Report UMCEE 01-04

Reliability-Based Calibration for Structural Concrete, Phase 2

Andrzej S. Nowak and Maria M. Szerszen

Report submitted to The Portland Cement Association

Department of Civil and Environmental Engineering University of Michigan Ann Arbor, MI 48109-2125

Executive Summary

The report documents Phase 2 of research carried out in conjunction with calibration of the Building Requirements for Structural Concrete (ACI 318-99). Calibration was performed to determine the resistance factors corresponding to load factors specified by ASCE 7 Standard on Minimum Design Loads for Buildings and Other Structures (1998). The presented research is a continuation of Phase 1 and covers the selection of representative structural types and materials, resistance models, reliability analysis, and selection of resistance factors. The development of load models, the reliability analysis procedures and selection of target the reliability indices were presented in the previous report covering Phase 1. The structural elements considered in Phase 2 include eccentrically loaded reinforced concrete columns and slabs and foundation beams subjected to shear. The load components include dead load and live load. The statistical parameters for loads are based on the information available in literature.

Resistance parameters are determined on the basis of statistical data on materials (material factors) and other factors (fabrication and professional factors), established using statistical information on dimensions of cross section, fabrication and methods of structural analysis. The statistical parameters of resistance are calculated using Monte Carlo simulations.

Reliability indices are calculated for structural components designed using the load factors specified by ASCE 7 Standard (1998) for several possible values of resistance factor. For comparison, reliability analysis is also performed for the components designed according to old ACI 318-99 Code. The calculations are performed for the new statistical models for load and resistance, and for the statistical parameters of resistance used in previous studies. The target reliability index for columns and shear was assumed to be the same as in Phase 1. The acceptance criterion for selection of resistance factors is closeness of the calculated reliability index to the target reliability index.

The recommended resistance factors for columns are $\phi = 0.70$ for tied columns, $\phi = 0.75$ for spiral columns, $\phi = 0.80$ for shear in foundation beams, and $\phi = 0.75$ for shear in slabs.

List of Contents

1. INTRODUCTION	1
2. ECCENTRICALLY LOADED COLUMNS	3
2.1. Resistance of Eccentrically Loaded Columns	3
2.2. Statistical Parameters of Resistance	
2.3. Reliability Indices for Eccentrically Loaded Columns	59
3. SHEAR IN SLABS AND FOUNDATION BEAMS	86
3.1. Shear Resistance	86
3.2. Reliability Indices for Shear in Slabs and Foundation Beams	
4. PROPOSED RESISTANCE FACTORS	95
5. CONCLUSIONS AND RECOMMENDATIONS	96
6. REFERENCES	97

Acknowledgments

This study was sponsored by the Portland Cement Association (PCA), represented by Basile G. Rabbat, and Co-sponsored by the Precast/Prestressed Concrete Institute, represented by L.S. (Paul) Johal. Their sponsorship is gratefully acknowledged.

The material test data were compiled by: National Ready Mix Concrete Association (NRMCA) staff and Consultant Richard D. Gaynor, Micheal F. Pistilli, Prairie Group; Steve H. Gebler, Construction Technology Laboratories, Inc.; David P. Gustafson, Concrete Reinforcing Steel Institute (CRSI); and Roger J. Becker, Spancrete Industries, Inc. The statistical analysis of the material test data was discussed at Project Meetings with an Ad Hoc Group of representatives of industry: Roger J. Becker (Spancrete), David N. Bilow (PCA), David P. Gustafson (CRSI), and Basile G. Rabbat (PCA).

Valuable comments were also obtained from current and past members of ACI Committee 318, in particular, James G. MacGregor, Gary J. Klein, James R. Harris, S.K. Ghosh and James K. Wight.

Special thanks are due to Aleksander Szwed, a visiting research scientist from the Warsaw University of Technology in Poland, for his assistance in computations.

1. Introduction

The report documents the results of research work on calibration of the Building Code Requirements for Structural Concrete (ACI 318). The objective of this study is to determine the resistance factors that are consistent with load and load combination factors specified by ASCE 7 Standard on Minimum Design Loads for Buildings and Other Structures (1998).

Report on Phase 1 of this project, revised in October 2001, presented limit state design criteria covering possible cases for design of reinforced concrete and prestressed concrete structural elements, in particular: reinforced and prestressed concrete beams in flexure and shear, reinforced concrete slabs in flexure, and reinforced and prestressed concrete columns in axial loading. Phase 2 covers the remaining cases of design of reinforced concrete structural elements, in particular, eccentrically loaded columns, slabs and beams in shear (without shear reinforcement).

The calibration procedure is based on the reliability analysis, with load and resistance parameters treated as random variables. It is assumed that the available load and load combination models are adequate for reinforced concrete structural elements (Ellingwood et al. 1980 and Nowak and Collins 2000). The load factors and load combinations follow ASCE 7 Standard (1998) and new ACI 318 Building Code Requirements for Structural Concrete (2002). The resistance factors, strongly affected by statistical parameters of material properties, dimensions and fabrication are the main focus of this study.

Statistical parameters of materials, fabrication and professional factors are presented in the Phase 1 of this report. The same statistical parameters are used for resistance models considered in Phase 2 of the project.

The discussion on general calibration procedure, calculation of statistical parameters of resistance (Monte Carlo simulations), reliability analysis procedures, and selection of the

target reliability indices are included in the first part of the report (Phase 1) and are not repeated in this report.

Phase 2 of the report presents the resistance models for eccentrically loaded columns, reliability indices calculated for the considered loading cases, and proposed resistance factors. As a continuation of the shear analysis from Phase 1 of the report, the ultimate limit state of shear capacity for structural elements without shear reinforcement is also considered in this report.

Design cases considered in Phase 2 of the report include eccentrically loaded columns and flexural components (slabs and beams) subjected to shear. Both topics are a continuation of the work presented in Phase 1 of the report. Analysis of eccentrically loaded columns is a continuation of the axially loaded columns, and additional shear analysis is focused on the design cases with the shear force being transferred by the concrete section (structural elements without shear reinforcement).

2. Eccentrically Loaded Columns

This Chapter deals with the design of eccentrically loaded reinforced concrete columns. Four reinforcement ratios are considered: 1%, 2%, 3% and 4%. The calculations are performed for ordinary concrete and high strength concrete, and for various eccentricities (e/h ratios) according to the interaction diagram curve shown in Figure 2-1.

Figure 2-1. Interaction diagram for eccentrically loaded columns.

2.1. Resistance of Eccentrically Loaded Columns

The statistical parameters of resistance, R, were calculated using Monte Carlo simulations and formulas for resistance (load carrying capacity of eccentrically loaded columns). The statistical parameters of material fctor, M, fabrication factor, F, and professional factor, P, presented in the first part of the report (Phase 1) were used in the calculations. Parameters considered as random variables include:

- Strength of concrete, f'c, for ordinary and high strength concrete
- Yield strength of reinforcing steel, f_y

- Dimensions of the cross section and area of reinforcing steel
- Construction type (cast-in-place and plant-cast)

Resistance formulas for eccentrically loaded columns were developed based on the equilibrium of the external and internal forces in the section.

2.1.1. Basic Assumptions

The notation for stresses and strains as well as geometry for a rectangular cross section of an eccentrically loaded column is shown in Figure 2-2.

Figure 2-2. Strain and Stress Distribution in Cross Section of an Eccentrically Loaded Column.

Notation:

Layer 1 of reinforcement is the closest to the extreme compression fibers Layer 2 of the reinforcement is the furthest from the extreme compression fibers

a	=	depth of equivalent rectangular stress block
b	=	width of the section
c	=	distance from the fiber of maximum strain to the neutral axis
d	=	distance from extreme compression fiber to centroid of layer 2
		of reinforcement
d'	=	cover of reinforcement
h	=	depth of the cross section
f _c '	=	specified compressive strength of concrete
fy	=	yield strength of reinforcing steel

$f_{s1} \\$	=	calculated stress in reinforcement close to the extreme compression fiber
		in the section
f_{s2}	=	calculated stress in the layer 2 of reinforcement
A _s	=	area of reinforcement in each layer (layer 1 and layer 2)
E_s	=	modulus of elasticity of reinforcement
Μ	=	moment acting in the section
Р	=	axial force acting in the section
β	=	reduction factor for compressive strength of concrete
β_1	=	reduction factor of compressive zone in concrete
ε _c	=	strain in concrete
ε _m	=	extreme compressive strain in concrete
εο	=	strain in concrete at the end of rectangular stress block
ϵ_{s1}	=	strain in layer 1 of
ϵ_{s2}	=	strain in layer 2 of reinforcement
ε _s	=	strain in reinforcing steel
ε _y	=	yield strain in reinforcing steel

• Assumption of plane cross section

Strain compatibility relations can be obtained from Figure 2-2 using a linear distribution of strains over the height of the cross section of the column:

$$\frac{\varepsilon_{\rm m}}{\rm c} = \frac{\varepsilon_{\rm s2}}{\rm c-d} \qquad \Rightarrow \qquad \varepsilon_{\rm s2} = \varepsilon_{\rm m} \left(1 - \frac{\rm d}{\rm c}\right) \tag{2.1}$$

$$\frac{\varepsilon_{\rm m}}{\rm c} = \frac{\varepsilon_{\rm s1}}{\rm c-d'} \qquad \Longrightarrow \qquad \varepsilon_{\rm s1} = \varepsilon_{\rm m} \left(1 - \frac{\rm d'}{\rm c}\right) \tag{2.2}$$

• Reduction factor of compression zone in concrete

Relationship for reduction of a compression zone in concrete is as follows,

$$a = \begin{cases} \beta_1 c & \text{for } c \leq \frac{h}{\beta_1} \\ h & \text{for } c > \frac{h}{\beta_1}. \end{cases}$$
(2.3)

Reduction factor β_1 dependents on strength of concrete in uniaxial compression test, f'_c , and is given by the relationship:

$$\beta_{1} = \begin{cases} 0.85 & \text{for } f'_{c} \le 4.0 \text{ ksi} \\ 1.05 - 0.05 f'_{c} & \text{for } 4.0 \text{ ksi} \le f'_{c} \le 8.0 \text{ ksi} \\ 0.65 & \text{for } f'_{c} \ge 8.0 \text{ psi}. \end{cases}$$
(2.4)

• Mechanical behavior of reinforcing steel

Material behavior of reinforcing steel is shown in Figure 2-3, and it is described by the following formula,

$$f_{s} = \begin{cases} -f_{y} & \text{for } \varepsilon_{s} < -\varepsilon_{y} \\ E_{s}\varepsilon_{s} & \text{for } -\varepsilon_{y} \le \varepsilon_{s} \le \varepsilon_{y} \\ f_{y} & \text{for } \varepsilon_{y} < \varepsilon_{s} < \varepsilon_{m} \\ 0 & \text{for } \varepsilon_{m} < \varepsilon_{s} , \end{cases}$$
(2.5)

where

Figure 2-3. Stress vs. Strain Relationship for Reinforcing Steel.

• Mechanical behavior of concrete

Material behavior of concrete is shown in Figure 2-4, and it is described by the following formula,

$$f_{c} = \begin{cases} 0 & \text{for } \varepsilon_{c} < \varepsilon_{o} \\ \beta f'_{c} & \text{for } \varepsilon_{o} \leq \varepsilon_{c} \leq \varepsilon_{m} \\ 0 & \text{for } \varepsilon_{m} < \varepsilon_{c} . \end{cases}$$
(2.7)

Based on the strain diagram from Figure 2-2, and linear distribution of strains over the height of the cross section of a column, the relationship for strains in the section is as follows:

$$\frac{\varepsilon_{\rm m}}{\rm c} = \frac{\varepsilon_{\rm o}}{\rm c-a} \tag{2.8}$$

and applying $Eq.(2.3)_1$ gives,

$$\varepsilon_{o} = \varepsilon_{m}(1-\beta_{1}).$$

$$(2.9)$$

$$\beta f'_{c} + \frac{\varepsilon_{c}}{\varepsilon_{o}} + \frac{\varepsilon_{c}}{\varepsilon_{m}}$$

Figure 2-4. Stress vs. Strain Relationship for Concrete.

• Force and moment caring capacity

From the equilibrium of axial forces and moment acting in the section, the following equations are obtained,

$$P = A_{s}f_{s1} + A_{s}f_{s2} + \beta f'_{c} ba,$$

$$M = A_{s}f_{s1}\left(\frac{h}{2} - d'\right) - A_{s}f_{s2}\left(\frac{h}{2} - d'\right) + \beta f'_{c} ba\left(\frac{h}{2} - \frac{a}{2}\right).$$
(2.10)

• Eccentricity of force

The eccentricity of the axial force is defined as follows:

$$e = \frac{M}{P}$$
(2.11)

2.1.2. Analysis of Possible Cases of Cross Section Behavior

In the analysis of possible design cases, it is assumed that in the upper fibers of the section, the strain is equal to ε_m , as shown in Figure 2-2. Formulas are developed for calculation of P and M, for various cases of (P,M) combinations , grouped as shown in Figure 2-5.

Figure 2-5. Interaction Diagram for Eccentrically Compressed Columns; a) Cross Sections Type I (49d'<9d), b) Cross Sections Type II (49d'>9d).

a)

b)

2.1.3. Types of Cross Section

Two types of cross section can be distinguished as shown in Figure 2-5. Type I represents large cross sections, with case IVa in the tension control zone, as shown in Figure 2-5a. Type II is representative for small cross sections or those with larger cover of reinforcement, with case IVb in the compression control zone, as shown in Figure 2-5b. The basic relationship for a balanced failure case is as follows:

$$\varepsilon_{s2} = -\varepsilon_{y}. \tag{2.12}$$

From Eq. (2.1), and Eq. (2.12),

$$c = \frac{\varepsilon_m d}{\varepsilon_m + \varepsilon_v}.$$
 (2.13)

Assuming

$$\varepsilon_{s1} = \varepsilon_{y}, \qquad (2.14)$$

from Eq.(2.2), Eq.(2.13) and Eq.(2.14), the ratio of reinforcement cover to effective depth of the section is,

$$\frac{d'}{d} = \frac{\varepsilon_m - \varepsilon_y}{\varepsilon_m + \varepsilon_y}.$$
(2.15)

Assuming strain values for concrete and steel are,

$$\varepsilon_{\rm m} = \frac{3}{1000} = 0.003, \qquad \varepsilon_{\rm y} = \frac{f_{\rm y}}{E_{\rm s}} = \frac{3}{1450} \cong 0.002069, \qquad (2.16)$$

the ratio is equal to,

$$\frac{d'}{d} = \frac{\varepsilon_m - \varepsilon_y}{\varepsilon_m + \varepsilon_y} = \frac{9}{49}.$$
(2.17)

For cross section Type I (see Figure 2-5a, and Case IVa),

$$\varepsilon_{s1} \ge \varepsilon_y,$$
 (2.18)

and

$$\frac{\mathrm{d}'}{\mathrm{d}} \le \frac{9}{49}.\tag{2.19}$$

For cross sections Type II (see Figure 2-5b, and Case IVb),

$$\varepsilon_{s1} < \varepsilon_{y}, \tag{2.20}$$

and

$$\frac{d'}{d} > \frac{9}{49}$$
. (2.21)

For example, if d'=2.5 in , then from Eq.(2.17), d=13.61 in and h = d + d' = 16.11 in . Therefore, a cross section with d'=2.5 in and $h \ge 16.11$ in is of Type I, and if h < 16.11 in , the cross section is of Type II.

2.1.4. Cross Section Type I

For the cross section Type I, the axial force and moment (Eq. 2.10) are calculated as follows.

• Case I (Axial Load)

In this case, the following failure scenario is assumed: the whole concrete cross section is in compression and both layers of reinforcements yield in compression,

$$a = h, f_{s1} = f_y, f_{s2} = f_y.$$
 (2.22)

Applying Eq.(2.22) to Eq. (2.10) and Eq. (2.11) yields

$$P = 2A_{s}f_{y} + \beta f'_{c}bh,$$

$$M = 0,$$

$$e = 0.$$
(2.23)

The limit state is reached when the axial strain in concrete is ε_m (point *A* in Figure 2-5a) while layer 2 of reinforcement yields (also point *A* in Figure 2-5a).

From the overall axial strain, strains in layer 1 and 2 of the reinforcement are,

$$\varepsilon_{s1} = \varepsilon_m, \quad \varepsilon_{s2} = \varepsilon_m, \quad \Rightarrow \quad c = \infty.$$
 (2.24)

From yielding in layer 2 of reinforcement,

$$\varepsilon_{s2} = \varepsilon_{y} \,. \tag{2.25}$$

From Eq.(2.25) and Eq.(2.1), the distance from the maximum strain fiber to the neutral axis is equal to:

$$c = \frac{\varepsilon_{\rm m} d}{\varepsilon_{\rm m} - \varepsilon_{\rm y}}, \qquad (2.26)$$

and from Eq.(2.26) and Eq.(2.2),

$$\varepsilon_{s1} = \varepsilon_{m} - \left(\varepsilon_{m} - \varepsilon_{y}\right) \frac{d'}{d}.$$
(2.27)

Finally, the following constraints are obtained for the basic parameters $(e, a, c, \varepsilon_{s1}, \varepsilon_{s2}, f_{s1}, f_{s2})$,

$$e = 0,$$

$$a = h,$$

$$\frac{\varepsilon_{m}d}{\varepsilon_{m} - \varepsilon_{y}} \le c \le \infty,$$

$$\varepsilon_{m} - (\varepsilon_{m} - \varepsilon_{y})\frac{d'}{d} \le \varepsilon_{s1} \le \varepsilon_{m},$$

$$\varepsilon_{y} \le \varepsilon_{s2} \le \varepsilon_{m},$$

$$f_{s1} = f_{y},$$

$$f_{s2} = f_{y}.$$

(2.28)

• Case II (Whole Concrete Cross Section in Compression)

In this case, the following failure scenario is assumed: the whole concrete cross section is in compression and layer 1 of reinforcing steel yields in compression but layer 2 of reinforcing steel is in an elastic range. Then,

$$a = h, f_{s1} = f_{y}, -f_{y} \le f_{s2} \le f_{y}.$$
 (2.29)

Combining Eq. $(2.5)_2$ and Eq.(2.1) gives the following stress in layer 2 of reinforcement,

$$f_{s2} = E_s \varepsilon_m \left(1 - \frac{d}{c} \right). \tag{2.30}$$

From Eq.(2.30) and Eq.(2.10),

$$P = A_{s}f_{y} + A_{s}E_{s}\varepsilon_{m}\left(1 - \frac{d}{c}\right) + \beta f'_{c}bh,$$

$$M = A_{s}f_{y}\left(\frac{h}{2} - d'\right) - A_{s}E_{s}\varepsilon_{m}\left(1 - \frac{d}{c}\right)\left(\frac{h}{2} - d'\right),$$
(2.31)

and from Eq.(2.11) the eccentricity is,

$$e = \frac{A_{s}f_{sl}\left(\frac{h}{2} - d'\right) - A_{s}E_{s}\varepsilon_{m}\left(1 - \frac{d}{c}\right)\left(\frac{h}{2} - d'\right)}{A_{s}f_{y} + A_{s}E_{s}\varepsilon_{m}\left(1 - \frac{d}{c}\right) + \beta f'_{c}bh}.$$
(2.32)

The obtained relationship Eq.(2.32), is used to determine parameter "c", for a given value of eccentricity. After some rearrangements,

$$c = \frac{A_{s}E_{s}\varepsilon_{m}d(2e+h-2d')}{A_{s}f_{y}(2e-h+2d')+A_{s}E_{s}\varepsilon_{m}(2e+h-2d')+2e\beta f'_{c}bh}.$$
 (2.33)

In Case II, the cross section behavior is limited by two conditions: the end of yielding in layer 2 of reinforcement (point *A* in Figure 2-5a) and end of compression of the whole concrete cross section (point *H* in Figure 2-5a).

The end of yielding in layer 2 of reinforcement was analyzed in the previous section. The of end of compression of the whole concrete cross section corresponds to,

$$a = h$$
. (2.34)

From Eq.(2.34) and Eq.(2.3),

$$c = \frac{h}{\beta_1}, \qquad (2.35)$$

and from Eq.(2.35), Eq.(2.1) and Eq.(2.2), strains in both layers of reinforcement are,

$$\varepsilon_{s2} = \varepsilon_m \left(1 - \frac{\beta_1 d}{h} \right), \tag{2.36}$$

$$\varepsilon_{s1} = \varepsilon_m \left(1 - \frac{\beta_1 d'}{h} \right). \tag{2.37}$$

From Eq.(2.35), Eq.(2.31) and Eq.(2.32),

$$P_{H} = A_{s}f_{y} + A_{s}E_{s}\varepsilon_{m}\left(1 - \frac{\beta_{1}d}{h}\right) + \beta f'_{c}bh,$$

$$M_{H} = A_{s}f_{y}\left(\frac{h}{2} - d'\right) - A_{s}E_{s}\varepsilon_{m}\left(1 - \frac{\beta_{1}d}{h}\right)\left(\frac{h}{2} - d'\right),$$

$$(2.38)$$

$$\boxed{e_{H} = \frac{A_{s}f_{sl}\left(\frac{h}{2} - d'\right) - A_{s}E_{s}\varepsilon_{m}\left(1 - \frac{\beta_{1}d}{h}\right)\left(\frac{h}{2} - d'\right)}{A_{s}f_{y} + A_{s}E_{s}\varepsilon_{m}\left(1 - \frac{\beta_{1}d}{h}\right) + \beta f'_{c}bh}}.$$

Finally, the following constraints are obtained for the basic parameters $(e, a, c, \varepsilon_{s1}, \varepsilon_{s2}, f_{s1}, f_{s2})$,

$$\begin{split} 0 &\leq e \leq e_{H}, \\ a &= h, \\ \frac{h}{\beta_{1}} \leq c \leq \frac{\varepsilon_{m}d}{\varepsilon_{m} - \varepsilon_{y}}, \\ \varepsilon_{m} \left(1 - \frac{\beta_{1}d'}{h}\right) &\leq \varepsilon_{s1} \leq \varepsilon_{m} - \left(\varepsilon_{m} - \varepsilon_{y}\right) \frac{d'}{d}, \\ \varepsilon_{m} \left(1 - \frac{\beta_{1}d}{h}\right) &\leq \varepsilon_{s2} \leq \varepsilon_{y}, \\ f_{s1} &= f_{y}, \\ E_{s} \varepsilon_{m} \left(1 - \frac{\beta_{1}d}{h}\right) &\leq f_{s2} \leq f_{y}. \end{split}$$

$$(2.39)$$

• Case III (a Part of Concrete Cross Section is in Compression – Compression Control)

In this case, the following failure scenario is assumed: a part of concrete cross section is in compression and layer 1 of reinforcing steel yields in compression but layer 2 of reinforcing steel is in an elastic range,

$$f_{s1} = f_y, \quad -f_y \le f_{s2} \le f_y.$$
 (2.40)

Combining Eq. $(2.3)_1$, Eq. $(2.5)_2$ and Eq.(2.1), stress in layer 2 of reinforcement is equal to:

$$f_{s2} = E_s \varepsilon_m \left(1 - \frac{\beta_1 d}{a} \right).$$
 (2.41)

Applying Eq.(2.41) in Eq.(2.10) yields,

$$P = A_{s}f_{y} + A_{s}E_{s}\varepsilon_{m}\left(1 - \frac{\beta_{1}d}{a}\right) + \beta f'_{c}ba,$$

$$M = A_{s}f_{y}\left(\frac{h}{2} - d'\right) - A_{s}E_{s}\varepsilon_{m}\left(1 - \frac{\beta_{1}d}{a}\right)\left(\frac{h}{2} - d'\right) + \frac{1}{2}\beta f'_{c}ba(h-a),$$
(2.42)

and Eq.(2.11) gives the eccentricity,

$$e = \frac{A_s f_y \left(\frac{h}{2} - d'\right) - A_s E_s \varepsilon_m \left(1 - \frac{\beta_1 d}{a}\right) \left(\frac{h}{2} - d'\right) + \frac{1}{2} \beta f'_c ba(h-a)}{A_s f_y + A_s E_s \varepsilon_m \left(1 - \frac{\beta_1 d}{a}\right) + \beta f'_c ba}.$$
(2.43)

Eq.(2.43) is used to evaluate parameter "a", knowing the value of eccentricity. After some rearrangement, the following equation has to be solved:

$$A_1 a^3 + A_2 a^2 + A_3 a + A_4 = 0, (2.44)$$

with the following notation,

In order to solve Eq.(2.44), the following notation is introduced:

$$t = \frac{A_2}{3A_1}$$

$$p = \left(\frac{A_2}{3A_1}\right)^2 - \frac{A_3}{3A_1},$$

$$q = \frac{A_2A_3}{6A_1^2} - \left(\frac{A_2}{3A_1}\right)^3 - \frac{A_4}{2A_1}.$$
(2.46)

The solution depends on sign of parameter p. Therefore,

$$a = 2\sqrt{p} \cosh\left[\frac{1}{3}\operatorname{arccosh}\left(\frac{q}{\sqrt{p^3}}\right)\right] - t \qquad \text{for} \qquad p > 0, \qquad (2.47)$$

$$a = \sqrt[3]{2q} - t$$
 for $p = 0$, (2.48)

$$a = 2\sqrt{-p} \sinh\left[\frac{1}{3}\operatorname{arcsinh}\left(\frac{q}{\sqrt{-p^3}}\right)\right] - t \quad \text{for} \quad p < 0, \qquad (2.49)$$

For p = 0, the eccentricity that is used to distinguish solution Eq.(2.47) from Eq.(2.49) can be evaluated. After some rearrangements, the following value of eccentricity separates **Case IIIa** (Eq.(2.47)) from **Case IIIb** (Eq.(2.49)), see point *P* in Figure 2-5,

$$e_{\rm P} = \frac{h}{2} + \frac{3A_{\rm s}(f_{\rm y} + E_{\rm s}\varepsilon_{\rm m}) - \sqrt{\left[3A_{\rm s}(f_{\rm y} + E_{\rm s}\varepsilon_{\rm m})\right]^2 + 24\beta f_{\rm c}' bA_{\rm s}\left[E_{\rm s}\varepsilon_{\rm m}h + (f_{\rm y} - E_{\rm s}\varepsilon_{\rm m})d'\right]}{4\beta f_{\rm c}' b}$$
(2.50)

Accordingly, the cross section behavior is limited by two conditions: the end of compression of the whole concrete cross section (point H in Figure 2-5a) and the end of elastic behavior of layer 2 of reinforcement (point B in Figure 2-5a).

The end of compression of the whole concrete cross section was analyzed in the previous section.

For the end of elastic behavior of layer 2 of reinforcement (balanced failure) the strains are,

$$\varepsilon_{s2} = -\varepsilon_y \implies f_{s2} = -f_y.$$
 (2.51)

From Eq.(2.51), Eq.(2.1) and Eq.(2.3)₁,

$$c = \frac{\varepsilon_{\rm m} d}{\varepsilon_{\rm m} + \varepsilon_{\rm y}}, \qquad (2.52)$$

$$a = \frac{\varepsilon_{\rm m} \beta_{\rm l} d}{\varepsilon_{\rm m} + \varepsilon_{\rm y}}.$$
 (2.53)

From Eq.(2.52) and Eq.(2.2),

$$\varepsilon_{s1} = \varepsilon_m - \left(\varepsilon_m + \varepsilon_y\right) \frac{d'}{d}.$$
 (2.54)

Applying Eq.(2.53) in Eq.(2.42) and Eq.(2.43) yields,

$$P_{B} = \beta f'_{c} b \frac{\varepsilon_{m} \beta_{l} d}{\varepsilon_{m} + \varepsilon_{y}},$$

$$M_{B} = A_{s} f_{y} (h - 2d') + \frac{1}{2} \beta f'_{c} b \frac{\varepsilon_{m} \beta_{l} d}{\varepsilon_{m} + \varepsilon_{y}} \left(h - \frac{\varepsilon_{m} \beta_{l} d}{\varepsilon_{m} + \varepsilon_{y}} \right),$$

$$e_{B} = \frac{A_{s} f_{y} (\varepsilon_{m} + \varepsilon_{y}) (h - 2d')}{\beta f'_{c} b \varepsilon_{m} \beta_{l} d} + \frac{1}{2} \left(h - \frac{\varepsilon_{m} \beta_{l} d}{\varepsilon_{m} + \varepsilon_{y}} \right).$$
(2.55)

Finally, the following constraints are obtained for the basic parameters $(e, a, c, \varepsilon_{s1}, \varepsilon_{s2}, f_{s1}, f_{s2})$,

$$\begin{split} e_{H} &\leq e \leq e_{B}, \\ & \frac{\varepsilon_{m}\beta_{l}d}{\varepsilon_{m} + \varepsilon_{y}} \leq a \leq h, \\ & \frac{\varepsilon_{m}d}{\varepsilon_{m} + \varepsilon_{y}} \leq c \leq \frac{h}{\beta_{1}}, \\ \varepsilon_{m} - \left(\varepsilon_{m} + \varepsilon_{y}\right)\frac{d'}{d} \leq \varepsilon_{s1} \leq \varepsilon_{m}\left(1 - \frac{\beta_{1}d'}{h}\right), \\ & -\varepsilon_{y} \leq \varepsilon_{s2} \leq \varepsilon_{m}\left(1 - \frac{\beta_{1}d}{h}\right), \\ & f_{s1} = f_{y}, \\ & -f_{y} \leq f_{s2} \leq E_{s}\varepsilon_{m}\left(1 - \frac{\beta_{1}d}{h}\right). \end{split}$$
(2.56)

Note: Case IIIa is for $e_{_H} \le e < e_{_P}$, and Case IIIb is for $e_{_P} < e \le e_{_B}$.

• Case IVa (Part of Concrete Cross Section is in Compression – Tension Control)

In this case, the following failure scenario is assumed: a part of concrete cross section is in compression and both layers of reinforcement yield, layer 1 in compression but layer 2 in tension,

$$f_{s1} = f_y, \quad f_{s2} = -f_y.$$
 (2.57)

Applying Eq.(2.57) in Eq.(2.10) yields

$$P = \beta f'_{c} ba,$$

$$M = A_{s}f_{y}(h - 2d') + \frac{1}{2}\beta f'_{c} ba(h - a),$$
(2.58)

from Eq.(2.11) the eccentricity is calculated as,

$$e = \frac{A_{s}f_{y}(h-2d') + \frac{1}{2}\beta f'_{c}ba(h-a)}{\beta f'_{c}ba}.$$
 (2.59)

Relationship Eq.(2.59) is used to evaluate parameter "a", for a known value of eccentricity. After rearrangements, following equation has to be solved,

$$A_1 a^2 + A_2 a + A_3 = 0, (2.60)$$

where the following notation is used,

$$\begin{array}{c}
 A_{1} = \beta f'_{c} b, \\
\hline
 A_{2} = \beta f'_{c} b(2e-h), \\
\hline
 A_{3} = -2A_{s}f_{y}(h-2d').
\end{array}$$
(2.61)

The solution of Eq.(2.60) is,

$$a = \frac{\sqrt{A_2^2 - 4A_1A_3} - A_2}{2A_1}.$$
 (2.62)

Accordingly, the cross section behavior is limited by two conditions: the end of elastic behavior of layer 2 of reinforcement (point *B* in Figure 2-5a) and the end of yielding of layer 1 of reinforcement (point *T* in Figure 2-5a).

The end of elastic behavior of layer 2 of reinforcement was analyzed in the previous section.

For the end of yielding of layer 1 reinforcement, the strain is

$$\varepsilon_{s1} = \varepsilon_y. \tag{2.63}$$

From Eq.(2.63), Eq.(2.2) and Eq.(2.3)₁,

$$c = \frac{\varepsilon_{\rm m} d'}{\varepsilon_{\rm m} - \varepsilon_{\rm y}}, \qquad (2.64)$$

$$a = \frac{\varepsilon_{\rm m} \beta_{\rm l} d'}{\varepsilon_{\rm m} - \varepsilon_{\rm y}}.$$
 (2.65)

From Eq.(2.64) and Eq.(2.1),

$$\varepsilon_{s2} = \varepsilon_{m} - \left(\varepsilon_{m} - \varepsilon_{y}\right) \frac{d}{d'}, \qquad (2.66)$$

Applying Eq.(2.65) in Eq.(2.58) and Eq.(2.59) yields,

$$P_{T} = \beta f'_{c} b \frac{\varepsilon_{m} \beta_{l} d'}{\varepsilon_{m} - \varepsilon_{y}},$$

$$M_{T} = A_{s} f_{y} (h - 2d') + \frac{1}{2} \beta f'_{c} b \frac{\varepsilon_{m} \beta_{l} d'}{\varepsilon_{m} - \varepsilon_{y}} \left(h - \frac{\varepsilon_{m} \beta_{l} d'}{\varepsilon_{m} - \varepsilon_{y}} \right),$$

$$e_{T} = \frac{A_{s} f_{y} (\varepsilon_{m} - \varepsilon_{y}) (h - 2d')}{\beta f'_{c} b \varepsilon_{m} \beta_{l} d'} + \frac{1}{2} \left(h - \frac{\varepsilon_{m} \beta_{l} d'}{\varepsilon_{m} - \varepsilon_{y}} \right).$$
(2.67)

Finally, the following constraints are obtained for the basic parameters $(e, a, c, \varepsilon_{s1}, \varepsilon_{s2}, f_{s1}, f_{s2})$,

$$e_{\rm B} \leq e \leq e_{\rm T}$$
,

$$\begin{aligned} \frac{\varepsilon_{m}\beta_{1}d'}{\varepsilon_{m}-\varepsilon_{y}} &\leq a \leq \frac{\varepsilon_{m}\beta_{1}d}{\varepsilon_{m}+\varepsilon_{y}}, \\ \frac{\varepsilon_{m}d'}{\varepsilon_{m}-\varepsilon_{y}} &\leq c \leq \frac{\varepsilon_{m}d}{\varepsilon_{m}+\varepsilon_{y}}, \\ \varepsilon_{y} &\leq \varepsilon_{s1} \leq \varepsilon_{m} - (\varepsilon_{m}+\varepsilon_{y})\frac{d'}{d}, \\ \varepsilon_{m} &- (\varepsilon_{m}-\varepsilon_{y})\frac{d}{d'} \leq \varepsilon_{s2} \leq -\varepsilon_{y}, \\ f_{s1} &= f_{y}, \\ f_{s2} &= -f_{y}. \end{aligned}$$

$$(2.68)$$

• Case V (Part of Concrete Cross Section is in Compression – Tension Control)

In this case, the following failure scenario is assumed: a part of concrete cross section is in compression and layer 1 of reinforcing steel is in elastic range in compression but layer 2 of reinforcing steel is yielding,

$$f_{s2} = -f_y, \quad -f_y \le f_{s1} \le f_y.$$
 (2.69)

Combining Eq. $(2.3)_1$, Eq. $(2.5)_2$ and Eq.(2.2), stress in layer 1 of reinforcement is,

$$f_{s1} = E_s \varepsilon_m \left(1 - \frac{\beta_1 d'}{a} \right).$$
(2.70)

Applying Eq.(2.70) in Eq.(2.10) yields,

$$P = A_{s}E_{s}\varepsilon_{m}\left(1 - \frac{\beta_{1}d'}{a}\right) - A_{s}f_{y} + \beta f'_{c}ba,$$

$$M = A_{s}f_{y}\left(\frac{h}{2} - d'\right) + A_{s}E_{s}\varepsilon_{m}\left(1 - \frac{\beta_{1}d'}{a}\right)\left(\frac{h}{2} - d'\right) + \frac{1}{2}\beta f'_{c}ba(h-a),$$
(2.71)

and using Eq.(2.11) the eccentricity is,

$$e = \frac{A_{s}f_{y}\left(\frac{h}{2}-d'\right) + A_{s}E_{s}\varepsilon_{m}\left(1-\frac{\beta_{1}d'}{a}\right)\left(\frac{h}{2}-d'\right) + \frac{1}{2}\beta f'_{c}ba(h-a)}{A_{s}E_{s}\varepsilon_{m}\left(1-\frac{\beta_{1}d'}{a}\right) - A_{s}f_{y} + \beta f'_{c}ba}.$$
(2.72)

Eq.(2.72) is used to evaluate parameter "a" for a known value of eccentricity. After rearrangements, the following equation has to be solved:

$$A_1 a^3 + A_2 a^2 + A_3 a + A_4 = 0, (2.73)$$

where the following notation is used,

$$\begin{array}{c}
 A_{1} = \beta f'_{c} b, \\
 \overline{A_{2}} = \beta f'_{c} b(2e - h), \\
 \overline{A_{3}} = A_{s} E_{s} \varepsilon_{m} (2e - h + 2d') - A_{s} f_{y} (2e + h - 2d'), \\
 \overline{A_{4}} = -A_{s} E_{s} \varepsilon_{m} \beta_{1} d' (2e - h + 2d').
\end{array}$$
(2.74)

In order to solve Eq.(2.73), the following notation is introduced,

$$f = \frac{A_2}{3A_1},$$

$$p = \left(\frac{A_2}{3A_1}\right)^2 - \frac{A_3}{3A_1},$$

$$q = \frac{A_2A_3}{6A_1^2} - \left(\frac{A_2}{3A_1}\right)^3 - \frac{A_4}{2A_1}.$$
(2.75)

The solution is,

$$a = 2\sqrt{p} \cos\left[\frac{1}{3} \arccos\left(\frac{q}{\sqrt{p^3}}\right)\right] - t, \qquad (2.76)$$

Accordingly, the cross section behavior is limited by two conditions: the end of elastic behavior of layer 2 of reinforcement (point T in Figure 2-5a) and a pure flexure (point F in Figure 2-5a).

The end of elastic behavior of layer 2 of reinforcement was analyzed in the previous section.

For the **pure flexure** (Case VI), the axial force is,

$$P = 0.$$
 (2.77)

Applying Eq.(2.77) in Eq.(2.71)₁ and after some rearrangements,

$$\alpha_1 a_M^2 + \alpha_2 a_M + \alpha_3 = 0, \qquad (2.78)$$

where the following notation is used

$$\begin{array}{c} \alpha_{1} = \beta \mathbf{f}'_{c} \mathbf{b}, \\ \hline \alpha_{2} = \mathbf{A}_{s} \left(\mathbf{E}_{s} \boldsymbol{\varepsilon}_{m} - \mathbf{f}_{y} \right), \\ \hline \alpha_{3} = -\mathbf{A}_{s} \mathbf{E}_{s} \boldsymbol{\varepsilon}_{m} \beta_{1} \mathbf{d}'. \end{array}$$
(2.79)

The solution of Eq.(2.78) is,

$$a_{\rm M} = \frac{\sqrt{\alpha_2^2 - 4\alpha_1 \alpha_3} - \alpha_2}{2\alpha_1}.$$
 (2.80)

From Eq.(2.80) and Eq.(2.3)₁,

$$c = \frac{a_M}{\beta_1}, \qquad (2.81)$$

From Eq.(2.80), Eq.(2.1) and Eq.(2.2),

(2.82)

$$\epsilon_{s2} = \epsilon_{m} \left(1 - \frac{\beta_{1} d}{a_{M}} \right),$$

$$\epsilon_{s1} = \epsilon_{m} \left(1 - \frac{\beta_{1} d'}{a_{M}} \right).$$
in Eq. (2.42) yields

Applying Eq.(2.80) in Eq.(2.42) yields

$$P = 0, \qquad e = \infty,$$

$$M = A_s f_y \left(\frac{h}{2} - d'\right) + A_s E_s \varepsilon_m \left(1 - \frac{\beta_1 d'}{a_M}\right) \left(\frac{h}{2} - d'\right) + \frac{1}{2} \beta f'_c b a_M (h - a_M) \qquad (2.83)$$

Finally, the following constraints are obtained for the basic parameters $(e, a, c, \varepsilon_{s1}, \varepsilon_{s2}, f_{s1}, f_{s2})$,

$$e_{\rm T} \le e \le \infty,$$

$$a_{\rm M} \le a \le \frac{\varepsilon_{\rm m} \beta_{\rm l} d'}{\varepsilon_{\rm m} - \varepsilon_{\rm y}},$$

$$\frac{a_{M}}{\beta_{1}} \leq c \leq \frac{\varepsilon_{m}d'}{\varepsilon_{m} - \varepsilon_{y}},$$

$$\varepsilon_{m} \left(1 - \frac{\beta_{1}d'}{a_{M}}\right) \leq \varepsilon_{s1} \leq \varepsilon_{y},$$

$$\varepsilon_{m} \left(1 - \frac{\beta_{1}d}{a_{M}}\right) \leq \varepsilon_{s2} \leq \varepsilon_{m} - \left(\varepsilon_{m} - \varepsilon_{y}\right) \frac{d}{d'},$$

$$E_{s} \varepsilon_{m} \left(1 - \frac{\beta_{1}d'}{a_{M}}\right) \leq f_{s1} \leq f_{y},$$

$$f_{s2} = -f_{y}.$$
(2.84)

...

2.1.5. Cross Section Type II

For the cross section Type II, the axial force and moment (Eq.2.10) are calculated as follows. Cases I, II, III, and V, VI remain unchanged, but in Cases III and V, there are changes in the boundaries of application for the developed formulas.

• Case III (Part of Concrete Cross Section is in Compression – Compression Control)

The only change, compared to the previously considered Case III, is the range of plastic behavior of layer 1 of reinforcement (point C in Figure 2-5b),

$$\varepsilon_{s1} = \varepsilon_y \implies f_{s1} = f_y.$$
 (2.85)

From Eq.(2.85), Eq.(2.2) and Eq.(2.3)₁,

$$c = \frac{\varepsilon_{\rm m} d'}{\varepsilon_{\rm m} - \varepsilon_{\rm v}}, \qquad (2.86)$$

$$a = \frac{\varepsilon_{\rm m} \beta_{\rm l} d'}{\varepsilon_{\rm m} - \varepsilon_{\rm v}}.$$
(2.87)

From Eq.(2.86) and Eq.(2.1),

$$\varepsilon_{s2} = \varepsilon_{m} - \left(\varepsilon_{m} - \varepsilon_{y}\right) \frac{d}{d'}, \qquad (2.88)$$

Applying Eq.(2.87) in Eq.(2.42) and Eq.(2.43) yields,

$$P_{C} = A_{s}f_{y} + A_{s}E_{s}\left[\epsilon_{m} - (\epsilon_{m} - \epsilon_{y})\frac{d}{d'}\right] + \beta f'_{c}b\frac{\epsilon_{m}\beta_{1}d'}{\epsilon_{m} - \epsilon_{y}},$$

$$M_{C} = A_{s}\left\{f_{y} - E_{s}\left[\epsilon_{m} - (\epsilon_{m} - \epsilon_{y})\frac{d}{d'}\right]\right\}\left(\frac{h}{2} - d'\right) + \frac{1}{2}\beta f'_{c}b\frac{\epsilon_{m}\beta_{1}d'}{\epsilon_{m} - \epsilon_{y}}\left(h - \frac{\epsilon_{m}\beta_{1}d'}{\epsilon_{m} - \epsilon_{y}}\right),$$

$$(2.89)$$

$$\frac{e_{C}}{\epsilon_{C}} = \frac{A_{s}\left\{f_{y} - E_{s}\left[\epsilon_{m} - (\epsilon_{m} - \epsilon_{y})\frac{d}{d'}\right]\right\}\left(\frac{h}{2} - d'\right) + \frac{1}{2}\beta f'_{c}b\frac{\epsilon_{m}\beta_{1}d'}{\epsilon_{m} - \epsilon_{y}}\left(h - \frac{\epsilon_{m}\beta_{1}d'}{\epsilon_{m} - \epsilon_{y}}\right)}{A_{s}\left\{f_{y} + E_{s}\left[\epsilon_{m} - (\epsilon_{m} - \epsilon_{y})\frac{d}{d'}\right]\right\} + \beta f'_{c}b\frac{\epsilon_{m}\beta_{1}d'}{\epsilon_{m} - \epsilon_{y}}$$

Finally, the following constraints are obtained for the basic parameters $(e, a, c, \varepsilon_{s1}, \varepsilon_{s2}, f_{s1}, f_{s2})$,

$$\begin{split} e_{H} &\leq e \leq e_{C}, \\ & \frac{\varepsilon_{m}\beta_{1}d'}{\varepsilon_{m} - \varepsilon_{y}} \leq a \leq h, \\ & \frac{\varepsilon_{m}d'}{\varepsilon_{m} - \varepsilon_{y}} \leq c \leq \frac{h}{\beta_{1}}, \\ & \varepsilon_{y} \leq \varepsilon_{s1} \leq \varepsilon_{m} \left(1 - \frac{\beta_{1}d'}{h}\right), \\ & \varepsilon_{m} - \left(\varepsilon_{m} - \varepsilon_{y}\right) \frac{d}{d'} \leq \varepsilon_{s2} \leq \varepsilon_{m} \left(1 - \frac{\beta_{1}d}{h}\right), \\ & f_{s1} = f_{y}, \\ & E_{s} \left[\varepsilon_{m} - \left(\varepsilon_{m} - \varepsilon_{y}\right) \frac{d}{d'}\right] \leq f_{s2} \leq E_{s} \varepsilon_{m} \left(1 - \frac{\beta_{1}d}{h}\right). \end{split}$$

$$(2.90)$$

• Case IVb (Part of Concrete Cross Section is in Compression – Compression Control)

In this case, the following failure scenario is assumed: a part of concrete cross section is in compression and both layers of reinforcing steel are in elastic range,

$$-f_{y} \le f_{s1} \le f_{y}, \quad -f_{y} \le f_{s2} \le f_{y}.$$
 (2.91)

Combining Eq. $(2.3)_1$, Eq. $(2.5)_2$ and Eq.(2.2), stress in layer 1 of reinforcement is,

$$f_{s1} = E_s \varepsilon_m \left(1 - \frac{\beta_1 d'}{a} \right).$$
(2.92)

Similarly, combining Eq. $(2.3)_1$, Eq. $(2.5)_2$ and Eq.(2.1), stress in layer 2 of reinforcement is,

$$f_{s2} = E_s \varepsilon_m \left(1 - \frac{\beta_1 d}{a} \right).$$
(2.93)

Applying Eq.(2.92) and Eq.(2.93) in Eq.(2.10) yields,

$$P = A_{s}E_{s}\varepsilon_{m}\left(2 - \frac{\beta_{1}h}{a}\right) + \beta f'_{c} ba,$$

$$M = A_{s}E_{s}\varepsilon_{m}\frac{(h - 2d')^{2}\beta_{1}}{2a} + \frac{1}{2}\beta f'_{c} ba(h - a),$$
(2.94)

and from Eq.(2.11) the eccentricity is,

$$e = \frac{A_s E_s \varepsilon_m \frac{(h - 2d')^2 \beta_1}{2a} + \frac{1}{2} \beta f'_c ba(h - a)}{A_s E_s \varepsilon_m \left(2 - \frac{\beta_1 h}{a}\right) + \beta f'_c ba}.$$
(2.95)

Eq.(2.95) is used to evaluate the parameter "a", for a known value of eccentricity. After some rearrangments, the following equation has to be solved,

$$A_1 a^3 + A_2 a^2 + A_3 a + A_4 = 0, (2.96)$$

where the following notation is used,

$$A_{1} = \beta f'_{c} b,$$

$$A_{2} = \beta f'_{c} b(2e - h),$$

$$A_{3} = 4A_{s}E_{s}\varepsilon_{m}e,$$

$$A_{4} = -A_{s}E_{s}\varepsilon_{m}\beta_{1}[2he + (h - 2d')^{2}].$$
(2.97)

In order to solve Eq.(2.96), the following notation is introduced,

$$t = \frac{A_2}{3A_1},$$

$$p = \left(\frac{A_2}{3A_1}\right)^2 - \frac{A_3}{3A_1},$$

$$q = \frac{A_2A_3}{6A_1^2} - \left(\frac{A_2}{3A_1}\right)^3 - \frac{A_4}{2A_1}.$$
(2.98)

Therefore, the solution is,

$$a = 2\sqrt{-p} \sinh\left[\frac{1}{3}\operatorname{arcsinh}\left(\frac{q}{\sqrt{-p^3}}\right)\right] - t.$$
(2.99)

Accordingly, the cross section behavior is limited by two conditions: the end of elastic behavior of layer 1 of reinforcement (point *C* in Figure 2-5b) and beginning of yielding of layer 2 of reinforcement (point *B* in Figure 2-5b).

The end point of elastic behavior of layer 1 of reinforcement was analyzed in the previous section.

For the beginning of yielding of layer 2 of reinforcement in tension (balanced failure) the strain is,

$$\varepsilon_{s2} = -\varepsilon_{y}. \tag{2.100}$$

From Eq.(2.100), Eq.(2.1) and Eq.(2.3)₁,

$$c = \frac{\varepsilon_{\rm m} d}{\varepsilon_{\rm m} + \varepsilon_{\rm y}}, \qquad (2.101)$$

$$a = \frac{\varepsilon_{\rm m} \beta_{\rm l} d}{\varepsilon_{\rm m} + \varepsilon_{\rm y}}.$$
 (2.102)

From Eq.(2.101) and Eq.(2.2),

$$\varepsilon_{s1} = \varepsilon_m - \left(\varepsilon_m + \varepsilon_y\right) \frac{d'}{d}.$$
 (2.103)

Applying Eq.(2.102) in Eq.(2.94) and Eq.(2.95) yields,

$$P_{\rm B} = A_{\rm s} E_{\rm s} \left(2\varepsilon_{\rm m} - \left(\varepsilon_{\rm m} + \varepsilon_{\rm y}\right) \frac{h}{d} \right) + \beta f'_{\rm c} b \frac{\varepsilon_{\rm m} \beta_{\rm l} d}{\varepsilon_{\rm m} + \varepsilon_{\rm y}} ,$$

$$M_{B} = A_{s}E_{s}\left(\varepsilon_{m} + \varepsilon_{y}\right)\frac{(h - 2d')^{2}}{2d} + \frac{1}{2}\beta f'_{c}b\frac{\varepsilon_{m}\beta_{1}d}{\varepsilon_{m} + \varepsilon_{y}}\left(h - \frac{\varepsilon_{m}\beta_{1}d}{\varepsilon_{m} + \varepsilon_{y}}\right), \qquad (2.104)$$

$$e_{B} = \frac{A_{s}E_{s}\left(\varepsilon_{m} + \varepsilon_{y}\right)\frac{(h - 2d')^{2}}{2d} + \frac{1}{2}\beta f'_{c}b\frac{\varepsilon_{m}\beta_{1}d}{\varepsilon_{m} + \varepsilon_{y}}\left(h - \frac{\varepsilon_{m}\beta_{1}d}{\varepsilon_{m} + \varepsilon_{y}}\right)}{A_{s}E_{s}\left(2\varepsilon_{m} - \left(\varepsilon_{m} + \varepsilon_{y}\right)\frac{h}{d}\right) + \beta f'_{c}b\frac{\varepsilon_{m}\beta_{1}d}{\varepsilon_{m} + \varepsilon_{y}}}$$

Finally, the following constraints are obtained for the basic parameters (e, a, c, ε_{s1} , ε_{s2} , f_{s1} , f_{s2}),

$$\begin{split} e_{C} &\leq e \leq e_{B}, \\ & \frac{\epsilon_{m}\beta_{1}d}{\epsilon_{m} + \epsilon_{y}} \leq a \leq \frac{\epsilon_{m}\beta_{1}d'}{\epsilon_{m} - \epsilon_{y}}, \\ & \frac{\epsilon_{m}d}{\epsilon_{m} + \epsilon_{y}} \leq c \leq \frac{\epsilon_{m}d'}{\epsilon_{m} - \epsilon_{y}}, \\ \epsilon_{m} - \left(\epsilon_{m} + \epsilon_{y}\right)\frac{d'}{d} \leq \epsilon_{s1} \leq \epsilon_{y}, \\ \epsilon_{m} - \left(\epsilon_{m} + \epsilon_{y}\right)\frac{d'}{d} \leq \epsilon_{s1} \leq \epsilon_{y}, \\ & -\epsilon_{y} \leq \epsilon_{s2} \leq \epsilon_{m} - \left(\epsilon_{m} - \epsilon_{y}\right)\frac{d}{d'}, \\ & E_{s} \left[\epsilon_{m} - \left(\epsilon_{m} + \epsilon_{y}\right)\frac{d'}{d}\right] \leq f_{s1} \leq f_{y}, \\ & -f_{y} \leq f_{s2} \leq E_{s} \left[\epsilon_{m} - \left(\epsilon_{m} - \epsilon_{y}\right)\frac{d}{d'}\right]. \end{split}$$

$$(2.105)$$

• Case V (Part of Concrete Cross Section is in Compression – Tension Control)

In this case, there is only one change in boundary constraints. The following constraints for the basic parameters (e, a, c, ε_{s1} , ε_{s2} , f_{s1} , f_{s2}) can be formulated in this case,

$$\begin{split} e_{B} &\leq e \leq \infty \,, \\ a_{M} \leq a \leq \frac{\epsilon_{m}\beta_{1}d}{\epsilon_{m} + \epsilon_{y}} \,, \\ \frac{a_{M}}{\beta_{1}} &\leq c \leq \frac{\epsilon_{m}d}{\epsilon_{m} + \epsilon_{y}} \,, \end{split}$$

$$\begin{split} & \epsilon_{\rm m} \left(1 - \frac{\beta_{\rm l} d'}{a_{\rm M}} \right) \leq \epsilon_{\rm s1} \leq \epsilon_{\rm m} - \left(\epsilon_{\rm m} + \epsilon_{\rm y} \right) \frac{d'}{d}, \qquad (2.106) \\ & \epsilon_{\rm m} \left(1 - \frac{\beta_{\rm l} d}{a_{\rm M}} \right) \leq \epsilon_{\rm s2} \leq -\epsilon_{\rm y}, \\ & E_{\rm s} \epsilon_{\rm m} \left(1 - \frac{\beta_{\rm l} d'}{a_{\rm M}} \right) \leq f_{\rm s1} \leq E_{\rm s} \left[\epsilon_{\rm m} - \left(\epsilon_{\rm m} + \epsilon_{\rm y} \right) \frac{d'}{d} \right], \\ & f_{\rm s2} = -f_{\rm y}. \end{split}$$

2.2. Statistical Parameters of Resistance

The statistical parameters of resistance were determined by the Monte Carlo simulations using design equations specified for each design case. The design parameters: b, h, d, f_c', f_y, A_s, E_s, were treated as random variables, and constants were treated as deterministic values. The cumulative distribution function (CDF) of resistance was obtained by generating 200,000 values of resistance, R, for each design case. An example of simulated interaction diagram is shown in Figure 2-6. Based on this information, it was possible to calculate the mean of R, m_R, bias factor, λ_R , and coefficient of variation, V_R. The resistance simulations were performed for concrete strength, f_c' = 3 ksi, 5ksi, 8 ksi and 12 ksi. For comparison, the simulations were also performed for material statistical parameters used in the previous code calibration (Elingwood et al. 1980), denoted here as "old concrete".

For example, the resulting mean and nominal interaction diagrams are shown in Figures 2-7 through 2-10, for cast-in-place tied columns with $f_c' = 3$ ksi, 5 ksi, 8 ksi and 12 ksi respectively. Also shown are the interaction diagrams corresponding to one standard deviation above and below the mean.

Figure 2-7. Mean and Nominal Interaction Diagrams (for concrete strength of 3 ksi, tied columns, castin-place).

Figure 2-9. Mean and Nominal Interaction Diagrams (for concrete Strength of 8 ksi, tied columns, castin-place).

Figure 2-11. Bias Factor of Resistance (calculated for tied columns cast-in-place made of concrete with strength of 3 ksi).

Figure 2-12. Bias Factor of Resistance (calculated for tied columns cast-in-place made of concrete with strength of 5 ksi).

Figure 2-13. Bias Factor of Resistance (calculated for tied columns cast-in-place made of concrete with strength of 8 ksi).

Figure 2-14. Bias Factor of Resistance (calculated for tied columns cast-in-place made of concrete with strength of 12 ksi).

Figure 2-15. Coefficient of Variation of Resistance (calculated for tied columns cast-in-place made of concrete with strength of 3 ksi).

Figure 2-16. Coefficient of Variation of Resistance (calculated for tied columns cast-in-place made of concrete with strength of 5 ksi).

Figure 2-17. Coefficient of Variation of Resistance (calculated for tied columns cast-in-place made of concrete with strength of 8 ksi).

The bias factors of resistance for cast-in-place tied columns are plotted vs. e/h (ratio of eccentricity and total depth of the cross section) in Figures 2-11 through 2-14, for $f_c' = 3$ ksi, 5 ksi, 8 ksi and 12 ksi, respectively.

The coefficients of variation of resistance for cast-in-place tied columns are plotted vs. e/h (ratio of eccentricity and total depth of the cross section) in Figures 2-15 through 2-18, for $f_c' = 3$ ksi, 5 ksi, 8 ksi and 12 ksi respectively.

Monte Carlo simulations were performed for three column cross sections: square (16 in x 16 in), rectangular (14 in x 22 in, with h/b = 1.57), and larger rectangular section (18 in x 36 in, with h/b = 2). No significant difference in statistical parameters for resistance was found for square and smaller rectangular (h/b = 1.57) cross sections. For larger rectangular cross sections (h/b = 2), the analysis was performed separately.

Tables 2-1a and b, 2-3a and b, contain bias factors of resistance for tied columns, cast-inplace and plant cast, calculated for reinforcement ratios of 1%, 2%, 3% and 4%, and concrete strengths of 3 ksi, 5 ksi, 8 ksi and 12 ksi (for h/b = 1.57). Tables 2-2a and b, 2-4a and b, contain bias factors of resistance for tied columns, cast-in-place and plant cast, calculated for reinforcement ratios of 1%, 2%, 3% and 4%, and concrete strengths of 3 ksi, 5 ksi, 8 ksi and 12 ksi (for h/b = 2). Tables 2-9a and b, and 2-10a and b, contain bias factors of resistance for spiral columns, cast-in-place and plant cast, calculated for reinforcement ratios of 1%, 2%, 3% and 4%, and concrete strengths of 3 ksi, 5 ksi, 8 ksi and 12 ksi.

Tables 2-5a and b, 2-7a and b, contain coefficient of variation of resistance for tied columns, cast-in-place and plant cast, calculated for reinforcement ratios of 1%, 2%, 3% and 4%, and concrete strengths of 3 ksi, 5 ksi, 8 ksi and 12 ksi (for h/b = 1.57). Tables 2-6a and b, 2-8a and b, contain coefficient of variation of resistance for tied columns, cast-in-place and plant cast, calculated for reinforcement ratios of 1%, 2%, 3% and 4%, and concrete strengths of 3 ksi, 5 ksi, 8 ksi and 12 ksi (for h/b = 2). Tables 2-11a and b, 2-12a and b, contain coefficient of variation of resistance for spiral columns, cast-in-place and plant cast, calculated for reinforcement ratios of 1%, 2%, 3% and 4%, and concrete strengths of 3 ksi, 5 ksi, 8 ksi and 12 ksi (for h/b = 2). Tables 2-11a and b, 2-12a and b, contain coefficient of variation of resistance for spiral columns, cast-in-place and plant cast, calculated for reinforcement ratios of 1%, 2%, 3% and 4%, and concrete strengths of 3 ksi, 5 ksi, 8 ksi and 12 ksi.

D	esign cas	e	Tied							
%	e			Cast-in-place						
of reinf.	(in)	e/h			bias					
			old	f _c '=3.0	f _c '=5.0	f _c '=8.0	f _c '=12.0			
				ksi	ksi	ksi	ksi			
	0	0.00	0.982	1.320	1.159	1.092	1.050			
	4	0.18	0.986	1.320	1.161	1.095	1.056			
	8	0.36	1.001	1.302	1.162	1.103	<mark>1.069</mark>			
	10	0.45	<mark>1.024</mark>	<mark>1.282</mark>	<mark>1.161</mark>	<mark>1.116</mark>	1.095			
	12	0.55	1.055	1.246	1.156	1.133	1.124			
1.0/	14	0.64	1.078	1.216	1.160	1.142	1.136			
1 %	16	0.73	1.095	1.202	1.161	1.147	1.141			
	18	0.82	1.101	1.194	1.160	1.147	1.144			
	20	0.91	1.110	1.187	1.159	1.150	1.143			
	24	1.09	1.112	1.177	1.157	1.148	1.140			
	40	1.82	1.116	1.169	1.156	1.147	1.141			
	72	3.27	1.115	1.167	1.154	1.145	1.140			
	0	0.00	0.997	1.292	1.160	1.096	1.055			
	4	0.18	1.002	1.292	1.160	1.099	1.060			
	8	0.36	1.012	1.279	1.161	1.105	1.072			
	10	0.45	1.022	1.274	1.159	1.111	<mark>1.077</mark>			
	12	0.55	1.021	1.269	<mark>1.151</mark>	<mark>1.115</mark>	1.110			
20/	14	0.64	1.055	1.250	1.154	1.131	1.130			
2%	16	0.73	1.074	<mark>1.219</mark>	1.152	1.141	1.141			
	18	0.82	1.095	1.200	1.156	1.147	1.139			
	20	0.91	1.102	1.187	1.157	1.146	1.143			
	24	1.09	1.112	1.175	1.155	1.148	1.143			
	40	1.82	1.121	1.165	1.154	1.149	1.143			
	72	3.27	1.121	1.163	1.152	1.147	1.144			

Table 2-1a. Bias Factor of Resistance for Eccentrically Loaded Columns (tied, cast-inplace, for h/b = 1.57)

D	esign cas	e	Tied							
%				Cast-in-place						
of	(in)	e/h			bias					
reinf.	(111)									
			old	f _c '=3.0	f _c '=5.0	f _c '=8.0	f _c '=12.0			
				ksi	ksi	ksi	ksi			
	0	0.00	1.007	1.274	1.159	1.096	1.061			
	4	0.18	1.016	1.273	1.158	1.104	1.064			
	8	0.36	1.025	1.261	1.159	1.110	1.076			
	10	0.45	1.028	1.262	1.159	1.110	1.084			
	12	0.55	1.032	1.257	1.157	1.113	<mark>1.094</mark>			
30%	14	0.64	<mark>1.036</mark>	1.254	<mark>1.156</mark>	<mark>1.114</mark>	1.120			
570	16	0.73	1.049	1.248	1.155	1.133	1.132			
	18	0.82	1.074	1.228	1.154	1.138	1.136			
	20	0.91	1.085	<mark>1.198</mark>	1.151	1.143	1.141			
	24	1.09	1.109	1.184	1.154	1.148	1.144			
	40	1.82	1.119	1.165	1.153	1.147	1.147			
	72	3.27	1.125	1.158	1.154	1.150	1.143			
	0	0.00	1.017	1.260	1.157	1.099	1.067			
	4	0.18	1.022	1.256	1.160	1.104	1.068			
	8	0.36	1.032	1.249	1.159	1.110	1.078			
	10	0.45	1.039	1.248	1.158	1.116	1.085			
	12	0.55	1.037	1.243	1.156	1.112	1.086			
106	14	0.64	1.041	1.241	1.155	1.115	<mark>1.106</mark>			
4 /0	16	0.73	1.044	1.240	1.155	<mark>1.110</mark>	1.125			
	18	0.82	1.042	1.239	<mark>1.148</mark>	1.132	1.135			
	20	0.91	1.071	1.234	1.153	1.141	1.140			
	24	1.09	1.095	<mark>1.194</mark>	1.149	1.148	1.147			
	40	1.82	1.124	1.162	1.154	1.151	1.146			
	72	3.27	1.125	1.158	1.153	1.149	1.145			

Table 2-1b. Bias Factor of Resistance for Eccentrically Loaded Columns (tied, cast-inplace, h/b = 1.57)

D	esign cas	e	Tied								
%				Cast-in-place							
of	(in)	e/h		bias							
reinf.	(111)										
			old	f _c '=3.0	f _c '=5.0	f _c '=8.0	f _c '=12.0				
				ksi	ksi	ksi	ksi				
	0	0.00	0.982	1.320	1.164	1.088	1.049				
	6	0.17	0.984	1.315	1.161	1.090	1.053				
	12	0.33	1.001	1.301	1.162	1.107	1.067				
	15	0.42	<mark>1.004</mark>	1.291	<mark>1.157</mark>	<mark>1.105</mark>	<mark>1.087</mark>				
	18	0.50	1.043	<mark>1.256</mark>	1.160	1.126	1.111				
104	21	0.58	1.062	1.239	1.160	1.140	1.152				
1 70	24	0.67	1.079	1.222	1.159	1.142	1.140				
	27	0.75	1.091	1.207	1.156	1.147	1.148				
	30	0.83	1.104	1.192	1.157	1.157	1.149				
	39	1.08	1.119	1.169	1.160	1.150	1.150				
	60	1.67	1.123	1.164	1.154	1.152	1.150				
	108	3.00	1.125	1.159	1.151	1.149	1.146				
	0	0.00	0.996	1.292	1.158	1.094	1.154				
	6	0.17	0.967	1.299	1.157	1.094	1.062				
	12	0.33	1.012	1.278	1.156	1.106	1.070				
	15	0.42	1.019	1.274	1.159	1.105	<mark>1.078</mark>				
	18	0.50	1.017	1.267	1.160	<mark>1.106</mark>	1.099				
204	21	0.58	<mark>1.034</mark>	1.265	<mark>1.156</mark>	1.125	1.116				
2.70	24	0.67	1.062	<mark>1.236</mark>	1.155	1.137	1.124				
	27	0.75	1.079	1.212	1.155	1.137	1.136				
	30	0.83	1.087	1.204	1.158	1.141	1.141				
	39	1.08	1.108	1.184	1.152	1.148	1.149				
	60	1.67	1.127	1.155	1.154	1.153	1.149				
	108	3.00	1.127	1.155	1.150	1.152	1.148				

Table 2-2a. Bias Factor of Resistance for Eccentrically Loaded Columns (tied, cast-inplace, for h/b = 2)

D	esign cas	e	Tied								
%				Cast-in-place							
of	e (in)	e/h		bias							
reinf.	(111)										
			old	f _c '=3.0	f _c '=5.0	f _c '=8.0	f _c '=12.0				
				ksi	ksi	ksi	ksi				
	0	0.00	1.011	1.274	1.157	1.095	1.058				
	6	0.17	1.013	1.272	1.159	1.100	1.063				
	12	0.33	1.023	1.264	1.158	1.108	1.076				
	15	0.42	1.030	1.259	1.161	1.109	1.078				
	18	0.50	1.033	1.256	1.156	1.110	<mark>1.084</mark>				
204	21	0.58	1.034	1.255	1.156	1.113	1.106				
570	24	0.67	<mark>1.035</mark>	1.252	<mark>1.155</mark>	<mark>1.125</mark>	1.123				
	27	0.75	1.051	1.247	1.154	1.136	1.127				
	30	0.83	1.076	<mark>1.229</mark>	1.156	1.135	1.135				
	39	1.08	1.102	1.189	1.153	1.145	1.145				
	60	1.67	1.121	1.166	1.151	1.152	1.149				
	108	3.00	1.129	1.158	1.152	1.149	1.149				
	0	0.00	1.018	1.257	1.155	1.102	1.067				
	6	0.17	1.018	1.256	1.155	1.103	1.071				
	12	0.33	1.031	1.249	1.156	1.107	1.076				
	15	0.42	1.035	1.250	1.161	1.110	1.082				
	18	0.50	1.039	1.246	1.155	1.117	1.081				
104	21	0.58	1.042	1.240	1.156	1.115	<mark>1.090</mark>				
4%	24	0.67	1.043	1.242	1.158	1.116	1.112				
	27	0.75	1.042	1.240	1.154	<mark>1.111</mark>	1.123				
	30	0.83	<mark>1.041</mark>	1.237	<mark>1.145</mark>	1.135	1.130				
	39	1.08	1.093	1.205	1.156	1.145	1.143				
	60	1.67	1.114	1.170	1.150	1.150	1.151				
	108	3.00	1.130	1.152	1.153	1.152	1.150				

Table 2-2b. Bias Factor of Resistance for Eccentrically Loaded Columns (tied, cast-inplace, h/b = 2)

D	esign cas	e	Tied							
% of reinf.	e (in)	e/h		Plant cast bias						
			old	f _c '=3.0	f _c '=5.0	f _c '=8.0	f _c '=12.0			
				ksi	ksi	ksi	ksi			
	0	0.00	1.021	1.375	1.207	1.136	1.095			
	4	0.18	1.023	1.369	1.205	1.133	1.096			
	8	0.36	1.035	1.351	1.205	1.140	<mark>1.104</mark>			
	10	0.45	<mark>1.063</mark>	<mark>1.335</mark>	<mark>1.207</mark>	<mark>1.155</mark>	1.131			
	12	0.55	1.093	1.293	1.199	1.173	1.152			
10/	14	0.64	1.122	1.260	1.203	1.183	1.176			
1 %0	16	0.73	1.136	1.249	1.204	1.189	1.179			
	18	0.82	1.145	1.240	1.202	1.190	1.182			
	20	0.91	1.152	1.233	1.203	1.193	1.184			
	24	1.09	1.155	1.227	1.205	1.195	1.187			
	40	1.82	1.162	1.218	1.202	1.194	1.189			
	72	3.27	1.162	1.214	1.203	1.195	1.190			
	0	0.00	1.039	1.352	1.204	1.138	1.102			
	4	0.18	1.042	1.344	1.204	1.139	1.100			
	8	0.36	1.053	1.330	1.209	1.148	1.113			
	10	0.45	1.062	1.326	1.206	1.152	<mark>1.116</mark>			
	12	0.55	<mark>1.059</mark>	1.319	<mark>1.196</mark>	<mark>1.160</mark>	1.149			
204	14	0.64	1.121	<mark>1.298</mark>	1.205	1.174	1.165			
270	16	0.73	1.098	1.264	1.198	1.185	1.182			
	18	0.82	1.139	1.249	1.201	1.190	1.183			
	20	0.91	1.149	1.234	1.206	1.192	1.187			
	24	1.09	1.156	1.227	1.201	1.196	1.191			
	40	1.82	1.165	1.214	1.204	1.198	1.193			
	72	3.27	1.169	1.211	1.202	1.197	1.193			

Table 2-3a. Bias Factor of Resistance for Eccentrically Loaded Columns (tied, plant cast, for h/b = 1.57)

D	Design case			Tied						
% of reinf	e (in)	e/h		Plant cast bias						
Tenn.			old	f '=3 0	f '=5 0	f '=8 0	f '=12 0			
			014	ksi	ksi	ksi	ksi			
	0	0.00	1.051	1.329	1.206	1.143	1.105			
	4	0.18	1.054	1.325	1.202	1.147	1.103			
	8	0.36	1.065	1.311	1.206	1.151	1.116			
	10	0.45	1.073	1.309	1.203	1.156	1.120			
	12	0.55	1.071	1.307	1.201	1.156	<mark>1.132</mark>			
20/	14	0.64	1.075	1.306	1.201	<mark>1.156</mark>	1.161			
3%	16	0.73	<mark>1.094</mark>	1.298	<mark>1.202</mark>	1.177	1.176			
	18	0.82	1.118	1.279	1.199	1.184	1.182			
	20	0.91	1.132	<mark>1.252</mark>	1.198	1.189	1.186			
	24	1.09	1.156	1.232	1.201	1.195	1.192			
	40	1.82	1.169	1.213	1.205	1.198	1.194			
	72	3.27	1.172	1.208	1.204	1.198	1.192			
	0	0.00	1.062	1.314	1.203	1.146	1.112			
	4	0.18	1.065	1.313	1.204	1.148	1.112			
	8	0.36	1.077	1.302	1.204	1.156	1.120			
	10	0.45	1.080	1.301	1.204	1.157	1.124			
	12	0.55	1.082	1.294	1.204	1.159	1.128			
106	14	0.64	1.087	1.292	1.204	1.159	<mark>1.150</mark>			
7/0	16	0.73	1.085	1.293	1.207	<mark>1.157</mark>	1.169			
	18	0.82	<mark>1.087</mark>	1.291	<mark>1.194</mark>	1.178	1.179			
	20	0.91	1.117	1.286	1.197	1.185	1.185			
	24	1.09	1.139	<mark>1.241</mark>	1.197	1.193	1.189			
	40	1.82	1.173	1.210	1.203	1.198	1.194			
	72	3.27	1.173	1.208	1.202	1.199	1.196			

Table 2-3b. Bias Factor of Resistance for Eccentrically Loaded Columns (tied, plant cast, for h/b = 1.57)

D	esign cas	e	Tied							
%	e	o /b		Plant cast						
reinf.	(in)	e/n			bias					
			old	f _c '=3.0	f _c '=5.0	f _c '=8.0	f _c '=12.0			
				ksi	ksi	ksi	ksi			
	0	0.00	1.022	1.377	1.204	1.133	1.097			
	6	0.17	1.025	1.372	1.205	1.135	1.096			
	12	0.33	1.036	1.353	1.206	1.144	1.104			
	15	0.42	<mark>1.043</mark>	1.348	<mark>1.198</mark>	<mark>1.145</mark>	<mark>1.121</mark>			
	18	0.50	1.082	1.302	1.202	1.165	1.142			
1%	21	0.58	0.104	1.282	1.203	1.174	1.163			
1 /0	24	0.67	1.121	1.267	1.206	1.185	1.180			
	27	0.75	1.134	1.252	1.201	1.189	1.187			
	30	0.83	1.146	1.240	1.199	1.194	1.190			
	39	1.08	1.165	1.217	1.203	1.196	1.194			
	60	1.67	1.170	1.209	1.203	1.199	1.195			
	108	3.00	1.176	1.208	1.202	1.199	1.197			
	0	0.00	1.037	1.348	1.208	1.142	1.096			
	6	0.17	1.039	1.343	1.204	1.143	1.104			
	12	0.33	1.052	1.330	1.203	1.145	1.111			
	15	0.42	1.059	1.330	1.203	1.150	<mark>1.117</mark>			
	18	0.50	1.063	1.319	1.207	<mark>1.149</mark>	1.140			
204	21	0.58	<mark>1.076</mark>	1.316	<mark>1.199</mark>	1.173	1.157			
2%	24	0.67	1.107	<mark>1.289</mark>	1.203	1.177	1.170			
	27	0.75	1.122	1.262	1.201	1.182	1.180			
	30	0.83	1.132	1.253	1.203	1.187	1.188			
	39	1.08	1.153	1.234	1.202	1.197	1.193			
	60	1.67	1.173	1.209	1.202	1.201	1.198			
	108	3.00	1.174	1.207	1.203	1.201	1.196			

Table 2-4a. Bias Factor of Resistance for Eccentrically Loaded Columns (tied, plant cast, for h/b = 2)

D	esign cas	e	Tied							
%	e	_		Plant cast						
of reinf.	(in)	e/h			bias					
			old	f _c '=3.0	f _c '=5.0	f _c '=8.0	f _c '=12.0			
				ksi	ksi	ksi	ksi			
	0	0.00	1.055	1.327	1.204	1.147	1.105			
	6	0.17	1.055	1.324	1.204	1.145	1.107			
	12	0.33	1.064	1.319	1.206	1.152	1.115			
	15	0.42	1.070	1.312	1.205	1.153	1.121			
	18	0.50	1.072	1.308	1.206	1.156	<mark>1.125</mark>			
30%	21	0.58	1.074	1.307	1.203	1.155	1.152			
J 70	24	0.67	<mark>1.076</mark>	1.301	<mark>1.200</mark>	<mark>1.168</mark>	1.164			
	27	0.75	1.094	1.298	1.199	1.180	1.173			
	30	0.83	1.118	<mark>1.285</mark>	1.202	1.186	1.177			
	39	1.08	1.147	1.237	1.203	1.194	1.193			
	60	1.67	1.171	1.218	1.204	1.201	1.197			
	108	3.00	1.176	1.205	1.202	1.202	1.200			
	0	0.00	1.064	1.313	1.205	1.149	1.108			
	6	0.17	1.066	1.308	1.207	1.147	1.109			
	12	0.33	1.071	1.304	1.204	1.154	1.119			
	15	0.42	1.077	1.297	1.206	1.155	1.126			
	18	0.50	1.081	1.293	1.205	1.156	1.128			
104	21	0.58	1.086	1.293	1.206	1.160	<mark>1.129</mark>			
470	24	0.67	1.085	1.294	1.203	1.163	1.159			
	27	0.75	1.086	1.287	1.203	<mark>1.158</mark>	1.170			
	30	0.83	<mark>1.087</mark>	1.289	<mark>1.190</mark>	1.179	1.176			
	39	1.08	1.135	<mark>1.253</mark>	1.202	1.193	1.189			
	60	1.67	1.163	1.223	1.202	1.200	1.197			
	108	3.00	1.176	1.206	1.203	1.198	1.197			

Table 2-4b. Bias Factor of Resistance for Eccentrically Loaded Columns (tied, plant cast, for h/b = 2)

D	esign cas	e	Tied							
%				Cast-in-place						
of	e (in)	e/h			COV					
reinf.	(111)									
			old	f _c '=3.0	f _c '=5.0	f _c '=8.0	f _c '=12.0			
				ksi	ksi	ksi	ksi			
	0	0.00	0.160	0.126	0.129	0.132	0.136			
	4	0.18	0.162	0.130	0.135	0.138	0.140			
	8	0.36	0.157	0.128	0.135	0.140	<mark>0.143</mark>			
	10	0.45	<mark>0.154</mark>	<mark>0.128</mark>	<mark>0.134</mark>	<mark>0.143</mark>	0.151			
	12	0.55	0.147	0.128	0.134	0.143	0.156			
1.0/	14	0.64	0.148	0.129	0.136	0.140	0.147			
1 %	16	0.73	0.148	0.127	0.122	0.136	0.139			
	18	0.82	0.147	0.127	0.127	0.136	0.131			
	20	0.91	0.145	0.121	0.124	0.126	0.124			
	24	1.09	0.143	0.118	0.120	0.120	0.117			
	40	1.82	0.135	0.113	0.111	0.110	0.111			
	72	3.27	0.135	0.109	0.109	0.108	0.106			
	0	0.00	0.149	0.117	0.125	0.128	0.131			
	4	0.18	0.149	0.120	0.126	0.131	0.135			
	8	0.36	0.145	0.121	0.126	0.130	0.136			
	10	0.45	0.147	0.121	0.126	0.132	<mark>0.135</mark>			
	12	0.55	<mark>0.143</mark>	0.122	<mark>0.123</mark>	<mark>0.127</mark>	0.136			
20/	14	0.64	0.141	0.120	0.124	0.129	0.136			
2%	16	0.73	0.139	<mark>0.118</mark>	0.122	0.128	0.133			
	18	0.82	0.141	0.119	0.123	0.126	0.129			
	20	0.91	0.142	0.118	0.122	0.125	0.124			
	24	1.09	0.140	0.118	0.119	0.119	0.119			
	40	1.82	0.140	0.114	0.114	0.114	0.112			
	72	3.27	0.137	0.110	0.109	0.109	0.108			

Table 2-5a. Coefficient of Variation of Resistance for Eccentrically Loaded Columns (tied, cast-in-place, for h/b = 1.57)

D	esign cas	e	Tied							
% of reinf.	e (in)	e/h		Cast-in-place COV						
			old	f _c '=3.0	f _c '=5.0	f _c '=8.0	f _c '=12.0			
				ksi	ksi	ksi	ksi			
	0	0.00	0.138	0.110	0.116	0.121	0.126			
	4	0.18	0.140	0.114	0.120	0.126	0.132			
	8	0.36	0.139	0.116	0.120	0.126	0.132			
	10	0.45	0.141	0.116	0.119	0.127	0.130			
	12	0.55	0.137	0.117	0.121	0.123	<mark>0.128</mark>			
30%	14	0.64	<mark>0.139</mark>	0.115	<mark>0.118</mark>	<mark>0.124</mark>	0.126			
570	16	0.73	0.137	0.117	0.117	0.122	0.129			
	18	0.82	0.136	0.116	0.116	0.121	0.126			
	20	0.91	0.136	<mark>0.114</mark>	0.119	0.121	0.124			
	24	1.09	0.137	0.116	0.119	0.118	0.121			
	40	1.82	0.140	0.114	0.113	0.114	0.112			
	72	3.27	0.137	0.112	0.110	0.110	0.109			
	0	0.00	0.131	0.105	0.110	0.117	0.122			
	4	0.18	0.135	0.109	0.115	0.122	0.128			
	8	0.36	0.134	0.112	0.116	0.122	0.128			
	10	0.45	0.134	0.113	0.116	0.120	0.127			
	12	0.55	0.135	0.114	0.115	0.121	0.126			
104	14	0.64	0.133	0.112	0.116	0.119	<mark>0.122</mark>			
470	16	0.73	0.134	0.112	0.115	<mark>0.119</mark>	0.121			
	18	0.82	<mark>0.133</mark>	0.112	<mark>0.115</mark>	0.118	0.123			
	20	0.91	0.134	0.113	0.114	0.118	0.122			
	24	1.09	0.137	<mark>0.113</mark>	0.115	0.120	0.120			
	40	1.82	0.139	0.115	0.113	0.113	0.114			
	72	3.27	0.139	0.111	0.111	0.111	0.110			

Table 2-5b. Coefficient of Variation of Resistance for Eccentrically Loaded Columns (tied, cast-in-place, for h/b = 1.57)

D	esign cas	e	Tied								
%	e			Cast-in-place							
of	(in)	e/h			COV						
renn.			ald	f'-20	f'_50	f'_00	f'_120				
			olu	$I_c = 5.0$	$I_c = 3.0$	$I_c = 8.0$	$I_c = 12.0$				
	0	0.00	0.160	0.123	0.128	0.132	0.135				
	6	0.00	0.159	0.123	0.120	0.132	0.133				
	12	0.33	0.157	0.126	0.130	0.138	0.141				
	15	0.33	0.157	0.120	0.130	0.135	0.144				
	18	0.12	0.132	0.127	0.128	0.135	0.147				
	21	0.58	0.142	0.120	0.126	0.136	0.143				
1%	24	0.67	0.143	0.121	0.128	0.138	0.141				
	27	0.75	0.140	0.122	0.128	0.132	0.135				
	30	0.83	0.145	0.122	0.124	0.128	0.129				
	39	1.08	0.143	0.119	0.119	0.119	0.121				
	60	1.67	0.138	0.113	0.111	0.112	0.113				
	108	3.00	0.135	0.108	0.108	0.110	0.107				
	0	0.00	0.148	0.116	0.121	0.126	0.129				
	6	0.17	0.149	0.121	0.125	0.131	0.134				
	12	0.33	0.144	0.119	0.124	0.128	0.136				
	15	0.42	0.145	0.121	0.124	0.129	<mark>0.134</mark>				
	18	0.50	0.145	0.117	0.123	<mark>0.127</mark>	0.130				
2%	21	0.58	<mark>0.141</mark>	0.118	<mark>0.118</mark>	0.124	0.126				
270	24	0.67	0.138	<mark>0.115</mark>	0.119	0.119	0.127				
	27	0.75	0.134	0.114	0.118	0.121	0.125				
	30	0.83	0.135	0.111	0.115	0.120	0.126				
	39	1.08	0.138	0.112	0.116	0.120	0.120				
	60	1.67	0.137	0.113	0.114	0.112	0.113				
	108	3.00	0.136	0.109	0.109	0.110	0.108				

Table 2-6a. Coefficient of Variation of Resistance for Eccentrically Loaded Columns (tied, cast-in-place, for h/b = 2)

D	esign cas	e			Tied						
%				Cast-in-place							
of	(in)	e/h		COV							
reinf.	(111)										
			old	f _c '=3.0	f _c '=5.0	f _c '=8.0	f _c '=12.0				
				ksi	ksi	ksi	ksi				
	0	0.00	0.138	0.109	0.117	0.122	0.127				
	6	0.17	0.139	0.112	0.120	0.124	0.132				
	12	0.33	0.138	0.113	0.117	0.127	0.130				
	15	0.42	0.140	0.115	0.116	0.121	0.126				
	18	0.50	0.139	0.114	0.117	0.122	<mark>0.126</mark>				
304	21	0.58	0.133	0.115	0.115	0.120	0.123				
570	24	0.67	<mark>0.134</mark>	0.112	<mark>0.116</mark>	<mark>0.119</mark>	0.123				
	27	0.75	0.132	0.112	0.117	0.116	0.121				
	30	0.83	0.131	<mark>0.111</mark>	0.112	0.116	0.121				
	39	1.08	0.137	0.111	0.112	0.115	0.118				
	60	1.67	0.138	0.113	0.113	0.112	0.114				
	108	3.00	0.135	0.111	0.111	0.109	0.109				
	0	0.00	0.134	0.105	0.111	0.118	0.122				
	6	0.17	0.134	0.110	0.114	0.120	0.125				
	12	0.33	0.135	0.109	0.115	0.120	0.125				
	15	0.42	0.133	0.110	0.113	0.119	0.126				
	18	0.50	0.132	0.110	0.114	0.117	0.121				
104	21	0.58	0.132	0.110	0.115	0.118	<mark>0.123</mark>				
4%	24	0.67	0.130	0.111	0.113	0.118	0.118				
	27	0.75	0.135	0.109	0.113	<mark>0.118</mark>	0.117				
	30	0.83	<mark>0.131</mark>	0.107	<mark>0.112</mark>	0.114	0.118				
	39	1.08	0.131	<mark>0.108</mark>	0.113	0.114	0.117				
	60	1.67	0.135	0.109	0.109	0.112	0.114				
	108	3.00	0.138	0.109	0.112	0.110	0.108				

Table 2-6b. Coefficient of Variation of Resistance for Eccentrically Loaded Columns (tied, cast-in-place, for h/b = 2)

D	esign cas	e	Tied						
% of	e	o/h			Plant cast				
reinf.	(in)	C/11			COV				
			old	f _c '=3.0	f _c '=5.0	f _c '=8.0	f _c '=12.0		
				ksi	ksi	ksi	ksi		
	0	0.00	0.146	0.108	0.111	0.115	0.118		
	4	0.18	0.147	0.110	0.112	0.116	0.118		
	8	0.36	0.138	0.104	0.108	0.113	<mark>0.116</mark>		
	10	0.45	<mark>0.130</mark>	<mark>0.100</mark>	<mark>0.101</mark>	<mark>0.106</mark>	0.114		
	12	0.55	0.120	0.095	0.099	0.104	0.108		
1.0/	14	0.64	0.117	0.095	0.099	0.102	0.105		
1 %0	16	0.73	0.120	0.094	0.095	0.098	0.099		
	18	0.82	0.119	0.091	0.093	0.097	0.094		
	20	0.91	0.117	0.090	0.092	0.092	0.092		
	24	1.09	0.116	0.089	0.091	0.089	0.090		
	40	1.82	0.117	0.086	0.084	0.085	0.085		
	72	3.27	0.116	0.085	0.086	0.085	0.082		
	0	0.00	0.134	0.098	0.103	0.108	0.112		
	4	0.18	0.134	0.099	0.105	0.110	0.114		
	8	0.36	0.127	0.096	0.101	0.106	0.111		
	10	0.45	0.124	0.096	0.099	0.103	<mark>0.105</mark>		
	12	0.55	<mark>0.121</mark>	0.095	<mark>0.095</mark>	<mark>0.097</mark>	0.100		
204	14	0.64	0.114	<mark>0.090</mark>	0.091	0.092	0.098		
2 70	16	0.73	0.114	0.089	0.093	0.093	0.096		
	18	0.82	0.117	0.090	0.092	0.093	0.094		
	20	0.91	0.115	0.089	0.090	0.091	0.093		
	24	1.09	0.117	0.089	0.089	0.091	0.089		
	40	1.82	0.117	0.086	0.087	0.088	0.086		
	72	3.27	0.119	0.086	0.087	0.85	0.085		

Table 2-7a. Coefficient of Variation of Resistance for Eccentrically Loaded Columns (tied, plant cast, for h/b = 1.57)

D	esign cas	e	Tied						
%					Plant cast				
of	e (in)	e/h			COV				
reinf.	(111)								
			old	f _c '=3.0	f _c '=5.0	f _c '=8.0	f _c '=12.0		
				ksi	ksi	ksi	ksi		
	0	0.00	0.124	0.091	0.097	0.103	0.108		
	4	0.18	0.124	0.094	0.099	0.104	0.110		
	8	0.36	0.120	0.093	0.095	0.102	0.107		
	10	0.45	0.118	0.093	0.096	0.100	0.105		
	12	0.55	0.117	0.092	0.095	0.098	<mark>0.098</mark>		
20/	14	0.64	<mark>0.117</mark>	0.090	<mark>0.093</mark>	<mark>0.092</mark>	0.094		
3%	16	0.73	0.115	0.091	0.087	0.089	0.095		
	18	0.82	0.112	0.089	0.088	0.090	0.093		
	20	0.91	0.114	<mark>0.086</mark>	0.088	0.091	0.091		
	24	1.09	0.118	0.087	0.090	0.090	0.090		
	40	1.82	0.118	0.088	0.090	0.087	0.087		
	72	3.27	0.121	0.087	0.086	0.085	0.086		
	0	0.00	0.117	0.088	0.093	0.100	0.105		
	4	0.18	0.119	0.090	0.094	0.102	0.105		
	8	0.36	0.116	0.088	0.095	0.097	0.102		
	10	0.45	0.114	0.087	0.091	0.095	0.100		
	12	0.55	0.114	0.088	0.092	0.095	0.099		
4.04	14	0.64	0.114	0.087	0.090	0.094	<mark>0.093</mark>		
470	16	0.73	0.115	0.089	0.091	<mark>0.093</mark>	0.092		
	18	0.82	<mark>0.114</mark>	0.090	<mark>0.087</mark>	0.089	0.092		
	20	0.91	0.111	0.087	0.087	0.089	0.094		
	24	1.09	0.112	<mark>0.085</mark>	0.088	0.089	0.089		
	40	1.82	0.119	0.088	0.087	0.089	0.086		
	72	3.27	0.119	0.088	0.086	0.086	0.085		

Table 2-7b. Coefficient of Variation of Resistance for Eccentrically Loaded Columns (tied, plant cast, for h/b = 1.57)

D	esign cas	e	Tied						
%					Plant cast				
of	e (in)	e/h			COV				
reinf.	(111)								
			old	f _c '=3.0	f _c '=5.0	f _c '=8.0	f _c '=12.0		
				ksi	ksi	ksi	ksi		
	0	0.00	0.147	0.108	0.112	0.115	0.117		
	6	0.17	0.143	0.109	0.111	0.118	0.117		
	12	0.33	0.137	0.104	0.111	0.112	0.116		
	15	0.42	<mark>0.135</mark>	0.101	<mark>0.102</mark>	<mark>0.108</mark>	<mark>0.111</mark>		
	18	0.50	0.121	<mark>0.094</mark>	0.098	0.102	0.108		
1.0/	21	0.58	0.118	0.091	0.095	0.100	0.104		
1 %0	24	0.67	0.115	0.092	0.094	0.097	0.103		
	27	0.75	0.113	0.092	0.092	0.095	0.100		
	30	0.83	0.116	0.887	0.092	0.095	0.098		
	39	1.08	0.120	0.889	0.090	0.090	0.090		
	60	1.67	0.121	0.087	0.086	0.089	0.086		
	108	3.00	0.120	0.087	0.084	0.085	0.084		
	0	0.00	0.133	0.098	0.104	0.109	0.112		
	6	0.17	0.134	0.099	0.103	0.108	0.113		
	12	0.33	0.126	0.096	0.100	0.105	0.111		
	15	0.42	0.124	0.095	0.098	0.104	0.105		
	18	0.50	0.122	0.094	0.097	<mark>0.100</mark>	<mark>0.099</mark>		
204	21	0.58	<mark>0.118</mark>	0.094	<mark>0.092</mark>	0.094	0.096		
2 70	24	0.67	0.114	<mark>0.089</mark>	0.090	0.091	0.095		
	27	0.75	0.110	0.086	0.090	0.089	0.093		
	30	0.83	0.110	0.087	0.087	0.090	0.093		
	39	1.08	0.114	0.088	0.089	0.090	0.091		
	60	1.67	0.119	0.086	0.087	0.088	0.086		
	108	3.00	0.118	0.088	0.087	0.084	0.085		

Table 2-8a. Coefficient of Variation of Resistance for Eccentrically Loaded Columns (tied, plant cast, for h/b = 2)

D	esign cas	e	Tied						
%					Plant cast				
of	e (in)	e/h			COV				
reinf.	(111)								
			old	f _c '=3.0	f _c '=5.0	f _c '=8.0	f _c '=12.0		
				ksi	ksi	ksi	ksi		
	0	0.00	0.123	0.091	0.097	0.103	0.108		
	6	0.17	0.122	0.093	0.098	0.104	0.107		
	12	0.33	0.118	0.091	0.096	0.102	0.105		
	15	0.42	0.118	0.090	0.094	0.098	0.105		
	18	0.50	0.117	0.090	0.092	0.098	<mark>0.101</mark>		
20/	21	0.58	0.115	0.090	0.091	0.097	0.095		
3%	24	0.67	<mark>0.116</mark>	0.092	<mark>0.091</mark>	<mark>0.092</mark>	0.091		
	27	0.75	0.113	0.090	0.088	0.089	0.089		
	30	0.83	0.111	<mark>0.086</mark>	0.086	0.089	0.089		
	39	1.08	0.112	0.084	0.087	0.087	0.090		
	60	1.67	0.118	0.086	0.088	0.087	0.089		
	108	3.00	0.119	0.087	0.086	0.086	0.087		
	0	0.00	0.116	0.088	0.092	0.099	0.104		
	6	0.17	0.119	0.089	0.093	0.100	0.106		
	12	0.33	0.116	0.087	0.093	0.098	0.101		
	15	0.42	0.116	0.088	0.092	0.097	0.099		
	18	0.50	0.114	0.088	0.091	0.094	0.097		
4.04	21	0.58	0.112	0.088	0.089	0.094	<mark>0.095</mark>		
4%	24	0.67	0.114	0.085	0.089	0.094	0.091		
	27	0.75	0.114	0.088	0.088	<mark>0.090</mark>	0.087		
	30	0.83	<mark>0.111</mark>	0.087	<mark>0.088</mark>	0.087	0.086		
	39	1.08	0.110	<mark>0.085</mark>	0.086	0.087	0.087		
	60	1.67	0.112	0.084	0.086	0.087	0.087		
	108	3.00	0.120	0.087	0.086	0.087	0.085		

Table 2-8b. Coefficient of Variation of Resistance for Eccentrically Loaded Columns (tied, plant cast, for h/b = 2)

Table 2-9a. Bias Factor of Resistance for Eccentrically Loaded Columns (spiral, cast-inplace)

Design case		Spiral						
%	ρ				Cast-in-place			
of	(in)	e/h			bias			
reinf.	(111)							
			old	f _c '=3.0	f _c '=5.0	f _c '=8.0	f _c '=12.0	
				ksi	ksi	ksi	ksi	
	0	0.00	1.027	1.387	1.217	1.147	1.100	
	4	0.18	1.025	1.386	1.223	1.149	1.111	
	8	0.36	1.039	1.364	1.221	1.158	<mark>1.123</mark>	
	10	0.45	1.065	<mark>1.347</mark>	<mark>1.223</mark>	<mark>1.190</mark>	1.150	
	12	0.55	1.092	1.303	1.222	1.200	1.175	
	14	0.64	1.119	1.272	1.217	1.208	1.194	
1%	16	0.73	1.136	1.260	1.217	1.204	1.201	
	18	0.82	1.139	1.253	1.213	1.206	1.201	
	20	0.91	1.150	1.245	1.220	1.202	1.203	
	24	1.09	1.154	1.237	1.213	1.208	1.198	
	40	1.82	1.160	1.227	1.210	1.203	1.194	
	72	3.27	1.164	1.225	1.209	1.202	1.198	
	0	0.00	1.045	1.362	1.214	1.151	1.111	
	4	0.18	1.040	1.357	1.219	1.153	1.114	
	8	0.36	1.056	1.343	1.219	1.160	1.126	
	10	0.45	1.059	1.334	1.219	1.165	<mark>1.127</mark>	
	12	0.55	<mark>1.060</mark>	1.330	<mark>1.210</mark>	<mark>1.170</mark>	1.163	
	14	0.64	1.102	1.311	1.215	1.190	1.185	
2%	16	0.73	1.118	1.275	1.210	1.195	1.189	
	18	0.82	1.136	1.264	1.211	1.204	1.197	
	20	0.91	1.149	1.243	1.210	1.203	1.200	
	24	1.09	1.155	1.233	1.217	1.205	1.196	
	40	1.82	1.163	1.222	1.210	1.207	1.200	
	72	3.27	1.170	1.218	1.211	1.204	1.199	

Table 2-9b. Bias Factor of Resistance for Eccentrically Loaded Columns (spiral, cast-in	n-
place)	

D	esign cas	e	Spiral						
%	0				Cast-in-place				
of	(in)	e/h			bias				
reinf.	(111)								
			old	f _c '=3.0	f _c '=5.0	f _c '=8.0	f _c '=12.0		
				ksi	ksi	ksi	ksi		
	0	0.00	1.053	1.339	1.216	1.153	1.112		
	4	0.18	1.059	1.337	1.216	1.156	1.117		
	8	0.36	1.070	1.323	1.216	1.163	1.132		
	10	0.45	1.072	1.318	1.217	1.164	1.129		
	12	0.55	1.071	1.319	1.213	1.170	<mark>1.147</mark>		
	14	0.64	<mark>1.076</mark>	1.314	<mark>1.205</mark>	<mark>1.165</mark>	1.171		
3%	16	0.73	1.092	1.311	1.209	1.187	1.184		
	18	0.82	1.114	1.290	1.206	1.192	1.197		
	20	0.91	1.129	<mark>1.259</mark>	1.209	1.204	1.196		
	24	1.09	1.155	1.237	1.213	1.207	1.201		
	40	1.82	1.162	1.220	1.210	1.203	1.204		
	72	3.27	1.169	1.214	1.209	1.206	1.200		
	0	0.00	1.065	1.320	1.217	1.158	1.116		
	4	0.18	1.072	1.321	1.215	1.159	1.121		
	8	0.36	1.077	1.314	1.212	1.167	1.134		
	10	0.45	1.078	1.306	1.218	1.168	1.135		
	12	0.55	1.082	1.304	1.216	1.166	1.136		
	14	0.64	1.084	1.304	1.213	1.174	<mark>1.161</mark>		
4%	16	0.73	1.086	1.299	1.208	<mark>1.165</mark>	1.178		
	18	0.82	<mark>1.088</mark>	1.300	<mark>1.207</mark>	1.189	1.185		
	20	0.91	1.112	1.293	1.210	1.196	1.195		
	24	1.09	1.142	<mark>1.251</mark>	1.209	1.201	1.201		
	40	1.82	1.168	1.216	1.210	1.204	1.203		
	72	3.27	1.167	1.213	1.209	1.204	1.201		

D	esign cas	e	Spiral						
%	е	a			Plant cast				
of · · ·	(in)	e/h			bias				
reinf.	. ,		-1.1	62.20	62 50	62.00	62 12 0		
			old	$I_c = 3.0$	$I_c = 5.0$	$I_c = 8.0$	$I_{c} = 12.0$		
	0	0.00	1.022	KS1	KS1	KS1	KS1		
	0	0.00	1.022	1.378	1.208	1.132	1.092		
	4	0.18	1.023	1.3/1	1.207	1.134	1.093		
	8	0.36	1.039	1.350	1.204	1.142	1.10/ 1.109		
	10	0.45	1.004 1.000	1.331 1.200	1.205 1.107	1.154 1.167	1.128		
	12	0.55	1.090	1.290	1.19/	1.10/	1.155		
10/	14	0.04	1.118	1.201	1.198	1.179	1.170		
1%	10	0.75	1.132	1.245	1.202	1.190	1.180		
	18	0.82	1.145	1.230	1.201	1.109	1.100		
	20	0.91	1.140	1.227	1.202	1.187	1.185		
	24	1.09	1.155	1.222	1.200	1.192	1.185		
	40	1.82	1.102	1.210	1.199	1.194	1.188		
	12	3.27	1.164	1.217	1.201	1.193	1.189		
	0	0.00	1.038	1.348	1.206	1.141	1.101		
	4	0.18	1.043	1.341	1.204	1.139	1.102		
	8	0.36	1.050	1.328	1.203	1.144	1.109		
	10	0.45	1.061	1.325	1.207	1.147	<mark>1.116</mark>		
	12	0.55	<mark>1.059</mark>	1.319	<mark>1.191</mark>	<mark>1.158</mark>	1.144		
	14	0.64	1.097	1.296	1.200	1.173	1.169		
2%	16	0.73	1.117	<mark>1.263</mark>	1.197	1.183	1.174		
	18	0.82	1.134	1.249	1.198	1.186	1.179		
	20	0.91	1.142	1.231	1.199	1.190	1.183		
	24	1.09	1.154	1.222	1.201	1.193	1.187		
	40	1.82	1.161	1.211	1.199	1.194	1.191		
	72	3.27	1.166	1.207	1.201	1.196	1.192		

Table 2-10a. Bias Factor of Resistance for Eccentrically Loaded Columns (spiral, plant cast)

D	esign cas	e	Spiral						
%					Plant cast				
of	e (in)	e/h			bias				
reinf.	(111)								
			old	f _c '=3.0	f _c '=5.0	f _c '=8.0	f _c '=12.0		
				ksi	ksi	ksi	ksi		
	0	0.00	1.053	1.332	1.204	1.142	1.107		
	4	0.18	1.052	1.325	1.203	1.143	1.105		
	8	0.36	1.061	1.313	1.207	1.151	1.116		
	10	0.45	1.069	1.309	1.204	1.153	1.120		
	12	0.55	1.071	1.303	1.203	1.156	<mark>1.133</mark>		
	14	0.64	<mark>1.070</mark>	1.301	<mark>1.203</mark>	<mark>1.152</mark>	1.156		
3%	16	0.73	1.091	1.297	1.196	1.177	1.176		
	18	0.82	1.117	1.276	1.197	1.181	1.179		
	20	0.91	1.130	<mark>1.246</mark>	1.198	1.188	1.184		
	24	1.09	1.152	1.232	1.197	1.193	1.189		
	40	1.82	1.166	1.209	1.201	1.196	1.192		
	72	3.27	1.170	1.206	1.200	1.195	1.194		
	0	0.00	1.064	1.313	1.205	1.147	1.110		
	4	0.18	1.066	1.309	1.201	1.150	1.108		
	8	0.36	1.073	1.298	1.204	1.153	1.119		
	10	0.45	1.079	1.296	1.201	1.157	1.122		
	12	0.55	1.082	1.294	1.199	1.157	1.124		
	14	0.64	1.083	1.293	1.202	1.159	<mark>1.148</mark>		
4%	16	0.73	1.087	1.287	1.204	<mark>1.152</mark>	1.167		
	18	0.82	<mark>1.083</mark>	1.285	<mark>1.188</mark>	1.177	1.176		
	20	0.91	1.110	1.284	1.197	1.181	1.182		
	24	1.09	1.139	<mark>1.237</mark>	1.194	1.191	1.189		
	40	1.82	1.167	1.208	1.201	1.195	1.192		
	72	3.27	1.171	1.203	1.201	1.196	1.190		

Table 2-10b. Bias Factor of Resistance for Eccentrically Loaded Columns (spiral, plant cast)

D	esign cas	e	Spiral							
% of reinf.	e (in)	e/h		Cast-in-place COV						
			old	f _c '=3.0 ksi	f _c '=5.0 ksi	f _c '=8.0 ksi	f _c '=12.0 ksi			
	0	0.00	0.149	0.114	0.120	0.122	0.125			
	4	0.18	0.151	0.119	0.125	0.127	0.132			
	8	0.36	0.140	0.117	0.126	0.130	<mark>0.138</mark>			
	10	0.45	<mark>0.129</mark>	<mark>0.117</mark>	<mark>0.121</mark>	<mark>0.136</mark>	0.142			
	12	0.55	0.121	0.116	0.125	0.130	0.145			
	14	0.64	0.119	0.117	0.123	0.126	0.139			
1%	16	0.73	0.119	0.117	0.121	0.118	0.127			
	18	0.82	0.118	0.114	0.113	0.111	0.118			
	20	0.91	0.119	0.112	0.112	0.106	0.112			
	24	1.09	0.117	0.107	0.106	0.109	0.106			
	40	1.82	0.115	0.101	0.097	0.098	0.096			
	72	3.27	0.116	0.094	0.094	0.095	0.093			
	0	0.00	0.136	0.104	0.108	0.115	0.120			
	4	0.18	0.133	0.108	0.112	0.119	0.125			
	8	0.36	0.130	0.109	0.113	0.120	0.126			
	10	0.45	0.126	0.109	0.113	0.121	<mark>0.126</mark>			
	12	0.55	<mark>0.124</mark>	0.109	<mark>0.110</mark>	<mark>0.117</mark>	0.126			
	14	0.64	0.116	0.106	0.111	0.114	0.123			
2%	16	0.73	0.114	<mark>0.106</mark>	0.112	0.115	0.122			
	18	0.82	0.114	0.105	0.111	0.113	0.118			
	20	0.91	0.118	0.105	0.110	0.113	0.113			
	24	1.09	0.119	0.105	0.106	0.107	0.107			
	40	1.82	0.119	0.100	0.100	0.101	0.100			
	72	3.27	0.117	0.096	0.097	0.095	0.094			

 Table 2-11a. Coefficient of Variation of Resistance for Eccentrically Loaded Columns

 (spiral, cast-in-place)

D	esign cas	e	Spiral						
%	ρ				Cast-in-place				
of	(in)	e/h			COV				
reinf.	(111)			1		r			
			old	f _c '=3.0	f _c '=5.0	f _c '=8.0	f _c '=12.0		
				ksi	ksi	ksi	ksi		
	0	0.00	0.125	0.097	0.103	0.108	0.114		
	4	0.18	0.127	0.101	0.106	0.115	0.121		
	8	0.36	0.122	0.102	0.108	0.116	0.121		
	10	0.45	0.121	0.102	0.108	0.115	0.115		
	12	0.55	0.119	0.103	0.109	0.115	<mark>0.117</mark>		
	14	0.64	<mark>0.117</mark>	0.104	<mark>0.107</mark>	<mark>0.111</mark>	0.114		
3%	16	0.73	0.116	0.103	0.105	0.110	0.116		
	18	0.82	0.113	0.100	0.104	0.109	0.113		
	20	0.91	0.115	<mark>0.098</mark>	0.107	0.110	0.110		
	24	1.09	0.114	0.101	0.107	0.107	0.107		
	40	1.82	0.119	0.101	0.101	0.101	0.100		
	72	3.27	0.119	0.098	0.097	0.096	0.098		
	0	0.00	0.118	0.092	0.096	0.102	0.110		
	4	0.18	0.120	0.095	0.103	0.107	0.115		
	8	0.36	0.118	0.098	0.105	0.110	0.115		
	10	0.45	0.116	0.100	0.104	0.108	0.114		
	12	0.55	0.115	0.100	0.103	0.108	0.113		
	14	0.64	0.117	0.100	0.103	0.106	<mark>0.111</mark>		
4%	16	0.73	0.112	0.098	0.103	<mark>0.107</mark>	0.111		
	18	0.82	<mark>0.113</mark>	0.099	<mark>0.102</mark>	0.104	0.111		
	20	0.91	0.113	0.100	0.101	0.106	0.111		
	24	1.09	0.115	<mark>0.099</mark>	0.105	0.105	0.109		
	40	1.82	0.119	0.100	0.103	0.099	0.100		
	72	3.27	0.118	0.098	0.100	0.097	0.097		

Table 2-11b. Coefficient of Variation of Resistance for Eccentrically Loaded Columns (spiral, cast-in-place)

D	esign cas	e	Spiral						
%	e				Plant cast				
of	(in)	e/h			COV				
reinf.	. ,		. 1.1	62.20	62 50	62.00	62 12 0		
			old	$I_c = 3.0$	$I_c = 5.0$	$I_c = 8.0$	$I_c = 12.0$		
	0	0.00	0.146	KSI 0.109	KSI	KSI	KSI		
	0	0.00	0.140	0.108	0.112	0.115	0.118		
	4	0.18	0.147	0.107	0.114	0.117	0.121		
	0	0.30	0.136	0.103	0.108	0.110	0.110 0.111		
	10	0.45	0.120	0.102	0.101	0.103	0.110		
	14	0.55	0.120	0.090	0.099	0.104	0.110		
1%	14	0.04	0.121	0.090	0.097	0.101	0.105		
1 /0	18	0.75	0.119	0.094	0.097	0.098	0.095		
	20	0.02	0.120	0.091	0.090	0.097	0.093		
	20	1.09	0.118	0.090	0.089	0.092	0.089		
	40	1.82	0.115	0.088	0.086	0.084	0.087		
	72	3.27	0.113	0.086	0.086	0.083	0.083		
		0.27	01110	0.000	01000	01000	01000		
	0	0.00	0.132	0.098	0.103	0.109	0.113		
	4	0.18	0.131	0.101	0.104	0.109	0.112		
	8	0.36	0.127	0.097	0.101	0.106	0.110		
	10	0.45	0.124	0.096	0.099	0.103	<mark>0.108</mark>		
	12	0.55	<mark>0.121</mark>	0.095	<mark>0.095</mark>	<mark>0.098</mark>	0.098		
	14	0.64	0.115	0.092	0.093	0.095	0.099		
2%	16	0.73	0.114	<mark>0.089</mark>	0.091	0.095	0.096		
	18	0.82	0.115	0.088	0.091	0.095	0.093		
	20	0.91	0.115	0.088	0.091	0.091	0.092		
	24	1.09	0.118	0.089	0.091	0.090	0.091		
	40	1.82	0.118	0.088	0.086	0.086	0.086		
	72	3.27	0.117	0.086	0.088	0.086	0.083		

 Table 2-12a. Coefficient of Variation of Resistance for Eccentrically Loaded Columns

 (spiral, plant cast)

D	esign cas	e			Spiral		
%					Plant cast		
of	(in)	e/h			COV		
reinf.	(111)						
			old	f _c '=3.0	f _c '=5.0	f _c '=8.0	f _c '=12.0
				ksi	ksi	ksi	ksi
	0	0.00	0.123	0.091	0.097	0.103	0.108
	4	0.18	0.124	0.093	0.099	0.105	0.110
	8	0.36	0.121	0.091	0.096	0.102	0.107
	10	0.45	0.119	0.092	0.095	0.099	0.103
	12	0.55	0.119	0.091	0.094	0.096	<mark>0.099</mark>
	14	0.64	<mark>0.118</mark>	0.090	<mark>0.093</mark>	<mark>0.093</mark>	0.095
3%	16	0.73	0.116	0.091	0.092	0.091	0.094
	18	0.82	0.114	0.089	0.089	0.091	0.093
	20	0.91	0.112	<mark>0.086</mark>	0.089	0.090	0.093
	24	1.09	0.119	0.088	0.089	0.091	0.090
	40	1.82	0.119	0.087	0.088	0.089	0.086
	72	3.27	0.118	0.087	0.088	0.086	0.085
	0	0.00	0.118	0.087	0.093	0.098	0.105
	4	0.18	0.117	0.090	0.094	0.100	0.107
	8	0.36	0.115	0.090	0.092	0.099	0.104
	10	0.45	0.116	0.090	0.093	0.097	0.102
	12	0.55	0.116	0.089	0.092	0.095	0.098
	14	0.64	0.114	0.088	0.092	0.092	<mark>0.094</mark>
4%	16	0.73	0.112	0.086	0.089	<mark>0.092</mark>	0.092
	18	0.82	<mark>0.112</mark>	0.089	<mark>0.089</mark>	0.088	0.091
	20	0.91	0.111	0.087	0.087	0.090	0.091
	24	1.09	0.114	<mark>0.086</mark>	0.089	0.090	0.091
	40	1.82	0.121	0.089	0.087	0.088	0.087
	72	3.27	0.117	0.087	0.088	0.086	0.087

Table 2-12b. Coefficient of Variation of Resistance for Eccentrically Loaded Columns(spiral, plant cast)

2.3. Reliability Indices for Eccentrically Loaded Columns

Based on the limit state functions established for each design case, the reliability analysis was performed to determine the reliability indices for new material statistics and new load models (according to ASCE 7 -1998 and ACI 318 -2000), and for comparison, for old material statistics and old load models (ACI 318-99). The "old" reliability indices served as a basis for the selection of the target reliability index for eccentrically loaded columns. The reliability analysis procedure used in this study was the same as presented in the first part of the report (Phase I). The reliability index calculated for each design

case is based on the mean value of resistance and load effect, and standard deviations of these two variables. The reliability indices calculated for the considered design cases, four types of concrete, and three selected resistance factors, are shown in Tables 2-13 through 2-18.

Table 2-13. Reliability indices and possible resistance factors for eccentrically loaded columns (tied, cast-in-place, for h/b = 1.57)

Ι	Design case								Tied						
г								Ca	st-in-pl	ace					
% einf	e	e/h							beta						
of orc.	(in)	C/ 11	old		f_{c} = 3.0			f_{c} = 5.0)		$f_{c}'=8.0$		f	$f_{c}'=12.0$)
•			olu		ksi			ksi			ksi			ksi	
		φ	0.70	0.85	0.70	0.75	0.85	0.70	0.75	0.85	0.70	0.75	0.85	0.70	0.75
	4	0.18	3.04	3.64	4.36	4.12	3.0	3.77	3.51	2.69	3.48	3.21	2.50	3.30	3.03
1%	10	0.45	3.31	3.57	4.32	4.07	3.02	3.79	3.53	2.69	3.44	3.18	2.49	3.21	2.97
1 /0	18	0.82	3.68	3.28	4.09	3.82	3.15	3.97	3.70	3.04	3.85	3.58	3.01	3.81	3.54
	72	3.27	4.03	3.61	4.57	4.25	3.55	4.52	4.19	3.53	4.52	4.19	3.56	4.57	4.23
	8	0.36	3.45	3.74	4.53	4.27	3.18	4.01	3.73	2.87	3.70	3.42	2.63	3.44	3.17
2%	12	0.55	3.53	3.68	4.47	4.20	3.20	4.06	3.77	2.97	3.82	3.53	2.78	3.58	3.31
270	18	0.82	3.81	3.49	4.35	4.06	3.22	4.08	3.79	3.12	3.96	3.68	3.03	3.85	3.57
	72	3.27	3.99	3.56	4.52	4.20	3.54	4.51	4.18	3.52	4.49	4.16	3.53	4.51	4.18
	8	0.36	3.63	3.81	4.65	4.37	3.30	4.18	3.88	2.97	3.83	3.54	2.71	3.55	3.27
3%	14	0.64	3.67	3.81	4.66	4.38	3.34	4.23	3.93	3.02	3.90	3.60	3.01	3.86	3.58
570	20	0.91	3.91	3.61	4.51	4.21	3.29	4.18	3.88	3.21	4.09	3.79	3.14	3.99	3.71
	72	3.27	4.00	3.49	4.43	4.11	3.52	4.48	4.16	3.51	4.47	4.14	3.50	4.47	4.14
	8	0.36	3.78	3.87	4.76	4.46	3.40	4.30	4.00	3.05	3.94	3.64	2.79	3.66	3.36
1%	14	0.64	3.84	3.84	4.73	4.43	3.38	4.29	3.98	3.13	4.04	3.74	3.03	3.92	3.62
7/0	24	1.09	3.91	3.37	4.20	3.92	3.15	3.99	3.71	3.26	4.14	3.84	3.15	4.00	3.73
	72	3.27	3.95	3.52	4.46	4.14	3.49	4.45	4.12	3.48	4.43	4.11	3.48	4.45	4.12

Ι	Design case								Tied						
ъ								Р	'lant ca	st					
% einf	e	e/h							beta						
of orc.	(in)	C/11	old		f _c '=3.0)		f _c '=5.0)		f _c '=8.0		f	f _c '=12.0)
•			olu		ksi			ksi			ksi			ksi	
		φ	0.70	0.85	0.70	0.75	0.85	0.70	0.75	0.85	0.70	0.75	0.85	0.70	0.75
	4	0.18	3.45	4.38	5.21	4.93	3.70	4.61	4.30	3.28	4.20	3.89	3.07	4.00	3.68
1%	10	0.45	4.00	4.61	5.56	5.24	4.03	5.04	4.70	3.63	4.63	4.29	3.32	4.26	3.94
1 /0	18	0.82	4.62	4.53	5.64	5.27	4.27	5.38	5.00	4.07	5.14	4.78	4.13	5.24	4.87
	40	1.82	4.74	4.61	5.81	5.40	4.60	5.84	5.42	4.52	5.75	5.33	4.49	5.72	5.30
	4	0.18	3.82	4.68	5.64	5.32	3.89	4.87	4.54	3.45	4.60	4.10	3.17	4.13	3.81
2%	12	0.55	4.24	4.74	5.75	5.41	4.17	5.26	4.89	3.92	5.01	4.64	3.77	4.84	4.48
270	20	0.91	4.77	4.58	5.72	5.33	4.39	5.55	5.15	4.29	5.43	5.04	4.19	5.31	4.93
	40	1.82	4.75	4.59	5.79	5.38	4.50	5.69	5.28	4.43	5.61	5.21	4.47	5.69	5.28
	8	0.36	4.30	4.78	5.83	5.47	4.22	5.30	4.94	3.73	4.77	4.41	3.42	4.43	4.09
3%	16	0.73	4.58	4.81	5.88	5.52	4.49	5.68	5.27	4.27	5.46	5.06	4.07	5.17	4.80
570	20	0.91	4.75	4.79	5.97	5.57	4.43	5.61	5.21	4.27	5.42	5.03	4.25	5.40	5.01
	40	1.82	4.73	4.51	5.68	5.28	4.39	5.54	5.15	4.46	5.66	5.25	4.44	5.64	5.23
	4	0.18	4.33	4.92	6.00	5.63	4.24	5.34	4.97	3.71	4.75	4.40	3.45	4.48	4.13
4%	12	0.55	4.56	4.91	6.03	5.66	4.31	5.44	5.06	3.98	5.09	4.71	3.69	4.78	4.41
7/0	18	0.82	4.58	4.82	5.91	5.54	4.44	5.64	5.23	4.28	5.46	5.06	4.18	5.32	4.94
	40	1.82	4.71	4.49	5.67	5.27	4.49	5.69	5.28	4.39	5.56	5.16	4.48	5.69	5.28

Table 2-14. Reliability indices and possible resistance factors for eccentrically loaded columns (tied, plant cast, for h/b = 1.57)

Table 2-15. Reliability indices and possible resistance factors for eccentrically loaded columns (tied, cast-in-place, for h/b = 2)

Γ	Design case								Tied						
г								Cas	st-in-pl	ace					
einf	e	o /b							beta						
of	(in)	e/11	ald		f_{c} = 3.0			f _c '=5.0)		f _c '=8.0		1	c'=12.0)
:			old		ksi			ksi			ksi			ksi	
		φ	0.70	0.85	0.70	0.75	0.85	0.70	0.75	0.85	0.70	0.75	0.85	0.70	0.75
	6	0.17	3.08	3.67	4.40	4.16	3.04	3.82	3.55	2.67	3.46	3.19	2.47	3.27	3.00
1%	15	0.42	3.28	3.62	4.37	4.12	3.06	3.86	3.59	2.78	3.58	3.31	2.55	3.30	3.05
1 /0	27	0.75	3.82	3.45	4.28	4.00	3.12	3.93	3.66	3.00	3.80	3.53	2.95	3.73	3.46
	60	1.67	3.97	3.49	4.42	4.11	3.50	4.45	4.13	3.46	4.41	4.09	3.43	4.37	4.05
	12	0.33	3.47	3.79	4.60	4.33	3.20	4.05	3.76	2.91	3.76	3.47	2.62	3.44	3.16
2%	21	0.58	3.62	3.77	4.59	4.32	3.34	4.23	3.93	3.07	3.94	3.64	2.99	3.85	3.56
270	27	0.75	3.94	3.67	4.56	4.26	3.33	4.22	3.92	3.19	4.07	3.77	3.10	3.95	3.66
	60	1.67	4.01	3.45	4.39	4.07	3.42	4.35	4.04	3.47	4.41	4.09	3.43	4.36	4.05
	12	0.33	3.65	3.90	4.77	4.48	3.37	4.27	3.96	2.94	3.79	3.50	2.75	3.60	3.31
3%	24	0.67	3.79	3.84	4.77	4.47	3.38	4.29	3.98	3.18	4.08	3.78	3.08	3.96	3.66
570	30	0.83	4.01	3.82	4.73	4.42	3.48	4.42	4.10	3.29	4.21	3.90	3.18	4.06	3.76
	60	1.67	3.96	3.50	4.43	4.11	3.43	4.37	4.05	3.46	4.41	4.09	3.40	4.33	4.02
	12	0.33	3.75	3.96	4.87	4.57	3.41	4.32	4.01	3.08	3.98	3.68	2.84	3.72	3.42
1%	21	0.58	3.87	3.90	4.80	4.50	3.41	4.32	4.01	3.16	4.07	3.76	2.94	3.83	3.53
+ /0	30	0.83	3.89	3.97	4.91	4.59	3.43	4.38	4.06	3.34	4.27	3.96	3.22	4.13	3.82
	60	1.67	4.02	3.62	4.58	4.26	3.53	4.50	4.17	3.45	4.40	4.08	3.41	4.34	4.02

Ι	Design	case							Tied						
re								Р	'lant ca	st					
% inf	e	o/h							beta						
of orc	(in)	e/11	ald		f _c '=3.0)		f _c '=5.0			f _c '=8.0)	f	f _c '=12.0)
•			olu		ksi			ksi			ksi			ksi	
		φ	0.70	0.85	0.70	0.75	0.85	0.70	0.75	0.85	0.70	0.75	0.85	0.70	0.75
	6	0.17	3.54	4.42	5.26	4.98	3.72	4.64	4.33	3.24	4.15	3.84	3.09	4.03	3.71
1.0%	15	0.42	3.79	4.62	5.55	5.24	3.95	4.96	4.62	3.53	4.52	4.19	3.34	4.32	3.99
1 70	27	0.75	4.80	4.55	5.64	5.27	4.30	5.42	5.04	4.13	5.23	4.86	3.96	5.00	4.65
	60	1.67	4.63	4.52	5.71	5.31	4.53	5.74	5.33	4.39	5.56	5.17	4.48	5.70	5.29
	12	0.33	4.07	4.74	5.74	5.40	4.04	5.07	4.72	3.61	4.63	4.28	3.30	4.27	3.94
20/	21	0.58	4.40	4.77	5.79	5.45	4.29	5.41	5.03	4.08	5.20	4.82	3.93	5.04	4.67
2%	30	0.83	4.90	4.75	5.92	5.52	4.49	5.69	5.28	4.29	5.46	5.06	4.19	5.32	4.94
	60	1.67	4.71	4.56	5.77	5.36	4.49	5.68	5.27	4.44	5.62	5.22	4.50	5.71	5.30
	15	0.42	4.38	4.91	5.99	5.63	4.25	5.35	4.97	3.85	4.94	4.57	3.49	4.52	4.17
20/	24	0.67	4.47	4.78	5.84	5.48	4.33	5.47	5.08	4.12	5.27	4.88	4.13	5.30	4.90
370	39	1.08	4.88	4.79	6.01	5.60	4.49	5.69	5.28	4.44	5.64	5.23	4.33	5.49	5.09
	60	1.67	4.74	4.61	5.81	5.40	4.46	5.64	5.24	4.48	5.68	5.27	4.38	5.55	5.16
	12	0.33	4.45	5.01	6.13	5.75	4.28	5.39	5.01	3.86	4.94	4.57	3.59	4.66	4.30
104	21	0.58	4.65	4.91	6.03	5.65	4.43	5.60	5.20	4.01	5.14	4.76	3.81	4.95	4.57
470	30	0.83	4.69	4.93	6.07	5.69	4.38	5.57	5.17	4.36	5.57	5.16	4.38	5.61	5.19
	60	1.67	4.94	4.72	5.94	5.53	4.52	5.73	5.32	4.47	5.67	5.26	4.46	5.66	5.25

Table 2-16. Reliability indices and possible resistance factors for eccentrically loaded columns (tied, plant cast, for h/b = 2)

Table 2-17. Reliability indices and possible resistance factors for eccentrically loaded columns (spiral, cast-in-place)

Ι	Design	case							Spiral						
г								Cas	st-in-pl	ace					
einf	e	o /h							beta						
of	(in)	e/11	a 1 d		$f_{c}'=3.0$)		f_{c} = 5.0)		$f_{c}'=8.0$)	f	$f_{c} = 12.0$)
:			old		ksi			ksi			ksi			ksi	
		φ	0.70	0.85	0.70	0.75	0.85	0.70	0.75	0.85	0.70	0.75	0.85	0.70	0.75
	4	0.18	3.37	4.14	4.90	4.64	3.44	4.24	3.97	3.11	3.94	3.66	2.86	3.68	3.40
1.0/	10	0.45	4.03	4.08	4.87	4.60	3.53	4.36	4.08	3.08	3.83	3.58	2.83	3.56	3.32
1 %0	18	0.82	4.63	3.83	4.70	4.41	3.70	4.60	4.30	3.73	4.65	4.34	3.52	4.39	4.09
	72	3.27	4.79	4.35	5.43	5.06	4.27	5.36	4.99	4.20	5.29	4.92	4.25	5.36	4.98
	8	0.36	3.97	4.32	5.18	4.89	3.73	4.62	4.32	3.31	4.18	3.89	3.04	3.88	3.60
2%	12	0.55	4.16	4.27	5.14	4.85	3.77	4.70	4.38	3.42	4.31	4.01	3.19	4.01	3.73
	24	1.09	4.65	4.02	4.98	4.65	3.92	4.88	4.55	3.84	4.79	4.47	3.80	4.76	4.43
	10	0.45	4.29	4.47	5.41	5.09	3.86	4.80	4.48	3.44	4.35	4.05	3.29	4.22	3.90
3%	14	0.64	4.44	4.38	5.30	4.99	3.84	4.79	4.47	3.55	4.49	4.17	3.50	4.41	4.10
	40	1.82	4.67	4.09	5.09	4.75	4.04	5.05	4.71	4.01	5.03	4.68	4.04	5.07	4.72
	10	0.45	4.48	4.49	5.46	5.13	3.98	4.96	4.63	3.64	4.61	4.28	3.34	4.27	3.96
4%	16	0.73	4.65	4.54	5.53	5.19	3.97	4.96	4.63	3.65	4.64	4.30	3.61	4.54	4.23
	40	1.82	4.69	4.10	5.12	4.78	3.98	4.97	4.63	4.08	5.12	4.76	4.04	5.07	4.72

Ι	Design	case							Spiral						
ŗ								Р	lant ca	st					
% einf	e	o/h							beta						
of	(in)	C/11	- 1-J		f _c '=3.0)		f_{c} = 5.0)		f _c '=8.0		f	² _c '=12.0)
:			old		ksi			ksi			ksi			ksi	
		φ	0.70	0.70 0.85 0.70 0.75 3.45 4.49 5.35 5.06				0.70	0.75	0.85	0.70	0.75	0.85	0.70	0.75
	4	0.18	3.45	4.49	5.35	5.06	3.65	4.54	4.24	3.26	4.18	3.87	2.99	3.90	3.59
1%	10	0.45	4.11	4.52	5.45	5.14	4.02	5.03	4.69	3.66	4.67	4.32	3.38	4.35	4.02
	24	1.09	4.68	4.48	5.62	5.23	4.40	5.57	5.17	4.32	5.48	5.09	4.32	5.50	5.10
	8	0.36	4.03	4.70	5.68	5.35	4.01	5.03	4.68	3.58	4.59	4.25	3.31	4.30	3.96
2%	12	0.55	4.24	4.74	5.75	5.41	4.14	5.24	4.87	3.88	4.96	4.59	3.81	4.90	4.53
	24	1.09	4.68	4.52	5.67	5.28	4.33	5.47	5.09	4.33	5.49	5.09	4.26	5.41	5.02
	8	0.36	4.25	4.88	5.94	5.58	4.19	5.26	4.90	3.73	4.77	4.41	3.42	4.43	4.09
3%	14	0.64	4.38	4.86	5.95	5.58	4.27	5.38	5.01	4.00	5.15	4.76	3.96	5.08	4.70
	40	1.82	4.69	4.52	5.71	5.31	4.44	5.62	5.22	4.38	5.55	5.15	4.47	5.68	5.27
	10	0.45	4.48	4.84	5.93	5.56	4.26	5.38	5.00	3.90	5.00	4.63	3.58	4.64	4.28
4%	18	0.82	4.64	4.83	5.94	5.56	4.33	5.51	5.11	4.31	5.51	5.10	4.20	5.36	4.96
	72	3.27	4.77	4.49	5.69	5.28	4.44	5.62	5.22	4.49	5.70	5.29	4.42	5.62	5.21

Table 2-18. Reliability indices and possible resistance factors for eccentrically loaded columns (spiral, plant cast).

Examples of calculated reliability indices for eccentrically loaded columns are shown in Figures 2-19 through 2-28.

R/C Col	lumns	, Cas	t-in-pl	ace, T	ied		D + L,		e/h = 0	.64	balanc	e failu	re			
3% of re	einforc	emen	t	fc =5.	0 ksi								beta			beta
				new	old	old	mR ne	w data	/design				new			old
D/D+L	D	L	S	Q	Q	mR	0.75	0.70	0.85	mQ	sQ	VQ	0.85	0.70	0.75	0.70
0.00	0.00	1.00	0.00	1.60	1.70	2.516	2.466	2.642	2.176	1.000	0.180	0.18	3.75	4.56	4.28	3.85
0.10	0.10	0.90	0.00	1.56	1.67	2.472	2.404	2.576	2.122	1.005	0.162	0.16	3.74	4.56	4.28	3.86
0.20	0.20	0.80	0.00	1.52	1.64	2.427	2.343	2.510	2.067	1.010	0.146	0.14	3.72	4.55	4.27	3.86
0.30	0.30	0.70	0.00	1.48	1.61	2.383	2.281	2.444	2.013	1.015	0.130	0.13	3.69	4.52	4.24	3.84
0.40	0.40	0.60	0.00	1.44	1.58	2.338	2.220	2.378	1.958	1.020	0.116	0.11	3.63	4.47	4.19	3.82
0.50	0.50	0.50	0.00	1.40	1.55	2.294	2.158	2.312	1.904	1.025	0.104	0.10	3.55	4.41	4.12	3.78
0.60	0.60	0.40	0.00	1.36	1.52	2.250	2.096	2.246	1.850	1.030	0.096	0.09	3.44	4.32	4.02	3.73
0.70	0.70	0.30	0.00	1.32	1.49	2.205	2.035	2.180	1.795	1.035	0.091	0.09	3.30	4.19	3.89	3.66
0.80	0.80	0.20	0.00	1.28	1.46	2.161	1.973	2.114	1.741	1.040	0.091	0.09	3.12	4.04	3.73	3.57
0.90	0.90	0.10	0.00	1.26	1.43	2.116	1.942	2.081	1.714	1.045	0.096	0.09	2.99	3.93	3.61	3.46
1.00	1.00	0.00	0.00	1.40	1.40	2.072	2.158	2.312	1.904	1.050	0.105	0.10	3.44	4.32	4.02	3.33
										averag	e beta		3.34	4.23	3.93	3.67

Reliability Indices Calculated for R/C Column Made of Ordinary Concrete for D+L Load Combination

Figure 2-19. Reliability Indices Calculated for Eccentrically Loaded R/C Tied Columns for D+L Load Combination (balance failure).

R/C Col	lumns	, Cas	t-in-pl	ace, T	ied		D + L,		e/h = 1	.09	tension	o contr	ol			
4% of re	einforc	emen	t	fc =5.	0 ksi								beta			beta
				new	old	old	mR ne	w data	/design				new			old
D/D+L	D	L	S	Q	Q	mR	0.75	0.70	0.85	mQ	sQ	VQ	0.85	0.70	0.75	0.70
0.00	0.00	1.00	0.00	1.60	1.70	2.659	2.449	2.624	2.161	1.000	0.180	0.18	3.68	4.48	4.20	4.08
0.10	0.10	0.90	0.00	1.56	1.67	2.612	2.388	2.558	2.107	1.005	0.162	0.16	3.67	4.47	4.20	4.09
0.20	0.20	0.80	0.00	1.52	1.64	2.565	2.327	2.493	2.053	1.010	0.146	0.14	3.64	4.46	4.18	4.09
0.30	0.30	0.70	0.00	1.48	1.61	2.519	2.265	2.427	1.999	1.015	0.130	0.13	3.61	4.43	4.15	4.08
0.40	0.40	0.60	0.00	1.44	1.58	2.472	2.204	2.362	1.945	1.020	0.116	0.11	3.55	4.38	4.10	4.06
0.50	0.50	0.50	0.00	1.40	1.55	2.425	2.143	2.296	1.891	1.025	0.104	0.10	3.47	4.31	4.03	4.02
0.60	0.60	0.40	0.00	1.36	1.52	2.378	2.082	2.230	1.837	1.030	0.096	0.09	3.36	4.22	3.93	3.97
0.70	0.70	0.30	0.00	1.32	1.49	2.331	2.020	2.165	1.783	1.035	0.091	0.09	3.22	4.10	3.80	3.90
0.80	0.80	0.20	0.00	1.28	1.46	2.284	1.959	2.099	1.729	1.040	0.091	0.09	3.04	3.95	3.64	3.82
0.90	0.90	0.10	0.00	1.26	1.43	2.237	1.929	2.066	1.702	1.045	0.096	0.09	2.91	3.84	3.53	3.71
1.00	1.00	0.00	0.00	1.40	1.40	2.190	2.143	2.296	1.891	1.050	0.105	0.10	3.36	4.23	3.93	3.59
										averag	e beta		3.26	4.14	3.84	3.91

Reliability Indices Calculated for R/C Column Made of Ordinary Concrete for D+L Load Combination Figure 2-20. Reliability Indices Calculated for Eccentrically Loaded R/C Tied Columns for D+L Load Combination (tension control).

R/C Col	umns	, Cas	t-in-pl	ace, S	Spiral		D + L,		e/h = 0	.18	compre	ession	control			
1% of re	einforc	emen	t	fc =5.	0 ksi								beta			beta
				new	old	old	mR ne	w data	/design				new			old
D/D+L	D	L	S	Q	Q	mR	0.75	0.70	0.85	mQ	sQ	VQ	0.85	0.70	0.75	0.70
0.00	0.00	1.00	0.00	1.60	1.70	2.489	2.609	2.795	2.302	1.000	0.180	0.18	3.84	4.57	4.32	3.57
0.10	0.10	0.90	0.00	1.56	1.67	2.445	2.544	2.726	2.245	1.005	0.162	0.16	3.82	4.56	4.31	3.57
0.20	0.20	0.80	0.00	1.52	1.64	2.401	2.479	2.656	2.187	1.010	0.146	0.14	3.80	4.54	4.29	3.56
0.30	0.30	0.70	0.00	1.48	1.61	2.358	2.413	2.586	2.129	1.015	0.130	0.13	3.76	4.51	4.26	3.54
0.40	0.40	0.60	0.00	1.44	1.58	2.314	2.348	2.516	2.072	1.020	0.116	0.11	3.71	4.46	4.21	3.51
0.50	0.50	0.50	0.00	1.40	1.55	2.270	2.283	2.446	2.014	1.025	0.104	0.10	3.63	4.40	4.14	3.47
0.60	0.60	0.40	0.00	1.36	1.52	2.226	2.218	2.376	1.957	1.030	0.096	0.09	3.53	4.31	4.05	3.42
0.70	0.70	0.30	0.00	1.32	1.49	2.182	2.152	2.306	1.899	1.035	0.091	0.09	3.40	4.20	3.93	3.35
0.80	0.80	0.20	0.00	1.28	1.46	2.138	2.087	2.236	1.842	1.040	0.091	0.09	3.24	4.07	3.79	3.27
0.90	0.90	0.10	0.00	1.26	1.43	2.094	2.055	2.201	1.813	1.045	0.096	0.09	3.12	3.97	3.68	3.17
1.00	1.00	0.00	0.00	1.40	1.40	2.050	2.283	2.446	2.014	1.050	0.105	0.10	3.53	4.32	4.05	3.06
										averag	e beta		3.44	4.24	3.97	3.37

Reliability Indices Calculated for R/C Column Made of Ordinary Concrete for D+L Load Combination

Figure 2-21. Reliability Indices Calculated for Eccentrically Loaded R/C Spiral Columns for D+L Load Combination (compression control).

R/C Col	umns	, Cas	t-in-pl	ace, S	Spiral		D + L,		e/h = 1	.09	tensior	o contr	ol			
2% of re	einforc	emen	t	fc =8.	.0 ksi								beta			beta
				new	old	old	mR ne	w data	/design				new			old
D/D+L	D	L	S	Q	Q	mR	0.75	0.70	0.85	mQ	sQ	VQ	0.85	0.70	0.75	0.70
0.00	0.00	1.00	0.00	1.60	1.70	2.805	2.571	2.754	2.268	1.000	0.180	0.18	4.20	5.08	4.78	4.76
0.10	0.10	0.90	0.00	1.56	1.67	2.756	2.506	2.685	2.212	1.005	0.162	0.16	4.20	5.09	4.79	4.78
0.20	0.20	0.80	0.00	1.52	1.64	2.706	2.442	2.617	2.155	1.010	0.146	0.14	4.20	5.09	4.79	4.80
0.30	0.30	0.70	0.00	1.48	1.61	2.657	2.378	2.548	2.098	1.015	0.130	0.13	4.18	5.08	4.77	4.80
0.40	0.40	0.60	0.00	1.44	1.58	2.607	2.314	2.479	2.041	1.020	0.116	0.11	4.13	5.04	4.73	4.79
0.50	0.50	0.50	0.00	1.40	1.55	2.558	2.249	2.410	1.985	1.025	0.104	0.10	4.06	4.98	4.67	4.76
0.60	0.60	0.40	0.00	1.36	1.52	2.508	2.185	2.341	1.928	1.030	0.096	0.09	3.95	4.89	4.57	4.72
0.70	0.70	0.30	0.00	1.32	1.49	2.459	2.121	2.272	1.871	1.035	0.091	0.09	3.80	4.76	4.44	4.65
0.80	0.80	0.20	0.00	1.28	1.46	2.409	2.057	2.203	1.815	1.040	0.091	0.09	3.61	4.60	4.27	4.55
0.90	0.90	0.10	0.00	1.26	1.43	2.360	2.024	2.169	1.786	1.045	0.096	0.09	3.46	4.47	4.13	4.43
1.00	1.00	0.00	0.00	1.40	1.40	2.310	2.249	2.410	1.985	1.050	0.105	0.10	3.95	4.88	4.57	4.28
										averag	e beta		3.84	4.79	4.47	4.65

Reliability Indices Calculated for R/C Column Made of Ordinary Concrete for D+L Load Combination

Figure 2-22. Reliability Indices Calculated for Eccentrically Loaded R/C Spiral Columns for D+L Load Combination (tension control).
R/C Col	umns	, Cas	t-in-pl	ace, S	Spiral		D + L,		e/h = 0	.64	tension	n contr	ol			
3% of re	einforc	emen	t	fc =12	2.0 ksi								beta			beta
				new	old	old	mR ne	w data	/design				new			old
D/D+L	D	L	S	Q	Q	mR	0.75	0.70	0.85	mQ	sQ	VQ	0.85	0.70	0.75	0.70
0.00	0.00	1.00	0.00	1.60	1.70	2.613	2.498	2.677	2.204	1.000	0.180	0.18	3.90	4.73	4.45	4.55
0.10	0.10	0.90	0.00	1.56	1.67	2.567	2.436	2.610	2.149	1.005	0.162	0.16	3.89	4.73	4.45	4.58
0.20	0.20	0.80	0.00	1.52	1.64	2.521	2.373	2.543	2.094	1.010	0.146	0.14	3.88	4.73	4.44	4.59
0.30	0.30	0.70	0.00	1.48	1.61	2.475	2.311	2.476	2.039	1.015	0.130	0.13	3.85	4.70	4.41	4.60
0.40	0.40	0.60	0.00	1.44	1.58	2.429	2.248	2.409	1.984	1.020	0.116	0.11	3.79	4.66	4.37	4.59
0.50	0.50	0.50	0.00	1.40	1.55	2.383	2.186	2.342	1.929	1.025	0.104	0.10	3.71	4.60	4.30	4.56
0.60	0.60	0.40	0.00	1.36	1.52	2.336	2.123	2.275	1.874	1.030	0.096	0.09	3.60	4.50	4.20	4.51
0.70	0.70	0.30	0.00	1.32	1.49	2.290	2.061	2.208	1.818	1.035	0.091	0.09	3.46	4.38	4.07	4.43
0.80	0.80	0.20	0.00	1.28	1.46	2.244	1.999	2.141	1.763	1.040	0.091	0.09	3.28	4.23	3.90	4.33
0.90	0.90	0.10	0.00	1.26	1.43	2.198	1.967	2.108	1.736	1.045	0.096	0.09	3.14	4.11	3.78	4.20
1.00	1.00	0.00	0.00	1.40	1.40	2.152	2.186	2.342	1.929	1.050	0.105	0.10	3.61	4.50	4.20	4.04
										averag	e beta		3.50	4.41	4.10	4.44

Reliability Indices Calculated for R/C Column Made of Ordinary Concrete for D+L Load Combination

Figure 2-23. Reliability Indices Calculated for Eccentrically Loaded R/C Spiral Columns for D+L Load Combination (tension control).

R/C Col	umns	, Cas	t-in-pl	ace, S	Spiral		D + L,		e/h = 0	.45	compre	ession	control			
4% of re	einforc	emen	t	fc =12	2.0 ksi								beta			beta
				new	old	old	mR ne	w data	/design				new			old
D/D+L	D	L	S	Q	Q	mR	0.75	0.70	0.85	mQ	sQ	VQ	0.85	0.70	0.75	0.70
0.00	0.00	1.00	0.00	1.60	1.70	2.618	2.421	2.594	2.136	1.000	0.180	0.18	3.75	4.60	4.31	4.58
0.10	0.10	0.90	0.00	1.56	1.67	2.572	2.361	2.529	2.083	1.005	0.162	0.16	3.75	4.61	4.31	4.61
0.20	0.20	0.80	0.00	1.52	1.64	2.526	2.300	2.465	2.030	1.010	0.146	0.14	3.73	4.60	4.30	4.63
0.30	0.30	0.70	0.00	1.48	1.61	2.479	2.240	2.400	1.976	1.015	0.130	0.13	3.70	4.57	4.28	4.64
0.40	0.40	0.60	0.00	1.44	1.58	2.433	2.179	2.335	1.923	1.020	0.116	0.11	3.64	4.53	4.23	4.63
0.50	0.50	0.50	0.00	1.40	1.55	2.387	2.119	2.270	1.869	1.025	0.104	0.10	3.56	4.46	4.16	4.60
0.60	0.60	0.40	0.00	1.36	1.52	2.341	2.058	2.205	1.816	1.030	0.096	0.09	3.45	4.37	4.06	4.55
0.70	0.70	0.30	0.00	1.32	1.49	2.295	1.998	2.140	1.763	1.035	0.091	0.09	3.30	4.24	3.92	4.48
0.80	0.80	0.20	0.00	1.28	1.46	2.248	1.937	2.075	1.709	1.040	0.091	0.09	3.11	4.08	3.75	4.37
0.90	0.90	0.10	0.00	1.26	1.43	2.202	1.907	2.043	1.682	1.045	0.096	0.09	2.97	3.96	3.63	4.24
1.00	1.00	0.00	0.00	1.40	1.40	2.156	2.119	2.270	1.869	1.050	0.105	0.10	3.45	4.37	4.06	4.08
										averag	e beta		3.34	4.27	3.96	4.48

Reliability Indices Calculated for R/C Column Made of Ordinary Concrete for D+L Load Combination Figure 2-24. Reliability Indices Calculated for Eccentrically Loaded R/C Spiral Columns for D+L Load Combination (compression control).

R/C Col	umns	, Plan	t cast	t, Spir	al		D + L,		e/h = 1	.09	tension	o contr	ol			
1% of re	einforc	emen	t	fc =12	2.0 ksi								beta			beta
				new	old	old	mR ne	w data	/design				new			old
D/D+L	D	L	S	Q	Q	mR	0.75	0.70	0.85	mQ	sQ	VQ	0.85	0.70	0.75	0.70
0.00	0.00	1.00	0.00	1.60	1.70	2.805	2.528	2.709	2.231	1.000	0.180	0.18	4.59	5.68	5.30	4.79
0.10	0.10	0.90	0.00	1.56	1.67	2.756	2.465	2.641	2.175	1.005	0.162	0.16	4.63	5.73	5.35	4.82
0.20	0.20	0.80	0.00	1.52	1.64	2.706	2.402	2.573	2.119	1.010	0.146	0.14	4.66	5.76	5.38	4.83
0.30	0.30	0.70	0.00	1.48	1.61	2.657	2.338	2.505	2.063	1.015	0.130	0.13	4.66	5.78	5.39	4.84
0.40	0.40	0.60	0.00	1.44	1.58	2.607	2.275	2.438	2.008	1.020	0.116	0.11	4.64	5.76	5.38	4.83
0.50	0.50	0.50	0.00	1.40	1.55	2.558	2.212	2.370	1.952	1.025	0.104	0.10	4.58	5.72	5.33	4.80
0.60	0.60	0.40	0.00	1.36	1.52	2.508	2.149	2.302	1.896	1.030	0.096	0.09	4.46	5.63	5.23	4.75
0.70	0.70	0.30	0.00	1.32	1.49	2.459	2.086	2.235	1.840	1.035	0.091	0.09	4.30	5.48	5.08	4.68
0.80	0.80	0.20	0.00	1.28	1.46	2.409	2.022	2.167	1.784	1.040	0.091	0.09	4.06	5.28	4.87	4.58
0.90	0.90	0.10	0.00	1.26	1.43	2.360	1.991	2.133	1.757	1.045	0.096	0.09	3.88	5.11	4.69	4.46
1.00	1.00	0.00	0.00	1.40	1.40	2.310	2.212	2.370	1.952	1.050	0.105	0.10	4.44	5.60	5.21	4.31
										averag	e beta		4.32	5.50	5.10	4.68

Reliability Indices Calculated for R/C Column Made of Ordinary Concrete for D+L Load Combination Figure 2-25. Reliability Indices Calculated for Eccentrically Loaded R/C Spiral Columns for D+L Load Combination (tension control).

R/C Col	umns	, Plar	it cas	t, Spir	al		D + L,		e/h = 1	.09	tensior	o contr	ol			
2% of re	einforc	emen	t	fc =5.	0 ksi								beta			beta
				new	old	old	mR ne	w data/	/design				new			old
D/D+L	D	L	S	Q	Q	mR	0.75	0.70	0.85	mQ	sQ	VQ	0.85	0.70	0.75	0.70
0.00	0.00	1.00	0.00	1.60	1.70	2.803	2.562	2.745	2.261	1.000	0.180	0.18	4.61	5.67	5.30	4.79
0.10	0.10	0.90	0.00	1.56	1.67	2.753	2.498	2.677	2.204	1.005	0.162	0.16	4.65	5.71	5.35	4.81
0.20	0.20	0.80	0.00	1.52	1.64	2.704	2.434	2.608	2.148	1.010	0.146	0.14	4.67	5.74	5.37	4.83
0.30	0.30	0.70	0.00	1.48	1.61	2.654	2.370	2.539	2.091	1.015	0.130	0.13	4.67	5.75	5.38	4.83
0.40	0.40	0.60	0.00	1.44	1.58	2.605	2.306	2.471	2.035	1.020	0.116	0.11	4.65	5.74	5.36	4.82
0.50	0.50	0.50	0.00	1.40	1.55	2.555	2.242	2.402	1.978	1.025	0.104	0.10	4.58	5.69	5.31	4.80
0.60	0.60	0.40	0.00	1.36	1.52	2.506	2.178	2.333	1.922	1.030	0.096	0.09	4.47	5.60	5.22	4.75
0.70	0.70	0.30	0.00	1.32	1.49	2.456	2.114	2.265	1.865	1.035	0.091	0.09	4.31	5.46	5.07	4.68
0.80	0.80	0.20	0.00	1.28	1.46	2.407	2.050	2.196	1.809	1.040	0.091	0.09	4.08	5.26	4.86	4.58
0.90	0.90	0.10	0.00	1.26	1.43	2.357	2.018	2.162	1.780	1.045	0.096	0.09	3.90	5.10	4.69	4.46
1.00	1.00	0.00	0.00	1.40	1.40	2.308	2.242	2.402	1.978	1.050	0.105	0.10	4.45	5.58	5.19	4.31
	\square									averag	e beta		4.33	5.47	5.09	4.68

Reliability Indices Calculated for R/C Column Made of Ordinary Concrete for D+L Load Combination Figure 2-26. Reliability Indices Calculated for Eccentrically Loaded R/C Spiral Columns for D+L Load Combination (tension control).

R/C Col	lumns	, Plar	it cas	t, Spir	al		D + L,		e/h = 0	.64	balanc	e failu	re			
3% of re	einforc	emen	t	fc =5.	0 ksi								beta			beta
				new	old	old	mR ne	w data	/design				new			old
D/D+L	D	L	S	Q	Q	mR	0.75	0.70	0.85	mQ	sQ	VQ	0.85	0.70	0.75	0.70
0.00	0.00	1.00	0.00	1.60	1.70	2.599	2.566	2.750	2.264	1.000	0.180	0.18	4.56	5.60	5.24	4.50
0.10	0.10	0.90	0.00	1.56	1.67	2.553	2.502	2.681	2.208	1.005	0.162	0.16	4.60	5.63	5.28	4.52
0.20	0.20	0.80	0.00	1.52	1.64	2.507	2.438	2.612	2.151	1.010	0.146	0.14	4.61	5.66	5.30	4.54
0.30	0.30	0.70	0.00	1.48	1.61	2.461	2.374	2.543	2.095	1.015	0.130	0.13	4.61	5.66	5.31	4.55
0.40	0.40	0.60	0.00	1.44	1.58	2.415	2.310	2.475	2.038	1.020	0.116	0.11	4.58	5.65	5.28	4.53
0.50	0.50	0.50	0.00	1.40	1.55	2.369	2.246	2.406	1.981	1.025	0.104	0.10	4.52	5.59	5.23	4.51
0.60	0.60	0.40	0.00	1.36	1.52	2.323	2.181	2.337	1.925	1.030	0.096	0.09	4.41	5.50	5.13	4.45
0.70	0.70	0.30	0.00	1.32	1.49	2.278	2.117	2.269	1.868	1.035	0.091	0.09	4.25	5.37	4.99	4.38
0.80	0.80	0.20	0.00	1.28	1.46	2.232	2.053	2.200	1.812	1.040	0.091	0.09	4.03	5.18	4.79	4.28
0.90	0.90	0.10	0.00	1.26	1.43	2.186	2.021	2.165	1.783	1.045	0.096	0.09	3.85	5.02	4.62	4.14
1.00	1.00	0.00	0.00	1.40	1.40	2.140	2.246	2.406	1.981	1.050	0.105	0.10	4.39	5.49	5.11	3.99
		\square								averag	e beta		4.27	5.38	5.01	4.38

Reliability Indices Calculated for R/C Column Made of Ordinary Concrete for D+L Load Combination Figure 2-27. Reliability Indices Calculated for Eccentrically Loaded R/C Spiral Columns for D+L Load Combination (balance failure).

R/C Co	umns	, Plar	t cas	t, Spir	al		D + L,		e/h = 0	.45	compre	ession	control			
4% of re	einforc	emen	t	fc =8.	0 ksi								beta			beta
				new	old	old	mR ne	w data	/design				new			old
D/D+L	D	L	S	Q	Q	mR	0.75	0.70	0.85	mQ	sQ	VQ	0.85	0.70	0.75	0.70
0.00	0.00	1.00	0.00	1.60	1.70	2.620	2.468	2.645	2.178	1.000	0.180	0.18	4.24	5.25	4.90	4.59
0.10	0.10	0.90	0.00	1.56	1.67	2.574	2.407	2.578	2.123	1.005	0.162	0.16	4.26	5.28	4.93	4.62
0.20	0.20	0.80	0.00	1.52	1.64	2.528	2.345	2.512	2.069	1.010	0.146	0.14	4.27	5.29	4.94	4.64
0.30	0.30	0.70	0.00	1.48	1.61	2.482	2.283	2.446	2.015	1.015	0.130	0.13	4.26	5.29	4.94	4.64
0.40	0.40	0.60	0.00	1.44	1.58	2.435	2.221	2.380	1.960	1.020	0.116	0.11	4.22	5.27	4.91	4.64
0.50	0.50	0.50	0.00	1.40	1.55	2.389	2.160	2.314	1.906	1.025	0.104	0.10	4.15	5.21	4.85	4.61
0.60	0.60	0.40	0.00	1.36	1.52	2.343	2.098	2.248	1.851	1.030	0.096	0.09	4.04	5.11	4.75	4.56
0.70	0.70	0.30	0.00	1.32	1.49	2.297	2.036	2.182	1.797	1.035	0.091	0.09	3.87	4.98	4.60	4.48
0.80	0.80	0.20	0.00	1.28	1.46	2.250	1.975	2.116	1.742	1.040	0.091	0.09	3.66	4.79	4.40	4.38
0.90	0.90	0.10	0.00	1.26	1.43	2.204	1.944	2.083	1.715	1.045	0.096	0.09	3.49	4.64	4.25	4.24
1.00	1.00	0.00	0.00	1.40	1.40	2.158	2.160	2.314	1.906	1.050	0.105	0.10	4.02	5.10	4.74	4.08
										averag	e beta		3.90	5.00	4.63	4.48

Reliability Indices Calculated for R/C Column Made of Ordinary Concrete for D+L Load Combination

Figure 2-28. Reliability Indices Calculated for Eccentrically Loaded R/C Spiral Columns for D+L Load Combination (compression control).

Figures 2-29, 2-31, 2-33, 2-35, 2-37 and 2-39 present the relationship between the reliability index and strength of concrete. The analysis was performed with regard to percentage of reinforcement (for $\rho = 1\%$, 2%, 3% and 4%) and eccentricity of load. Particular curves indicate changes of reliability index depending on the mode of failure: compression control, balanced failure, transition or tension control. Figures 2-30, 2-32, 2-34, 2-36, 2-38 and 2-40 present the relationship between reliability index and eccentricity of load. For particular strength of concrete, curves show changes of the reliability index depending on the normalized eccentricity and strength of concrete. In compression control zone up to the balance failure, reliability index differs with regard to strength of concrete. After transition, all curves converge to the same direction in tension control zone. This behavior describes sensitivity of the reliability index to a contribution of concrete or reinforcing steel (with their statistics) to the capacity of the section. All

curves prepared for tied columns were calculated using resistance factor equal to 0.70, and curves prepared for spiral columns were calculated using resistance factor equal to 0.75.

Figure 2-29. Reliability index versus strength of concrete; tied columns, cast-in-place, for h/b = 1.57 and resistance factor, $\phi = 0.70$: a) reinforcement ratio, $\rho = 1\%$, b) reinforcement ratio, $\rho = 2\%$, c) reinforcement ratio, $\rho = 3\%$, d) reinforcement ratio, $\rho = 4\%$,

Figure 2-30. Reliability index versus load eccentricity; tied columns, cast-in-place, for h/b = 1.57 and resistance factor, $\phi = 0.70$: a) reinforcement ratio, $\rho = 1\%$, b) reinforcement ratio, $\rho = 2\%$, c) reinforcement ratio, $\rho = 3\%$, d) reinforcement ratio, $\rho = 4\%$,

75

Figure 2-31. Reliability index versus strength of concrete; tied columns, cast-in-place, for h/b = 2.0 and resistance factor, $\phi = 0.70$: a) reinforcement ratio, $\rho = 1\%$, b) reinforcement ratio, $\rho = 2\%$, c) reinforcement ratio, $\rho = 3\%$, d) reinforcement ratio, $\rho = 4\%$,

Figure 2-32. Reliability index versus load eccentricity; tied columns, cast-in-place, for h/b = 2.0 and resistance factor, $\phi = 0.70$: a) reinforcement ratio, $\rho = 1\%$, b) reinforcement ratio, $\rho = 2\%$, c) reinforcement ratio, $\rho = 3\%$, d) reinforcement ratio, $\rho = 4\%$,

Figure 2-33. Reliability index versus strength of concrete; spiral columns, cast-in-place, for resistance factor, $\varphi = 0.70$: a) reinforcement ratio, $\rho = 1\%$, b) reinforcement ratio, $\rho = 2\%$, c) reinforcement ratio, $\rho = 3\%$, d) reinforcement ratio, $\rho = 4\%$,

Figure 2-34. Reliability index versus load eccentricity; spiral columns, cast-in-place, resistance factor, $\phi = 0.70$: a) reinforcement ratio, $\rho = 1\%$, b) reinforcement ratio, $\rho = 2\%$, c) reinforcement ratio, $\rho = 3\%$, d) reinforcement ratio, $\rho = 4\%$,

Figure 2-35. Reliability index versus strength of concrete; tied columns, plant cast, for h/b = 1.57 and resistance factor, $\phi = 0.70$: a) reinforcement ratio, $\rho = 1\%$, b) reinforcement ratio, $\rho = 2\%$, c) reinforcement ratio, $\rho = 3\%$, d) reinforcement ratio, $\rho = 4\%$,

Figure 2-36. Reliability index versus load eccentricity; tied columns, plant cast, for h/b = 1.57 and resistance factor, $\varphi = 0.70$: a) reinforcement ratio, $\rho = 1\%$, b) reinforcement ratio, $\rho = 2\%$, c) reinforcement ratio, $\rho = 3\%$, d) reinforcement ratio, $\rho = 4\%$,

Figure 2-37. Reliability index versus strength of concrete; tied columns, plant cast, for h/b = 2.0 and resistance factor, $\phi = 0.70$: a) reinforcement ratio, $\rho = 1\%$, b) reinforcement ratio, $\rho = 2\%$, c) reinforcement ratio, $\rho = 3\%$, d) reinforcement ratio, $\rho = 4\%$,

Figure 2-38. Reliability index versus load eccentricity; tied columns, plant cast, for h/b = 2.0 and resistance factor, $\varphi = 0.70$: a) reinforcement ratio, $\rho = 1\%$, b) reinforcement ratio, $\rho = 2\%$, c) reinforcement ratio, $\rho = 3\%$, d) reinforcement ratio, $\rho = 4\%$,

Figure 2-39. Reliability index versus strength of concrete; spiral columns, plant cast, for resistance factor, $\varphi = 0.70$: a) reinforcement ratio, $\rho = 1\%$, b) reinforcement ratio, $\rho = 2\%$, c) reinforcement ratio, $\rho = 3\%$, d) reinforcement ratio, $\rho = 4\%$,

Figure 2-40. Reliability index versus load eccentricity; spiral columns, plant cast, for resistance factor, $\varphi = 0.70$: a) reinforcement ratio, $\rho = 1\%$, b) reinforcement ratio, $\rho = 2\%$, c) reinforcement ratio, $\rho = 3\%$, d) reinforcement ratio, $\rho = 4\%$,

3. Shear in Slabs and Foundation Beams

3.1. Shear Resistance

Two design cases are considered of the shear resistance transferred by concrete only (without shear reinforcemnt). The first case deals with reinforced concrete slabs supported by columns and subjected to shear force close to column (along the column perimeter). In that case, the shear force is carried by concrete only. The other case deals with foundation beams without shear reinforcement.

The minimum shear force transferred by a concrete section of the slab (two-way shear) supported by an interior, edge or corner column shall be smallest of:

$$V_c = \left(2 + \frac{4}{\beta_c}\right)\sqrt{f_c} b_o d \tag{3.1.a}$$

$$V_c = \left(\frac{\alpha_s \times d}{b_o} + 2\right) \sqrt{f_c} b_o d \tag{3.1.b}$$

$$V_c = 4\sqrt{f_c'} b_o d \tag{3.1.c}$$

where:

 f'_c = compressive strength of the concrete

b_o = critical perimeter

d = effective depth of the slab

 β_c = ratio of long side to short side of the column

 α_s = coefficient equal to 40 for interior columns, 30 for edge columns, and 20 for corner columns

Three types of columns are considered: interior, edge and corner, with two different shapes of the column cross section: rectangular and square.

The design equation for the shear force (one-way shear) transferred by concrete in foundation beams is:

$$V_c = 2\sqrt{f_c'} b_w d \tag{3.2}$$

where:

 f'_c = compressive strength of the concrete b_w = width of the beam d = effective depth of the beam

All parameters in Eq.(3.1.a,b,c) and Eq.(3.2) except coefficients α_s and β_c , are treated as random variables. The statistical parameters of material and fabrication factors require some additional comments because they are different than those used in the first part of the analysis (Phase 1). In fact, the shear force transferred by concrete (Eq.3.1.a,b,c and Eq.3.2) depends on the modulus of rupture of concrete, that has a different physical meaning than the compressive strength of concrete. The statistical parameters of concrete, bias factor, λ_{m} , and coefficient of variation, V_{m} , discussed in Phase 1 of the report, were established based on the cylinder compressive strength test data. The modulus of rupture of concrete can be measured in the cylinder splitting test and has different statistical parameters. Based on the published results (Davies and Bose, 1968, Rocco et al., 2001, Tang, 1994 and Raphael, 1984), the coefficient of variation for modulus of rupture was selected as 0.15 (V = 0.10 for concrete strength in compression); the bias factor for concrete strength was assumed to be the same as in previous study (Phase 1). The statistical parameters of fabrication factor were selected as follows: for an area of column cross section, $\lambda = 1.005$ and, V = 0.04, for a depth of the slab, $\lambda = 1.03$, 1.02 and 1.015, and V = 0.09, 0.06 and 0.04, for the slab thickness equal to 4 in, 6 in and 8 in respectively (based on test data published by Elingwood et al. 1980), for width of the foundation beam, $\lambda = 1.005$ and V = 0.04, and for the effective depth of the foundation beam, $\lambda = 0.99$ and V = 0.04.

Analysis of minimum shear force, V_c , provided by concrete only (without shear reinforcement) shown that in case of thin slabs (4 in) Eq.(3.1.b) governs; for thicker slabs (6 in or 8 in) Eq. (3.1.c) gives the smallest value of shear capacity, V_c . The same tendency was found for rectangular and square columns, and for interior, edge or corner columns. Following this analysis, Eqs. (3.1.b and 3.1.c) were used in Monte Carlo simulations to obtain statistical parameters for two-way shear resistance. Eq. (3.2) was

used in Monte Carlo simulations to obtain statistical parameters for one-way shear resistance. The bias factors and coefficients of variation for shear resistance of slabs and foundation beams are presented in Table 3-1.

Structural	Element	Ordi	nary	High S	trength	Ordinary	Concrete
		Concre	te (OC)	Concret	e (HSC)	(Old Statis	tical Data)
	Slab	Bias	COV	Bias	COV	Bias	COV
	thickness						
			For	r interior co	olumns		
	4 in	1.29	0.25	1.19	0.25	1.07	0.24
	6 in	1.37	0.19	1.25	0.19	1.13	0.19
True	8 in	1.40	0.18	1.29	0.18	1.16	0.18
I WO-			F	or edge col	umns		
way	4 in	1.22	0.23	1.12	0.23	1.01	0.24
Shear	6 in	1.19	0.19	1.08	0.19	0.98	0.19
	8 in	1.18	0.18	1.08	0.18	0.97	0.18
			Fo	or corner co	lumns		
	4 in	1.22	0.23	1.12	0.23	1.01	0.24
	6 in	1.19	0.19	1.09	0.19	0.98	0.19
	8 in	1.18	0.18	1.08	0.18	0.97	0.18
One-	Foundation	beam dept	th				
way	12 in	1.138	0.180	1.045	0.180	0.942	0.184
shear	36 in	1.140	0.180	1.046	0.180	0.943	0.180

Table 3-1. Statistical Pa	rameters of Shear	Resistance
---------------------------	-------------------	------------

For comparison, the statistical parameters of resistance were also calculated using "old" statistical information on concrete strength (used in the previous code calibration by Elingwood et al. 1980). These values are also presented in Table 3-1.

3.2. Reliability Indices for Shear in Slabs and Foundation Beams

The reliability analysis was performed for the limit states of shear capacity of slabs and foundation beams for cases where shear reinforcement is not provided, and the shear force is transferred by concrete section only. Load combinations and load factors with their statistical parameters were assumed to be the same as in the first part of the reliability analysis (Phase 1). The statistical parameters of resistance were calculated

using Monte Carlo simulations and are presented in Section 3.1 of this report. Calculated reliability indices for three different resistance factors are shown in Table 3-2.

Structura	al Element	Reliat	vility Indices	s (OC)	Reliab	ility Indices	(HSC)	Reliability
								Indices (Old
								Statistical
								Data)
	Slab	φ=0.85	φ=0.80	φ=0.75	φ=0.85	φ=0.80	φ=0.75	φ=0.85
	thickness	-	-		-	-	-	
				For inte	rior column	S		
	4 in	1.93	2.05	2.18	1.76	1.89	2.02	1.85
	6 in	2.66	2.81	2.97	2.42	2.59	2.76	2.46
	8 in	2.87	3.03	3.19	2.64	2.81	2.98	2.66
Two				For ed	lge columns			
Two-	4 in	1.96	2.10	2.24	1.75	1.91	2.06	1.71
shear	6 in	2.28	2.45	2.63	2.01	2.20	2.39	2.04
silcai	8 in	2.37	2.56	2.74	2.08	2.28	2.48	2.10
				For con	mer columns	5		
	4 in	1.96	2.10	2.24	1.75	1.91	2.06	1.71
	6 in	2.28	2.45	2.63	2.01	2.20	2.39	2.04
	8 in	2.37	2.56	2.74	2.08	2.28	2.48	2.10
One-	Foundation	n beam dept	h					
way	12 in	2.24	2.43	2.63	1.97	2.17	2.38	1.97
shear	36 in	2.26	2.45	2.64	1.97	2.18	2.38	2.01

Table 3-2. Reliability Indices and Resistance Factors for Shear in Slabs and Foundation Beams

Based on reliability analysis and results presented in Table 3-2, resistance factor equal to 0.75 is proposed for two-way shear and for one-way shear.

Examples of calculated reliability indices for shear in slabs and foundation beams are shown in Figures 3-1, 3-2, 3-3, 3-4 and 3-5.

Two-w	ay shea	ar					D+L,									
0% she	ar reinf	orcem	ent	OC	Slab tl	nicknes	s = 4 in		Interior	column	S		beta			beta
				new	old	old	mR new	data/de	sign				new			old
D/D+L	D	L	S	Q	Q	mR	0.80	0.85	0.75	mQ	sQ	VQ	0.75	0.85	0.80	0.85
0.00	0.00	1.00	0.00	1.60	1.70	2.140	2.580	2.428	2.752	1.000	0.180	0.18	2.46	2.26	2.36	2.09
0.10	0.10	0.90	0.00	1.56	1.67	2.102	2.516	2.368	2.683	1.005	0.162	0.16	2.43	2.22	2.33	2.07
0.20	0.20	0.80	0.00	1.52	1.64	2.064	2.451	2.307	2.614	1.010	0.146	0.14	2.40	2.18	2.29	2.04
0.30	0.30	0.70	0.00	1.48	1.61	2.027	2.387	2.246	2.546	1.015	0.130	0.13	2.36	2.14	2.25	2.01
0.40	0.40	0.60	0.00	1.44	1.58	1.989	2.322	2.185	2.477	1.020	0.116	0.11	2.31	2.09	2.20	1.97
0.50	0.50	0.50	0.00	1.40	1.55	1.951	2.258	2.125	2.408	1.025	0.104	0.10	2.26	2.03	2.15	1.93
0.60	0.60	0.40	0.00	1.36	1.52	1.913	2.193	2.064	2.339	1.030	0.096	0.09	2.21	1.97	2.09	1.88
0.70	0.70	0.30	0.00	1.32	1.49	1.876	2.129	2.003	2.270	1.035	0.091	0.09	2.15	1.90	2.03	1.83
0.80	0.80	0.20	0.00	1.28	1.46	1.838	2.064	1.943	2.202	1.040	0.091	0.09	2.08	1.83	1.95	1.77
0.90	0.90	0.10	0.00	1.26	1.43	1.800	2.032	1.912	2.167	1.045	0.096	0.09	2.04	1.78	1.91	1.71
1.00	1.00	0.00	0.00	1.40	1.40	1.762	2.258	2.125	2.408	1.050	0.105	0.10	2.22	1.98	2.10	1.63
										average	e beta		2.18	1.93	2.05	1.85

Fig.3-1. Reliability Indices Calculated for R/C Slab Made of Ordinary Concrete for D+L Load Combination (for slab thickness equal to 4 in and without shear reinforcement).

Two-wa	ay shea	ar					D + L,									
0% she	ar reinf	orcem	ent	00	Slab tl	nicknes	s = 6 in		Interior	column	S		beta			beta
				new	old	old	mR new	/ data/de	sign				new			old
D/D+L	D	L	S	Q	Q	mR	0.80	0.85	0.75	mQ	sQ	VQ	0.75	0.85	0.80	0.85
0.00	0.00	1.00	0.00	1.60	1.70	2.260	2.730	2.569	2.912	1.000	0.180	0.18	3.29	3.02	3.15	2.71
0.10	0.10	0.90	0.00	1.56	1.67	2.220	2.662	2.505	2.839	1.005	0.162	0.16	3.26	2.98	3.12	2.69
0.20	0.20	0.80	0.00	1.52	1.64	2.180	2.594	2.441	2.766	1.010	0.146	0.14	3.22	2.94	3.08	2.67
0.30	0.30	0.70	0.00	1.48	1.61	2.140	2.525	2.377	2.694	1.015	0.130	0.13	3.18	2.90	3.04	2.64
0.40	0.40	0.60	0.00	1.44	1.58	2.100	2.457	2.312	2.621	1.020	0.116	0.11	3.13	2.84	2.99	2.60
0.50	0.50	0.50	0.00	1.40	1.55	2.061	2.389	2.248	2.548	1.025	0.104	0.10	3.08	2.78	2.93	2.56
0.60	0.60	0.40	0.00	1.36	1.52	2.021	2.321	2.184	2.475	1.030	0.096	0.09	3.01	2.71	2.86	2.50
0.70	0.70	0.30	0.00	1.32	1.49	1.981	2.252	2.120	2.402	1.035	0.091	0.09	2.94	2.63	2.78	2.44
0.80	0.80	0.20	0.00	1.28	1.46	1.941	2.184	2.056	2.330	1.040	0.091	0.09	2.85	2.53	2.69	2.37
0.90	0.90	0.10	0.00	1.26	1.43	1.901	2.150	2.023	2.293	1.045	0.096	0.09	2.80	2.47	2.63	2.29
1.00	1.00	0.00	0.00	1.40	1.40	1.861	2.389	2.248	2.548	1.050	0.105	0.10	3.02	2.72	2.87	2.20
										averag	e beta		2.97	2.66	2.81	2.46

Fig. 3-2. Reliability Indices for R/C Slab Made of Ordinary Concrete for D+L Load Combination (for slab thickness equal to 6 in and without shear reinforcement).

Two-w	ay shea	ar					D + L,									
0% she	ar reinf	orcem	ent	OC	Slab tl	nicknes	s = 8 in		Interior	column	S		beta			beta
				new	old	old	mR new	/ data/de	sign				new			old
D/D+L	D	L	S	Q	Q	mR	0.80	0.85	0.75	mQ	sQ	VQ	0.75	0.85	0.80	0.85
0.00	0.00	1.00	0.00	1.60	1.70	2.320	2.800	2.635	2.987	1.000	0.180	0.18	3.50	3.22	3.36	2.90
0.10	0.10	0.90	0.00	1.56	1.67	2.279	2.730	2.569	2.912	1.005	0.162	0.16	3.48	3.19	3.33	2.89
0.20	0.20	0.80	0.00	1.52	1.64	2.238	2.660	2.504	2.837	1.010	0.146	0.14	3.44	3.15	3.30	2.87
0.30	0.30	0.70	0.00	1.48	1.61	2.197	2.590	2.438	2.763	1.015	0.130	0.13	3.40	3.11	3.25	2.84
0.40	0.40	0.60	0.00	1.44	1.58	2.156	2.520	2.372	2.688	1.020	0.116	0.11	3.35	3.06	3.20	2.81
0.50	0.50	0.50	0.00	1.40	1.55	2.115	2.450	2.306	2.613	1.025	0.104	0.10	3.30	2.99	3.14	2.76
0.60	0.60	0.40	0.00	1.36	1.52	2.074	2.380	2.240	2.539	1.030	0.096	0.09	3.23	2.92	3.08	2.71
0.70	0.70	0.30	0.00	1.32	1.49	2.033	2.310	2.174	2.464	1.035	0.091	0.09	3.16	2.83	3.00	2.65
0.80	0.80	0.20	0.00	1.28	1.46	1.992	2.240	2.108	2.389	1.040	0.091	0.09	3.07	2.74	2.90	2.57
0.90	0.90	0.10	0.00	1.26	1.43	1.952	2.205	2.075	2.352	1.045	0.096	0.09	3.01	2.67	2.84	2.49
1.00	1.00	0.00	0.00	1.40	1.40	1.911	2.450	2.306	2.613	1.050	0.105	0.10	3.24	2.93	3.09	2.39
										averag	e beta		3.19	2.87	3.03	2.66

Fig. 3-3. Reliability Indices for R/C Slab Made of Ordinary Concrete for D+L Load Combination (for slab thickness equal to 8 in and without shear reinforcement).

One-way shear						D + L,										
0% shear reinforcement				OC	Foundation depth = 12 in							beta			beta	
				new	old	old	mR new	/ data/de	sign				new			old
D/D+L	D	L	S	Q	Q	mR	0.80	0.85	0.75	mQ	sQ	VQ	0.75	0.85	0.80	0.85
0.00	0.00	1.00	0.00	1.60	1.70	1.884	2.276	2.142	2.428	1.000	0.180	0.18	3.01	2.67	2.84	2.26
0.10	0.10	0.90	0.00	1.56	1.67	1.851	2.219	2.089	2.367	1.005	0.162	0.16	2.97	2.63	2.80	2.24
0.20	0.20	0.80	0.00	1.52	1.64	1.818	2.162	2.035	2.306	1.010	0.146	0.14	2.93	2.59	2.76	2.21
0.30	0.30	0.70	0.00	1.48	1.61	1.784	2.105	1.981	2.246	1.015	0.130	0.13	2.88	2.53	2.71	2.18
0.40	0.40	0.60	0.00	1.44	1.58	1.751	2.048	1.928	2.185	1.020	0.116	0.11	2.83	2.47	2.65	2.14
0.50	0.50	0.50	0.00	1.40	1.55	1.718	1.992	1.874	2.124	1.025	0.104	0.10	2.76	2.39	2.58	2.08
0.60	0.60	0.40	0.00	1.36	1.52	1.685	1.935	1.821	2.064	1.030	0.096	0.09	2.68	2.30	2.49	2.02
0.70	0.70	0.30	0.00	1.32	1.49	1.651	1.878	1.767	2.003	1.035	0.091	0.09	2.59	2.20	2.39	1.94
0.80	0.80	0.20	0.00	1.28	1.46	1.618	1.821	1.714	1.942	1.040	0.091	0.09	2.48	2.08	2.28	1.86
0.90	0.90	0.10	0.00	1.26	1.43	1.585	1.792	1.687	1.912	1.045	0.096	0.09	2.41	2.01	2.21	1.76
1.00	1.00	0.00	0.00	1.40	1.40	1.552	1.992	1.874	2.124	1.050	0.105	0.10	2.70	2.32	2.51	1.65
										average	e beta		2.63	2.24	2.43	1.97

Fig. 3-4. Reliability Indices for R/C Foundation Beam Made of Ordinary Concrete for D+L Load Combination (for foundation depth equal to 12 in and without shear reinforcement).

One-way shear							D + L,									
0% shear reinforcement			OC	Foundation depth = 36 in							beta			beta		
				new	old	old	mR new	/ data/de	sign				new			old
D/D+L	D	L	S	Q	Ø	mR	0.80	0.85	0.75	mQ	sQ	VQ	0.75	0.85	0.80	0.85
0.00	0.00	1.00	0.00	1.60	1.70	1.886	2.280	2.146	2.432	1.000	0.180	0.18	3.03	2.69	2.86	2.31
0.10	0.10	0.90	0.00	1.56	1.67	1.853	2.223	2.092	2.371	1.005	0.162	0.16	2.99	2.65	2.82	2.29
0.20	0.20	0.80	0.00	1.52	1.64	1.819	2.166	2.039	2.310	1.010	0.146	0.14	2.95	2.61	2.78	2.26
0.30	0.30	0.70	0.00	1.48	1.61	1.786	2.109	1.985	2.250	1.015	0.130	0.13	2.90	2.55	2.73	2.22
0.40	0.40	0.60	0.00	1.44	1.58	1.753	2.052	1.931	2.189	1.020	0.116	0.11	2.85	2.49	2.67	2.18
0.50	0.50	0.50	0.00	1.40	1.55	1.720	1.995	1.878	2.128	1.025	0.104	0.10	2.78	2.41	2.59	2.13
0.60	0.60	0.40	0.00	1.36	1.52	1.686	1.938	1.824	2.067	1.030	0.096	0.09	2.70	2.32	2.51	2.06
0.70	0.70	0.30	0.00	1.32	1.49	1.653	1.881	1.770	2.006	1.035	0.091	0.09	2.61	2.22	2.41	1.99
0.80	0.80	0.20	0.00	1.28	1.46	1.620	1.824	1.717	1.946	1.040	0.091	0.09	2.50	2.10	2.30	1.90
0.90	0.90	0.10	0.00	1.26	1.43	1.586	1.796	1.690	1.915	1.045	0.096	0.09	2.43	2.02	2.23	1.80
1.00	1.00	0.00	0.00	1.40	1.40	1.553	1.995	1.878	2.128	1.050	0.105	0.10	2.71	2.34	2.53	1.68
										averag	e beta		2.64	2.26	2.45	2.01

4. Proposed Resistance Factors

The reliability indices calculated for different design cases of eccentrically loaded columns and shear capacity of slabs and foundation beams were compared to the target values. Based on that analysis, the recommended values of resistance factors are given in Table 4.1 for columns, slabs and foundation beams.

Table 4-1. Recommended resistance factors for eccentrically loaded columns, slabs and foundation beams

Structural Element and Limit State	Recommended Resistance Factor
Eccentrically Loaded Columns, Tied	0.70
Eccentrically Loaded Columns, Spiral	0.75
Slabs, Two-Way Shear	0.75
Foundation Beams, One-Way Shear	0.75

5. Conclusions and Recommendations

The reliability-based calibration was performed for eccentrically loaded columns and shear in slabs and foundation beams. This work is the continuation of a study presented in the Phase 1 of the report. The objective was to calculate resistance factors for the design of concrete structures corresponding to load and load combination factors specified by the ASCE 7-98 Standard.

Statistical parameters for materials are the same as in Phase 1 of the project with the exception of the coefficient of variation for concrete modulus of rupture.

In general, the reliability indices calculated for eccentrically loaded columns are slightly lower than β 's for axially loaded columns presented in Phase 1 of the report. Assuming the same target value of the reliability index and resistance factor for eccentrically loaded columns and axially loaded columns, $\beta_T = 4.0$, the recommended resistance factor for columns is 0.75 for spiral columns and 0.70 for tied columns. In the result, the axially loaded columns can have a higher reliability index than eccentrically loaded columns. However, this is reasonable because in most design cases, columns are eccentrically loaded. The same value of resistance factor for axially and eccentrically loaded columns will simplify the code and it will be convenient for the designers.

Based on the reliability analysis performed for design cases with shear force resisted by concrete section only, the recommended resistance factor for shear, is 0.75. This resistance factor is recommended for one-way and two-way shear.

6. References

ACI 318-02, "Building Code Requirements for Structural Concrete", American Concrete Institute, Farmington Hills, Michigan, 2002.

ACI 318-99, "Building Code Requirements for Structural Concrete", American Concrete Institute, Farmington Hills, Michigan, 1999.

ASCE 7-98, "Minimum Design Loads for Buildings and Other Structures", American Society of Civil Engineers, Washington, D.C., 1998.

Bartlett, F.M. and MacGregor, J.G., "Statistical Analysis of the Compressive Strength of Concrete in Structures", ACI Materials Journal, V. 93, No. 2, March –April 1996, pp. 158-168.

Bartlett, F.M. and MacGregor, J.G., "Variation of In-Place Concrete Strength in Structures", ACI Materials Journal, V. 96, No. 2, March – April 1999, pp. 261-270.

Davies, J.D. and Bose, D.K., "Stress Distribution in Splitting Tests", ACI Journal, Aug. 1968.

Ellingwood, B., Galambos, T.V., MacGregor, J.G. and Cornell, C.A., "Development of a Probability Based Load Criterion for American National Standard A58", NBS Special Report 577, U.S. Department of Commerce, National Bureau of Standards, 1980.

Nowak, A.S. and Collins, K.R., "Reliability of Structures", McGraw-Hill New York, 2000.

Nowak, A.S. and Szerszen, M.M., "Calibration of Design Code for Buildings (ACI 318): Part 1-Statistical Models for Resistance", ACI Structural Journal, Vol. 100, No. 3, 2003, pp. 377-382.

Raphael, J.M., "Tensile Strength of Concrete", ACI Journal, March-April 1984.

Rocco, C., Guinea, G.V., Planas, J. and Elices, M., "Review of the splitting-test standards from a fracture mechanics point of view", Cement and Concrete Research 31 (2001), pp. 73-82.

Szerszen, M.M., and Nowak, A.S., "Calibration of Design Code for Buildings (ACI 318): Part 2 –Reliability Analysis and Resistance Factors", ACI Structural Journal, Vol. 100, No. 3, 2003, pp. 383-391.

Tang, T., "Effects of Load-Distributed Width on Split Tension of Unnotched and Notched Cylindrical Speciments", American Society for Testing and Materials, 1994.