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Equivalent Frame Analysis For Slab Design

By W. GENE CORLEY and JAMES O. JIRSA

A completely changed design procedure for
slabs was proposed in the February 1970 ACI
JOURNAL. In addition to providing a single de-
sign procedure applicable to all types of concrete
slab systems reinforced in more than one direction,
the revised Code contains major changes in the
assumptions required to determine slab design mo-
ments by use of a frame analysis.

This paper presents background for the equiva-
lent frame analysis and gives an example of its
application. In addition, moments calculated by
the proposed frame analysis are compared with
those measured in test slabs. Finally, tables giving
frame design constants for common structures are
presented in the Appendix.

Keywords: building codes; concrete slabs; flexu-
ral strength; frames; moments; reinforced concrete;
structural analysis; structural design.

M CHAPTER 13 OF THE PROPOSED REVISIONS of ACI
318-63! contains entirely new design requirements
that are applicable to all slab systems reinforced
in more than one direction, with or without beams
between supports.

Two design procedures are described in Chapter
13 of the proposed revision. These are the direct
design method (Section 13.3) and the equivalent
frame_method (Section 13.4).

This paper describes the background of the
equivalent frame method and presents a numeri-
cal example of its application.* It is shown that
the elastic analysis of previous ACI Codes is
identical to the proposed frame analysis except
in the definition of section properties of the equiv-
alent frame. To aid in design, a list of constants
for calculating stiffness, -fixed-end moment, and
carry-over factors for beam elements is provided
in Appendix B.

Computed moments using the proposed frame
analysis are shown to compare well with measured
moments for several test structures. Comparisons
reported elsewhere have shown satisfactory agree-
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ment between moments calculated by the equiv-
alent frame analysis and moments calculated on
the basis of the theory of flexure for plates. Con-
sequently, it is concluded that the proposed equiv-
alent frame method provides an improved design
procedure that may be used to proportion struc-
tures that do not satisfy limitations necessary for
application of the direct design method.

BACKGROUND

Purpose of frame analysis

In early ACI Building Codes, the empirical
method of slab design was the only one permitted.
Since this design method was permitted only for
slabs with dimensions similar to those that had
been built near the turn of the century, it soon
became apparent that a method was needed for
analyzing and designing slabs having dimensions,
shapes, and loading patterns different from those
to which empirical method was applicable.

Based on a 1929 study made by a committee
working on the California Building Code,? an
equivalent frame analysis for slabs was first codi-
fied in the 1933 Uniform Building Code, California
Edition. Following this, the 1941 ACI Building
Code adopted a similar method of analysis, but
modified*’ to give the same results as the empiri-
cal design method. With some additional modifica-
tions, this same procedure was used in ACI 318-63.5

The equivalent frame analysis discussed in this
paper is very similar to that previously used. Only
the definitions of stiffness of the frame members
are substantially modified. Where changes are
made, they are intended to better reflect the be-
havior of slab structures and provide designs in
better agreement with the direct design method
proposed for the 1971 ACI Building Code.! These

*The provisions described in this paper were developed in
cooperation with ACI-ASCE Committee 421, Design of Reinforced
Concrete Slabs.

+DiStasio, J., and van Buren, M. P. “Background of Chapter
10, 1956 ACI Regulations on Flat Slabs,” Private Communication,
Distasio and van Buren, Consulting Engineers, New York City.
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modifications are described in more detail and
are compared with analytical studies elsewhere.®?

Description of analysis

The proposed method of analysis may be applied
to flat slabs, flat plates, and to two-way slabs. The
following description applies to a flat slab, the
most complex case. Modifications applicable to
elements of other types of slabs are discussed.

The first step in the frame analysis requires that
a section one panel wide be considered. The cross
section of an interior bay of a flat slab and the
areas considered in calculation of the moments
of inertia of the sections along the equivalent
frame used in the analysis of this structure are
shown in Fig 1. The 1/EI diagram for the slab may
be used to determine moment distribution con-
stants and fixed-end moments.*

For a two-way slab supported on columns, the
moment of inertia I, is the sum of the moment of
inertia of a T-beam section and the moments of
inertia of the rectangular slab sections extending
from the edge of the assumed T-beam to the panel
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center lines.! In making this calculation, it is
assumed that the flanges of the T-beam extend on
each side of the beam stem a distance equal to the
projection of the beam above or below the slab
but not greater than four times the slab thickness
as provided in Section 13.1.5.! In cases where the
beam stem is short, the T-beam is assumed to have
a width equal to that of the support.

The moment of inertia I,, of the slab over the
support (from the face of the support to the col-
umn center line) is based on the moment of in-
ertia I,; of the slab immediately surrounding the
column. It is given by the following equation:

Ije = I/ (1 — c2/Ly)? (1)
where

ce = size of rectangular column, capital, wall
or bracket measured transverse to the
direction moments are being determined
L, = length of span transverse to L,, mea-

sured center to center of supports
L; = length of span in the direction moments

are being determined, measured center
to center of supports

Eq. (1) serves two functions. It increases the
stiffness of the equivalent beam to a level consis-
tent with that determined by a three-dimensional
slab analysis and verified by tests. At the same
time, this equation covers the condition where a
slab is supported on very wide columns. If the
slab is supported on a reinforced concrete wall,
c»/L., = 1.0, and I,, becomes very large. It should
be noted, however, that this increase in moment
of inertia is present only when the slab is con-
structed monolithically with the supports.

The computation of column stiffness is some-
what more complicated. Previous studies” have
shown that the positive moment in a slab increases
under pattern loads even if rigid columns are
used. However, if a two-dimensional frame analy-
sis is applied to a structure with infinite column
stiffness, pattern loads will have no effect. To ac-
count for this difference in behavior between
frames and slab structures, the section at the col-
umns is considered as a beam-column combination
in which the beam across the column can rotate
even though the column is infinitely stiff. The
resulting section may physically be likened to a
hammerhead, as shown in Fig. 2.

In the case of an edge beam, the behavior mech-
anism is easily visualized. Some of the moment is
transferred from the slab directly to the column
while the remainder is transferred first to the
beam, then to the column. It can be seen that a
rigid column does not prevent rotation of the beam
with respect to the columns.

*For convenience, fixed end moments, stiffnesses, and carry-
over factors for flat plates and for a common configuration of
flat slab are tabulated in Appendix B.

tNotation is given in Appendix A.
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Fig. 2 — Hammerhead

For use with the Cross distribution procedure,®
the flexibility (inverse of the stiffness) of the
beam-column combination, hereafter called the
equivalent column, is defined as:

1 1 1
-K—c—c_— - Kc + Kt (2)
where
K., = flexural stiffness of the equivalent col-
umn, moment per unit rotation
K, = flexural stiffness of column, moment per
unit rotation
K, = torsional stiffness of torsional member,

moment per unit rotation

Eq. (2) provides that the stiffness of the equiva-
lent column is a function of both the flexural
stiffness and the torsional stiffness of the slab or
beams framing into the column transverse to the
direction moments are being determined.

The value of K, is independent of the distribu-
tion of torque along the beam or of the beam
torsional stiffness since the total applied torque
ultimately is resisted by the column. The moment
of inertia of the column is computed on the basis
of gross cross section below the capital (if one
exists) and then is assumed to vary linearly from
the base of the capital to the base of the slab. The
column is assumed to be infinitely stiff over the
depth of the slab.

The computation of K, requires several simplify-
ing assumptions. If no beam frames into the col-
umn, a portion of the slab equal to the width of
the column is assumed to offer the torsional re-
sistance. If a beam frames into the column, T-
beam action is assumed with flanges extending on
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Fig. 3 — Rotation of beam under applied unit twisting
moment

each side of the beam a distance equal to the pro-
jection of the beam above or below the slab. It
is assumed that no rotation occurs in the beam
over the width of the support.

Assumptions for determining the value of K,
are illustrated in Fig. 3. The length L, is the dis-
tance between slab center lines. Unit twisting mo-
ment is assumed to vary from a maximum at the
column center line to zero at the slab center. This
triangular distribution is used since the moment
in the slab tends to be attracted toward the col-
umn. The twisting moment diagram is parabolic
as shown in Fig. 3(C). Once the twisting moment
is known at each section, the unit rotation ® can
be expressed by the relationship & = T/CG. For
the beam considered in Fig. 3, the ordinate to the
unit rotation diagram at the face of the column
is:

(1 —c2Ly)®
5CG 3)
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where

& = angle of twist per unit of length
G = shearing modulus of elasticity,
J— E“ — 0
21+
C = cross-sectional constant to define the

torsional properties of edge beams and
attached torsional members

The constant C may be evaluated for any shape
of cross section ? by dividing it into separate rec-
tangular parts and carrying out the following
summation:

x \ 23y
= — — )= 4
c =31 0.63y>3 (4)
where
x = shorter over-all dimension of a rectan-
gular part of a cross section
y = longer over-all dimension of a rectan-

gular part of a cross section

The rectangular parts should be chosen to mini-
mize the length of the common boundaries.

For the beam-column combination shown in
Fig. 3, the average effective angle of rotation of
the torsional beam 6, is the area of one of the
parabolas shown in Fig 3 (D). Since the stiffness
K, is equal to the torque along the beam axis per
unit of rotation, the value of K, for a unit torque
is given by the relationship:

1 _, Lo (1—co/Lu)3
K, ! 36 GC

If a panel contains a beam parallel to the
direction moments are being determined, the
assumption of a triangular distribution of applied
twisting moments may lead to equivalent column
stiffnesses that are too low. Although a different
distribution of applied torque could be assumed, a
simpler approach is to increase K; as follows:

)

I,
Kt, - Kt I—b (6)
sa
where
K/ = increased torsional stiffness due to
presence of parallel beam
I,, — moment of inertia of slab away from
support and without parallel beam
I, — moment of inertia of slab including

composite parallel beam

After the values of K, and K; have been calcu-
lated, the equivalent column stiffness K., can be
determined and the distribution constants com-
puted for the frame. Using the moment distribu-

tion procedure, moments at the column center
lines on the line frame are then determined.
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According to the provisions in Chapter 13 of
the proposed 1971 ACI Code,' the design section
may be taken at the face of square or rectangular
sections. Consequently, negative design moments
may be taken as those calculated at the face of
the column.

Although the proposed equivalent frame analy-
sis was developed primarily for an interior strip
of panels, the necessary assumptions have been
given for extending the analysis to a strip parallel
to the edge of a structure having a width of one-
half panel.

Comparison of moments from frame analysis with
measured moments

The procedure outlined in the preceding sec-
tions was applied to an interior equivalent frame of
each of five structures tested at the University of
Illinois and one tested at the PCA Laboratories.
Full descriptions of the test structures are avail-
able elsewhere.2”1® On each test at the Univer-
sity of Illinois, moments were measured under
both uniform and pattern loads. The pattern loads
consisted of panel strips loaded to produce maxi-
mum moments at particular sections. In analyzing
the structures, the ratio of movable to permanent
load w,,/w, has been considered. Values of w,,/w,
are listed in Tables 1, 2, and 3. No strip loads were
applied to the PCA structure.

The measured uniform and strip load moments
for each slab are listed in Tables 1, 2, and 3. Both
the ratio of maximum to uniform load moments
and the ratio of computed to measured uniform
load moments are given. The values of measured
moments in the University of Illinois flat plate
(F1) and flat slab structures (F2 and F3) and in
the PCA flat plate structure were obtained by
combining middle and column strip moments.

In the University of Illinois two-way slab struct-
ures (T1 and T2), the measured moments were
obtained by summing the interior beam moments
and the interior slab moments. Moments were not
measured under strip loads in the two-way slabs.
Maximum moments were obtained by combining
the measured maximum beam moments (under
checkerboard patterns) with the uniform load
slab moments. Since the beams in the two-way
slab were relatively stiff, the differences between
slab moments for strip load and for uniform load
would have been insignificant.

In making comparisons between absolute mo-
ments at a section, it must be remembered that
the frame analysis is based on statics and the full
static moment (the sum of positive and average
negative moments) is always present in any given
bay..Due to experimental limitations, the mea-
sured moments vary somewhat from the static

ACI JOURNAL / NOVEMBER 1970



TABLE | — COMPARISON OF MEASURED WITH COMPUTED MOMENTS (FLAT PLATE

STRUCTURES)

M- M+ M- M+ M- M+ M-
Shallow Deep beam
Section beam edge edge
T [TIITITIT Iy HTTTITTITTIT
University of Tinols strigture, Moment coefficients, 1000 M/WL1
i 34 67 73 44 46
Calculated uniform load design moment 47 44 72 66 2 ) L 50 59
ted ximum design moment 54 50 75 73 4
gg}:(i:glgngxirrr?am to uniform load moment 1.15 1.14 1.04 1.11 1.32 1.09 1.04 113 1.13
Measureg uniform load momtent g’z gg gg g% 32 gg gg i’g gg
maximum momen
I\Rdfgzull:saximum to uniform load moment — 1.06 1.04 1.05 1.10 1.09 1.09 1.02 —
Ratio design to measured uniform load moment 1.74 0.90 1.11 1.03 0.85 1.16 1.26 0.94 1.35
PCA structure (3/4 scale)
i i 49 43
Calculated uniform load design moment 44 48 67 62 38 62 68 3
d iform load moment 37 47 68 68 31 73 73 42
RM:ta}guéisigL;'xmtg measured uniform load moment 1.19 1.02 0.99 0.91 1.22 0.85 0.85 1.16 1.39
TABLE 2 — COMPARISON OF MEASURED WITH COMPUTED MOMENTS (FLAT SLAB STRUCTURES)
M- M+ M- M+ M- M+ M-
Shallow Deep beam
Section beam edge edge
UTTITTTITITIT e LTTHRITITEEET I
University of Illinois structure, Moment coefficients, 1000 M/WLa
F2 (1/4 scale), wm/wp = 5.5
Calculated uniform load design moment 21 44 57 50 26 49 57 44 21
Calculated maximum design moment 28 53 63 60 44 60 62 53 29
Ratio maximum to uniform load moment 1.33 1.20 1.11 1.20 1.69 1.22 1.09 1.20 1.38
Measured uniform load moment 25 42 68 62 29 61 65 38 25
Measured maximum moment 27 49 79 72 33 67 71 42 25
Ratio maximum to uniform load moment 1.08 117 1.16 1.16 1.18 1.10 1.09 111 1.00
Ratio design to measured uniform load moment 0.84 1.05 0.84 0.81 0.90 0.80 0.88 1.16 0.84
University of Illinois structure,
F3 (1/4 scale), wm/wp = 3.5
Calculated uniform load design moment 21 44 57 50 26 49 57 21
Calculated maximum design moment 28 52 62 59 42 59 62 52 ©29
Ratio maximum to uniform load moment 1.33 1.18 1.09 1.18 1.62 1.20 1.09 1.18 1.38
Measured uniform load moment 29 38 57 55 23 58 60 34 24
Measured maximum moment 34 42 60 58 37 60 61 39 27
Ratio maximum to uniform load moment 1.17 1.11 1.05 1.05 1.60 1.03 1.02 1.15 1.12
Ratio design to measured uniform load moment 0.72 1.16 1.00 0.91 1.13 0.85 0.95 1.30 0.88

TABLE 3 — COMPARISON OF MEASURED WITH COMPUTED MOMENTS
(TWO-WAY SLAB STRUCTURES)

M- M+ M- M+
Section
T i

University of Illinois structure, Moment coefficients, 1000 M/WL1
T1 (1/4 scale), wm/wp = 4.02
Calculated uniform load design moment 35 47 79 66 34
Calculated maximum design moment 39 51 80 72 43
Ratio maximum to uniform load moment 1.11 1.09 1.01 1.09 1.26
Measured uniform load moment 43 46 79 71 36
Measured maximum moment 57 54 90 83 42
Ratio maximum to uniform load moment 1.33 1.17 1.14 1.17 117
Ratio design to measured uniform load moment 0.79 1.02 1.00 0.93 0.95
Univesity of Illinois structure,
T2 (1/4 scale), wm/wp = 1.09
Calculated uniform load design moment 46 44 74 66 34
Calculated maximum design moment 49 47 6 70 42
Ratio maximum to uniform load moment 1.07 1.07 1.03 1.06 1.24
Measured uniform load moment 36 56 69 61 45
Measured maximum moment 41 60 7 64 47
Ratio maximum to uniform load moment 1.14 1.07 1.12 1.05 1.05
Ratio design to measured uniform load moment | 1.28 0.79 1.07 1.08 0.76
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TABLE 4—COMPARISON OF MEASURED WITH COMPUTED MOMENTS (ELASTIC ANALYSIS USING ACI 318-63)

M- M+

Shallow

Section beam edge

University of Illinois,
Flat Plate F1

Calculated uniform load design moment
Calculated maximum design moment
Ratio maximum to uniform load moment

Measured uniform load moment
Measured maximum moment
Ratio maximum to uniform load moment

Ratio design to measured uniform load moment

51
1.04
27
21

1.89

University of Illinois,
Flat Slab F2

Calculated uniform load design moment
Calculated maximum design moment

Ratio maximum to uniform load moment
Measured uniform load moment
Measured maximum moment

Ratio maximum to uniform load moment

Ratio design to measured uniform load moment

23
28

1.22
25

27
1.08

0.92

35
36
1.03
49
1.06

0.72

28
34

1.21
42
49

1.17

0.67

M- M+ M- M+ M-
Deep beam
edge

T TS Ty
Moment coefficients, 1000 M/WL1
70 61 31 61 70 35 51
71 64 32 64 71 36 53
1.01 1.05 1.03 1.05 1.01 1.03 1.04
65 64 40 58 58 47 34
68 67 .44 63 63 48 26
1.04 1.05 1.10 1.09 1.09 1.02 —
1.08 0.95 0.78 1.05 1.21 0.75 1.50
51 46 19 46 51 28 23
53 52 30 52 53 34 28
1.04 1.13 1.58 1.13 1.04 1.21 1.22
68 62 29 61 65 38 25
79 72 33 67 71 42 25
1.16 1.16 1.18 1.10 1.09 1.11 1.00
0.75 0.74 0.66 0.75 0.78 0.74 0.92

Note: Computed moments not reduced to M, [318-63 Section 2102 (a) 1.

moment. In general, the greatest variation be-
tween measured and computed moments is found
in end bays where the exterior negative slab mo-
ment is difficult to determine experimentally.
Therefore, the basic criterion for judgment is
whether the frame analysis provides sufficient
moment capacity at a section to provide for uni-
form or strip loads while avoiding an overdesign.

The moments in the interior row of panels of
the flat plate structures are given in Table 1.
Comparison of ratios of calculated to measured
moments indicates that the frame analysis is in
satisfactory agreement with measured moments
for pattern loads. The computed values of uni-
form load moment are within 15 percent of the
measured values at most sections. Only at the
exterior negative sections is there a serious dis-
crepancy. This may be partially the result of a
general reduction of stiffness due to cracking in
the beam-column connection at the exterior col-
umn of the test structures.”

Calculated and measured moments for the flat
slab structures are listed in Table 2. Calculated
moment increases due to pattern loads compare
favorably with those measured. Absolute moment
comparisons between Structures F2 and F3 show
that the measured moments are less in Structure
F3 than in Structure F2. The test results indicate
that the sum of positive and negative moments
provided in each span is adequate.

Moments in the two-way structures, T1 and T2
are listed in Table 3. The calculated moment ratios
for both structures are in reasonable agreement
with measured values. While differences of 10 to
20 percent are found at some sections, it should be
noted that the total moment is provided for in

each bay. Consequently, adequate strength is pro-
vided when the calculated moments are used for
design. Examination of the test results from
Structure T2 again indicates satisfactory agree-
ment between measured and calculated moments.

Table 4 shows a comparison of moment cal-
culated according to the elastic analysis in ACI
318-63, Section 2103% with measured moments for
University of Illinois Structures F1 and F2.7 It
can be seen that negative moments calculated by
the 1963 Code are larger than measured values for
Structure F1 while positive moments are about
25 percent less than measured. Applying the 1963
Code to Structure F2 shows that calculated design
moments at all sections are about 30 percent less
than those measured. Greater differences arise
when calculated maximum moments are compared
with measured maximum moments.

NUMERICAL EXAMPLE OF APPLICATION

Application of the equivalent frame analysis to
calculation of design moments for an interior row
of panels of a flat plate structure tested at the
Portland Cement Association Structural Research
Laboratories and described elsewhere? is illustrat-
ed. Dimensions of the structure are shown in
Fig. 4. The columns of the test slab were sup-
ported to provide a stiffness equivalent to that of
a structure having columns of the same dimen-
sions framing into slabs 8 ft (244 cm) above and
below the test slab.

The equivalent frame, as defined in Section
13.4.1.1,* is bounded by the panel center lines as
indicated by the shaded area on the plan view of
Fig. 4. Dimensions necessary for determining the

*All references in the numerical example are to the appro-
priate sections in the proposed 1971 ACI code.

ACI JOURNAL / NOVEMBER 1970
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TABLE 5 — ANALYSIS OF FLAT PLATE*

(=] i (2]
M- M- M+ M- M+ M-
Shallow
Section beam edge I le)cfég beam
[ITTHHTTERETTT I [ITTITIITIIITE ITTTTITTTITT
E ui;zalent beams% io, ¢/L
olumn-span ratio, ¢ 0.0667 .
Beam stiffness, KEcs 49.9 504 ° 10050.3 50.30'10050.4 0050
Carry-over factor 0.513 0.507 0.513 0.513 0.507 0.513
Fixed-end moment, M/WL 0.0836 0.0853 0.0846 0.0846 0.0853 0.0836
P iness of aotusi column, Ko/E
iffness of actual column, 316 1060
Stiffness of torsional membercs, Ia/Eu, 179 93 logg :1%2
Stiffness of equivalent column Kcc/Ecs 114 86 86 108
Moments at column and panel center
lines, M/WL\ 0.0597 0.0481 0.0941 0.0868 0.0380 0.0871 0.0944 0.0485 0.0586
Shear at column center lines, V/W 0.466 0.534 0.500 0.500 0.536 0.464
Distance from column center line
to column face 0.033 0.050 0.050 0.050 0.050 0.033
Moments at column face M/WLi 0.0442 0.0481 0.0674 0.0618 0.0380 0.0621 0.0677 0.0485 0.0432

*Stiffnesses are in in.t 1 in.t = 41.62 cm4.

stiffnesses of the equivalent two-dimensional
frame are shown in Fig. 5. In the analysis illustra-
tion, a moment distribution procedure is used to
determine forces, however, other methods can be
used to analyze the equivalent frame once the
stiffnesses of the individual members are defined.

Determination of member stiffnesses

According to Section 13.4.1.3 the stiffnesses of
the panels are determined from the moments of
inertia of the gross cross-sectional areas. For the
slab, the moment of inertia I, is 2170 in.* (90,300
cm?). As defined in Section 13.4.1.4, the moment of
inertia of the slab section over the columns is
computed as I,/ (1 — ca/Ls)2 The co/L; ratios are
the same for both the exterior and the interior
columns. Consequently, the moment of inertia of
the equivalent beam over each column is 2170
in*/(1 —0.1)2 = 2680 in.* (111,500 cm?).

Based on the slab moment of inertia, 1/EI dia-
grams for the equivalent two-dimensional beams
are shown in Fig. 3. Note that the 1/EI diagrams
for the exterior beams are not symmetrical since
the c¢,;/L, ratios for the exterior and interior
columns are different. From the 1/EI diagrams,
the stiffnesses, carry-over factors, and fixed-end
moments can be determined numerically. For con-
venience, these constants are listed for flat plates
in Table B1 and for selected flat slabs in Table B2
of Appendix B.

A summary of the constants for the design ex-
ample is given in Table 5. The fixed-end moments
are in terms M /WL and stiffnesses are in terms of
K/E. where E_ is the modulus of elasticity of the
slab concrete.

The moments of inertia for the interior and ex-
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terior columns are 8750 in.* (364,000 cm*) and 2590
in* (107,800 cm*) respectively. The 1/EI diagrams
for the columns are shown in Fig. 5. These dia-
grams are based on the assumption that the col-
umn is infinitely stiff over the full depth of the
slab. The stiffness of the column K, can be com-
puted from the 1/EI diagrams. Values of calcu-
lated column stiffness are listed in Table 5.

Using Eq. (13-6) and (13-7), the stiffnesses K;
of the torsional members transverse to the direc-
tion of bending can be calculated. The cross sec-
tions of the torsional members as defined in Sec-
tion 13.4.1.5 are shown in Fig. 6. At each edge
column, a portion of the slab (equal to the projec-
tion of the beam below the slab) is assumed to act
with the beam. Since no beams are present at the
interior columns, a portion of the slab equal to the
width of column is assumed to offer torsional re-
sistance. Values of K; are given in Table 5. The
stiffnesses of the equivalent columns K,, are com-
puted using Eq. (13-5). These values are tabulated
in Table 5.

Determination of design moments

The moments at the column and panel center
lines are computed from the constants determined
above and are listed in Table 5. The negative mo-
ments must be reduced to values at the design
sections as defined in Section 13.4.2. Assuming
shear at the column center line (as determined
from the equivalent frame analysis) to act at the
face of the column, negative moments are reduced
to values at this section. Values of shear at the
column center lines, distances to the column face,
midspan positive moments and reduced negative
moments (design moments) are listed in Table 5.
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CONCLUDING REMARKS

This paper shows that the equivalent frame
method for design of reinforced concrete slabs
provides a convenient method for proportioning
structures that do not satisfy the limitations of
the direct design method.! For convenience, a nu-
merical design example illustrating application of
the equivalent frame method is given.

Important findings are described in the Intro-
duction of this paper.
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APPENDIX
APPENDIX A — NOTATION

c1 = size of rectangular columns, capital, wall or
bracket measured in the direction moments are
being determined

c2 = size of rectangular column, capital, wall or
bracket measured transverse to the direction
moments are being determined

C = cross-sectional constant used to define the prop-
erties of edge beams and attached torsional
members

COF = carry-over factor for analysis by “Cross mo-
ment distribution”

Ecs = modulus of elasticity for slab concrete

G = shearing modulus of elasticity, G = E¢s/2(1 + n)

Is = moment of inertia of slab-beam away from
support
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I« = moment of inertia of slab-beam away from
support and without parallel beam

Iss = moment of inertia of slab-beam including com-
posite parallel beam
Isc = moment of inertia of slab-beam over the sup-

port from face of column or capital to column
center line

Isa = moment of inertia of slab-beam immediately
surrounding the column

k = stiffness factor

K = flexural stiffness of equivalent beam or column

Kc = flexural stiffness of column moment per unit
rotation

Kec = flexural stiffness of equivalent column, moment
per unit rotation

K: = torsional stiffness of member, moment per unit
rotation

K¢ = increased flexural stiffness of column due to
presence of parallel beam, moment per unit
rotation

Li = length of span in the direction moments are be-
ing determined, measured center to center of
supports

Ly = length of span transverse to L1 measured center

to center of supports

M = moment at section considered

t1 = thickness of slab

t2 = thickness of slab at drop panel

T = twisting moment

wm = movable load per unit area

wp = permanent load per unit area

W = total load on a panel

x = shorter over-all dimension of a rectangular part
of a cross section

y = longer over-all dimension of a rectangular part
of a cross section

P = angle of twist per unit of length

0t = average effective angle of rotation of torsional
beam

u = Poisson’s ratio, assumed to be zero for slab
concrete

APPENDIX B — TABLES OF CONSTANTS FOR ‘“CROSS MOMENT DISTRIBUTION”

TABLE BI — MOMENT DISTRIBUTION CONSTANTS
FOR FLAT PLATE*

TABLE B2 — MOMENT DISTRIBUTION CONSTANTS
FOR FLAT SLAB*

Cia /W
T LTI

‘o

et

T T

B PR IE A est L e Ty R
S LY * e
. Ll ]
I_ Ly ! L6 2Ly3 ! Ly/6 !
Column Uniform load Stiffness Carry-over Column Uniform load Stiffness Carry-over
width FEM=Coef.(wL?) factort factor width FEM = Coef. (wL?%) factort factor
C,4 ciB 14 aB
L s Mas Mga kar ka4 COFap | COFBa4 Ly Ln Mas Mpa kas 9.7 COFap |COFBa
0.00 0.083 0.083 4.00 4.00 0.500 0.500 0.00 0.088 0.088 4.78 4,78 0.541 0.541
0.05 0.083 0.084 4.01 4.04 0.504 0.500 0.05 0.087 0.089 4.80 4.82 0.545 0.541
0.10 0.082 0.086 4.03 4.15 0.513 0.499 0.10 0.087 0.090 4.83 4.94 0.553 0.541
0.00 0.15 0.081 0.089 4.07 4.32 0.528 0.498 0.00 0.15 0.085 0.093 4.87 512 0.567 0.540
0.20 0.079 0.093 4.12 4.56 0.548 0.495 0.20 0.084 0.096 4.93 5.36 0.585 0.537
0.25 0.077 0.097 4.18 4.88 0.573 0.491 0.25 0.082 0.100 5.00 5.68 0.606 0.534
0.30 0.075 0.102 4.25 5.28 0.60.’83 8233 0.30 0.080 0.105 5.09 6.07 0.631 0.529
. 5.78 0.63 K
vos | noas | ome | so 0| s | aem |am | sm | o | oo
0.05 0.084 0.084 4.05 4.05 0.503 0.503 . . . R g R
0.?0 0.083 0.086 4.07 4.15 0.513 0.503 0.15 0.085 0.093 491 5.13 0.567 0.543
0.15 0.081 0.089 4.11 4.33 0.528 0.501 0.05 0.20 0.084 0.096 4.97 5.38 0.584 0.541
0.05 0.20 0.080 0.092 4.16 4.58 0.548 0.499 0.25 0.082 0.100 5.05 5.70 0.606 0.537
0.25 0.078 0.096 4.22 4.89 0 57% 0.433 0.30 0.080 0.104 5.13 6.09 0.632 0.532
0.30 0.076 0.101 4.29 5.30 0.60. 0.4
. . 0.481 0.10 0.089 0.089 4.98 4.98 0.553 0.553
oo | ooss | oo | am | 410 | oo wo | S| ShE | SE s | e i) o
0.010 0.085 0.085 4.18 4.18 0.513 0.513 y X . K .
0.15 0.083 0.088 4.22 4.36 0.528 0.511 0.25 0.084 0.099 5.17 5.74 0.606 0.546
0.10 0.20 0.082 0.091 4.27 4.61 0 5% gggg 0.30 0.082 0.103 5.26 6.13 0.631 0.541
. K 4.34 4.93 0.5 R
8%(5) gggg 8 ?gg 4.41 5.34 0.602 0.498 8%8 8838 8882 ggg gz% ggg‘g (())ggg
. 491 . . X . . . .
0.35 0.075 0.105 4.0 5.85 0.637 0 0.15 0.25 0.087 0 5.37 5.80 0.604 0.559
0.15 0.086 0.086 4.40 4.40 0.526 0.526 0.30 0.085 0.102 5.46 6.21 0.630 0.554
0.20 0.084 0.090 4.46 4.65 0.546 0.523
0.15 0.25 0.083 0. 4.53 4.98 0.571 0.519 0.20 0.092 0.092 5.55 5.55 0.580
0.30 0.080 0.099 4.61 5.40 0.601 0.513 0.20 0.25 0.090 0.096 5.64 5.88 0.602 0.577
0.35 0.078 0.104 4.70 5.92 0.635 0.505 0.30 0.088 0.100 5.714 6.30 0.627 0.571
.2 0.088 0.088 4.72 4,72 0.543 0.543 0.25 0.094 0.094 5.98 5.98 0.598 0.598
0.20 g%g 0.086 0. 4.79 5.05 0.568 0.539 0.25 0.30 0.091 0.098 6.10 6.41 0.622 0.593
0.30 0.083 0.097 4.88 5.48 0.597 0.532
0.35 0.081 0.102 4.99 6.01 0.632 0.524 0.30 0.30 0.095 0.095 6.54 6.54 0.617 0.617
0.25 0.090 0.090 5.14 5.14 0.563 0.563 *Applicable when ci/Li = co/Le. For other relationships be-
0.25 0.30 0.088 0. 5.94 5.58 0.592 0.556 tween these ratios, the constants will be slightly in error.
3
035 | 0.085 0.100 | 536 | 612 0.626 0548 tStiffness is K4z = kas E 1LT2tzl,_ and Kpa = ksa E Ili;iE
0.30 0.30 0.092 0.092 5.69 5.69 0.585 0.585 ! !
0.35 0.090 0.097 5.83 6.26 0.619 0.576
0.35 0.35 0.095 0.095 6.42 6.42 0.609 0.609

*Applicable when ci/Li = cs/L2. For other relationships be-
tween these ratios, the constants will be slightly in error.

: : _ Lot13 _ Lot13
tStiffness is Kap = kas E 1 L and Kp4 = ksa E T

884

This paper was received by the Institute Nov. 24, 1969.
PCA R/D Ser. 1468.

ACI JOURNAL / NOVEMBER 1970



