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Compatible Stress and Cracking in Reinforced Concrete
Membranes with Multidirectional Reinforcement

by Morris N. Fialkow

A methodology is provided for evaluating the design quantities nec-
essary for designing membrane elements of concrete shearwalls and
shells with multidirectional reinforcement against in-plane forces. The
mode of failure—ductile, ductile-brittle, or brittle—is determined, as
are the critical loads and associated stresses in the reinforcement and
concrete and the extent of cracking. Toward this end, a set of equa-
tions, each involving one unknown parameter, is applied iteratively to
convergence, which is shown by example to be rapid. The basis for
omitting shear at the crack surface and for using continuum strain
equations in the cracked concrete matrix is demonstrated. An illus-
trative example is included.

Keywords: compressive strength; cracking (fracturing); crack width and spac-
ing; ductility; failure; reinforced concrete; shearwalls; shells (structural forms);
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Planar structural elements which transmit in-plane
stresses, herein designated as membranes, are basic
components of such structures as shearwalls, shells, and
folded plates. The behavior of concrete membranes
with two-way orthogonal reinforcement has been in-
vestigated extensively."* This paper develops a meth-
odology for determining the response of membranes
with multidirectional reinforcement for any loading up
to membrane failure in either of the possible failure
modes. The development is largely based on the prin-
ciple of minimum potential.>” The principle is used to
develop the equilibrium equations for cracked mem-
branes and to investigate the propriety of omitting
shear force between the sides of the crack.

The methodology developed here differs from tradi-
tional methods®® in several respects. First, the analysis
is extended to determine the mode of failure and the
associated brittle or ductile-failure loads. Second, a
specific set of equations, each with one unknown, is
used cyclically to obtain solutions. Third, the behavior
at each critical stage, such as onset of yield in a rein-
forcement direction, is determined directly for that
stage by using specifically applicable equations; loads
are not increased by increments.
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ASSUMPTIONS

The following are the general assumptions of this
paper together with their underlying rationale.

1. Experiments as in Reference 1 show that shear ap-
plied to the sides of a membrane element with orthog-
onal reinforcement parallel to the sides results in coin-
cident tensile stress in the reinforcement and collinear
local compressive stress in the concrete. To obviate this
inconsistency, it is assumed, as in Reference 3, that the
reinforcement and concrete are perfectly bonded at the
element boundaries so that no overall slip occurs, but
that slip may occur internal to the element.

2. Relative to crack shear, it is assumed that no strain
energy exists due to shear force transmitted across the
crack. The validity of this assumption is checked by in-
vestigating the slip displacement along the crack, which
would occur in the absence of shear-resisting force.

3. The strain energy of the reinforced concrete mem-
brane is calculated as the sum of the strain energy of
the concrete and the strain energy of the reinforce-
ment. It is assumed that the crack is the first principal
plane of the concrete component and the reinforcement
stress is uniaxial.

4. Based on experimental results,' it is assumed that
the crack direction can change as the loading varies.

STRESSES—NOTATION AND SYSTEMS
A definition of each symbol is given where the sym-
bol first appears. Stress notation is illustrated in Fig. 1
and 2; the x,y-directions are longitudinal and trans-
verse, respectively. For the overall membrane, g, and
v,., are the normal and shear stresses, respectively, and
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N,, = o,h and N,,, = v,,.h are the membrane stress re-
sultants. For the reinforcement, the uniaxial stress and
stress resultant in the ith set of reinforcement are des-

ignated f; and F;, respectively; the direction is defined
by its inclination with the x-axis ;. Concrete compres-
sive and shear stress magnitudes are designated f, and
V., respectively. Stresses at the yield or crushing condi-
tion are designated by adding the superscripts Y or U,
respectively, to the stress symbols.

In line with this, distinction is made between the
membrane principal planes and the principal planes in
the concrete constituent. Thus, ¢, and o, are the mem-
brane principal stresses acting on the membrane prin-

A

a. Membrane forces , cracks , reinforcement

ot m B

)

b. Displacements at crack AB

Fig. I—Membrane element with sides of unit length
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cipal planes, and f,, and f, are the concrete principal
stresses acting on the principal planes in the concrete.

Two systems of stresses are identified, namely, the
membrane stresses and the component (reinforcement
and concrete) stresses. The membrane stress resultants
N,N,N,, are obtained prior to applying the methodol-
ogy herein from an equilibrium analysis of the entire
structure. The component stresses ff.v. are obtained
from the displacements, which are evaluated to mini-
mize the total potential of the external and internal
stresses of the system. Brittle failure herein involves o,
directed at the angle ¢ from the y-direction; ¢ is ob-
tained from

2v, )

o, — o,

tan 2¢ =

Ductile failure is defined in terms of the reinforcement
stresses f,, which depend on the direction of the crack

Nyy Sin6

T N, sin@
N,ycose
NyCos @
Free Body B

with plane normal to crack

Fi=fipih

Notes: Fc =f., h 5
%

Free Body C

with crack and normal planes

at angle 6 from the y-direction. The angles ¢ and 6 are
independent.

DISPLACEMENTS AND STRAINS

Fig. 1 shows the adopted cracking pattern and crack
displacements in the unit element. It is divided into
subelements by equidistant cracks. The normal dis-
tance between cracks is b. The number of cracks per
unit distance normal to the crack is k = 1/b; the num-
ber per unit distance in the x and y directions are k, =
kcosf and k, = ksinf. The number of cracks per unit
distance along Bar i is k; = 1/b; = kcosf3,, where 8; =
o — 0.

The displacements across one crack in the coordinate
directions are 6x and &y. These displacements result in an
increase in length of Bar i equal to 6/, and displacement
components p and én tangential and normal to the
crack, respectively. In determining 6/, only the compo-

N, sin©

Nyycos©

IN,cose

Free Body A

with crack plane

Free Body D

with crack and normal planes

Fig. 2—Membrane-free bodies with hypotenuse of unit length
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nents of displacement parallel to the bar are included,
as it is assumed that the effect of the crack on the bar
direction extends for a distance along the bar that is
many times the small dimensions of the crack displace-
ments

0l; = dxcosa; + dysing; (2a)
0p = —éxsinf + dycosh (2b)
on = éxcosf + dysind (2¢)

From Eq. (2b), the tangential displacement vanishes if
tanf = 6y/6x. Whether this is really so is investigated
in the following.

The unit strain of Bar i due to crack displacements
€ 1s

=

/.
eil - k(axcos(ai + Bysinai) COS(O(,' - 0) (33)

&

The strain is written in terms of the components of the
total crack displacement in unit distance normal to the
crack

€ = (ecosa; + esina) cos(a; — 6) (3b)

where e, = kéx; e, = kby; and e, = kén.
If ép is zero, e, = e,cosb; e, = e,sinf; and ¢/ trans-
forms as in a continuum

’

¢ = ecosi(a; — 0) = e,cos?B, (30)

The displacements and strains in each concrete subele-
ment are those of a continuum. The crack is the first
principal plane for stress and strain with zero tension
normal to the crack. The stress-strain relation up to
crushing is assumed to be linear. The principal concrete
strain which is parallel to the crack is defined as —e,;
the principal concrete strain normal to the crack is pe,,
where p is Poisson’s ratio. The strain transformation
equations for a continuum apply to give the concrete
Strains e, €,, Y., and ¢, in the coordinate and rein-
forcement directions

€, = pe,os’ — e,;sin’ (4a)
€, = pe;sin’d — e,cos’f (4b)
Yoy = (ne, + e,)sin26 (40)
€; = pecos’(a; — 0) — esin¥(e; — )  (4d)

Since it has been assumed that no overall slip occurs,
the total strain ¢, in Bar i is the sum of the strains due
to the crack displacements and concrete strains. The
parameters e,, e,, e,, and 6 are taken to be the inde-
pendent displacements in the membrane
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€ = (ecos; + esina)cos(a; — 6) (5a)
+ pecos (o — 0) — esin¥(o; — 6)

If 6p vanishes, ¢, transforms as in a continuum as in
& = (e, + ue)cos’(a; — 0) — esin’(e; — 6) (5b)

The displacements of each side of the unit element
relative to the opposite sides are now determined. For
the side x = constant

Ax, = ecosf + pe, cos’d — e,sin%d (6a)
1 .
Ay, = ecosf + E(Me2 + e,)sin26 (6b)
and for the side y = constant
. 1 .
Ax, = e, sinf + E(ue2 + e,)sin20 (7a)

e, sinf + pe,sin® — e,cos? (7b)

Ay,

PRINCIPLE OF MINIMUM POTENTIAL

The total potential of the force system U, consists of
the potential energy of the internal forces (the strain
energy V) and the potential energy of the applied forces
U. The principle states that, of all possible displace-
ments that satisfy stress-strain compatibility and the
physical constraints, the actual displacements minimize
U;.

The components of U; for the unit reinforced con-
crete membrane element are evaluated in the following.
The terms p, h, and E are in accord with conventional
notation. The strain energy of those reinforcing bars in
which the stress is less than yield, with area per unit
length of membrane 4, = p;, is termed V;,

1
V.= i Pi hEé, & < fI/E, (82)

For the bars in a state of yield with area A, = p 4, the
strain energy V, is

V, = > ohfle (8b)

- SioMV/E, e > fUE,

The strain energy of the concrete component V, is
given by

V. = %hEc e; (8¢c)

and the potential of the applied forces U is
U= - N,Ax, — N,Ay, — N, (Ax, + Ay,) (8d)
The total potential for the unit element U; is given by

U=V, +V.+V.+ U : (8e)
ACI Structural Journal / July-August 1991




The total potential U, is minimized by Eq. (9)

aU
?e—j—r = 0’ e = €, €, 6, 0 (9)
Eq. (9), in turn, represents the four equations of equi-
librium corresponding to the four independent dis-
placements.

EQUILIBRIUM EQUATIONS
IN TERMS OF STRESS

The equilibrium equations are derived and expressed
in terms of the internal forces exerted by the reinforce-
ment and concrete, as shown in Appendix B. Three of
these equations from Appendix B, which can be ex-
pressed in terms of stresses and crack angle, are stated
as Eq. (11), (12), and (13). They enforce equilibrium
for different free bodies shown in Fig. 2. The following
notation is used

F, = Egeph = fA; (10a)
F! = flo.h = f]A, (10b)
F, = Eeh = fh (10c)
Bi=a — 6, B, =a — 0 (10d)

Eq. (11) and (12) enforce the equilibrium of Free
Body A in Fig. 2 relative to forces in the x and y direc-
tions, respectively

Ncosh + N,sinf = Y, Fosp,cosa,
+ D FYcoSBrea (11
Nsing + N,cosd = > FeosBsine,

+ > FY cosBsina, (12)
Eq. (13a) enforces the equilibrium of forces on Free
Body B in the direction of F,
N,sin®0 + N,cos’0 — N,sin2f + F,
= Y Fsin’8, + > Flsin?8, (13a)

Eq. (13b) enforces the equilibrium of forces on Free
Body C in the y-direction together with the equilibrium
of forces on Free Body D in the x-direction

N,+N,+F, =Y F + ) F! (13b)
Eq. (13c) can be obtained either from equilibrium of
forces in the x-direction on Free Body C or from equi-
librium of forces in the y-direction on Free Body D

Fsin20 = 2N,, — >, Fsin2e, — Y Flsin2a, (13¢)
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The equilibrium equation corresponding to dU;/d0 is
given in Appendix B. It is not repeated here because it
includes the displacements e, e,, e, and 0 in addition to
the membrane and component material forces.

Note that the three stress-equilibrium equations are
statically indeterminate and do not permit direct deter-
mination of the unknown forces F,, F. and crack angle
6. For this purpose, substitution is required for the
forces in terms of the independent displacements.

CRACK SHEAR AND STRAIN
TRANSFORMATION

It has been shown that no crack-shear displacement
occurs and that continuum strain-transformation equa-
tions apply to the reinforcement strains in the mem-
brane with crack openings, if the ratio of the crack dis-
placements e,/e, equals tand. In this section, e,/e, is
evaluated. Toward this end, the four equilibrium equa-
tions are expressed in terms of e,, e,, e, and 6. This is
done in Appendix B.

Because of the complexity of the equations, the fol-
lowing evaluation of e,/e, is accomplished for mem-
branes with orthogonal two-way reinforcement. For the
elastic case of two-way orthogonal reinforcement, the
equations as stated here are obtained. Using Eq. (11),
(12), and (13c), in turn, we obtain

B Ncosd + N,sind — hEp.e(ucos’d — sin’f)cosd

14
& h E, p, cos’ 14
_ Ngsing + N,cos — h Ep,e(usin’d — cos’6) sinf 15)
&= hE, p, sinf
N, nN,, E,
_ x - : == 16
® = hE.sinfcosd  hE simbcos® | E. (16)

The equation obtained directly from dU;/90 = 0 [Eq.
(B9)] involves the four displacements and is not stated
here because of its complexity. By substituting the val-
ues of e,, e,, and e, from Eq. (14), (15), and (16) into
Eq. (BY), the following is obtained for the membrane
with two-way reinforcement

1 1
— N, tand + N,, <— + n> =
Py Py

1 1
ny<; + n) tan‘d + — N,tan’d

Px

a7

The ratio e,/e, is now formed from Eq. (14) and (15)
after inserting the value of e, from Eq. (16)

e (1/p,) [Ntanf] + N,(1/p, + n) — np N,tan’d

b3
e, N, (1/p, + nitan’d + 1/p, (Nitanf) — np N, tanf)

When the right-hand side of Eq. (17) is substituted for
the terms in the numerator corresponding to the left-
hand side of Eq. (17), the preceding equation reduces to

e/e, = tanf . (18)
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The ratio e,/e, is now evaluated for the elastic-plastic
phase, that is, with f, = fY and J, < fI. The stress-
equilibrium Eq. (11), (12), and (13c) are adapted for
this case to give

phfY = N, = N, tanf (19)
ph f, — N, = N,, cotf (20)
h E, e, sinf cosf = N, 21

In the equation obtained from dU,/36 = 0, terms cor-
responding to the left-hand side of Eq. (19) and (20) are
replaced by their equivalents on the right-hand side,
giving

e; N,, (sinftand + cosb) — e, N,, (cosbcotd + sinf)
+e, N,(1 + u) sin26(tanfd — cotf + 2cot26) = 0
(22)

The ratio e,/e, is formed from this equation to give
e/e. = tanf.

The preceding development shows that, for a mem-
brane in which the reinforcement carries uniaxial stress
and the crack is the first principal concrete stress plane,
the potential energy of the membrane is a minimum
when e,/e, = tanf. From Eq. (2b), this is equivalent to
no tangential displacement along the crack, even
though no resistance to such displacement is postu-
lated. This leads to the conclusion that, with the
adopted stress system in the reinforcement and con-
crete, no crack-shear force is developed even if crack-
shear resistance exists.

The previous strain transformation Eq. (5a) is re-
written on the basis of e,/e, = tanf developed for two-
way orthogonal reinforcement but assumed here to be
applicable to multidirectional reinforcement. The re-
sulting reinforcement strain transformation equation is
the same as that for a continuum

€ = e cos’ B, — e, sin? B, (23)
wheree, = e, + pe,and 8, = o, — 6.

MODES OF MEMBRANE BEHAVIOR

The modes of membrane behavior considered are
those in which cracking is feasible; this implies that one
or both of the membrane principal stress resultants, N,
or N,, are tensile.

As membrane loading is increased after the concrete
has cracked, experience has shown that failure may oc-
cur in one of three modes. The initial behavior of the
reinforced concrete membrane after cracking is elastic,
with the reinforcement together with the concrete car-
rying the load. As the load is increased, the behavior
becomes either ductile due to yielding of the reinforce-
ment or brittle due to concrete crushing.

The brittle failure may occur before any reinforce-
ment yield (Mode B), or after reinforcement yield in
some, but not all, reinforcement directions (Mode DB).
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Ductile failure is that associated with yielding of the re-
inforcement in all directions (Mode DD). At critical
stages in the loading, the methodology developed in
subsequent sections determines the behavior mode,
loading, crack angle, and equilibrium stress-strain Sys-
tems. The response is determined for the following be-
havioral phases:

Elastic action—Characteristics prevailing before yield
or crushing are determined.

Ductile phases—Response is calculated, in turn, as
the different directions of reinforcement successively
begin to yield. In this paper, yield n refers to the stage
at which n — 1 sets of reinforcement are already at
yield stress and the nth set is at incipient yield.

Crushing phases—The membrane crushing strengths
and associated failure loads are determined for the
stress-strain patterns associated with the critical elastic
and ductile phases.

EQUATIONS FOR ELASTIC AND DUCTILE
BEHAVIOR

The working equations are developed by using Eq.
(18) and (23) in the equilibrium equations in Appendix
B. The equations are applied in a cyclical process de-
scribed later. In the equations for the calculation of e
and 6, the term involving e, with its coefficient, a func-
tion of 0, is treated as known. This follows from the
cyclical process in which the values from the preceding
cycle are used to evaluate this term. This procedure was
adopted because it was found that variation of e, has
relatively minor effect on the values of e, and 6.

Constant terms

In this section, constants that define the membrane
reinforcement in the successive phases are introduced.
The following apply to bars not yet in the yield state,
including incipient yield

A = )] peosiey
B = Z': pcos’a;sing;
C = 2 picos’a;sin’e; (24a)
D = z’: picosa;sin’y;
E = Z,: pSin‘e;

i

The following apply to bars that are in the yield state,
including all bars at final yield

F = 3] p.flcosk,
G = Z p.fYcosa,sina,

H = ) p,flsina,

(24b)

The following apply to the bar set that is at incipient
yield, the kth set, for use in Eq. (28) ’
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J = cos’oy
K = cosq,sino, (24¢)
L = Sil’lzak

The applied membrane loading represents a constant
loading pattern defined by the ratios c,, c,, and ¢, in
Eq. (25). The first principal stress resultant N, is taken
as the index of the load level

¢, = NJ/N,
cy = Ny/Nl (25)
¢, = N,/N,

Equations for e,

The equations in Appendix B corresponding to
aU,/de, = 0 and to 0U,/de, = 0 each are solved for e,
after insertion of Eq. (18)

hEe,
N - hF)cosd + (N,, — hG)sinf + hEXe,
~ Acos® 8 + 3Bcos*sing + 3Ccosfsin’ + Dsin’f

(26a)
where
X = Ccos’d + (D — 2B)cos’dsinf (26b)
+ A - 2C)costin20 + Bsin’f
hE,e, = (27a)

(N, — hH)sind + (N, — hG)cosd + hEYe,
Bcos® + 3Ccos®0sinf + 3Dcosfsin’d + Esin’0

where

Y = Dcos’d + (E — 2C)cos*fsind
+ (B —2D)cosfsin’0 + Csin’0  (27b)

Either of the preceding equations can be used to calcu-
late e, when the loading level is known. However, when
the loading associated with incipient reinforcement
yield is to be determined, the following method, devel-
oped for incipient yield of Bar k, is used. The yield
value of ¢f = f¥ /ES is substituted in Eq. (23) with the

following evaluation for e,

o = LH/E T et (282)
&
where
g, = Jcos® + 2Kcosfsing + Lsin’d  (28b)
g, = Lcos®0 — 2Kcosbsind + Jsinf (28¢)

Equation for 6 .
The values of hEe, ftom Eq. (26) and (27) are set
equal to give
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Ktan'd + Kitan’d + Ktan’d
+ Ktand + K, = hEZe, (29a)

where
K, = N(Ec,, — Dc) + h(DH — EG)

K, = Ny(Ec, — 3Cc, + 2Dc,) + h(3CH - 2DG
- EP)

K, = N3Dc, — 3Bc,) + 3n(BH — DF)
(29b)

K, = N,3Cc, — Ac, — 2Bc,) + h(2BG — 3CF
+ AH) »

K, = N(Bc, — Ac,) + h(AG — BF)

Z = cos?d (Mtan®® + Mitan’d + Mtan'd + Mtan’d
+ M,tan’0 + Mjtanf + M)

where

My, = CD — BE

M, = 3C> — 2BD — 2D* + 2CE — EA

M, = 3BC — 2CD + 2BE — 3AD

M, = 2B* — 2D* + 2CE - 2AC

M, = 2BC — 3CD + 3BE — 2AD

M, = 2B* + 2BD - 3C* - 2AC + AE

M, = AD — BC ‘ : (29¢)

In the cyclical solution process, Eq. (29) is first used in
the elastic phase with the given loading. However, at
incipient yield of a reinforcing bar, the loading index N,
must be established prior to using Eq. (29).

Equation for N,

In the elastic phase, the loading is given and the
loading level N, and the principal membrane compres-
sion N, are calculated from the given stress resultants

N, N, N, — N)\? i
NNy = =2 e [(—2—> + M] (30)

When the loading level associated with the yield of a
reinforcing bar is sought, the value of N, is determined
in the solution process from previously calculated val-
ues of the material stresses. Derivation of Eq. (31) fol-
lows from the equilibrium of membrane and material
forces acting on the free body bounded by the crack,
the normal to the crack, and the first principal mem-
brane plane*

N, = > Feos¥(a; — ¢) — Fsin’(0 — ¢) (31
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In this equation, F, represents all the reinforcement
forces F; and F?.

Equation for e,

The stress-equilibrium equations Eq. (13b) and (13¢)
each are used in calculating the value of F,, resulting in
F,and F,

Fy=2F+ >F -N,-N, (32a)
Fo= 1 (32b)
“ 7 sin26
<2ny - >, Fsin2a, — ZF,SiﬂZa,)
F, = 0.5, + F.) (32¢)

The displacement e, is then evaluated from the average
value

e = (33)

E. h

Equations for 6 and N, at yield of last set of bars
Solution for loading when all the reinforcement has

reached yield follows the method presented by Nielsen'

and is based on Eq. (11) and (12). For determining 6

(Ge, — Hc,) tan’d + (Fc, — Hc,)tand (34
+ Fe, — Ge, =0

and for determining N,

N (¢}, — ¢¢) + Nh(Fe, + Hc, — 2Ge,) (39)
+ W(G* -FH) = 0

CALCULATION PROCEDURE FOR ELASTIC AND
DUCTILE BEHAVIOR

The procedure given here provides for the calcula-
tion of the crack angle, material strains and stresses,
and load level (if not specified) at the critical stages of
nonbrittle behavior. The procedure for checking these
results against possible brittle failure by concrete
crushing is discussed in the next section.

The calculation procedure is iterative, and the pro-
cedure is defined for a typical cycle. Examples indicate
rapid convergence; the calculated results converge to
within one percent of the values in the preceding cycle
by the third cycle. The steps in one cycle of each phase
are given. At each step of the cycle, the previously cal-
culated value of each parameter is to be used.

Yield 0—Elastic action with initial loading
Equation numbers for each calculation step are
listed. ’
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Preliminary calculation
Reinforcement characteristics (24a)

Load level N, (principal membrane force) and
direction ¢ (30), 1)

Stress ratios (25)

Cycle 1—Start by assuming e, = 0 and calculate in
order

Crack angle 6 (29a)

Strain e, (26) or (27)

Reinforcement strains ¢, and forces F, (23), (10a)

Principal concrete compression F, (32a,b,¢)
Strain e, 33)
Parameter Z (29b)

Cycle 2 and succeeding cycles—Start with values of
e, and Z from preceding cycle. The calculation steps are
the same as for Cycle 1.

Analysis of these equations applicable to elastic ac-
tion up to first yield shows that  remains constant and
that the stresses and strains vary linearly with the load.

Yield 1—Incipient yield of first set of bars

Elastic action continues to incipient yield of the set of
bars that yields first. This set of reinforcement A, is
ascertained as the mth set with the largest ratio £, /f, of
elastic-action stress to yield stress. The stresses and
strains at incipient yield of A4,, are obtained by multi-
plying the corresponding results from Yield 0 by the in-
verse ratio fY/f,.. Angle 6 at Yield 1 remains the same
as for Yield 0.

Yield 2 and succeeding yields k up to final yield
phase
Yield 2 (Yield k) represents the conditions when the
second (kth) set of reinforcing bars is at incipient yield.
The next set to yield is established by the results of pre-
ceding phase. Calculation steps and the associated
equations are as follows.
Preliminary calculations
Reinforcement characteristics based on yielding in
bars of the preceding phase and elastic action in all
other bars (24b,a)

Cycle 1—Start by assuming the values of e,, §, and F,
to be those determined in the preceding phase. Then,
calculate the following in order

Strain e, (28a,b,c)
Reinforcement strains ¢; and forces F,, FY  (23),
(10a,b)
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Load level N, (1)
Principal concrete compression F, (32a,b,c)
Strain e, 33)
Parameter Z (29b)
Crack angle 6 (29a)

Cycle 2 and succeeding cycles—Start by assuming the
values of e,, 0, and F, to be those determined in the
preceding cycle. Repeat steps in Cycle 1.

Final yield phase—Incipient yield of last set of
bars

This phase represents conditions when the final set of
bars is at incipient yield so that the condition is that of
ductile failure; it is designated Type DD failure. Cal-
culation results are obtained directly, without iteration.
The calculation steps with associated equations are

Reinforcement characteristics, yielding in all bars

(24b)

Crack angle 0 (34)

Load level N, (35)

Membrane stress resultants N, N, N,, 25)

Principal concrete compression F, (32a,b,¢)

Strain e, (33)
Strain e,, with last set of bars at incipient yield

(28a,b,c)

Reinforcement strains ' (23)

CRUSHING STRENGTH AND FAILURE LOAD

In the overall calculation procedure, the preceding
calculations, which define the ductile behavior of the
membrane, have been made on the assumption that
earlier brittle failure by crushing does not intervene. To
ascertain the actual failure mode, the membrane crush-
ing strength must be determined. This is done subse-
quent to the preceding calculations because informa-
tion about reinforcement stresses and crack size is
needed to determine crushing strength.

Experimental results such as those in Reference 1
have shown that compression failure in reinforced con-
crete membranes occurs at stresses substantially smaller
than the uniaxial cylinder strength f; when membrane
tension exists perpendicular to the principal membrane
compression. A method to evaluate this reduced
strength is presented here for membranes with multidi-
rectional reinforcement. This method is an extension of
that developed for membranes with two-way orthogo-
nal reinforcement* on the basis of experimental results
and theoretical considerations.

The membrane crushing strength is defined here as
the principal membrane compressive stress at mem-
brane crushing oY = NY/h. Crushing strength is evalu-
ated for two types of failure involving crushing. In the
first, Type B, sudden membrane failure by crushing
occurs prior to any reinforcement yield. With the sec-
ond, Type DB, increasing loading results first in ductile
yielding of the reinforcement in one or more direc-
tions. Subsequently, as loading is increased, failure oc-
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curs by crushing prior to ductile yielding in all direc-
tions; this ductile brittle-type failure is designated Type
DB. Ductile failure by yielding of all the reinforcement
is designated Type DD.

Type B failure

Prior to reinforcement yield, in the presence of per-
pendicular tension, the membrane crushing strength of
depends on the concrete cylinder strength f! and on the
membrane stresses as characterized by two parameters.
The first parameter s is equal to the negative ratio of
the principal membrane tensile stress to the principal
membrane compressive stress. The second parameter s’
depends on the tensile forces in the reinforcement; it is
equal to the ratio between the normal component of the
reinforcement forces acting on the tension face of the
principal membrane element and the normal compo-
nent of these forces acting on the compression face.

In the evaluation procedure that follows, parameters
s and s’ are calculated by Eq. (36a) and (36b). In the
calculation for s’, the values of F, obtained in the
phases Yield 0 and Yield 1 are applicable

s = — 0/o, = — N/N, (36a)

> F.cos’ (o — ¢)
T S Fsin’ (e — ¢)

s' (36b)

A material strength reduction factor R’ depends on s

R' =0.14 + 1/6 (2.0 — 5)** (37a)
0<s<1.0
(37b)
R' =020 + 1/9 (2.0 — s)?
1.0 <5 <20 (37¢)
R’ = 0.20, 2.0< s

The membrane crushing strength for Type B failure is
then evaluated by Eq. (38)

R (1+9)

U — — ! =
2 R7: R 1 + s/s’ (38)

The load level N,; associated with this crushing strength
is evaluated by Eq. (39)

The load level N,, calculated with elastic action at
Yields 0 and 1, is designated generically as N,z. This
load level is attained and may possibly be exceeded if

NlE < N]B (40)

If the inequality is reversed, failure is by brittle crush-
ing, Type B, and the failure load level is N;. If the in-
equality holds, behavior at yield of the next set of bars
is investigated. ot
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Type DB failure

When crushing occurs after yield in one or more di-
rections has begun, the membrane crushing strength,
designated o%,,;, depends on the preceding factors s, s’,
and R’, and also on Ae,, the increase in the normal
crack opening over that at first incipient yield. The fol-
lowing evaluation of 6%, is applicable at loads beyond
Yield 1, up to the final yield phase.

Parameter s is still defined by Eq. (36a), but evalua-
tion of s’ is now by Eq. (36¢), since some of the bars
are at yield stress

2 Fcose; — @) + Y Fleos’(a, — o)

T SFsin(e, - ¢) + SFisin(a, — ¢) %)

Evaluation of the factor R’ is by Eq. (37a), (37b), and
(37¢), as it was previously.
The normal crack opening e, at any loading where
the strains are e, and e, is given by
e, = e — ue, (41a)
At first incipient yield (Yield 1), the crack opening is
designated €. The increase in normal crack opening at
any loading over that at Yield 1 is
fe, = — e, o) =l — ) (4Ib)
Due to Ae,, further reduction in crushing strength ro¥,
occurs where 7 is defined by

r=1.0 — 40.0 Ae, (42a)
0 < Ae, < 0.0125
(42b)
r=0.50, 0.0125 < Ae,

The concrete crushing strength oY, is then evaluated

rR' (1 + s
dw=rogy= =TI gy

The load level N,,, associated with this crushing
strength is evaluated by Eq. (44)

Nipg = —5 o5pph = — SN3pp (44)

The load level N,, calculated with incipient yield of re-
inforcement subsequent to yield of the first set of bars,
is designated generically as N,,. This load level is at-
tained and may possibly be exceeded if

Nip < Nips 45)

If the inequality is true, behavior at yield of the next
set of bars is checked for crushing. Eventually, if the
inequality applies at incipient yield of the last set of
bars, the membrane failure is ductile in Type DD and
.the: failure load is N,,, determined for the last set of
454

bars. However, if inequality [Eq. (45)] is first found to
be reversed when checking the nth set of bars, failure
occurs by ductile brittle crushing (Type DB) and the
failure load level is determined as described in the fol-
lowing section.

Crushing at intermediate phase after Yield 1

By the preceding calculations, crushing strength load
levels corresponding to each of the critical yield stages
are available. However, if inequality [Eq. (45)] is found
to be reversed at Yield n, membrane crushing occurs
before Yield . In this case, the magnitude of load level
Nips associated with crack increment Ae, is not valid.
The proper value of load level N,,, must be established
so that, as the applied load, it causes a crack increment
that, in turn, defines a crushing strength corresponding
to the same applied load level.

Toward this end, it is assumed that the rates of
change of the load level and the crushing strength be-
tween Yield n—1 and Yield 7 are the same; thus, when
the load level has changed by the fraction p of the in-
crement between the yields, the crushing strength has
also changed by p. The basis for this assumption is that
both the load and the crushing strength are functions of
the displacement parameters; the load level has been
shown by the calculation procedure to depend on these
parameters, and the crushing strength does so through
dependence on Ae, and on the stress ratios, which, in
turn, are functions of the displacement parameters. The
associated equations developed below were checked
against test Specimen PV20 of Reference 1, which is an
illustrative example in References 3 and 4. The ratio of
test failure load to predicted failure load calculated by
Eq. (46) is 0.97.

In line with the preceding, the proper value of the in-
termediate load level N,, is determined by equilibrating
the load level and the crushing strength

Ny, = Nipg" + pINGs — Nis"] (46a)
= Niz + pINt — Ni; ']
where
Nn—l) - Mn—l)
p — 1D 1DB (46b)

N3 — N3 + N " — Ny,»
SUMMARY AND CONCLUSIONS
This paper provides a methodology for calculating
the design quantities necessary for designing membrane
elements in concrete shearwalls and shells with multi-
directional reinforcement against in-plane forces. Since
the material stress systems developed are in equilibrium
with the applied forces and are in compliance with duc-
tile and brittle strength requirements, the basis for safe
design is provided. An illustrative example is included.
The membrane behavior is determined in terms of
failure mode (ductile or brittle); load level; and stresses,
strains, and cracking characteristics at critical stages of
ductile and brittle behavior. Toward this end, a'set of
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equations, each involving one unknown parameter, is
applied iteratively; examples show the convergence to
be rapid. As the basis for the equations, the paper
demonstrates the propriety of omission of shear force
between the sides of cracks in the concrete.

CONVERSION FACTORS
1in. = 25.4 mm
1 kip/in. = 0.175 kKN/mm
1 ksi = 6.9 MPa
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APPENDIX A—EXAMPLE

The behavior of a reinforced concrete membrane with three-way
reinforcement is investigated as the loading is increased to membrane
failure; the membrane is the same as that in Example 2 in Reference
9. Physical characteristics of membrane initial loading are

N, = 0.5 kip/in.; N, = —0.5kip/in; N, = 1.0 kip/in.

E, = 30,000 ksi; E, = 3500 ksi; f = 40 ksi

«, = 10 deg; o, = 70 deg; o, = 130 deg; 3in.; pu = 0.17

0, = p, = p, = 0.01; " = 40/30,000 = 0.00133

Elastic and ductile behavior

The section ““Calculation Procedure for Elastic and Ductile Behav-
jor’’ in the main body of this paper lists the calculation steps with as-
sociated equations to be used. These steps are followed in order in the
solution that follows. Equation numbers are listed to the right of the
calculation results. :

Yield 0—Behavior under initial loading, elastic action

Preliminary calculations—i = 1,2,3;r =0
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Table A1 — Yield 0: Initial loading, elastic action

Variable Cycle 1 Cycle 2 Cycle 3
0, deg 31.72 31.72 31.72
e, X 10° 1.104 1.181 1.175
e, X 10% F,, kip/in. 0.953; 0.857 1.00; 0.900 0.996; 0.896
e, X 10%; F,, kip/in. 0.680; 0.612 0.673; 0.606 0.674; 0.606
e, X 10% F;, kip/in. 0.023; 0.021 | —0.115; —0.103 | —0.104; —0.094
F,, kip/in. 1.49 1.37 1.38
e, X 10° 0.142 0.131 0.132
z 0 0 0

1 kip/in. = 0.175 kN/mm.

A = 0.01125; B = 0; C = 0.00375; D = 0;

E = 0.01125 (24a)
N, = + L.118 kip/in.; ¢ = 31.72 deg (30)(1)
¢, = 0.4472; ¢, = —0.4472; c,, = 0.8944 (25)

Cyclical calculations—Three iterative cycles of calculations suf-
fice to attain substantive convergence within one percent. The cycli-
cal results are listed in Table Al. The final results are those listed in
Cycle 3. In beginning Cycle 1, e, is taken equal to zero.

Yield 1—Incipient yield of first set of bars—With the given load-
ing, bar No. 1 (o, = 10 deg) has the largest strain (¢ = 0.000996)
and therefore is the first bar to yield. The results at Yield 1 are those
at Yield 0 multiplied by the ratio /¢ = 1.339. The following re-
sults apply at Yield 1

6 = 31.72 deg; e, = 0.00157; e, = 0.000177
€, = 0.00133; ¢, = 0.000902; ¢, = —0.000140
F, = 1.20 kips/in.; F,

= 0.812 kips/in.; F, = —0.127 kips/in.;
F, = 1.847 kips/in.

N, = 1.496 kips/in.; N, = —N, = 0.669 kip/in.; N,, = 1.338
kips/in.

Yield 2—Incipient yield of second set of bars—Based on the re-
sults of Yield 1, bar No. 2 (o, = 70 deg) yields next, as its strain is
the second largest. Hence, the reinforcement characteristics are cal-
culated on the basis that the stress in bar No. 1 is the yield stress (40
ksi), the strain in bar No. 2 is the yield strain (0.00133), and bar No.
3 is at less than yield stress.

Preliminary calculations—i = 2, 3;r = 1

0.001844; B = — 0.001658; C = 0.003458;

A
D = 0.000052; E = 0.01124 (24a)

F = 0.3879 ksi; G = 0.0684 ksi;
H = 0.0121 ksi (24b)

Cyclical calculations—Three cycles of calculations suffice, as
previously, with final results in Cycle 3. Cycle 1 starts by using the
values of e, (0.000177) and 8 (31.72 deg) from Yield 1. The cyclical
results are listed in Table A2.

Yield 3—Incipient yield of last set of bars—i = 0; r = 1,2,3

At incipient yield of bar No. 3, all the reinforcement stresses are
known, and the system is determinate. The solution follows the order
of the calculation procedure

Reinforcement characteristics, in ksi: F = 0.60; G = 0;
H = 0.60 (24b)

Reinforcement forces, in kips/in.: F, = 1.2; F, = 1.2; F; = 1.2
Crack angle: 8 = 31.72 deg (34)
wSi

Load level, in. kips/in.: N, = 1.8
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Table A2 — Yield 2: Incipient yield of second set
of bars

Variable Cycle 1 Cycle 2 Cycle 3
e X 10° 2.274 2.668 2.667
€ X 10%; F,, kip/in. 1.938; 1.2 2.42;1.2 2.41; 1.2
e, X 10%; F,, kip/in. 1.333; 1.2 1.333; 1.2 1.333; 1.2

e, X 10°% F, kip/in.| —0.126; —0.114| —0.065; —0.058| —0.083; —0.074

N,, kip/in. 1.773 1.759 1.759
F,, kip/in. 2.193 2.348 2.325
e, x 10° 0.209 0.224 0.222
Z x 10° -0.0111 -0.0110 -0.0110
0, deg 27.07 27.23 27.23

1 kip/in. = 0.175 kN/mm.

Stress resultants, in. kips/in.: N, = 0.805; N, = —0.805;

N, = 1.61 (25)
Principal compressive force, in. kips/in.: F, = 3.6 (32)
Strain parameters: e, = 0.000343; e, = 0.08025 (33)(28)
Reinforcement strains: ¢, = 0.06921; ¢, = 0.04932;

e, = 0.00133 (23)

Crushing strength and failure load
The calculation results follow the procedure and the equations as
outlined in the section, ‘‘Crushing Strength and Failure Load.”
Type B failure

s = 1.0;R' =031;s" =436, R = .504 (36)(37)(38)

= 3770 psi = 3.77 ksi

[ o= E. T} _ [3,500,000]
57,000 | 57,000

0% = —0.504 x 3.77 = —1.90 ksi, N,; = 5.70 kips/in.
(38)(39)

N,; = 1.496 kips/in., from Yield 1

N, = 1.496 < 5.70 = Ny, true (40)

Since inequality [Eq. (40)] is true, the load level associated with Yield
1 is attained and behavior at Yield 2 is investigated next.
Type DB failure at Yield 2

s =1.0;R" =0.31;s" =3.21; R = 0.473; f/ = 3.77 ksi

(36a,0)(37)
é" = 0.00154 at Yield 1; e = 0.00263 at Yield 2 (41a)
Ae? = 0.00109; r = 0.956 (41b)(42)

0%, = —0.452 X 3.77 = 1.70 ksi; Ny, = 5.10 Kips/in.
43)44)

N

1.76 kips/in., from Yield 2
N, = 1.76 < 5.10 = N, true (45)

Since inequality [Eq. (45)] is true, the load level associated with Yield
2 is attained and behavior at Yield 3 is investigated next.

Type DB failure at Yield 3

= 1.0; R’ = 0.31;s' = 1.0; R = 0.31; f = 3.77 ksi
(36a,c)(37)

e® = 0.00154 at Yield 1; e = 0.08019 at Yield 3 (41a)
456

Aé® = 0.0787; r = 0.50 (41b)(42)

s = —0.155 x 3.77 = —0.584 ksi; N,p; = 1.75 kip/in.
(43)(44)

N,, = 1.80 kips/in., from Yield 3
N, = 1.80 < 1.75 = N,p;, not true 45)
Since inequality [Eq. (45)] is not true, the load level associated with
Yield 3 is not attained. Failure occurs by ductile brittle crushing be-
tween Yield 2 and Yield 3.
Type DB failure between Yields 2 and 3

B 1.76 — 5.10
T 1.75 — 1.80 + 1.76 — 5.10

p = 0.9825 (46b)

N,, = 5.10 + 0.98525 (1.75 — 5.10) = 1.7994 kips/in.  (46a)

The membrane failure load level equals 1.7994 kips/in. and the fail-
ure mode is by Type DB crushing. Failure occurs after yielding of
bars No. 1 and 2, but before yielding of bar No. 3.

APPENDIX B—EQUILIBRIUM EQUATIONS

Equations in terms of stress

The equilibrium equations corresponding to each independent dis-
placement are obtained via Eq. (9). For e, = e,, the following equi-
librium equation is obtained

O o S ohEe S+ Sphs

de,

de,

de, (Bla)
— N,cosf — N,sinf = 0

The partial derivatives of the strains are evaluated; Eq. (10) is then
used to express Eq. (B1b) in terms of forces and 8 or 6

Ncost + Nysind = > FeosBeosa, + Y Frcosfcosa, (Blb)

Similarly, for e; = e,, the following force equilibrium equation is ob-
tained

Ngsind + N,cosé = > FcosBsine;, + » FlcosBsina,  (B2)

For ¢, = e, the following equilibrium equation also involves the
forces and 6

N(ucos?® — sinf) + N,(psin’d — cos’d) + N, (1 + p) sin2
— F. = Y F(ucos’, — sinB) + D F/(ucos’B, — sin’B)

(B3)

For e; = 0, the resulting force equilibrium Eq. (B4) includes all four
displacement parameters

— N,[esind

+ el + p)sin20] + N,[e,cosf

+ e(1 + p)sin26]

+ Nylecosd — esind + 2e, (1 + p)cos26] (B4)
= Y Fl(ecose; + esinaysing

+ el + p)sin2B]
+ Y FY [(ecosa, + esina)sing, + e(l + p)sin2g)

Eq. (B1b), (B2), and (B3) are now combined to give alternate forms
of the equilibrium equations corresponding to different membrane-
free bodies as discussed in the text. First, Eq. (B1b) is multiplied by
ucos and Eq. (B2) is multiplied by usind. Their sum is then added to
Eq. (B3) to result in Alternate Form 1 :
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Nsin?d + Ncos® — N,sin26 + F, (B5a) Ngcosf + N,sinf = Z phE ecosBcosa; (©6)
= ZF,sinlB,. + 2Fsints, + p,hf"cosé cosa,
Second, Eq. (B1b) is multiplied by cosf and Eq. (B2) by sinf. Their _ L .
sum is then added to Eq. (B5a) to give Alternate Form 2 From 3U,/de, = 0, the following is obtained
Nsinf + N,cosf = hE.ecosfsina;
N, + N, + F. = 3F, + 3F (BSb) . ! 2. phEcosBsine ®7)

+ > phficosBsing,

Third, the expression for N, from Eq. (B1b) and the expression for
. N, from Eq. (B2) are inserted into Eq. (B5a) to give Alternate Form From dU,/de, = 0, the following is obtained
3
N(pcos® — sin’) + N,(usin’d — cos’d)
Fsin20 = 2N, — > Fsin2e, — » Fisin2e, (B5¢) + N, (1 + psin20 — Ehe, (B8)
i 4 = Z phEg (ucos’8; — sin’g)
. . . + Y (ucos?B, — sin’B,
Equations in terms of strains 2 phf? (ucos’B, — sin’6)
The equilibrium equations, obtained by using Eq. (9), are ex-
pressed in the following in terms of the strains. The equations in- From 8U,/89 = 0, the following is obtained
clude the overall strain ¢, which is evaluated by Eq. (5a)
—N/esinb + e, (1 + p) sin20] + N,[e,cosb + el
e = (ecoso; + esina)cosB + pe,cos’f; (5a) + p)sin26] + N,[ecosf — esinb + 2e, (1 + ) cos26]
—esinB, Bi=o -0 = 3 phEg [(ecose, + esina)sing; + e (1 + p) sin26]

+ Y [(ecosa, + esina,)sing, + e, (1 + sin23,) B9
From 9U,/de, = 0, the following is obtained Z,: oMY l(ecosa, + esina)sing, + e, (1 + ) sin2B) - (B9)

«Si
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