (1. =23 ft. 4 in.), which equals 1.9 kips. The
end shear at B in the beam AB considered simply supported is 37.5 kips
taken from loads in Fig, 3. Therefore, the total shear at B is 375 4 1.9 =
39.4 kips; at A it is 37.5 -~ 1.9 = 35.6 kips. Similarly, the shear at D in DE
is 3004 21 339 1 5.4 = 366 kips.

For interior beams the loading conditions for maximum moments are
not quite as favorable for determination of maximum shears. For illustration,
consider the problem to determine maximum shear at D in CD. The shear in
the simply supported beam is 33.1 kips. In Fig. 10, 157 ft.kips is the maxi-
mum moment at end D, but 137 ftkips at C is not the moment due to the
loading that will result in maximum shear at D. The moment at C is too
157 — 137

22.87
on the safe side. The correction is small in comparison with the figure it
modifies. As a result, it is often sufficient to use some rough approximations
such as twice its value. In this case, the shear would be 33.14- (2 X 09) =
34.9 kips.

It may be necessary under special circumstances to determine the shear
correction accurately, The end moment M¢p to be substituted for 137 ft.kips

large. Therefore, computing the corrections as =1{0.9 kips is not

5tiffness ratio

FEM TLar DL

Beam moment Mcp o
L
Fig. 14 — End moment for shear determination.
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in the example above may be easily computed as shown in Fig. 14. The fixed-
end moments in Fig. 14 are available from Fig. 10 and the distribution shown
is the procedure explained in connection with Fig. 8. The shear correction
equals Eg-%z = 1.8 kips. This represents only 5 per cent of the total

shear, 33.1 4+ 1.8 = 34.9 kips.

15 / example of reduction in theoretical moments

As discussed in Section 13, “Clear Span and Center-to-Center Span,” mo-
ments determined on basis of centerline distances should be reduced at the
face of columns before being used for proportioning of the members. It was
recommended that the reduction be 1% VLa for end moments and 1, VLa for
positive moments. V is the end shear and may for this purpose be taken as
the shear in simply supported beams. The width of support, aL, in this
example will be taken as 20 in. for all five columns.

B LA V% S A 132 U

,i,.|.<__ U

e

>|‘7 -
Thearetical max.mom|~12¢ [ 128 | 171 [-109 I VI3 =0T 1137 [ 4101 15T [-151 | VBl
Y: Max. end shear 311 23l ) 3
Deduct Y3 VLa or'sYla 21 PG

Design moments

Tensile steelrequired} 3.

Top at support [2-47 +2-#10

Trussed bars

Straight bars, bott, |

Tensile steel provided| 37

Fig. 15 — Deductions in theoretical moments and proportioning of reinforcement.

The theoretical moments taken from Fig. 10 are recorded in Fig, 15,
with end shears determined from the loads and spans (minus 20 in.) taken
from Fig. 3. Values for the ends and midspans are computed and deducted
from the theoretical moments.

16 / proportioning of reinforcement in beams

To continue the example in Section 15, consider the problem to proportion
all tensile reinforcement for f, = 20,000 psi and d = 21 in. by the accepted
straightline theory of flexure. The first four lines in Fig. 15 were discussed
in Section 15, The areas and arrangement of tensile reinforcement are re-
corded in the next four lines. Negative reinforcement is given first and con-
sists of trussed bars with the exception of the first and last items, which are
short, straight top bars. Positive reinforcement is given in the next two lines
for trussed bars and straight bottom bars, respectively.

Comparing areas required with areas provided, it is seen that the latter
is often much larger than the former. The most conspicuous fact is the devia-
tion from the customary rule-of-thumb of “bending up one-half of the bars.”
Actually, a far greater proportion of positive reinforcement is bent,
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17 / point of inflection

-~ The designer should specify where to bend up bars and how far negative
reinforcement shall extend into adjacent spans. The generally adopted rule
is that reinforcing bars shall be extended at least 12 diameters beyond the
point of inflection or beyond the point at which they are no longer needed to
resist stress. In the discussion that follows, special attention is given to nega-
tive reinforcement.

The problem is to determine the point of inflection for negative moments
near B in beam BC. Refer to Fig. 10,

The final maximum moment My, is 109 and with the original fixed-end
moment M%; of 78 has a ratio of 109 — 78 — 1.4. The greater portion of the
loading on BC is concentrated load at midspan, Locate this type of loading
in Table 5 and proceed in the line marked “Neg, mom.” to the right until
the ratio of 1.4 is reached. Just above that point on the adjacent scale, the
value of 0.35 appears, This signifies that the point of inflection is a distance
of 0.35L from the support, L being the span length,

Span BC is particularly short in comparison with the adjacent spans.
Under such circumstances, it is possible that a greater distance to the point
of inflection may be obtained with minimum loading on BC. This leading
case is treated in Fig. 12, from which the ratio of final moment to fixed-end
moment may be computed as 68 <« 37 = 1.8. The value in Table 5 for this
ratio is 0.45L and is farther from the support than the point based on maxi-
mum loading. Therefore, negative reinforcement must extend at least 12
diameters beyond the 0.45-point of the span.

The construction of the scales in Table 5 merits a brief explanation. Fig,
16 illustrates the method of construction for a concentrated load at midspan.

table 5. points of inflaction

t’:Zz“’t‘Lﬁ 0 05 o 5 20 25 30 35 40 45 5
) 1 ¥ T I 1 : I I T'ii T 1 1 I 1 I ) E I Ir lﬁl
Neg.mom.: 0.0 0.5 1.0 .5 2.0
Pog. mom.: 2.0 1.5 1.0 05 00
%V_ﬁﬂ :o .ols 0I5 20 .'35 30 35 40 45 5
I 1 [ 1 [ | T 1 1 T 71 T 1T -7 L I l ‘{
Neg. mom.: 0.0 05 1.0 L5
‘ Pos, mom.: 1.5 1.0 0.5 00
%ﬁwhﬂ 0 05 o s 20 25 0 3 40 45 5
I 1 I 11 LI rrIr—T 11 1 I T . 1 . _1]
Neg, mom.: 00 05 .0 12 1.3 1.4 1.5 1.0
Pos. mom.: L6 Ll 06 04 0.3 0.2 0. 00
kft,t._yz_,*.i,i 0 05 e U5 20 25 30 35 40 45 S
| 1 T T T 1T 1T 115 11T . . : —I
Neg.mom.: 0.0 05 1.0 133
Pos. mom,: 1,33 (.03 0.9 0.0
0 05 10 5 20 25 30 35 40 45 5
me LR | [ ] | | 1 | 1 L _{
Nega.mem: 00 0.5 L0 1.5
Pos. mom.: |5 1.0 0.5 00
0 05 % U5 20 25 30 35 40 45 5
feer T T 1 t | g | i i ; |
1 ) | I | 1 | ¥ I i i 1 T I 1 -
Neg.moms QO 0.5 1.0 15 16
Pos. mom: [ 11 0.6 0.l 0.0
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18

Fig, 16 — Point of inflection.

The heavy white line is the moment curve in a beam with fixed ends, and the
point of inflection for this curve is at the quarter-point. If M* is the fixed-
end moment and rMF is the final moment in the beam, the distance to the
point of inflection must be 0.25¢L. This determines the relationship between
the scales in Table 5.

Distances to the point of inflection for positive moments are determined
in a similar way. Data for several types of loading are given in Table 5. In all
instances, actual moments whether at end or at midspan are to be divided
by fixed-end moments. The data in Table 5 are correct only for cases in
which the moment curves are symmetrical. However, it is usually satisfac-
tory to use Table 5 for cases of dissymmetry. It is applicable for members of
constant or variable moment of inertia and may also be used to determine
where a certain percentage of the total reinforcement is no longer needed.

Returning to the example in this section, assume that two negative bars
extend from B to midspan of BC and can canry a moment of 60 ft.kips. Com-
pute the ratio of #lw7g 60 = 0.63, which corresponds to 0.16L in Table 5.
This is the point at which the two bars can carry the tensile stress without
help from other trussed bars. The latter cannot be hent down closer to the
support than 0.16L plus 12 diameters.

effect of variation in stiffness

It was stated in Section 10 (page 24) that “since stiffnesses are not known
beforehand, it will be assumed that they are all equal. In this case, the
stiffness ratio or distribution factor for each member at any joint equals 1

Annr}pr} }\y the number of all nﬂvﬂnpn!— mnm]‘:{-‘-rc Tt ig of interest to examine

LAD LIUNNDOL O dil

the effect a change in stiffness may have on the results of an analysis.
Inspection of Table 4 indicates that column stiffness is approximately
doubled if the dimension of a square column is increased from 12 to 14 in.
or from 22 to 28 in, This shows that column stiffness is quite sensitive to
change in column size. It is not unusual for a designer to increase the column

b g § 2?C13< _g-g

-97 (4144170 |-124 2 163 |-160] + 91
-12 -109 [ w101 o181 i |
147 +|11| 171 |- a7 41 |+asf-I53
S159) #108-1T1 |- B8 . + 73| - B5[-144 | + 91 }-15)

Ratio: -EC-‘:‘"

0
I
z.
4

beam

.

Fig. 17 — Variation in stiffness affecting moments in beams.

=
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Fig. 18—Sti£‘ness of floor system with
two beams per column.

sizes estimated by 2 or even 4 in. when making allowance for bending mo-
ment in columns. As a result, the stiffnesses and the analysis may have to be
back-checked and perhaps revised.

The effect of variations in stiffness is illustrated in Fig, 17 for ratios of
columns to beam stiffness of 0.5, 1.0, 2.0 and 4.0. The tabulated values indi-
cate that some moments, especially those in exterior spans, are sensitive to
changes in column stiffness, whereas others are not. It is advisable to be sure
that appropriate stiffness values are used in the analysis.

Some question may arise as to what moment of inertia should be adopted
for a floor system such as that in Fig. 18. Some designers compute I only for
the beams marked a; others use the sum of I-values for beams marked a
and . The former procedure gives an I that is too small and the latter gives
an [ that is too large. The intermediate beams contribute to the actual I for
the floor construction, the amount depending on the torsional stiffness of
the girder,

The beam marked i is a part of the frame and its stiffness (or part of it)
must be included in the I-value for the floor construction. It is probably best
to make all the beams identical. Select the K-value for one beam from Table
3 and use twice this value for stiffness of one panel of the Boor in Fig. 18.

Qallin B0 WAL RALLs VAl 10D ol IMas UL LR palitl el D Al A4

19/ haunched beams

Momenis in continuous beams are usually much greater at ends than at
midspan, It is unfortunate that only the web is available to take compression
at the ends where the moments are greater. As a result, there is a tendency

Fig. 19 — Haunched beam.
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to deepen the web at the supports and to use haunched beams. The ACI
Code specifies that if this is done, “the effect of haunches shall be considered
both in determining bending moments and in computing stresses.”

Haunching beams at their ends changes fixed-end moments, stiffness,
and carry-over factor. For illustration, compare the haunched beam in Fig.
19 with a straight beam. The following values obtain:

Straight Haunched
Fixed-end moment coefficient for uniform
load . . . . . . . . . . ... 0.083 0.093
Stiffness . . . . . . . . . . . .. 1.00 1.50
Carry-over factor . . . . . ., . | . 0.50 0.59

The changes due to the haunches are so great that they cannot be 1gnored
Coefficients for haunched members may be selected from Handbook of
Frame Constants. Many examples involving haunched members are given in
One-Story Concrete Frames Analyzed by Moment Distribution.”

An example of analysis for haunched beams will now be given. The
beam loading and span lengths in this example are the same as in Fig. 3.
Assume that all beams are symmetrically haunched, that the ratio of maxi-
mum depth to minimum depth of beam is 1.5, and that the length of haunch
divided by length of span is 0.17 in all beams. Under these circumstances, it
can be shown that all the fixed-end moments are approximately 12 per cent
greater in the haunched beams than in the prismatic beams. The 12 per cent
increase will be used in this example. Moment coefficients for more accurate
work may be selected from the references given in the preceding para-
graph.®® The stiffness of 1.5 and the carry-over factor of 0.6 were selected
from the same data.t

In this example all beam stiffnesses are increased 50 per cent because of
the haunches. Thelséi{fness ratios or distribution factors equal

15+ 10410
15
15+154+104+10

The moments in Fig. 20, when distributed and carried over from exte-
rior joints, are multiplied by 0.4 X 0.6 = 0.24. In all other cases multiply by
0.3 X 0.6 =0.18. It is seen that the procedure is exactly the same as for
prismatic members. The two corrections for maximum midspan moment
and the derivation of the corrections -}-15 and 422 may be computed as
illustrated in Fig. 20. For example, the correction originating from —27 at A

equalsgzz (6% + 04 - 1.0). The values of 0.4 and 0.3 are distribution fac-

= 0.4 for exterior end of exterior beams;

— 0.3 for all other ends of beams.

tors, and 0.6 is the carry-over factor.

® Available nn]v in the United States and Canada from the Portland Cement Assoct

2*These coefﬁments were obtained by plotting the values given in Tables 42, 43 and 44
in the Handbook of Frame Constants, page 19, and interpolating. The use of these
tables is discussed in the handbook.

tNote that stiffness for prismatic members is given as 4 in Table 52a of the Handbook
of Frame Constants, page 22, but it is, of course, only the relative value with which
we are concerned.
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Celumn moments
Stiffness ratio
F.E.M. dead load

F.E.M.tofal Toad

Carry-over:0. ¢ 4-101)14.4, 581,15,

Fig. 20 — Haunched beam, distribution of moments.
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Fig. 21 — M

The ordinary method is shown in Fig. 21. It is to determine the end
moments and deduct their average value from the midspan moment in AB
considered simply supported, The fixed-end moments are based on a loading
pattern that produces maximum positive moment at midspan of AB. The
result, 4-115, is the actual maximum midspan moment.

A more convenient procedure is to add two corrections to the midspan
moment of -4-78, From Fig, 21, it is seen that the two corrections equal

4772 — 274+ 110 +456— 463 + 139
g + p)
4T72 — 463+ 139 4456 — 274 4 110
= 3 + 3
772 — T2 X 0.6 4 T7.2 % 0.6 X 03
= 3
| 456456 X 0.6 -+ 45.6 X 0.6 X 04
3
_ 4T12% 08/ 1 1456 X 06/ 1
o TEC08 (0_6_1+0.3)+—2 (G‘é_l+°'4)
4463 ( 1 ) +27.4 ( 1 )
=4 (gpt03—1)+ T5(gptoa—1
— 144 + 22.3, say, 15  22.

Note that 46.3 and 27.4 have been calculated and are recorded as —46
and —27 in Fig. 20. These values must be multiplied by the quantities as
shown. The result is the two corrections calculated above, which added to
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--78 give the final moment, 4-115. Since the carry-over factor is 14 in pris-
matic beams, the quantity within the parentheses becomes, for prismatic
beams, 1 plus the distribution factor.

2(/ bending in columns

The two subjects discussed in this section are (1) determination of moments
in columns, and (2) proportioning of column sections subject to combined
bending and axial load.

Section 1108 of the 1956 ACI Code states: “In computing moments in
columns, the far ends may be considered fixed. Columns shall be designed to
resist the axial forces from loads on all floors plus the maximum bending due
to loads on a single adjacent span of the floor under consideration.

“Resistance to bending moments at any floor level shall be provided by
distributing the moment between the columns immediately above and below
the given floor in proportion to their relative stiffnesses and conditions of
restraint.”

The simplest procedure is to use the moments obtained from the regular
beam analysis illustrated in Fig, 10. Greater moments may be produced in
the exterior columns, but it is doubtful whether the effort required to calcu-
late these is justifiable,

It is generally conceded that moments cannot be determined in columns
with the same degree of accuracy as in beams. A beam moment is obtained as
the sum of fixed-end moment and an additional term or a correction derived
by analysis. But a column moment equals the corrections obtained by analy-
sis and is far more sensitive to changes in assumptions and much more sus-
ceptible to faulty analysis.

In addition, columns appear to have a marked ability to “select” the
amount of moment they are capable of supporting. Consider for illustration
a column supporting an axial load and assume that one end of it is also being
subjected to a gradually increasing rotation. At a certain stage of the rota-
tion, the column section may be overstressed, and it may crack or yield. When
this occurs, there is a.sudden drop in the moment required to produce the
rotation.

These two arguments are representative of a group from which the fol-
lowing conclusion may be drawn: The elastic theory is not at present close
enough in accordance with facts to justify an elaborate procedure for deter-
mination of moments in columns. For multistory buildings, it is considered
satisfactory to compute column moments under the same assumption used
for beam moments. As previously stated, far ends of columns are fixed above
and below the floor at which moments are to be determined. The procedure
is illustrated in Section 21, “Determination of Column Moments.”

In regard to proportioning of column sections, the 1956 ACI Code per-
mits the use of the assumption that gross concrete section may be considered
effective even if some of it is in tension because of a relatively large bending
moment, The Code does not allow this assumption to be used for eccentrici-
ties greater than two-thirds the dimension of the column section.

Proportioning may be made simple if concrete is considered “uncracked,”
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or effective in both compression and tension. When the design is based on
the assumption of a “cracked section,” proportioning of column sections is
always cumbersome and difficult, especially in coner columns where there
is bending in two directions. The former assumption is by far the more
desirable one from the viewpoint of the professional engineer. This in itself
is significant.

It may be argued that analysis and proportioning should both be made
under the same assumption of cither cracked or uncracked section, The
common procedure is to use gross section for stiffnesses in the analysis. It
would be difficult to determine the stiffness under any other assumption,
The 1956 ACI Code allows “any reasonable assumption for computing the
relative stiffnesses of columns and floor systems,” provided that it is consist-
ent throughout the analysis.

21/Ieterminution of column momenis

From the considerations in Section 20, colamn moments will be determined
on the basis of the assumption underlying the calculations made for beams
in Fig. 10. Moments in exterior columns may then be taken directly from this
figure. For illustration, the moment at the exterior end of beam AB is 126.
This moment must equal the sum of the moments in the columns at A and
should be distributed to them in proportion to their stiffness ratios or distri-
bution factors,

The moments in interior columns are not recorded in Fig. 10 because the
end moments are based on live load on both sides of each individual joint.
Most codes specify that column moments be computed for unbalanced floor
loading, that is, live load on one side only. :

Fig. 12 serves the additional purpose of obtaining moments in interior
columns produced by unbalanced floor loading. Live load is placed on the

alternate long spans in Fig. 12, The fixed-end moments are the same as in
Fio 10 hut arrangad diffarantly

Fig. 10, but arranged differently.

Irregularities in spans or loading may be great enough to necessitate an
analysis for beams more extensive than that shown in Fig. 10. The general
form of moment distribution may be used and should be employed for both
beams and columns. For a detailed description of a loading pattern arranged
to give maximum moments in columns, refer to Concrete Building, Frames

AvnoTarwnd Las A i !
Analyzed by Moment Distribution, page 8.

22 / dasign of column sections subject to combined bending and axial load

For uncracked sections, Section 1109 of the 1956 ACI Code gives a new
form of the formula for proportioning columns.

The 1951 ACI Code formula (28) was: P =N (1 + %’3?)
The 1956 ACI Code formula (18) is: 12 4- %g 1.00.
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The 1958 ACI Code limits the ratio of eccentricity,%, to 24; its former limit

was 1.0,
Formula (20) of the 1958 Code is: P =N (1 +%).

The old values CD are combined in the single symbol B. This formula can
be used in both preliminary selection and final design of the column. The
1951 Code formula (28) is more convenient for column design, but the 1956
ACI Code formula (18) is more advantageous for investigation of stresses.

A derivation of the 1951 ACI method is presented in the ACI Reinforced
Concrete Design Handbook (Second Edition, 1955) on page 98, with further
information on page 31.

To illustrate that the 1951 and 1956 formulas give the same results, the
following derivation is presented:

Concrete: f, — actual axial stress;

f;, actual bending stress;
« = allowable axial stress when no bending stress exists;

F,, = allowable bending stress when no axial stress exists;
f» — allowable stress for combination of axial compression
and flexure;
fo = ultimate compresswe strength.
Steel: f» = allowable stress in vertical column reinforcement,

Supplementary notation is given on page 7.
In the 1951 formula (28), the allowable equivalent axial load, comhining
the effects of axial load and moment, is:

P= (1+ CDe) (28)
For an axially loaded column:
' P=FA[l+ (n—1)pl (1)
Equating formulas (28) and (1):
D
V(1+ ) =ra L+ (1 —1)p. (2)
This can be written as:
Ly De 1 D
Mt | =P (3)
All+(n—1)p | CDe
L 1)

When the entire concrete area, A, is considered effectlve in a section subject
to an eccentric force N at a distance e from the centerline, the total extreme
fiber stress is expressed as:

N Net

fc:fa+fb: 17T 1 7 15,1 ar
Al in—1)p] <l

The moment of inertia equals:
I=RA[1+ (n—1)pl, (5)

,
and o 18 denoted as D. (6)
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Inserting (5) and (B8) into (4) gives:
N[ 14 2¢ ]
fe=fath=>5|___t | (7)
AT+ (n—Dp

The objective of design is to make the actual and allowable stresses
equal, that is, f, = f,. Then, from formulas (3) and (7):

De
N

fo=Fe| —cpg |- (8)
A\t

"This is formula (29) of the 1951 ACI Code except that the term F, has
been used instead of f, to avoid conflict of terminology.

By definition, C —= & (9)
Fy
Therefore,
P D oo
F, ' Fut

Multiply numerator and denominator by AT (1:: — l)p]:

N MY
AT+ (n—Tp

fo= : (11)
N NDe

FAIL T (0 —1jp] 1 AL+ (n — D)plFt
Substituting (4), (5), (6) and (7) into (11) gives:

fy= Jeth (12)
B b
F, ' Fp
Equation (12) can be transposed as follows to show the ratio of actual
to allowable stress:
fa fb _ fa + fh 13
P N J (13)
Now the sum of the actual stresses, f, and f, should be less than the allow-
able stress, f,; therefore the column should be proportioned so that:

%+;—1§1.00. (14)

This is the same as formula (18) of the 1956 ACI Code, which was to be
demonstrated.
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23 /proportioning of a column section

Consider the problem to design a 20-in. square section with a 17-in. spiral
core subject to an axial load, N =200 kips, combined with a moment
M == 70 ft kips. Use intermediate-grade bars, f'. == 3,000 psi, hot rolled spiral,
and select column section from Tables 20, 21 and 22 for spiral columns in
the Reinforced Concrete Design Handbook, pages 61-63. These tables are
based on the 1951 ACI Code.

_Tox12 .
Compute ¢ = ~ap = 4.2 in,
Then % = Z;—g == 0.2]1 = less than 0.67.

From Table 7, for g = 0.75 and in the group headed “Square Sections
with Spirals,” it is seen that D = 6.2 is a good average covering a wide
range of values of (n— 1)}p.

table 6. coefficients f, und C for design of columns

0.225f'. + f.p

ol LT for spiral columns; 0.8 times this value for tied columns
I+ (n—1)p

values of fa =

Tied Columns Spiral Columns

fe | n Values of p
0.010 | 0.015 0.020 ] 0.025 | 0.080] 0.043 | 0.010| 6.015| 0.020 | 0.025 | 0.030| 040 0.050| 0.00 | 0.07 | 0.080

f3=16,000

2000 1 151 428 | 456 | 481 504 | 524 5859 535 | 570 | 602 ] 630 | 655 | 699 735 | 766 793 816
2500 | 12 || 521 551 579 604 | 627 | 668 651 683 | 723 | 756 | 784 | 835 879 | 917 950 | 980
3000 | 10| 613 645 | 675 | 02| 728 | T4 766 | 806 [ 843 | 878 | 909 | 967 | 10¢7 | 1062 1 1101 | #1137
3750 | B[ 750 ¢ 7857 817 847 | 875 | 927 938 | 981 | 1021 | 1059 | 1094 | 1159 | 1218 [ 1270 | 1318 | 1361
sooo | 6| 97a | 1016 | 1051 | 1oma | 1117 | 1177 [|1224 1 1270 | 1314 | 1356 | 1396 | 1471 | 1540 | 1604 | 1663 | 1718

f3=20,000
30001 15 11 456 | 496 | 531 | 583 | £92 | 641 || 6570 | 620 | 664 | 704 | 739 | BO1 | BS53 | 897 | 934 | 967
2500 | 12 1| 850 | B2 | 63t | 667 | 699 | 757 || 687 | 40| 789 | 8331 874 | 946 | 1008 [ 1062 | 1109 | 1150
3000 |10} 642 | 687 | 720 ] 767 | 803 | B68 | 803 | 859 | 911 [ 989 | 1004 | 1085 | 1155 | 1218 | 1273 | 1323
azs0 | el 780 | 828 | a3 | 915 | 955 | 1027 || 975 | 1035 [ 1091 | 1144 | 1193 | 1284 | 1366 | 1439 | 1506 | 1567
5000 | 6 [ 1010 | 1080 [ 1109 | 1156 | 1200 | 1283 [ 1262 | 1326 | 1386 | 1444 { 1500 | 1604 [ 1700 | 1788 | 1870 | 1946

values of C :_f_o_;_
0.45f'.
\ Tied Columns Spiral Columns
Fel n 7 Values of p

0.010 | 0015} 0.020 | 0.025 | 0.030] 5040 o019 | 0.015 | 0.020 | 0.025 | 0.030 | 0.040[ 0.050[ 0.060 | 0.070 | 0080

Fs=16,000
5600 | 15 || G4B | 0.51 | 0.53 | 0.56 | 0.58 | 0.62 || 059 0.63 [ 067 [ 070 | 0.73 | 0.78 | 0.82 ] 085 [ 0.88 | 0.91
2600 | 12 || 046 | 049 | 051 | 054 | 056 | 0.59 || 0.58 | 0.61 | 0.64 | ¢.67 | 070 | 0.74 [ 078 ] 0.82 | 084 | 087
3000 [ 10l 0451 048 [ 050 | 052 | 084 | 067 || 0.57 | 060 | 062 | €65 | 067 | 0.72 | 0.78 1 079 | 0.82 | 0.84
760! 8lloea ] 046! 048! o050l 052 | o5 flose | 042 | 061 | 063 | 0651 069 072 075 078 | 081
5000 | 6| 044 | 045 | 047 ] 048 | 050 ] 062 || 054 | 056 | 058 | 060 | 062 | 0.65 | 068 | 0.71 [ 0.4 | 0.76

f2=20,000
2000 | 15] 0.61 | 055 | 0.59 | ¢.63 | 0.66 | 0.71 || 0.63 | 069 | 0.74 | 0.78 | 0.82 | 0.89 | 095 | 1.00 | 1.04 | 1.07
2500 1 12 |{ 049 | 053 | 0.56 | 650 | 0.62 | 0.67 | 061 | 066 | 0.70 | 0.74 | 0.78 [ 0.84 [ 090 | 094 [ 099 | 1.02
3000 { 10]| 048 | 0.51 | 0.54 | 057 ; 059 | 0.64 || 0.59 | ¢.64 § 067 | 0.71 | 0.74 [ 0.0 | 0.86 | 0.90 | 0.94 | 098
3750 | 8 046 | 049 ] 062 | 054 ) 057 | 061 || 058 | 061 ] 065 | 068 [ 0.71 [ 0.76 | 0.81 | 0.85 | 0.82 [ 0.93
5000 ) 61 045 | 0.47 | 049 | 051 ] 053 | 057 || 056 | 059 [ 062 | 064 | 067 [ 071 | 076 | 0.79 | 0.83 | 0.86




gross area of concrete section
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Refer to Table 6 in the group headed “Values of C” for spiral columns,
16,000 and f

Since p actually equals 0.018, the value of C taken from Table

load to be carried by the bars becomes 86 kips, and the number of No. 8 bars

be reduced from 0.65 to 0.80, This reduces the term CD
may be reduced from eight to seven.

from Table 22 ( Handbook): 5-in. round rod at 234-in. pitch.

From Table 21 ( Handbook), select eight No. 8 bars

fs
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It is customary in office work to “run down” column loads in a column
schedule. This arrangement may still be retained when bending is included.

Space should be allowed for recording of the bending term, CDA?/I; the axial

load, N; and the summation of these terms, P. The value of M is taken from
Fig. 10 or 12; of C from Table 6; and of D from Table 7. In the case of bend-

. . . L) = 1 11 1 " M £ a1 Falk M

ing in two directions, there will be two terms of the type bu—t—, one for each
direction, and P will be the sum of three items. This type of proportioning
of columns is quick and simple.

24 / moments in one-way slabs and joists

For design of ordinary one-way slabs, it is not customary to use a regular
moment analysis, Moments in slabs are usually determined by means of
arbitrary coefficients. Such coefficients may also be useful for beams of
approximately equal spans with uniformly distributed loads.

Boase and Howell have presented extensive tables of moment coeffi-
cients.® One of their tables, reproduced as Table 8, is based on the £, /i
assumptions:

Spans are all of the same length.

Horizontal members have the same stiffness.

Vertical members have the same stiffness.

Vertical members are fixed at ends above and below the floor considered.

Load is uniformly distributed.

Ratio of live to dead load is the same in all beams,

Coefficients are tabulated separately for frames with two spans, three
spans, and four or more spans. Five ratios of live to dead load and seven
ratios of column to beam stiffness are included. The coefficients are to be
multiplied by the product of unit load, w, and the square of span length, L.
In accordance with the ACI Code specifications for the application of pre-
scribed moment coefficients, it is recommended that for positive moments,
L be taken as clear span; and that for negative moments, L be taken as the
average for two adjacent clear spans. The ratio of the longer to the shorter
of two adjacent spans shall not exceed 1.20.

The use of Table 8 enables the designer to ascertain at a glance how a
change in stifiness affects the results. For slabs and joists, he may then select
stiffness ratios in such a manner that his design is reasonably conservative.

The procedure outlined for one-way slabs and joists is also useful for a
number of other cases involving beams with uniform load and approximately
equal spans, Further refinements and additional tables have been introduced,
including three types of concentrated loading. For detailed description and
illustrative examples, refer to the appendix of Reinforced Concrete Design
Handbook.

*“Design Coefficients for Building Frames,” American Concrete Institute Journal,

September 1939. The tables are republished, enlarged and elaborated in the appendix
to the ACI Reinforced Concrete Design Handbook, pages 103-120.

Tlrvarivier
LHWITLE
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table 8. moment coefficients for siabs and joists

maximum moement coefficlents, C;

TWO-SPAN FRAMES THREE-SPAN FRAMES
L L L
. EXTERIOR, SPAN EXTERIOR SPAN INTERIOR. SPAN
Wigre EKeol. . | .
Wdead | Kheam |IF |/. \ ¥ * 1
) AN N AN Y
Max Max Min, Max. Max Max. Min, Max. Max, Max. Min
- + + - - + + - - + +
(] ] 088 | 063 | — 135 | © T8 | P08 | —.100 | ~.100 | 5028 | 1.026
0.5 —.028 | 4-.056 | 4-.086 | —.111 | —.030 06t | 4.061 | —.098 | —.091 | 4.034 | 4.034
1 —042 | 4052 | 4062 | —.104 | —.044 066 | +.05858 | —.098 | —.088 037 | +.037
0 2 —~.0565 | +.049 | +.049 | —.097 | —.058 | +.049 | +.049 | —-093 | —.085 040 | 4,040
4 =066 | J.046 ] +.046 | —092 | —.067 D46 | 4.046 | —.090 | —.084 | 4.041 | 4.041
8 —.074 | 4044 | 4+.044 | —088 | —.074 044 | 044 | —087 | —-.084 | +.041 +.041
Infinity —.083 | +.042 | 4042 | —083 || —.083 | 4042 | -.042 | —.083 | —083 | 042 | 4042
0 0 +.073 | +.031 | —.128 0 4.083 | 4042 | —106 | —.106 | +.042 0
0.5 —.031 +4-.061 +.031 -1 —.033 | 4,066 | 4.0356 | —101 —.096 | 4.044 | 4.012
1 —.045 | 4.056 031 —104 | —.047 | +.068 033 | —.098 | —.092 044 | +.017
0.5 2 ~—.058 | 4-.061 030 | —.097 | —.060 | 4,082 | +.031 —004 | —.089 | 4.044 | +.022
" 4 —.068 | +.047 | 4+.020 | —.092 } —.069 | +4.048 | +. —.091 —.086 | +.044 | +.025
8 -075 | +.045 | 4.028 | —.088 | —.076 | 4045 | 4.029 | —.088 | --.086 | J.043 | +.006
Infinity ~083 | +.042 | 4+.028 | —.083 | —.083 | 4,042 | 4,028 | —.083 | —.083 | +4-.042 | +4.028
0 4] 078 | 016 | —.125 0 +.088 026 | —108 | —.108 | 4050 | —.3
0.6 032 064 | 4019 | —1N1 —-.034 | +.069 023 ¢ —103 | —.098 | +.049 | +.002
1 —-.046 | +.058 | 4.020 [ —.104 | —.048 060 022 —099 | —.094 | +.048 | 008
1 2 —~.060 | -+.082 | $.021 —.097 | —.061 0563 021 =006 | —.091 | +.047 | +.013
4 —07¢ 1 +.048 | +.021 -.092 j —.070 048 | 4021 | —.091 | —.088 | 4-.045 | 4.018
8 -.078 | 4+.046 | +.021 ~.088 | —.076 046 | +.021 —88 1 —~.085 { +.044 { +.018
nfinlty . 3 X - —_ X . - - 3 X
Infinlt 083 | 4-.042 | 4021 083 083 | 4042 | -F.021 083 083 | +.042 | 4.021
0 0 +-.083 Q -.126 0 4092 | 4-.008 | —111 =111 | 4088 | —.025
0.5 =033 | 067 | 4.007 ¥ —.111 || —.035 | 4-.071 +.010 | —.104 | ~-.100 | +.054 | —.009
1 —.048 | +4-.080 | 4009 } —.104 | —. 080 | -.062 | +.011 | ~.100 | —.096 | +.062 | —-.002
2 2 —,061 | +.053 1.01 1 —.097 | —.082 | 4+.0564 | +.012 | ~.098 | --.093 | J.046 | +.003
4 —.01 | 4049 012 | —.092 ) —.071 | 4049 | 4013 | —-.091 | —.089 | 4.047 | +.008
B —.077 [ +.046 | +.013 | —.088 [ —.077 | +.046 | +.013 | —088 | —.086 | +.045 | -+.011
Infinity —.083 | +.042 | +4.014 | ~.083 | -.083 | 4.042 | 4014 | —0B3 | —.083 | +.042 | +.014
Q 0 +.086 | —.008 | —.125 0 094 0 -~ 113 | —113 | +.063 | —.031
0.5 =034 | 4.068 { +.001 | —-111 ~,036 073 1.004 =108 | —.102 | 4087 | —.014
1 —.049 | +.061 Xt —.104 | —.060 | -+.063 005 | —.101 —.097 | 4054 | —~.007
3 2 —.062 | +.064 | 4007 | 097 | —.063 | 4.066 | +.007 | —.008 | —.094 | 4050 | —.00
4 —.,071 +.049 ) 4,008 | —.092 [ ~.071 | 4.049 | 4-.008 | —.001 -.090 | 4+.047 | +.004
8 ~.077 | +.046 | +.009 | —.0B8 | —.077 | 4.046 ;, +.009 | —088 | —.087 | +.0486 | +.007
Infinity —.083 | 4,042 1 4000 | —083 | —.083 | 4042 7 4010 | —083] -.083 | .42 | 4.010
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M= C1(w.u-,m -} whvs)L2 where:

M

= Moment in ft kips
Wy ive = Uniform live load in kips per ft.
waear = Uniform dead load in kips per ft.

L  =Spanin ft,
FOUR OR MORE SPAN FRAMES
L L
ke EXTERIOR SPANM ist INTERIOR SPAN 2nd INTERIOR SPAN
WM asn M pon]
e e N SN NS T
Max Max. | Min. | Max. | Max. | Max. | Min. | Max. | Max, | Max. | Min. | Max. | Max.
e e e e e e e

0 0 072 +.072 [ 106 —. 7067 +.034 | $-.034 | —077 | —.077 [ -+.044 | +.044 ] —.085] —.085
0.5 —.030 | +.060 | 4.060 | —.101 | —.095; 4.038 | 4-.038 ; —.080 | —.081 | +.043 | 4+.043 | —.084 | —.084
1 —.044 | 4+.064 | 4.054 | —.098 | —.090 | -+.039 | -+-.039 | —.081 | —.082 | +.042| +.042 | —.084 | —.084
0 2 —.057 | +.080 | +.050 | —.094 | —.087 | +.04% | +.041 | —082 1 —.083 | +.042| +.042 | —.083 | —.083
4 —.067 | +.046 | +.046 | —.090 | —0B5 | +.042 | +.042 | —.083 | —083 | +.042 | +.042 | —.083 | --.083
] —.074 | --.044 | 4.044 | —.087 | —.084 | +.042 | 4042 —.083 | —.083 | -}.042 | +.042 | —.083 | —.083
Infinity | —.083 | 4.042| +.042 | —.083 | —.083 | 4-.042 | +.042| —.083 | —.083 | .042 | +.042 | —.083 | —.083
0 0 +.081 | 4039 —.110} —.110 | +.049 | 4.007 | —.088 | —.088 | +.057 | +.016 [ —.094 | —.094
0.5 —.033 | 4-.065| +.035( —.104 [ —.099 | 4.048 | 4.016 | —.087 | —.088 | +.052 | +.019 [ —.091 | —.091
1 —.046 | 4+.058 ] +.033 [ —.100 [ —.094 | 4-.047 | +.019 | —.087 | —.088 | 4.049 | +.021 | —.089 | —.089
0.5 2 —.0601 4-.052 | --.031 | —.095 | —.000| +.045 | +.022 | —.086 | —.087 | 4.047 | +.023 | ~.087 | —.087
4 —.069 [ +.048 +.029 | —.091 | —.087 { +.044 [ 4025 —.085 [ —086{ +.044 | +.026 | —.086 | —.086
8 —.076| 4.045| +.029 | —.088 | —.085| +.043 ] +.026 | —.085| —085] 4-.043 | 4,026 | —085 | —.085
Infinity | —083 | 4042 | 4.028 | —.083 | —.083 | 4-.042 | +.028 ] —.083 | —.083 | +.042 | 4-.028 | —.083 | —.083
0 ¢ -4.085 | 4023 | —. 113 { —.713 | 4-.066 [ —.006 | —.094 | —.094 | +.063 | 4.002 | —.099 [ —.099
0.5 —.034 | +.068 1 4.022 | —. 105 —.101 | 4.062 | +-.004 | ~.091 | —.092 | -}-.057 | +.008 [ —.095 | —.095
1 —.048 | +.060 | 4.022 | —100 | —.096} +.05¢  4.009| —0690 | —091 | 4,052 | +.011 | ~052 [ —.092
1 2 —.061 | +.053 | -}.021 ) —.095| —.091 | 4-.048 | +.013 | —.088 | —.089 | +.049 | +.014 [ —.089 | —.089
4 -.070 | 4.048 | 4.021 | —.091 | —.088 | 4.046 | 4.016 | —.087 | —.087 | 4+.046 | +.017 | —.087 | -.087
8 —.076{ +.045| +.021 | —.088 | —.086 | +.044 | +.018| —.085 ] —-.085 | 4044 | +~.018 | —.085 | —.085
Infinity [ —.083 | 4-.042} +.021 | —.083 } —.083 | +4.042 | +.011 | —.083 | —.083 | +.042 | +-.021 | —.083 | —.083
0 0 | -+090f 007 | — 115} — 115 064 | —.019 | —.089 | —.099 | }.070 | —011 | ~.104 | —.104
2 =.035 | +.070] +.009 | —.106 | —.103 | +-.057 | —.007 | —-.095 | —.086 | 4.061 | —.004 | —.098 | —.098
1 -.080 ( 40621 4-.011 | —-.101 | -—-.008 | 4.054 | —.001 | —.093 | —.094 | 4-.066 0 —.095 | —.095
2 2 —.083 | 40541 4+.013 | —.096 | —.093 | +.060 | +.004 [ —.09Q [ —.091 | +.057 [ +.005 | —.091 [ —.091
4 —.071¢ +.049| +.013 | —.091 | —.089 | 1.047 | 4-.008 | —.088 [ —.088 | +.047 | -+.008 | —.088 [ —.088
8 ~077 [ +.046 | 4013 [ —.088 | —.086 | +.045] +.011 | —.086 [ —.086 | -}-.045 [ +.0%1 ; —.086 [ —.085
Infinity | —.083 | +.042| +.014 | —083 { —.083 | +.042 | +014 ] —083 | —.083 | +042 | +.014| —.0B3 | —.083
0 Q +.002| —.002| —.116 | —.116| +.068 | —.026 | —.102 | —.102 [ 4.073 | —.018| ~.106 [ —.106
0.6 .36 | +.071 | +.003 [ —.107 { —.104 [ +.060| —.012 [ —.097 | —.098 | 4063 | —01¢ | —.100 § --.100
1 —.050 | +.063 | +.005( —.101 § —.099 | +.055] —.006 | —.094 [ —.095 [ 4.057 | —.005| —.096 | —.096
3 2 —.064 | 4.055 | +.007 | —.096 | —.084 | 4.051 v} —.091 | —.092| 4052 0 | —.092]| —092
4 —.072| 4.049 | +.008 ] —.091 | —.090 | +.048 [ +.004 | —.089 | —.089 | +.048 | 4-.004 | —.089 | —.089
8 —.077| +.046 | +.009 { ~.088 | —.087 | +-.045 | -}-.007 | —.086 | —.087 | +.045 | +.007 | —.087 [ —.087
Infinity | —.083 | 4,042 | +.010 | —.083 | —.083 | 4.042 | 4-.010| —.083 | —.083 | 4.042 | 4-.010 | —.083 | —.083
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25 /| ntroduction

Some theoretical treatises on wind pressure are confined to the simple case
in which a single bent in a building is subject to a known wind pressure,
However, the amount of pressure acting on each bent is generally not known
beforehand.

In a wind-pressure problem, it is essential first to ascertain the pressure
on each individual bent. This is particularly important in reinforced concrete
construction because all concrete members are integrally and rigidly con-
nected with adjacent members. Also, all bents extending in a given direction
cooperate in resisting the wind pressure acting in that direction.

The share of wind pressure resisted by each bent in a building is a func-
tion of the pressure necessary to give the bent a unit deflection. The rela-
tionship between pressure and deflection may make it difficult to solve the
problem in its general form, A special, simplified way to solve the problem
is presented in this text.®

Consider a floor in which all joints are part of bents that cooperate in
resisting a given total wind pressure, W, acting above that floor, Each joint

T Wind-pressure component

Fig. 22 — Framing plan of floor.

°See reference 29; also reference 28.
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in the floor is the intersection of one or two columns with one or two beams,
or its equivalent portion of floor construction. The concept of “joint” will in
this connection include physical properties such as stiffnesses of the adjacent
members in the direction of the wind pressure.

A joint taken in this enlarged sense is illustrated in Fig. 26 with certain
theoretical derivations, On the basis of certain assumptions, it can be demon-
strated that the resistance of a joint against deformation or deflection may

be expressed as a function of the
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particular function of the stiffnesses will be called the “joint coefficient.” If
the coefficient for any joint in the floor is denoted as v, and the sum of all
coeflicients in the floor considered is Zv,, the share of the wind pressure
Uy
2u,
is given in Figs. 22 and 23.

Total shear in a story, caused by wind pressure, may be distributed to
each joint in the floor below by means of a particularly simple set of calcula-
tions. However, the centroid of wind shear and that of all joint coefficients
must coincide. This may generally be accomplished by altering certain beam
or column sizes. If joint coefficients cannot be adjusted sufficiently, a correc-
tion for the eccentricity may be ntroduced as illustrated in Figs. 24 and 25.

The treatment of wind pressure given in this text is sufficient and ade-
quate for design of wind pressure on all reinforced concrete buildings except
tall, towerlike structures. For these, refer to publications listed in the bib-
liography; for example, see reference 31, which uses an exhaustive analysis
based on the elastic theory, the conventional theory for reinforced concrete
design.

The procedures presented for wind pressure are also useful for investi-
gation of earthquake stresses, provided the design can be based on the as-
sumption of “static loading,” in which the effect of an earthquake shock is
assumed to be equivalent to a static horizontal load similar to wind pressure.
For earthquake design based on the “dynamic-loading” assumption, refer to
publications in the bibliography; for example, reference 35.

carried by each joint is ( ) W. An illustration for a complete foor level
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Fig. 25 — Determination of shear due to eccentric wind pressure.
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26/ concentric wind pressure on a building

Fig. 22 is a framing plan for a floor 20 stories below the roof of a building
in which each story is 10 ft, high. The direction of the wind is east-west
and its intensity is 20 psf. All bays are 20 ft. long. The relative stiffnesses,

K= %, of the members of the floor in the east-west direction are:

Type of member Relative stiffness
Spandrel beams 20 +-20=1.0
Interior beams 30=-20=15
Wall columns 40 = 10 = 4.0
Interior columns 80 — 10 =8.0

The distribution of wind pressure to columns above each joint in the floor
considered will be determined.

The total shear due to wind pressure above the floor is W = (8 X 20)
X (20 ¢ 10) X 20 = 640 kips, and its centroid lies midway between bents
A and ], that is, 80 ft. from J.

The nine bents from A to J in the east-west direction resist wind pres-
sure. Each column in Fig. 22 will carry a certain portion of the 640 kips.
Resistance of each joint or the shear induced in each column above is pro-
portlonal to a joint coefficient. The following expression is derived in Section

5. — K for colu mn( sum of K-values for adjacent beams )

sum of K-values for adjacent members /°
in Senunn 28 tha nortion of W that ic registed by eac
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column is W. Calculations may conveniently be arranged as shown

in Fig, 23, The - nine bents, A to J, are tabulated separately, and each group
is subdivided to provide space for individual joints in that bent. Joint coefli-
cients are computed in the second column with a summation for each bent.

The relative resistance of each bent against horizontal displacement is
proportional to the summation of joint coefficients for that bent, If the
center of gravity of these nine resistances coincides with the centroid of the
shear due to wind pressure, the wind pressure will give the floor a parallel
displacement. If it does not coineide, a parallel displacement must be com-
bined with a rotation of the floor as a whole about some vertical axis.

The joint coefficients in bent J based on the original K-values are in
parentheses and their sum is 2.48. This value together with the other eight
summations gives a centroid of resistance that is 89.5 ft.* from bent J. Since
the wind-pressure component lies 80 ft. from ], the object is to eliminate the
eccentricity of 9.5 ft. This may be done by adjusting sizes of certain beams
and columns. The adjustment will be made in the J-bent because it is farthest
from the centroid, which gives the change in J relatively greater weight. It
is assumed that structural changes in bent J are not objectionable from an
architectural viewpoint.

= {joint coefficients times distance from ])
Z (joint coeflicients)

*Computed as
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In Fig. 23, the joint coefficients in the J-bent have been trebled; their
new summation is 7.46. This value in conjunction with the other eight sum-
mations, which remain unchanged, gives a centroid of resistance that is 79.4
ft. from J. The eccentricity of 0.6 ft. is considered negligible, Calculations are
needed to ascertain what changes in dimensions will be necessary to produce
the new K-values recorded for the J-bent. This is settled by a procedure of
trial and error and does not involve wind-pressure theory.

After the adjustment is made in the J-bent and the eccentricity is made
negligible, the sum of all joint coefficients in Fig. 23 is 43.59. Each umit of
bent resistance must withstand a wind pressure equal to 640 -+~ 43.59 = 14.7
kips. Mulhplymg each individual joint coeflicient in Fig. 23 by 14.7 gives
the portion of wind pressure withstood by each joint or the wind shear
resisted by each column above.

Column moments are taken as column shear multiplied by one-half the
column height. At each joint, the sum of column moments equals the sum
of beamn moments and is distributed to the beams in proportion to their
K-values. Beam shears are taken as the sum of the two end moments in the
beam divided by the length of the beam.

At columns C3 and C4, it is assumed that there is not enough torsional
stiffness in the lateral girders at the opening to transmit bending to the
cast-west beams. As a result, credit is given only for beams to one side of the
column. The beam moments at D4 vary according to the stiffness of the
spandre] and interior beams,

A brief discussion must be added in regard to the adjustment in bent J.
The stiffening of this bent may cause the beam shears to increase greatly,
The increased uplift on the windward side of such a bent may approach the
point at which there is insufficient dead load available to counteract the
uplift. This may be remedied by removing some of the stiffness from such
bents to adjacent bents,

An interesting point may be demonstrated by making a similar analysis
with smaller K-values for the columns at another typical floor several stories
above the one considered. It will show that the percentage of wind pressure
carried by each bent remains surprisingly uniform even when all K-values
are one-fourth of their original value. This uniformity in distribution greatly
reduces the analytical work required for 2 group of typical floors.

o @@

Consider the example in Section 26, but assume that the joint coefficients
for the J-bent remain unchanged. Their sum equals 2.48 (see Fig. 23) and
the sum of all joint coeflicients equals 38.61. The centroid of resistance is
3,458 -+ 38.61 = 89.5 ft. from J, and the wind-pressure eccentricity is
e = 9.5 ft. Under these assumptions, determine the shear induced in all the
columns by a wind pressure of W = 640 kips.

If the wind pressure had been concentric, all joint coefficients would
w
S = g gr = 166, All joints
would then be given the same translation. In the case of eccentric pressure,

have been multiplied by the same factor, ——
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the floor will get both a translation and a rotation about some vertical axis.
It is proposed to account for the combined effect by a method that amounts
to using a multiplier equal to

= S0, T L+ I,
in which

Sv, = sum of all joint coefficients in the x-bents (east-west);

x — distance from any x-bent to centroid of joint coefficients;
I. = moment of inertia of joint coefficients about their centroid;
I,= the same as I, but for bents in the perpendlcular direction.

Values of I, and I, are computed in Fig. 24, in which joint coefficients,
v, are taken from Flg 23, The calculations ]eadlng to v, and y for bents
1, 3, 4 and 6 (running north-south) are not shown, but may be derived in
the same manner from the data in Section 26, K-values for the floor slab are
low and are ignored since its stiffness is small in comparison with the stiffness
of the beams, Therefore, bents 2 and 5 do not appear in Fig. 24.

Inserting numerical values in the above formula for F gives:

640 | 640 X 9.5 X x
F= 3861 + 114700 — 16.6 4 0.053x.

Values of F are computed in Fig. 25. The next step is to determine
column shears by multiplying joint coefficients in Fig, 23 by corresponding
values of F in Fig. 25. These calculations will not be illustrated here. It is
of more interest to compare results obtained by eccentric and concentric
analysis.

In the example in which the J-bent is stiffened, all joint coefficients are
multiplied by 14.7. But if the low K-values are maintained in J, all joint co-
efficients are to be multiplied by F taken from Fig. 25, The ratio of F = 14.7
compares the column shears in the two examples. It is seen that changing
from concentric to eccentric wind pressure reduces the shear by 12 per cent
in bent A and increases it by 38 per cent in bent H, These changes have been
brought about merely by varying the sizes of members in the J-bent,

28 / warping of floors

Bents subject to wind pressure have deflection due to shear and moment.

Shear deflection signifies that floors are translated but not tilted, and origi-
natee in hending deformation of columns, Moment deflection, Qm’mfvmg that
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floors are tilted, is caused by change in column length. The latter type of
deflection cannot be disregarded in tall, towerlike structures but has been
ignored in the procedure employed in Sections 26 and 27.

One point in regard to moment deflection and its effect on reinforced

concrete bents desarves brief attention. Refer for illustration to the calcula-
tions for bent B in Fig, 23. The shear is 9.3 kins in all beams, hoth interior

RAVILS AU RAURAL &7 aan X 4210 SUURL A5 . R30S «ii ATAL ARy AAATSI At

and exterior. Since shears have opposite dlrectmns in beam ends adjacent
to interior columns, the wind pressure creates no additional axial Joad in the
interior columns. However, in exterior columns, an axial load of 9.3 kips is
added to the gravity load in the column on the leeward side and deducted on
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the windward side. The result is a nonuniform change in length of column;
the floor warps and a secondary distribution of moments and shears takes
place.

Ordinarily the effect of warping is not of any consequence, but it may
sometimes be desirable to approach the ideal condition in which there is no
warping of floors. To do this, it is necessary to adjust dimensions in the hents
so that interior beams carry much more shear than exterior beams. This can
be accomplished by makmg the coefficients at interior joints large in com-
parison with those for exterior joints. Suitable dimensions are established by
trial. The purpose is to make the additional column load due to wind pressure
proportional to the distance of the columns from the midpoint of the bent.

Such refinements as those described in this section are considered justi-

fiable only in relatively tall buildings, especially if the outer spans are com-

paratively short and their stiffnesses great.

29 /derivation of formula for joint coefficient
A, B, C, D and F in Fig. 26 are joints in a bent that is deformed by bending

due to wind pressure. During the investigation of the conditions around
joint A, the following assumptions were made and incorporated in Fig, 26:
1. Joints F, A and C lie on a straight line.
2. Joints B, A and D lie on a straight line.
3. The angle change, 6,4, is the same at F, A and C, 4 being measured
from a horizontal line,

” ;;;\
(a) Mm/

Moments induced by joint translation

Fig. 26 — Frame deformed by wind pressure,
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4. The angle change, 0, is the same at B, A and D, 6, being measured

from a vertical line,

The part of the bent included in Fig. 26 is distorted under wind pressure
as shown diagrammatically, and angle R represents the translation of joints.
Combined angle change at ends of columns is R — #,, while the angle change
at ends of beams is 4.

It can be shown by application of the formulas derived in Section 4,
“Stiffness and Carry-over Factor,” that:

MAO = 2EKA0(29‘4 + BA) = GEKA(,-BA.
M,r= 2EKAF(28A + BA) = GEKAFBA'

As indicated in Fig. 26 (a), the moments in the beams tend to rotate
joint A in one direction and the moments in the columns tend to rotate A
in the opposite direction. Changing sign and substituting R — 8, for 8, give:

MAB = —GEKAB( H —_ 6A) = GEKABBA - GEVKABR.
M,p == —8BEK,,(R — 8,) = 6EK,»8, — 6EK,»R.

Since joint A is in equilibrium, the sum of the four moments must equal
Zero, or:

EMAX = BEQAEKAX — GER(KAB + KAD) = O,

from which
6, =R Kant Kap Kin ),
SKyx
Inserting this expression for ¢, in the formula for M, gives:

M.z =8ERK,s (&”z—f,gﬁ“—) —BERK 5 ==6ERKs (—K";Z f’”’).

If the shear in column AB is denoted as Vs,

K
Var= 25 Mo = (L) Koo (R Bar),

and when%—is considered constant for all columns in a story, the relative
value of shear in a column AB is

K K
Var = Kup H——“—A;gx a7
Kio and K, are -I—-values for the beams adjacent to A; 3K,y is the

L
sum of%-values for all members adjacent to A. For column AD below A,

substitute K, for Kap.

When relative values of shear in columns and the total wind shear are
known, shears and subsequently moments may be calculated in the columns.
Shears and moments may then be determined in the beams as illustrated in
Fig. 23.
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