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The ACI Building Code requires the control of flexural cracking
in reinforced concrete structures. Because of durability con-
cerns, the use of thicker concrete covers is rapidly increasing.
However, currently used crack control methods that are based
strictly on statistical reasoning become unworkable with the use
of thick covers. This study investigates the development of the
crack control provisions and the crack width equation on which
those provisions are based, explores the use of the crack width
equation for the calculation of large covers, and presents a new
formulation of the equation for calculating crack width that is
based on the physical phenomenon. Use of that equation is sup-
ported by an evaluation of existing test data; based on that
equation, a design recommendation is presented for the control
of cracking that addresses the use of both coated and uncoated
reinforcement.

Keywords: concrete durability; crack width and spacing; cracking (fractur-
ing).

INTRODUCTION
Since 1971, the ACI Building Code has required control of

flexural cracking in reinforced concrete structures through the
use of the z-factor method.1 The z-factor approach is a modified
form of the Gergely-Lutz2 crack width equation that was devel-
oped from a statistical evaluation of experimental crack width
data.

Currently, the use of thicker concrete covers is increasing be-
cause research and experience have indicated that the use of
thicker covers, as well as high-performance concrete, can in-
crease durability. With the use of thicker covers, however, the z-
factor method becomes practically unworkable. The method indi-
cates that the increased cover is detrimental to crack control and
results in bar spacings that are not practical in construction. 

RESEARCH SIGNIFICANCE
To allow for the design and construction of more durable con-

crete structures, it is necessary to answer the following ques-
tions: Is it possible to increase cover while still providing
reasonable crack control? Since the Gergely-Lutz equation was
based on specific experimental data, are the equation and result-
ing z-factor approach valid for thicker concrete covers?

It is also important to address the effect that epoxy-coated re-
inforcement has on cracking.

PREVIOUS RESEARCH
Gergely and Lutz2 performed a statistical evaluation of exper-

imental cracking data. That study resulted in the well-known
Gergely-Lutz equation for the calculation of crack widths. The
data used in the study included test results from Hognestad,3

Kaar and Mattock,4 Kaar and Hognestad,5 Clark,6 and Rüsch
and Rehm.7 Because different measurement methods were used
by the various investigators, crack widths were recorded at two

primary locations, the bottom tension surface and the side face
at the level of the reinforcement. The study included 612 obser-
vations for bottom cracks and 355 observations for side cracks.
According to Gergely and Lutz,2 “the maximum crack width
measured by an investigator at a certain stress level is consid-
ered statistically as an observation. If the maximum crack width
is measured at six stress levels, there will be six observations re-
sulting from this one beam test.”

Since the study was intended for U.S. practice, the primary
focus was on test results with bars meeting the ASTM A 305
standard on bar deformations. Since the Rüsch and Rehm inves-
tigation was conducted in Germany, the bars in that test series
did not conform to the ASTM A 305 standard; therefore, Gerge-
ly and Lutz included only beams from that investigation that had
bars with deformations similar to those of U.S. bars. In addition,
a few beams with bars having a deformation spacing somewhat
greater than indicated in the ASTM specification were also in-
cluded.

Based on the statistical analysis of the test data, different
equations were developed for crack widths occurring on the side
face at the level of steel and for those at the bottom (tension)
face. Since the crack width of primary interest is at the bottom
surface, the crack width equation ACI bases the crack control
provisions is the simpler form for bottom face cracking present-
ed by Gergely and Lutz2

(1)

where
wb = maximum bottom crack width, 0.001 in.;
β = ratio of distances to neutral axis from extreme tension fiber

and from centroid of reinforcement; 
fs = steel stress calculated by elastic crack section theory, ksi
dc = bottom cover measured from center of lowest bar, in.; and
A = average effective concrete area around reinforcing bar,

having same centroid as reinforcement, in.2

As the concrete cover dc is of particular interest, it is impor-
tant to note the ranges of covers considered in the statistical
evaluation for bottom face cracking (Table 1). While the maxi-
mum cover was 3.31 in. from the Hognestad test data, it should
be noted that only three test specimens had covers greater than
2.5 in.

Other investigators have developed similar crack width equa-
tions, including Kaar and Mattock,4 who developed a well-
known expression in which the variables are defined the same
as above

wb 0.076β fs dcA3=
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(2)

The Kaar and Mattock equation was developed from a curve
fit of limited data primarily from Hognestad3 and Kaar-Mat-
tock.4 That data was also included in the statistical study by
Gergely and Lutz.

While both equations presented fit the data reasonably well,
it is reasonable to question the validity of the equations outside
the range of data considered. To examine their validity outside
that range, both equations were used to compute the crack
widths for a beam section with varying concrete cover (Fig. 1).
Both equations compared reasonably well for concrete covers
up to 2.5 in. (dc < 2.5 in.); however, as the cover was increased,
there was a divergence in the calculated crack widths. It is inter-
esting to note that this beam section is the same as Specimen
32R1 from the Kaar-Mattock study that was considered in the
development of both crack width equations. The actual cover dc
for the Kaar-Mattock specimen was 1.625 in., which is approx-
imately where the equations intersect.

Because test data for thicker covers are not available, it is not
possible to determine which, if either, equation is correct in that
range. Furthermore, to project an expression formulated by a sta-

wb 0.115βfs A4=

tistical analysis of data outside the domain of the data is ques-
tionable. Therefore, an alternate approach for the calculation of
crack widths is needed to consider thicker covers (dc > 2.5 in.).

CRACK WIDTH
To provide perspective on the calculation of crack widths, it

is necessary to consider a physical model of cracking. Flexural
cracking is illustrated in Fig. 2. The crack width at the level of
the reinforcement can be calculated as follows

(3)

where
wc = crack width;
εs = reinforcing steel strain = ;
Sc = crack spacing;
fs = reinforcing steel stress; and
Es = reinforcing steel modulus of elasticity.

The previous equation is based on the assumption that the rein-
forcing steel is uniformly strained over the crack spacing. Addi-
tionally, the tensile strain in the concrete is neglected as the tensile
concrete strain relative to the steel strain is small and does not sig-
nificantly affect the crack width. Furthermore, by neglecting the
concrete tensile strain, the crack width is slightly overestimated
and provides a conservative estimate of the crack width.

To determine the crack width at the beam surface, it is neces-
sary to account for the strain gradient. The strain gradient is il-
lustrated in Fig. 3, which assumes that plane sections remain
plane. The crack width computed previously can be multiplied
by an amplification factor β that accounts for the strain gradient.
The factor b is computed as follows

(4)

CRACK SPACING
Crack spacing decreases with increasing load and stabilizes

after the reinforcement reaches a critical stress. Further stress
increases act only to widen the existing cracks. Tests indicate
that the critical stress is typically in the range of 20 to 30 ksi for
covers up to 3 in.; thus, under service load stresses, a stable
crack pattern is typically developed.

From both analytical and experimental investigations per-
formed by Broms,8 it was found that the crack spacing depends
primarily on the maximum concrete cover. Specifically, the
minimum theoretical crack spacing will be equal to the distance
from the point at which the crack spacing is considered to the
center of the reinforcing bar located closest to that point. Fur-
thermore, it was found that the maximum theoretical crack spac-
ing is twice the minimum. Additional experiments conducted by
Broms8 support those findings for tension specimens with cov-
ers up to 6 in. 

The crack spacing can be calculated as follows

wc εsSc=

fs

Es
-----

β
ε2

ε1

-----
h c–
d c–
-----------= =
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Table 1—Concrete cover ranges in Gergely-Lutz 
study

Investigator

Concrete cover dc

Minimum Maximum

Hognestad 0.81 3.31

Kaar-Mattock 1.61 2.00

Rusch-Rehm 0.75 2.20

Kaar-Hognestad 1.50 1.50

Clark 0.69 2.70

All investigators 0.69 3.31

Fig. 1—Comparison of crack width equations.

Fig. 2—Cracked section.

Fig. 3—Strain gradient.
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(5)

where

Sc = crack spacing;
d* = controlling cover distance; and

Ψs = crack spacing factor: 1.0 for minimum crack spacing; 1.5
for average crack spacing; and 2.0 for maximum crack
spacing

Based on these studies, it is evident that the point on the beam
face located furthest from the reinforcing steel controls the
crack spacing and the resulting crack width. Therefore, two cas-
es can control the crack spacing: the distance determined by the
spacing of the reinforcement, or the distance determined by the
side cover, as illustrated in Fig. 4. By using the appropriate
crack spacing factor  Ψs, the theoretical minimum, average, or
maximum crack widths can be calculated. Typically, the maxi-
mum crack width is of interest.

The crack spacing discussed up to this point applies only to the
use of uncoated reinforcement. Since epoxy coating affects bond,
it is reasonable to expect that the coating will affect the crack
spacing. From tests conducted by Treece and Jirsa,9 it was found
that epoxy coating significantly increased the width and spacing
of cracks with the average width of cracks increasing up to twice
the width of cracks in specimens with uncoated bars. Based on
those tests, the crack spacings calculated previously should be
doubled to account for the effect of epoxy coating. 

ANALYSIS OF MEASURED CRACK WIDTHS
Crack widths calculated based on the physical model presented

previously were compared to test data from Hognestad,3 Kaar and
Mattock,4 Kaar and Hognestad,5 Clark,6 and Sozen-Gamble.10

Generally, this is the same data used in the Gergely-Lutz2 study,
except that the Rüsch-Rehm7 data were not included since the re-
inforcing steel does not conform to U.S. reinforcement standards,
and the goal of the current study is to compare with bars used in
U.S. practice. Tests conducted by Sozen and Gamble were in-
cluded since that test series considered cracking of beams with
large size bars (No. 14 and 18) that were not considered in previ-
ous crack width analyses.

As in the Gergely-Lutz study, two separate cases were con-
sidered. Analyses were conducted for crack widths measured on

Sc Ψs d*=

the side face at the level of the steel and for crack widths mea-
sured on the bottom tensile face. 

Bottom face cracks
Crack widths on the bottom face were calculated according to

the cracking model as well as the Gergely-Lutz and Kaar-Mat-
tock equations. For the calculation of the crack spacing, the con-
trolling cover dimension d * was determined by the larger of
either the side cover ds or the bar spacing s/2, as previously il-
lustrated in Fig. 4. The factor β was calculated based on the elas-
tic, cracked sectional properties. 

The test data included in the evaluation of bottom face crack-
ing are listed in Table 2. The reinforcement stress levels, as well
as the number of observations for both average and maximum
crack widths from each investigator, are provided. 

The calculated crack widths were divided by the measured
widths to evaluate the accuracy of the various calculation meth-
ods. The results are presented in Fig. 5, in which the results of

Fig. 4—Controlling cover distance.

Fig. 5—Maximum bottom face crack width comparison.

Table 2—Bottom face crack width test data

Investigator
Reinforcement 

stress levels, ksi
No. of 

specimens

No. of observations

Average 
crack width

Maximum 
crack width

Clark 20, 25, 30,
35, 40, 45

54 287 287

Hognestad 20, 30, 40, 50 8 32 32

Kaar-Hognestad 40 8 0 7

Kaar-Mattock 40 13 13 13

Total 83 332 339
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the three different methods are compared for maximum crack
widths. It can be seen that all three equations provide reasonable
results, with no one method providing more accurate results

than the others. The crack width model provides a fairly accu-
rate procedure, considering the scatter inherent in crack widths.

Fig. 6 presents a histogram for the average crack width data to
illustrate the flexibility provided by the physical model. Compar-
isons with the other crack width equations were not possible
since both equations were developed specifically for maximum
crack widths. It can be seen that the model also provides an ef-
fective method for the computation of average crack widths. 

Side face cracks
Crack widths on the side face at the level of the reinforcement

were calculated according to the cracking model as well as the
Gergely-Lutz and Kaar-Mattock equations. For the calculation
of the crack spacing, the controlling cover dimension d * was de-
termined by side cover ds , as previously illustrated in Fig. 4. A
value of 1.0 was used for the strain gradient factor β, since the
crack widths were measured at the level of the reinforcement. 

The test data included in the evaluation of side face cracking
are listed in Table 3. The reinforcement stress levels, as well as
the number of observations for both average and maximum
crack widths from each investigator, are provided. 

The calculated crack widths were divided by the measured
widths to evaluate the accuracy of the various calculation meth-
ods. The results, presented in Fig. 7, include a comparison of the
different calculation methods for maximum crack widths. While
again the three methods reasonably determine the crack width,
it appears that the crack width model provides the best estimate
of the crack width. 

Fig. 8 presents a histogram for the average crack width data.
As mentioned previously, comparisons with the other crack
width equations were not possible, since both equations were
developed specifically for maximum crack widths. It can be
seen that the cracking model can also be used effectively to
compute average crack widths for side face cracking. 

CRACK CONTROL
The crack width model clearly illustrates that the crack spac-

ing and width are functions of the distance between the reinforc-
ing steel. Therefore, crack control can be achieved by limiting
the spacing of the reinforcing steel. Maximum bar spacings can
be determined by limiting the crack widths to acceptable limits. 

Based on the physical model presented, the equation for the
calculation of maximum crack width for uncoated reinforce-
ment is as follows

(6)

For epoxy coated reinforcement, the equation should be mul-
tiplied by a factor of 2. The equation can be rearranged to solve
for the permissible bar spacing, s

(7)

wc 2
fs

Es

-----β dc
2 s

2
--- 

  2
+=

s 2
wcEs

2 fsβ
------------ 

 
2

dc
2–=

Fig. 6—Average bottom face crack width (cracking model).

Table 3—Bottom face crack width test data

Investigator
Reinforcement 

stress levels, ksi
No. of 

specimens

No. of observations

Average 
crack width

Maximum 
crack width

Hognestad 20, 30, 40, 50 29 109 109

Kaar-Mattock 40 13 13 13

Sozen-Gamble 40 6 6 6

Total 48 128 128

Fig. 7—Maximum side face crack width comparison.
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where
s = maximum permissible bar spacing, in.;
wc = limiting crack width, in.;
Es = 29,000 ksi;
fs = 0.6 fy , ksi;
β = 1.0 + 0.08dc; and
dc = bottom cover measured from center of lowest bar, in.

A reinforcement stress of 60 percent of yield was selected to
account for the service stress and corresponds to that recom-
mended by ACI 318-95.11 The factor β varies as the cover in-
creases. Therefore, based on a review of sections with varying
cover, the previous equation was developed.

According to Gergely,12 “the only real reason to limit surface
cracks in most structures is appearance.” Furthermore, “investi-
gations have concluded that the total amount of corrosion is in-
fluenced very little by the crack width and even whether
transverse cracks are present or not. Thus the limitation of crack
width for corrosion protection is unnecessary and can even be
counterproductive if it is achieved by a decrease of cover.” Oth-
er discussions13,14 have supported the viewpoint that a correla-
tion between corrosion and surface crack width does not exist.
Therefore, the limiting crack width was selected as 0.016 in.,
which is based on ACI 318-9511 design recommendations for
interior exposure conditions. A 1/3 increase in crack widths
(0.021 in.) was considered acceptable, considering the large
scatter that is inherent in crack widths and that crack control is
primarily an aesthetic consideration. Based upon these values,
the graph shown in Fig. 9 was developed for Grade 60 reinforce-
ment stressed at 36 ksi (0.6 fy). Both limiting crack widths are
presented.

For design purposes, a simplified design curve is illustrated.
As shown in the graph, for Grade 60 reinforcement, a maximum
bar spacing of 12 in. should be used for concrete covers up to 3
in. thick. As the thickness of the cover is increased beyond 3 in.,
there is a decrease in the permissible bar spacing. This approach
simplifies design since, for most typical cases (dc < 3 in.), crack
control is accomplished by limiting the bar spacing to 12 in.
Only in cases where the covers are thicker would it be necessary
to consider a reduction in the maximum bar spacing.

A similar curve is presented in Fig. 10 for Grade 75 rein-
forcement. In that case, the maximum bar spacing is decreased
to 9.6 in. due to the increased working stress of the steel at ser-
vice levels. 

CONCLUSIONS
To control unsightly cracking in elements with a cover of 2.5

in. or more, the currently used expressions are at a disadvantage
because they are based strictly on statistical reasoning and lim-
ited beyond 2.5 in. This paper presents a new formulation of the
equation for calculating crack width that is based on the physi-

cal phenomenon. Use of this equation is supported by an evalu-
ation of existing test data. The equation is used to develop a
pragmatic solution for the control of cracking in reinforced con-
crete structures.

Design recommendation
Based on the physical model, the following design recommen-

dation is presented that addresses the use of both coated and un-
coated reinforcement. The design curves are illustrated for Grade
60 and 75 reinforcement in Fig. 9 and 10, respectively.

The maximum spacing of reinforcement shall be given by

(8)

where

dc = thickness of concrete cover measured from extreme tension
fiber to center of bar or wire located closest thereto, in.;

s = maximum spacing of reinforcement, in.;
αs = reinforcement factor; and
γc = reinforcement coating factor: 1.0 for uncoated reinforce-

ment; 0.5 for epoxy-coated reinforcement, unless test
data can justify a higher value.

Calculated stress in reinforcement at service load fs (kips/in.2)
shall be computed as the moment divided by the product of steel
area and internal moment arm. It shall be permitted to take fs as
60 percent of specified yield strength fy.

s 12α 2
dc

3αs

---------– 12α s≤=

α s
3 6
fs

------γc=

Fig. 8—Average side face crack width (cracking model). Fig. 9—Grade 60 reinforcement spacing.

Fig. 10—Grade 75 reinforcement spacing.
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CONVERSION FACTORS
1 in. = 25.4 mm

1 kip = 4.448 kN
1 ksi = 6.895 MPa
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