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The present ACI code (ACI 318-02) provisions on effective stiff-
nesses of beams and columns are reviewed. Factors influencing the
moments of inertia of beams and columns are discussed. The
primary variables considered are: the reinforcement ratio, the
axial load ratio, the eccentricity ratio, and the compressive
strength of concrete. On the basis of a parametric study, simple
formulas are proposed to determine the effective stiffnesses of
reinforced concrete columns and beams. The proposed stiffness
expressions are applicable for all levels of applied loading,
including both service and ultimate loads. The analytical results
show that the flexural stiffness assumption in the current ACI code
procedure for design of slender columns using the moment magnifier
method (Eq. (10-11) and (10-12)) is extremely conservative.
Recommendations are made concerning stiffness assumptions in
the analysis of reinforced concrete frames under lateral loads.

Keywords: beam; column; flexural stiffness; moment.

INTRODUCTION
Traditionally, design engineers use rough estimates of

flexural stiffnesses EI of beams and columns in the analysis
of reinforced concrete building structures under lateral loads.
The use of 1/2 the gross moment of inertia for beams and the
full gross moment of inertia for columns is quite common. In
view of the availability of second-order analysis as a design
tool, advances in the knowledge of structural behavior and
loads and initiatives aimed toward the development of multi-
level performance-based design methods, it is felt necessary
to re-evaluate the traditional stiffness assumptions. It may be
noted that Section 10.11.1 of the 2002 edition of the ACI 318
Building Code suggests effective flexural stiffnesses for
reinforced concrete structural members, but only for analysis
undertaken for the purposes of slender column design. ACI
318 Section 10.11.1 recommends the use of 0.35Ig and
0.70Ig for beams and columns, respectively, for first-order
analysis. Section 10.13.4.1 recommends the use of the same
stiffnesses for the second-order analysis of sway frames. No
specific recommendations are made concerning effective
flexural stiffnesses for general frame analysis. As can be
seen, the recommended moment of inertia (I)-value for
columns is independent of the reinforcement ratio, the axial
load, and the eccentricity (bending moment to axial load
ratio). Investigations by various researchers, however, show
dependence of column flexural stiffness on the level of axial
load (Mehanny, Kuramoto, and Deierlein 2001) as well as on
the eccentricity ratio (Lloyd and Rangan 1996; Mirza 1990).
Similarly, the recommended I-value for beams does not take
the effect of reinforcement ratio into account. This simplifi-
cation may not be appropriate in many practical cases.

The assumed stiffnesses of beams and columns can affect
structural analysis and design in two significant ways:

1. P-δ and P-∆ effects: The assumption of lower stiffnesses
for columns increases the computed P-δ effect on individual
columns and the computed P-∆ effects on an entire story
(Fig. 1), thereby substantially enhancing the secondary
moments. In many reinforced concrete buildings with a
significant number of slender columns, the current ACI
procedure using the moment magnifier method (Section
10.13.4.3) predicts a stability failure by P-∆ effects. It is
interesting to note that such failure may not be predicted if
the other procedures of the ACI code (Section 10.13.4.1 or
10.13.4.2) are employed. Two important points must be
noted in the present ACI 318-02 Code. First, different
member stiffnesses are recommended to calculate different
moment magnifiers. For example, in sway frames, to calculate
the stability index Q in Eq. (10-17), it is recommended to use
a flexural stiffness of 0.7EcIg (per Section 10.11.1), whereas
to calculate Pcs (the critical buckling load) in Eq. (10-18),
the recommended EI is approximately 0.4EcIg (Section 10.12.3),
which does not seem to be rational. Second, the ACI code
uses a factor of 0.75 attached to Pcs (in Eq. (10-18)) to
account for variability in EI and strength. Therefore, the
magnification factor obtained by using Σ(Pus /0.75Pcs) is
overly conservative. For example, in Example 11.2 of PCA
Notes to ACI 318-02 (Portland Cement Association 2002), the
authors found a moment magnifier by using (δs = 1/(1 – Σ(Pus/
0.75Pcs)) approximately 20% higher than that by using (δs
= 1/(1 – Q)). However, by using identical EI in calculating both
Pcs and Q and deleting the factor of 0.75 in the ACI equation,
the results from both methods are almost the same, which is
expected. In other words, unless formulations are changed, the
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Fig. 1—P-δ and P-∆ effects in buildings.
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moment magnifier calculated using Eq. (10-18) would always
be larger than that computed using Eq. (10-17); and

2. Internal force distribution—For regular structures, it is
generally assumed that the internal force distribution is
negligibly affected by the stiffness assumptions of various
structural members. This is more or less the case only as long
as the column-to-beam stiffness ratios at the various joints
remain essentially the same as a structure is subjected to
increasing loads. Even in those cases, the P-∆ effects can
enhance the internal forces at column ends. Analyses carried
out by the authors suggested that the assumption of improper
moments of inertia for frame members can lead to unconser-
vative results. For example, it can be shown that the maximum
end moments in the columns of a one-story one-bay frame
under gravity loads based on an assumption of column I =
1.0Ig and beam I = 0.3Ig (which gives a column-to-beam I/L
ratio of 6.6 [with a column height-to-beam span ratio of 2])
can be over 30% larger than those based on an assumption of
column I = 0.5Ig and beam I = 0.5Ig (which gives column-to-
beam I/L ratio of 2.0). Analyses (as illustrated later in this
paper) show that the column I can vary from 0.5Ig to 1.0Ig and
the beam I from 0.3Ig to 0.5Ig in most practical cases.

The previous discussion leads to the conclusion that more
realistic EI values are needed for frame analysis in general and
for analysis of frames containing slender columns in particular.

The purpose of this paper is to suggest simplified but
reasonably accurate expressions for the computation of
effective moments of inertia of beams and columns. The
influences of the reinforcement ratio—ρ for beams or ρg for
columns, the concrete compressive strength fc′ , the magnitude of the
axial load P, and the eccentricity ratio e/h of the axial load—
have been accounted for. This paper shows that the influence
of these parameters on the effective moments of inertia of
beams and columns can be quite substantial and should not be
ignored. Axial load-bending moment histories of slender
columns (for a given initial M/P ratio), based on the proposed
stiffness assumptions, are compared with many test results in a
companion paper (Khuntia and Ghosh 2004) and are found to
be in good agreement.

This paper has three parts: 1) an expression for the
moments of inertia of reinforced concrete columns is derived
using a parametric study, and the influences of various
important parameters are pointed out; 2) an expression for
the moments of inertia of reinforced concrete beams is
derived using a parametric study and compared with tradi-
tional analytical results based on the transformed area
concept; and 3) a brief review of current ACI code provisions
concerning EI in general and EI for slender columns in
particular is provided. The need for modifications to the
current code provisions is explained.

RESEARCH SIGNIFICANCE
This paper is related to the work of the Slender Column Task

Group of ACI Committee 318, Structural Concrete Building
Code. The task group is trying to formulate code provisions to
streamline and, if possible, simplify the requirements of
ACI 318, Sections 10.11 to 10.13, on slender column design.
One of the major elements in slender column design is a suitable
assumption of flexural stiffness EI of the column.

FLEXURAL STIFFNESS OF REINFORCED 
CONCRETE COLUMNS

Parametric study
A parametric study was undertaken to investigate the

influence of various parameters on the effective EI of reinforced
concrete columns. The primary variables were: reinforce-
ment ratio ρg (1 and 3%); the concrete compressive strength
fc′  (4000 and 12,000 psi); the axial load ratio P/Po (ranging
from 0.00 to 0.80); and the eccentricity ratio, e/h or M/Ph
(ranging from 0.10 to 0.80). It may be noted that these ranges
encompass almost all practical columns. For example, the
magnitude of Pu/Po is not allowed by the ACI code to exceed
0.64 for any column (0.64 = 0.75 × 0.85 using a value of φ =
0.75 for spirally reinforced columns from Section C.3.2.2(a)
in Eq. (10-1) of ACI 318-02). Similarly, when e/h exceeds
0.8 to 1.0, the magnitude of Pu/Agfc′  is not expected to exceed
0.10, thereby allowing the member to be treated as a beam.

In the parametric study, the effective moment of inertia is
calculated as the ratio of bending moment over curvature (EIe
= M/φ), as illustrated in Fig. 2(a). It should be emphasized that
the magnitude of EIe is computed up to the yielding of tensile
reinforcement, as the value would drastically diminish after
steel yielding and is of little importance for frame analysis. In
addition, reinforcement at column ends is unlikely to yield in
a structure designed using the strong column-weak beam
concept. More importantly, the parametric study, as shown

ACI member Madhu Khuntia is a research structural engineer with DuKane Precast
Inc., Naperville, Ill. He received his PhD from the University of Michigan, Ann Arbor,
Mich. He is a member of ACI Committee 335, Composite and Hybrid Structures.

S. K. Ghosh, FACI, heads the consulting practice, S.K. Ghosh Associates Inc., Palatine,
Ill. He is a member of ACI Committees 318, Structural Concrete Building Code; 371,
Concrete Pedestal Water Towers; 435, Deflection of Concrete Building Structures;
Joint ACI-ASCE-TMS Committee 530, Masonry Standards Joint Committee; and TAC
Technology Transfer Committee.

(a)
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Fig. 2—(a) Moment-curvature relationship for typical
reinforced concrete column considered in parametric
study (for e/h ratio of 0.25 and reinforcement ratio of 3%);
and (b) cross section of typical reinforced concrete column
considered in parametric study.
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later, shows that the column reinforcement in tension is
unlikely to yield under any design loading conditions.

A square column of 20 x 20 in. plan dimensions, with 2.5 in.
cover to the center of longitudinal reinforcement, is consid-
ered for the parametric study (Fig. 2(b)). For this section, the
value of γ chosen = 15/20 = 0.75, where γ is the ratio of
center-to-center distance between the outermost bars to the
overall dimension of the section. However, other reinforce-
ment configurations, γ-values and cross sections, as shown
in Fig. 3, are also considered to investigate their effects. The
yield strength of reinforcing steel is assumed to be 60 ksi.
The axial load-moment interaction diagrams (Fig. 4) are
plotted using the ACI rectangular stress block (uniform stress
over stress block = 0.85fc′ ) for nominal and design strengths.
However, a more exact parabolic stress-strain curve based on
Eq. (1) (Fig. 5) is used for plotting the radial lines.

(1)

where fc = compressive stress at a concrete strain of εc. The
ultimate failure strain of concrete in compression (εu) is
assumed to be 0.003. εo, the strain corresponding to fc = fc′ ,
is taken to be 0.002 for normal-strength concrete (fc′  = 4000 psi
in the study) and 0.0024 for high-strength concrete (fc′  =
12,000 psi in the study). Analyses by the authors using
slightly different εo and εu for high-strength concrete
produced very insignificant changes to the analytical results.
As will be shown later, the predictions of flexural stiffness
for columns with high-strength concrete is generally on the
conservative side compared with those for columns with
normal-strength concrete. For simplicity, Eq. (1) is used for
both normal- and high-strength concrete.

Note that the nominal strength interaction diagram is
drawn for a concrete compressive strain of 0.003 only,
whereas the stress-strain curve given by Eq. (1) can be used
to illustrate complete loading histories.

As can be seen from Fig. 5, the elastic tangent modulus of
concrete diminishes significantly for compressive strains
beyond 0.0015 (approximately). In other words, when a
portion of column is strained beyond a compressive strain of
0.0015, the effective elastic modulus of that portion is compar-
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atively lower than those of portions having lesser compressive
strains.

Figure 4 shows column strength interaction curves for a 1%
gross reinforcement ratio and a concrete strength of 4000 psi.
The radial lines show P-M combinations for various eccen-
tricity ratios e/h for short columns. As can be seen from Fig. 4,
the member may be treated as a beam when the e/h ratio
exceeds approximately 0.8. For e/h > 0.8, the design axial
strength φPn is most likely less than 0.1Ag fc′  (= 160 kips for
the case considered) and the behavior is mainly flexural.

Figure 6 shows the variation of EIe/EcIg for the column
with changes in the eccentricity ratio e/h and the axial load
ratio Pu/Po. Ig is the gross moment of inertia of section
(equal to bh3/12 for a rectangular section with width b and
total depth h). The elastic modulus of concrete Ec is given in
ACI 318 (Section 8.5.1) as

Ec = 33wc
1.5 (2)

In Eq. (2), both Ec and fc′  are in psi. It may be noted that the
use of other appropriate expressions for high-strength concrete
does not change the basic concept outlined in this paper. As
will be shown later, the moment of inertia of columns using
high-strength concrete is generally higher than that of columns
using normal-strength concrete. Therefore, the use of somewhat
lower elastic modulus for high-strength concrete does not
affect the magnitude of effective flexural stiffness EIe signifi-
cantly. The primary aim of the paper is to predict the effective
flexural stiffness EIe in terms of EcIg of columns. Therefore,

fc′

Fig. 3—Cross section of typical reinforced concrete columns
considered in parametric study.

Fig. 4—P-M interaction diagram and loading histories for
typical column (ρg = 1% and fc′  = 4000 psi).

Fig. 5—Typical stress-strain curve for concrete in compression.
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Eq. (2), which is given in ACI Section 8.5.1, is used for both
high- and normal-strength concrete for simplicity, without any
appreciable loss of accuracy.

Table 1 shows the influence of the reinforcement ratio ρg,
the axial load ratio Pu/Po and the eccentricity ratio e/h on the
effective moment of inertia of the column of Fig. 2(b), based
on a parametric study using normal-strength concrete (fc′  =
4000 psi). Table 2 shows the influences for high-strength
concrete (fc′  = 12,000 psi).

From the analyses, it is found that the maximum compressive
strain in concrete that can occur corresponding to the design
strength curve (which is plotted by reducing the nominal
strength curve by φ = 0.7 as per Section C.3.2.2 of the 2002
ACI Code for columns with factored axial load more than
0.1Ag fc′ ) does not exceed 0.0015. Table 1 (Column 7) shows
the compressive strain in concrete for different e/h and P/Po
(or Pu/Po) ratios prior to yielding of tension or compression
steel. Drastic reductions in EIe occur between the design and
the nominal strength curves. This is because of the existence
of higher compressive strains in concrete (more than 0.0015,
for example), which leads to lower tangent elastic modulus
of the concrete (refer to Fig. 5). In other words, for any e/h
ratio, the effective EI of a column is significantly larger from
Point A to B (that is, within design strength curve) than from
Point B to C (that is, from design to nominal strength curve)
(refer to Fig. 4). It may be emphasized that for reinforced
concrete (RC) columns, where applied forces (Mu , Pu) are
within the design strength curve, the maximum strain on the
compression side does not exceed 0.0015. Thus, there is little
chance of yielding of the compression steel (yield strain of
steel is 0.0021 for 60 ksi reinforcing bars). In addition, the
maximum tensile strain in the reinforcement also seldom, if
ever, exceeds its yield strain. Note that: 1) above the
balanced point, tensile steel does not yield before the
concrete crushes in compression; and 2) below the balanced
point and with Pu more than 0.1Ag, the parametric study
shows that the tensile steel is unlikely to yield for applied
loads within the design strength curve. Therefore, the effective
EI of code-conforming columns is not expected to decrease
significantly, which can happen in the case of reinforced
concrete beams. It is worthwhile to point out that for frame
analysis it is certainly conservative to use effective EI corre-
sponding to the design strength curve, not corresponding to
the nominal strength curve, because the required strength

from all the load combinations must lie within the design
strength curve.

Analysis shows that the moment of inertia of a column
depends on four major factors, as discussed below.

Influence of reinforcement ratio ρg—When the gross steel
area increases, for a particular neutral axis depth, the axial
load and the corresponding bending moment increase for any
particular Pu/Po and e/h ratios. Therefore, the effective EI
(obtained by dividing M with φ) is substantially higher for
columns with higher steel ratios. Table 1 and 2 show that the
EIe of a column is always higher for higher reinforcement
ratios for any particular axial load ratio and eccentricity
ratio. For example, Table 1 shows that the EIe of a column
with a 3% steel ratio is approximately 28% higher than that
of a column with a 1% steel ratio at an e/h ratio of 0.25 and
for Pu/Po equal to 0.44 (see the bold rows in Table 1).

Influence of eccentricity ratio e/h—This is the second most
important factor affecting the EI of a column. For columns
with high e/h (or M/Ph) ratios, the bending moment is higher
for a given axial load, leading to an increase in flexural crack
length and reduction in effective EI of the section. The
reduction of EIe due to an increase in e/h is also reported by
Mirza (1990) and Lloyd and Rangan (1996). Table 1 and 2
show the influence of increasing e/h on the magnitude of EI.
Graphically, Fig. 6 shows that for any axial load ratio (Pu/Po),
EIe decreases with increasing e/h. It should be emphasized
that increasing e/h beyond 0.8 allows the member to be
treated as a beam, as the factored axial load never exceeds
0.1Ag fc′ .

Influence of axial load ratio Pu/Po—When the axial load
Pu increases, the depth of flexural cracks decreases. Therefore,
it is to be expected that the effective EI of a column should
increase with Pu/Po. Analysis shows, however, that for a
given e/h ratio, when Pu (and the corresponding Mu)
increases, the compressive strain in the concrete at extreme
fiber increases in higher proportion than an increase in Pu/Po.
For example, when Pu (and the corresponding Mu) increases
by 50%, the corresponding increase in εc (and the corre-
sponding φ) is much more than 50% (80%, for example).
Therefore, an increase in Pu/Po ratio always results in a
reduction in effective EI for a column. Note that: a) only the
effect of Pu/Po is considered herein; and b) the value of Po is
different for two similarly sized columns with different
reinforcement ratios.

Table 1 and 2 show the influence of increasing Pu /Po on
the magnitude of EIe for different e/h ratios. Graphically, the
radial lines in Fig. 4 show the increase in Pu/Po at various e/h
ratios. Figure 6 shows that for any eccentricity ratio e/h, EIe
decreases with increasing Pu/Po.

To summarize the effect of the Pu/Po ratio and the e/h ratio,
Fig. 7 is drawn showing a column strength interaction diagram.
Line A-B shows a gradual increase of e/h ratios at a constant
axial load ratio. As explained previously, the effective EI
would decrease with increasing e/h ratios, that is, from A to
B. Line C-B shows a gradual increase of Pu /Po ratios at a
constant eccentricity ratio e/h. As explained previously, the
effective EI would decrease with increasing Pu/Po ratios,
that is, from C to B.

Influence of high-strength concrete—The parametric
study shows that an increase in concrete strength increases
the effective EI of a column for given Pu/Po and e/h ratios
(Table 1 and 2). For example, the results show that the EIe of
a column having a 1% gross reinforcement ratio and a
compressive concrete strength of 12,000 psi at a Pu/Po ratio

Fig. 6—Influence of eccentricity ratio and axial load ratio
on effective I of columns (ρg = 1% and fc′  = 4000 psi).
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Table 1—Influence of various parameters on effective EI of reinforced concrete columns (fc′  = 4000 psi)

Analysis Proposed EIe/EcIg

ρg , %
[1]

EIe/EcIg
[2]

Pu/Po
[3]

e/h
[4]

Eq. (3)
[5]

Ratio
[6] = [2]/[5]

εc
[7]

Eq. (5)
[8]

Ratio
[9] = [2]/[8]

Eq. (6)
[10]

Ratio
[11] = [2]/[10]

1 1.212 0.100 0.10 0.89 1.36 0.00015 0.63 1.92 0.37 3.29
1 1.193 0.132 0.10 0.88 1.36 0.0002 0.63 1.89 0.38 3.10
1 1.082 0.310 0.10 0.78 1.38 0.0005 0.63 1.72 0.48 2.26
1 0.908 0.547 0.10 0.66 1.38 0.001 0.63 1.44 0.60 1.51
1 0.750 0.719 0.10 0.57 1.32 0.0015 0.63 1.19 0.69 1.08
1 0.722 0.744 0.10 0.55 1.30 0.0016 0.63 1.15 0.71 1.02
1 0.665 0.789 0.10 0.53 1.25 0.0018 0.63 1.06 0.73 0.91
1 1.030 0.101 0.25 0.74 1.40 0.00025 0.55 1.87 0.37 2.80
1 0.970 0.191 0.25 0.69 1.41 0.0005 0.55 1.76 0.42 2.34
1 0.855 0.343 0.25 0.61 1.41 0.001 0.55 1.55 0.49 1.73
1 0.763 0.442 0.25 0.56 1.37 0.00142 0.55 1.38 0.55 1.40
1 0.682 0.508 0.25 0.52 1.31 0.0018 0.55 1.24 0.58 1.17
1 0.640 0.535 0.25 0.51 1.26 0.002 0.55 1.16 0.60 1.07
1 0.630 0.541 0.25 0.50 1.25 0.00205 0.55 1.14 0.60 1.05
1 0.615 0.101 0.40 0.58 1.06 0.00043 0.47 1.30 0.37 1.67
1 0.607 0.116 0.40 0.57 1.06 0.0005 0.47 1.28 0.38 1.62
1 0.555 0.211 0.40 0.52 1.07 0.001 0.47 1.17 0.43 1.31
1 0.509 0.289 0.40 0.48 1.06 0.0015 0.47 1.07 0.47 1.09
1 0.456 0.343 0.40 0.45 1.01 0.002 0.47 0.96 0.49 0.92
1 0.435 0.358 0.40 0.44 0.99 0.0022 0.47 0.92 0.50 0.86
1 0.416 0.374 0.40 0.44 0.96 0.0024 0.47 0.88 0.51 0.81
1 0.429 0.101 0.55 0.42 1.02 0.00066 0.39 1.09 0.37 1.17
1 0.422 0.120 0.55 0.41 1.03 0.0008 0.39 1.07 0.38 1.12
1 0.413 0.145 0.55 0.40 1.04 0.001 0.39 1.05 0.39 1.06
1 0.388 0.200 0.55 0.37 1.05 0.0015 0.39 0.98 0.42 0.92
1 0.325 0.101 0.80 0.23 1.44 0.00107 0.26 1.24 0.37 0.88
1 0.321 0.112 0.80 0.23 1.43 0.0012 0.26 1.22 0.37 0.86
3 1.426 0.078 0.10 1.00 1.43 0.00013 0.93 1.53 0.53 2.71
3 1.398 0.119 0.10 1.00 1.40 0.0002 0.93 1.50 0.56 2.51
3 1.286 0.279 0.10 1.00 1.29 0.0005 0.93 1.38 0.68 1.89
3 1.107 0.504 0.10 1.00 1.11 0.001 0.93 1.19 0.86 1.29
3 0.943 0.674 0.10 0.87 1.08 0.0015 0.93 1.01 0.99 0.95
3 0.793 0.794 0.10 0.78 1.02 0.002 0.93 0.85 1.00 0.79
3 1.276 0.078 0.25 1.00 1.28 0.00021 0.81 1.57 0.53 2.43
3 1.208 0.177 0.25 1.00 1.21 0.0005 0.81 1.48 0.60 2.01
3 1.092 0.324 0.25 0.91 1.20 0.001 0.81 1.34 0.72 1.53
3 0.979 0.441 0.25 0.82 1.19 0.0015 0.81 1.20 0.81 1.21
3 0.870 0.529 0.25 0.75 1.16 0.002 0.81 1.07 0.87 1.00
3 0.785 0.58 0.250 0.71 1.10 0.0024 0.81 0.97 0.91 0.86
3 0.801 0.079 0.55 0.63 1.26 0.00045 0.58 1.38 0.53 1.52
3 0.781 0.118 0.55 0.60 1.29 0.0007 0.58 1.35 0.56 1.40
3 0.757 0.163 0.55 0.57 1.32 0.001 0.58 1.30 0.59 1.28
3 0.713 0.226 0.55 0.52 1.37 0.0015 0.58 1.23 0.64 1.11
3 0.667 0.278 0.55 0.48 1.39 0.002 0.58 1.15 0.68 0.98
3 0.620 0.317 0.55 0.48 1.30 0.0025 0.58 1.07 0.71 0.87
3 0.687 0.078 0.80 0.48 1.45 0.00066 0.48 1.45 0.53 1.31
3 0.667 0.114 0.80 0.48 1.40 0.001 0.48 1.40 0.55 1.21
3 0.656 0.134 0.80 0.48 1.38 0.0012 0.48 1.38 0.57 1.15
3 0.637 0.160 0.80 0.48 1.34 0.0015 0.48 1.34 0.59 1.08
3 0.605 0.199 0.80 0.48 1.27 0.002 0.48 1.27 0.62 0.98

Mean = 1.24 Mean = 1.28 Mean = 1.42
s.d. = 0.5 s.d. = 0.26 s.d. = 0.63

Note: Ratio means ratio of parametric to proposed equation.

of 0.44 and an e/h ratio of 0.25 is approximately 32% more
than that of the same column with a compressive strength of
4000 psi (refer to bold rows of Table 1 and 2). The reason is
as follows: for a given Pu/Po ratio, Pu is substantially higher
for high-strength concrete (as Po is high). This provides a
higher Mu for a given e/h (Mu = Pue). In addition, the neutral

axis depth cu does not change appreciably with an increase
in concrete strength, as happens in the case of a beam. There-
fore, compared with a lower-concrete-strength column, a
high-strength column can carry more bending moment (M or
Mu) at a similar curvature (φ = εc /c), leading to a higher
effective EI for the latter (EIe = M/φ). Analyses show that the
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computed effective EI (that is, EIe) is approximately propor-
tional to fc′

0.67, whereas EcIg is proportional to fc′
0.5 (by

using ACI 318-02 Eq. (8.5.1) for Ec and Ig being a geometric
property of the section). Therefore, the ratio of EIe/EcIg for
high-strength columns is higher than that for normal-
strength columns.

Proposed expressions for moment of inertia of 
reinforced concrete columns

Based on the previous parametric study, Eq. (3)—which
incorporates the influences of ρg , e/h, and Pu/Po—is
proposed to calculate the effective flexural stiffness of a
column. For simplicity, the effect of higher concrete strength
is conservatively neglected.

Table 2—Effective EI of high-strength reinforced concrete columns (fc′  = 12,000 psi)

Analysis Proposed EIe /EcIg

ρg , %
[1]

EIe /EcIg
[2]

Pu /Po
[3]

e/h
[4]

Eq. (3)
[5]

Ratio
[6] = [2]/[5]

Eq. (5)
[7]

Ratio
[8] = [2]/[7]

Eq. (6)
[9]

Ratio
[10] = [2]/[9]

1 1.655 0.112 0.10 0.89 1.87 0.63 2.63 0.37 4.43

1 1.516 0.278 0.10 0.80 1.90 0.63 2.41 0.46 3.29

1 1.305 0.501 0.10 0.68 1.91 0.63 2.07 0.58 2.26

1 1.110 0.671 0.10 0.59 1.87 0.63 1.76 0.67 1.66

1 0.934 0.790 0.10 0.53 1.76 0.63 1.48 0.73 1.28

1 1.371 0.112 0.25 0.73 1.88 0.55 2.49 0.37 3.67

1 1.317 0.169 0.25 0.70 1.88 0.55 2.39 0.40 3.26

1 1.176 0.308 0.25 0.63 1.88 0.55 2.13 0.48 2.47

1 1.008 0.442 0.25 0.56 1.81 0.55 1.83 0.55 1.84
1 0.910 0.498 0.25 0.53 1.73 0.55 1.65 0.58 1.58

1 0.809 0.542 0.25 0.50 1.61 0.55 1.47 0.60 1.35

1 0.629 0.112 0.40 0.57 1.11 0.47 1.33 0.37 1.68

1 0.576 0.195 0.40 0.53 1.10 0.47 1.22 0.42 1.38

1 0.545 0.231 0.40 0.51 1.08 0.47 1.16 0.44 1.25

1 0.511 0.274 0.40 0.48 1.05 0.47 1.08 0.46 1.11

1 0.359 0.112 0.55 0.41 0.87 0.39 0.91 0.37 0.96

3 1.776 0.103 0.10 1.00 1.78 0.93 1.91 0.54 3.26

3 1.633 0.268 0.10 1.00 1.63 0.93 1.76 0.67 2.43

3 1.424 0.485 0.10 1.00 1.42 0.93 1.54 0.84 1.69

3 1.230 0.654 0.11 0.88 1.40 0.93 1.33 0.97 1.27

3 1.049 0.781 0.10 0.78 1.34 0.93 1.13 1.00 1.05

3 1.512 0.103 0.25 1.00 1.51 0.81 1.86 0.54 2.78

3 1.455 0.166 0.25 1.00 1.45 0.81 1.79 0.59 2.45

3 1.312 0.304 0.25 0.92 1.43 0.81 1.62 0.70 1.87

3 1.180 0.416 0.25 0.83 1.42 0.81 1.46 0.79 1.50

3 1.058 0.507 0.25 0.77 1.38 0.81 1.30 0.86 1.23

3 0.953 0.554 0.25 0.73 1.31 0.81 1.17 0.89 1.07

3 0.943 0.103 0.40 0.85 1.11 0.70 1.35 0.54 1.73

3 0.915 0.139 0.40 0.82 1.12 0.70 1.31 0.57 1.60

3 0.876 0.190 0.40 0.78 1.13 0.69 1.26 0.61 1.43

3 0.816 0.264 0.40 0.72 1.13 0.70 1.17 0.67 1.22

3 0.755 0.324 0.40 0.67 1.12 0.70 1.09 0.72 1.05

3 0.702 0.359 0.41 0.64 1.09 0.69 1.01 0.74 0.94

3 0.679 0.376 0.40 0.63 1.07 0.69 0.98 0.76 0.90

3 0.686 0.103 0.55 0.62 1.11 0.58 1.18 0.54 1.26

3 0.672 0.133 0.55 0.59 1.13 0.58 1.16 0.57 1.18

3 0.636 0.186 0.55 0.55 1.16 0.58 1.10 0.61 1.04

3 0.618 0.215 0.55 0.53 1.17 0.58 1.06 0.63 0.98

3 0.532 0.199 0.80 0.48 1.12 0.48 1.12 0.54 0.98

Mean = 1.41 Mean = 1.50 Mean = 1.75

s.d. = 0.32 s.d. = 0.46 s.d. = 0.87

Fig. 7—Influence of axial load and eccentricity ratios on
moment of inertia of columns.
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(3)

In Eq. (3), the gross reinforcement ratio ρg is a decimal
fraction.

By the time the designer needs to compute EIe, the first trial
values of most of the terms in Eq. (3) are known. The sizes of
the columns and beams have been assumed to carry out the
frame analysis. The frame analysis gives values of Mu and Pu,
which can be used to estimate e/h and Pu/Po. Assuming a value
of ρg, a first trial value of EIe can be computed.

The lower limit for the effective EI of a column is taken to
be the EIe of an equivalent beam, that is, EIe of the member
when it can be treated as a beam rather than a column. This
happens when a member is subjected to a very low axial load
and a high e/h ratio (e/h > 0.8, for example). For calculating
EIe of an equivalent beam, ρ, the tensile steel ratio (not the
gross steel ratio) must be used, which can be approximately
taken as half of ρg for a column with symmetrical reinforcement.
The computation of EIe of a beam, which varies mainly with
the tensile steel ratio, is discussed later. The upper limit is
EcIg for purposes of conservatism; it can be higher for
heavily reinforced columns with low e/h ratios.

Column 6 in Table 1 compares the proposed expression
(Eq. (3)) (Column 5) with the results from the parametric
study (Column 2). It shows that the prediction by Eq. (3) is
quite reasonable and generally on the conservative side. The
mean analytical/predicted EIe /EcIg ratio was found to be
1.24 with a standard deviation of 0.15. Only two out of 50
values of the ratio of analytical EIe to EIe from Eq. (3) are
marginally less than 1.0. It is interesting to note that these
two points fall close to the nominal strength curve in Fig. 4.
The most conservative predictions correspond to low levels
of axial load at a particular eccentricity ratio (that is, near
Point A of Fig. 4). Similar comparisons of Eq. (3) with the
results from the parametric study of high-strength concrete
are presented in Table 2. Equation (3) indirectly allows for
high-strength concrete by using Ec from Eq. (2). Table 2
shows the more conservative nature of Eq. (3) for high-
strength concrete columns.

The parametric study and analyses by the authors show that
the following approximate relationship (Eq. (4)) between Pu/Po
and e/h is quite reasonable when the applied load combinations
(Pu, Mu) are close to the design strength curve (Fig. 4)

Pu /Po + e/h = 0.7 (4)

Equation (4) can also be verified from Fig. 6 by using Pu
= 0.7Pn for any particular e/h ratio. For example, Fig. 6
shows that at e/h = 0.40, Pn/Po = 0.36 (Pu = Pn at nominal
strength curve), which gives Pu/Po = 0.7 × 0.36 = 0.25,
thereby making the left-hand side of Eq. (4) equal to 0.65. A
value of 0.7 is used in Eq. (4) for simplicity.

Using Eq. (4), Eq. (3) can be reduced to either of the
following two expressions

In terms of e/h, EIe = EcIg(0.80 + 0.25ρg) × (5)

 ≤ EcIg ≥ EcIbeam

EIe EcIg 0.80 25ρg+( ) 1 e
h
---– 0.5

Pu

Po

-----– 
 ×=

EcIg EcIbeam≥≤

0.65 0.5
e
h
---– 

 

In terms of Pu /Po, EIe = EcIg(0.80 + 0.25ρg) × (6)

 ≤ EcIg ≥ EcIbeam

The results using Eq. (5) and (6) are compared with those
from the parametric study in Table 1 and 2. As can be seen, the
predictions by Eq. (5) (in terms of e/h ratio) are slightly more
conservative, when compared with the predictions by Eq. (3).
The predictions by Eq. (6) (in terms of Pu/Po) are the least accu-
rate among the three equations (Eq. (3), (5), and (6)).

Note that, strictly speaking, Eq. (5) and (6) are quite accurate
if the applied load combinations (Pu, Mu) are close to the
design strength curve, which occurs in the worst possible cases.
For load combinations located away from the design strength
curve, the proposed expressions generally give conservative
results. For better accuracy in general, and under service load
conditions in particular, it is recommended to use Eq. (3).

Influence of minor parameters
The influences of concrete cover (in terms of γ), reinforce-

ment distribution, and cross-sectional shape were also
investigated.

Influence of concrete cover—Figure 3(a) and (b) show two
different values of concrete cover to reinforcement, in addition
to the base value of 2.5 in. in Fig. 2(b). With a cover of 1.5 in.
to the center of longitudinal reinforcement, Fig. 3(a) gives a
γ-value of 0.85 and with a cover of 3.5 in. to the center of
longitudinal reinforcement, Fig. 3(b) gives a γ-value of 0.65,
compared with a γ-value of 0.75 in Fig. 2(b). Table 3 shows
the results from the parametric study as well as those using the
proposed Eq. (3). It shows that by decreasing γ from 0.75
(Fig. 2(b)) to 0.65 (Fig. 3(b)), the average effective stiffness
decreases by approximately 7 to 12%. A similar increase is
also observed when γ increases from 0.75 to 0.85 (Fig. 3(a)).
In all cases, however, the predicted results are on the conser-
vative side. For simplicity, the influence of γ on effective flex-
ural stiffness can be ignored.

Influence of reinforcement distribution—Figure 3(c)
shows a reinforcement configuration different from the base
reinforcement configuration (Fig. 2(b)). Note that, in Fig.
2(b), the reinforcement is distributed along the depth,
whereas the reinforcement is concentrated near two faces in
Fig. 3(c). Table 4 shows the results from the parametric
study as well as those using the proposed Eq. (3). It shows
that by concentrating the reinforcement near two faces
(Fig. 3(c)), the average effective stiffness increases by
approximately 8% compared with the case with distributed
reinforcement (Fig. 2(b)) for a gross reinforcement ratio of
1%, and by approximately 15% for a gross reinforcement
ratio of 3%. In all cases, however, the predicted results are
conservative. For simplicity, the effect of reinforcement
distribution on effective flexural stiffness can be neglected.

Influence of shape of cross section—Figure 3(d) shows a
circular cross section, obviously different from the square
cross section of Fig. 2(b). The reinforcement is distributed
along the perimeter, as is generally the case in practice.
Table 5 shows the results from the parametric study as well
as those using the proposed Eq. (3). It shows that the average
effective stiffness of a circular section is over 10% less than
that of a square section with plan dimension equal to diameter,
the same concrete strength, and the same gross reinforce-
ment ratio. In all cases, however, the predicted results are

0.30 0.5
Pu

Po

-----– 
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quite conservative. For simplicity, the effect of cross-sectional
shape on effective flexural stiffness can be disregarded,
provided Ig is calculated for the cross section being used.

As can be seen from Table 3 to 5, the effects of concrete cover,
reinforcement distribution, and cross-sectional shape are not
significant. Equation (3), which is originally derived for a square
column with distributed reinforcement (Fig. 2(b)), is quite
reasonable and practical and can be recommended for simplicity.

Before comparing the proposed equation (Eq. (3)) with
test results, as is done in a companion paper (Khuntia and
Ghosh 2004), it is appropriate to discuss the current ACI
code provisions concerning EI of columns. In addition, the
EI of reinforced concrete beams needs to be properly formu-
lated, as some of the frame tests reported in the comparisons
included flexural members.

FLEXURAL STIFFNESS OF REINFORCED 
CONCRETE BEAMS

Parametric study
A parametric study was undertaken to investigate the influ-

ence of various parameters on the effective EI of a reinforced

Table 3—Influence of concrete cover on effective 
EI of columns (fc′  = 4000 psi)

Analysis Proposed Eq. (3)

ρg , %
[1]

EIe/EcIg
[2]

Pu/Po
[3]

e/h
[4]

EIe/EcIg
[5]

Ratio
[6] = [2]/[5]

Various 
cases

1 1.030 0.101 0.25 0.74 1.40

Case 1
dc = 2.5 in.

γ = 0.75
ρg = 1%

1 0.970 0.191 0.25 0.69 1.41

1 0.855 0.343 0.25 0.61 1.41

1 0.763 0.442 0.25 0.56 1.37

1 0.682 0.508 0.25 0.52 1.31

1 0.640 0.535 0.25 0.51 1.26

1 0.630 0.541 0.25 0.50 1.25

Mean
= 1.35

1 1.077 0.101 0.25 0.73 1.47

Case 2
dc = 1.5 in.

γ = 0.85
ρg = 1%

1 1.018 0.196 0.25 0.69 1.49

1 0.902 0.352 0.25 0.60 1.50

1 0.810 0.449 0.25 0.55 1.47

1 0.724 0.524 0.25 0.51 1.41

1 0.680 0.552 0.25 0.50 1.37

1 0.639 0.575 0.25 0.49 1.32

Mean
= 1.43

1 0.983 0.102 0.25 0.73 1.34

Case 3
dc = 3.5 in.

γ = 0.65
ρg = 1%

1 0.924 0.186 0.25 0.69 1.34

1 0.814 0.334 0.25 0.61 1.33

1 0.723 0.430 0.25 0.56 1.29

1 0.641 0.492 0.25 0.53 1.21

1 0.600 0.517 0.25 0.52 1.16

1 0.560 0.536 0.25 0.51 1.11

Mean
= 1.25

3 1.276 0.078 0.25 1.00 1.28

Case 4
dc = 2.5 in.

γ = 0.75
ρg = 3%

3 1.208 0.177 0.25 1.00 1.21

3 1.092 0.324 0.25 0.91 1.20

3 0.979 0.441 0.25 0.82 1.19

3 0.870 0.529 0.25 0.75 1.16

3 0.785 0.579 0.25 0.71 1.10

Mean
= 1.19

3 1.395 0.078 0.25 1.00 1.40

Case 5
dc = 1.5 in.

γ = 0.85
ρg = 3%

3 1.322 0.185 0.25 1.00 1.32

3 1.203 0.340 0.25 0.90 1.34

3 1.088 0.466 0.25 0.80 1.36

3 0.973 0.560 0.25 0.73 1.34

3 0.928 0.590 0.25 0.70 1.32

Mean
= 1.35

3 1.161 0.078 0.25 1.00 1.16

Case 6
dc = 3.5 in.

γ = 0.65
ρg = 3%

3 1.097 0.168 0.25 1.00 1.10

3 0.985 0.306 0.25 0.92 1.07

3 0.878 0.415 0.25 0.84 1.04

3 0.773 0.496 0.25 0.78 0.99

3 0.693 0.539 0.25 0.74 0.93

Mean
= 1.05

Note: dc = cover to center of longitudinal reinforcement. Refer to Fig. 2(b) and 3(a)
and (b). Mean ratio indicates ratio of analytical-to-proposed.

Table 4—Influence of reinforcement distribution 
on effective EI of reinforced concrete columns
(fc′  = 4000 psi)

Analysis Proposed Eq. (3)

ρg , %
[1]

EIe/EcIg
[2]

Pu/Po
[3]

e/h
[4]

EIe/EcIg
[5]

Ratio
[6] = [2]/[5]

Various 
cases

1 1.030 0.101 0.25 0.74 1.40

Case 1
dc = 2.5 in.

γ = 0.75
ρg = 1%

Distributed

1 0.970 0.191 0.25 0.69 1.41

1 0.855 0.343 0.25 0.61 1.41

1 0.763 0.442 0.25 0.56 1.37

1 0.682 0.508 0.25 0.52 1.31

1 0.640 0.535 0.25 0.51 1.26

1 0.630 0.541 0.25 0.50 1.25

Mean
= 1.35

1 1.086 0.101 0.250 0.73 1.48

Case 2
dc = 2.5 in.

γ = 0.75
ρg = 1%

Two faces

1 1.024 0.196 0.250 0.68 1.50

1 0.909 0.353 0.250 0.60 1.51

1 0.815 0.457 0.250 0.55 1.49

1 0.731 0.527 0.250 0.51 1.43

1 0.646 0.579 0.250 0.48 1.34

Mean
= 1.46

3 1.276 0.078 0.25 1.00 1.28

Case 3
dc = 2.5 in.

γ = 0.75
ρg = 3%

Distributed

3 1.208 0.177 0.25 1.00 1.21

3 1.092 0.324 0.25 0.91 1.20

3 0.979 0.441 0.25 0.82 1.19

3 0.870 0.529 0.25 0.75 1.16

3 0.785 0.579 0.25 0.71 1.10

Mean
= 1.19

3 1.416 0.079 0.250 1.00 1.42

Case 4
dc = 2.5 in.

γ = 0.75
ρg = 3%

Two faces

3 1.343 0.187 0.250 1.00 1.34

3 1.223 0.344 0.250 0.90 1.37

3 1.105 0.469 0.251 0.80 1.39

3 0.990 0.566 0.251 0.72 1.37

3 0.899 0.622 0.251 0.68 1.32

Mean
= 1.37

Note: dc = cover to center of longitudinal reinforcement. Refer to Fig. 2(b) and 3(c).
Mean ratio indicates ratio of analytical-to-proposed.
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concrete beam. The primary variable considered is the
tensile reinforcement ratio ρ (ranging from 0.5 to 2.5%). The
secondary variables are: compressive strength fc′  (4000 and
12,000 psi), aspect ratio b/h (0.5 and 1.0), and presence of
compression steel ρ′ (0.0 and 0.5ρ). In addition, the influ-
ence of flanges (in the case of T-beams) on the effective EI
is also investigated.

A 20 x 20 in. square section, with 2.5 in. cover to the center
of longitudinal reinforcement, is considered as the base in the
parametric study (Fig. 8(a)). However, a different reinforce-
ment configuration with compression steel (Fig. 8(b)), a
section with a different b/h ratio (Fig. 8(c)), and a flanged
section (Fig. 8(d)) are also considered in the parametric study.

The flexural stiffness is calculated as the ratio of bending
moment over curvature (EIe = M/φ). It should also be empha-
sized that the magnitude of EIe is computed up to the yielding
of the tensile reinforcement, as the value would drastically
decrease after steel yielding and is of little importance for
frame analysis.

The moment-curvature relationship is developed using a
parabolic concrete stress-strain relationship (Eq. (1)) with
peak stress at a strain of 0.002 for fc′  = 4000 psi and 0.0024
for fc′  = 12,000 psi (Fig. 2(a)). The ultimate compressive
strain in concrete for all concrete strengths is taken as 0.003.
It may be emphasized that the assumption of a slightly
different stress-strain curve for high-strength concrete will
have negligible effects on the proposed stiffness model. The
yield strength of the reinforcing steel is assumed to be 60 ksi.

The effects of various parameters on the effective EI of
reinforced concrete beams are discussed below.

Influence of tensile reinforcement ratio ρ—Figure 9
shows the moment-curvature relationships for a typical
singly reinforced concrete beam with different tensile
reinforcement ratios. Compressive strength of concrete
equal to 4000 psi, and a cross-sectional aspect ratio (b/h)
equal to 1.0 are used for plotting Fig. 9. Figure 9 shows that
the effective EI increases with an increase in the reinforce-
ment ratio. The reason for the increase in EIe is that when
more reinforcement is provided, the depth of the flexural
cracks decreases (as more concrete depth is needed to have
equilibrium of forces).

Table 6 shows the effect of reinforcement ratio on the
effective EI of beams. In the table, analytical refers to values

obtained from the theoretical moment-curvature relation-
ships. The table also shows the variation of EI with compres-
sive strain at the extreme concrete fiber and tensile strain at
the level of reinforcement. Note that an increase in εc
(Column 2) indicates an increase in applied moment; the
same is true of εs/εy. Table 6 shows that the effective EI prior
to the yielding of the tension reinforcement (shown in
Column 5) is independent of the level of applied load (given
by Column 2, 3, or 4) for steel ratios up to 1.5%. This is due
to the fact that the compressive strain in the extreme concrete
fiber εc does not exceed 0.001 before yielding of the main
steel. The analysis shows, however, that for reinforcement
ratios greater than 1.5%, the effective EI prior to the yielding
of the tension reinforcement depends on the magnitude of
the bending moment, that is, EIe decreases, though not
significantly, when the applied moment approaches the value
corresponding to the yielding of the tension reinforcement
(refer to Column 5 of Table 6 for ρ = 2.5%). This is because
of higher compressive strain in the concrete (approximately
0.002) just prior to the onset of yielding of the reinforcing
bars. For example, when M increases by 50%, the corresponding
increase in εc (and the corresponding φ) is much more than
50% (for example, 70%). Therefore, an increase in M results
in a reduction in effective EI for a beam in which the reinforce-
ment ratio is quite high (more than 2%).

Influence of compression steel ratio ρ′—It has been found
from analyses that the effect of compression steel on the
effective EI of a beam is marginal, especially for beams with
reinforcement ratios ρ < 1.5%. Figure 9 shows a comparison
between flexural stiffnesses EIe of beams with (Fig. 8(b))
and without (Fig. 8(a)) compression steel. As can be seen,
the presence of compression steel only makes the section
more ductile without any appreciable increase in the flexural
stiffness of the section. For conservatism and simplicity, the
effect of compression steel on the EIe of reinforced concrete
beams can be neglected.

Influence of aspect ratio b/h—Analysis shows that beams
with low b/h (or b/d) ratios have higher effective EI than
beams with larger b/h (or b/d) ratios, when both width b and
reinforcement ratio ρ are the same. Note that the effective EI
will not change for beams having the same effective depth
and reinforcement ratio. Figure 10 shows the influence of
aspect ratio on the EIe of beams. Analysis shows that the

Fig. 8—Cross section of typical reinforced concrete beams
considered in parametric study.

Table 5—Effective EI of circular reinforced 
concrete columns (fc′  = 4000 psi)

Analysis Proposed Eq. (3)

ρg , %
[1]

EIe/EcIg
[2]

Pu/Po
[3]

e/h
[4]

EIe /EcIg
[5]

Ratio
[6] = [2]/[5]

Various 
cases

1 0.96 0.18 0.203 0.74 1.30

Case 1
dc = 2.5 in.

γ = 0.75
ρg = 1%

1 0.87 0.33 0.198 0.67 1.30

1 0.77 0.46 0.192 0.61 1.27

1 0.68 0.56 0.184 0.56 1.20

Mean
= 1.27

3 1.15 0.16 0.212 1.00 1.15

Case 2
dc = 2.5 in.

γ = 0.75
ρg = 3%

3 1.05 0.30 0.208 1.00 1.05

3 0.95 0.41 0.204 0.91 1.04

3 0.86 0.51 0.199 0.85 1.01

Mean
= 1.06

Note: Effective EIe /EcIg of square columns with gross reinforcement ratios of 1 and
3% (e/h = 0.2) are 1.49 and 1.21, respectively. Refer to Fig. 2(b) and 3(d). Mean ratio
indicates ratio of analytical-to-proposed.
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beam in Fig. 8(c) (b/d = 0.53) has 25% higher effective stiffness
compared with the beam in Fig. 8(a) (b/d = 1.14) for a
reinforcement ratio of 1.5%. Therefore, using the proposed
effective EI for beams (Eq. (7), shown later), which has been
derived for a beam with b/d = 1.14, would be quite conservative
for most practical beams for which b/d is generally less than
1.14. For the cases where b/d is more than 1.14, however, the
result may be unconservative. Analysis shows that when
the b/d ratio changes from 1.14 to 2.00, there is a 25% reduction
in effective EI for a beam with a reinforcement ratio of 1.5%.
Equation (7) contains a term to account for this effect.

Influence of compressive strength of concrete fc′ —The
effect of concrete strength on the effective EI of beams is not
negligible. The reason is that when high-strength concrete is
used, the depth of flexural cracks is greater (or the neutral

axis depth c is smaller to maintain force equilibrium),
leading to a reduction in the effective moment of inertia. The
EIe for high-strength concrete beams, however, can be larger
than that for normal-strength concrete beams due to the
higher Ec of the former. Table 7 shows the effective flexural
stiffness of beams (shown in Fig. 8(a)) for high-strength
concrete (fc′  = 12,000 psi). A comparison of Table 7
(Column 5) with Table 6 (Column 5) can be made to observe
the influence of high-strength concrete on the EIe /EcIg of
beams. It shows lower EIe /EcIg in the case of high-strength
concrete, more so when the reinforcement ratio is low.

Proposed simplified equation for moment of 
inertia of rectangular beams

Considering the factors previously mentioned, and based
on the parametric study, a simplified equation (Eq. (7)) is
proposed for the effective EI of reinforced concrete beams
with normal-strength concrete

(7)

where (1.2 – 0.2b/d) ≤ 1.0. For high-strength concrete, Eq. (7)
can be modified to

(8)

where (1.2 – 0.2b/d) ≤ 1.0.

EIe EcIg 0.10 25ρ+( ) 1.2 0.2
b
d
---– 

  0.6EcIg≤=

EIe EcIg 0.10 25ρ+( ) 1.2 0.2
b
d
---– 

 =

1.15 4 10 5– fc′×–( )× 0.6EcIg≤

Table 6—Moment of inertia for reinforced concrete beams (fc′  = 4000 psi)

ρg , %
[1]

εc
[2]

εc/εmax
[3]

εs/εy
[4]

Analytical
EIe/EcIg

[5]

Transformed
EIe/EcIg

[6]

Proposed Eq. (7)
EIe/EcIg

[7]
Ratio

[8] = [5]/[6]
Ratio

[9] = [5]/[7]

0.5 0.00010 0.03 0.15 0.23 0.22 0.23 1.04 1.02

0.5 0.00020 0.07 0.31 0.23 0.22 0.23 1.03 1.01

0.5 0.00030 0.10 0.46 0.23 0.22 0.23 1.02 1.00

0.5 0.00040 0.13 0.60 0.23 0.22 0.23 1.02 1.00

0.5 0.00050 0.17 0.75 0.22 0.22 0.23 1.02 1.00

0.5 0.00067 0.22 1.00 0.22 0.22 0.23 1.01 0.99

1.5 0.00010 0.03 0.08 0.53 0.52 0.48 1.02 1.12

1.5 0.00020 0.07 0.16 0.53 0.52 0.48 1.02 1.12

1.5 0.00030 0.10 0.24 0.53 0.52 0.48 1.01 1.11

1.5 0.00040 0.13 0.32 0.52 0.52 0.48 1.01 1.10

1.5 0.00050 0.17 0.39 0.52 0.52 0.48 1.00 1.10

1.5 0.00100 0.33 0.74 0.50 0.52 0.48 0.97 1.06

1.5 0.00141 0.47 1.00 0.49 0.52 0.48 0.94 1.03

2.5 0.00010 0.03 0.06 0.76 0.73 0.60 1.04 1.26

2.5 0.00020 0.07 0.12 0.75 0.73 0.60 1.03 1.25

2.5 0.00030 0.10 0.17 0.75 0.73 0.60 1.02 1.24

2.5 0.00040 0.13 0.23 0.74 0.73 0.60 1.01 1.23

2.5 0.00050 0.17 0.28 0.74 0.73 0.60 1.01 1.23

2.5 0.00100 0.33 0.53 0.71 0.73 0.60 0.97 1.18

2.5 0.00150 0.50 0.74 0.67 0.73 0.60 0.92 1.12

2.5 0.00200 0.67 0.92 0.64 0.73 0.60 0.87 1.06

2.5 0.00225 0.75 1.00 0.62 0.73 0.60 0.84 1.03

Mean = 0.99 1.10

s.d. = 0.05 0.09
Note: εmax = 0.003; εs /εy = 1 indicates yielding of tension reinforcement.

Fig. 9—Moment-curvature relationships for typical reinforced
concrete beams: influence of tensile reinforcement ratio.
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Although Eq. (8) differs from Eq. (7) for fc′  more than
4000 psi, it is suggested that Eq. (8) be used for fc′  greater
than 6000 psi for better accuracy.

Table 6 shows the comparison between the analytical
(based on the parametric study) and the proposed EIe values
(based on Eq. (7)) for a beam with concrete strength of 4000 psi.
As can be seen, the proposed Eq. (7) compares well (Column
9 of Table 6) with the results of the parametric study. The
mean analytical/predicted ratio of EIe/EcIg was computed to
be 1.10 with a standard deviation of 0.09. It may be noted
that the proposed Eq. (7) gives an EIe of 0.25EcIg for a beam
with 0.6% steel, 0.35EcIg with 1% steel, and 0.60EcIg with
2% steel.

The upper limit for EIe of 0.6EcIg is suggested in Eq. (7)
and (8) based on the analytical results. Table 6 shows that for
ρ equal to 2.5%, the effective EI decreases with applied
moment. In other words, the effective EI decreases significantly
with increasing moments for beams with higher reinforcement
ratios. An EIe of 0.6EcIg gives a lower-bound estimate for
beams with ρ > 2%. It may be noted that most practical
beams have ρ between 0.75 and 1.5%.

Table 7 shows comparisons between the proposed Eq. (8)
and analytical results for a beam with high-strength concrete
(fc′  = 12,000 psi). The table shows that predictions by the
proposed expression compare well with the analytical results.

It may be noted that the true EI for an entire beam is
always higher than the effective EI of a cracked section.
Therefore, it is quite reasonable to use Eq. (7) for computing
the EIe of reinforced concrete beams of all concrete
strengths, for simplicity.

Comparison with transformed area method
Values given by the proposed method are also compared

with the cracked moment of inertia Icr , calculated using the
transformed area concept (Table 6 and 7). In a simplified
way, the Icr by the transformed area method (for a rectan-
gular section) can be computed as

Icr =  + nAs(d – c)2 (9)

where b is width; d is effective depth; c is neutral axis depth;
n is modular ratio (Es/Ec); and As is the area of tensile rein-
forcement. Table 6 and 7 show that both the proposed equa-
tions (Eq. (7) and (8)) and the transformed area method (Eq. (9))
compare well with the results of the parametric study. The
proposed procedure, however, is simpler than the trans-
formed area method because it does not require the calculation
of neutral axis depth.

It needs to be emphasized that mainly the reinforcement
on the tension side contributes to the flexural stiffness of
beams, whereas for columns, the reinforcement over the
whole section is generally effective.

Effective EI of T-beams
The influence of flanges on the effective EI of a beam is also

investigated (Fig. 8(d)). In the analyses, the flange thickness-
to-overall depth (tf /h) is varied from 0.0 to 0.25. The flange

bc3

3
--------

Table 7—Moment of inertia for high-strength reinforced concrete beams (fc′  = 12,000 psi)

ρg , %
[1]

εc
[2]

εc/εmax
[3]

εs/εy
[4]

Analytical
EIe/EcIg

[5]

Transformed
EIe/EcIg

[6]

Proposed Eq. (8)
EIe/EcIg

[7]
Ratio

[8] = [5]/[6]
Ratio

[9] = [5]/[7]

0.5 0.00010 0.03 0.28 0.139 0.14 0.15 0.96 0.92

0.5 0.00020 0.07 0.56 0.138 0.14 0.15 0.96 0.92

0.5 0.00030 0.10 0.84 0.138 0.14 0.15 0.96 0.92

0.5 0.00035 0.12 0.98 0.137 0.14 0.15 0.95 0.91

1.5 0.00010 0.03 0.15 0.362 0.36 0.32 1.00 1.14

1.5 0.00020 0.07 0.31 0.360 0.36 0.32 1.00 1.13

1.5 0.00030 0.10 0.46 0.357 0.36 0.32 0.99 1.12

1.5 0.00040 0.13 0.60 0.358 0.36 0.32 0.99 1.12

1.5 0.00050 0.17 0.75 0.356 0.36 0.32 0.99 1.12

1.5 0.00067 0.22 0.98 0.355 0.36 0.32 0.99 1.12

2.5 0.00010 0.03 0.11 0.546 0.53 0.49 1.03 1.12

2.5 0.00020 0.07 0.23 0.542 0.53 0.49 1.02 1.12

2.5 0.00030 0.10 0.34 0.540 0.53 0.49 1.02 1.11

2.5 0.00040 0.13 0.45 0.538 0.53 0.49 1.02 1.11

2.5 0.00050 0.17 0.56 0.537 0.53 0.49 1.02 1.11

2.5 0.00094 0.31 0.99 0.530 0.52 0.49 1.02 1.09

Mean = 0.99 1.07

s.d. = 0.03 0.09
Note: εmax = 0.003; εs/εy = 1 indicates yielding of tension reinforcement.

Fig. 10—Moment-curvature relationship for typical reinforced
concrete beams: influence of aspect ratio b/h.
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width is reasonably taken (based on ACI 318 Section 8.10.2) as
bw + 16tf , as shown in Fig. 8(d). The reinforcement ratio
(As /bwd) is taken as 1.5% and the concrete strength is assumed
to be 4000 psi. Table 8 shows the effect of flange thickness on
the effective EI of a beam. The table shows that the EIe/EcIg
increases with an increase in flange thickness.

Mathematically, Eq. (10) reasonably represents the effective
EI of a T-beam

(10)

In Eq. (10), the magnitude of EIe of a beam without flanges
can be obtained using Eq. (7). For example, if a T-beam has a
tf /h of 0.15, fc′  of 4000 psi, and ρ (= As/bwd) of 1.5%, then the
effective EI of the T-beam (using Eq. (7) and (10)) can be
taken as 0.62EcIg (Ig = bwh3/12), where bw is the width of web.

It may be noted that the effective EI for an inverted T-beam can
be taken equal to that of a rectangular beam with a width equal to
the web width because the flange in tension is ineffective.

Recommendation for effective EI of beam
Based on the previous discussions, it is recommended that the

effective EI for rectangular beams be calculated either: a) by
using the proposed simplified expression (Eq. (7)); or b) by
using the transformed area concept (Eq. (9)). For T-beams with
flanges in compression, a higher EI may be used in accordance
with Eq. (10). For beams with a concrete compressive strength
of more than 6000 psi, Eq. (8) may be used for better accuracy.

FLEXURAL STIFFNESS
RECOMMENDATIONS OF ACI 318

The ACI 318-02 provisions (Sections 10.11 to 10.13) on
effective EI of beams and columns are based on two signifi-
cant papers: MacGregor, Breen, and Pfrang (1970) and
MacGregor (1993).

In MacGregor (1993), which formed the basis of the 1995
and the 1999 ACI Code provisions on slender columns
(unchanged in ACI 318-02), two sets of EI values for
columns are recommended. The first set represents a lower-
bound EI for individual columns, based on recommendations
by MacGregor, Breen, and Pfrang (1970), as it is felt that the
use of lower-bound values would be proper. For frame analysis,
however, MacGregor (1993) recommended a second set of
higher EI values because frame analysis involves all the

EIeT

EIe

---------- 1 2
tf

h
---+ 

  1.4≤

members of a structure. Based on extensive studies by other
investigators, MacGregor (1993) recommended that a
reasonable estimate of EI for second- or first-order elastic
analyses be based on the ACI value of Ec (Section 8.5.1) and
I = 0.4Ig for beams and 0.8Ig for columns. These values were
originally suggested by MacGregor and Hage (1977). Using
a stiffness reduction factor of 0.875 for frame analysis (consid-
ering the condition just prior to the attainment of strength),
MacGregor (1993) suggested an effective I of 0.35Ig for beams
and 0.70Ig for columns. Under service loads, however, he
recommended an increase in the aforementioned values to
1.0Ig and 0.5Ig for columns and beams, respectively.

MacGregor, Breen, and Pfrang (1970) reported findings that
formed the basis of most of the ACI 318 slender column design
provisions since ACI 318-71 until present day. They recom-
mended the use of an effective EI for individual columns,
without sustained loading, equal to 0.4EcIg (or 0.2EcIg + EsIs)
for computation of moment magnification factors. This low
value of EI is used: a) to calculate δns for nonsway frames per
Section 10.12.3; and b) to calculate δs for sway frames per
Section 10.13.4.3 (moment-magnifier method). Their recom-
mendation of lower-bound EI (= 0.4EcIg) is based on a
reinforcement ratio of 1% and an axial load-to-pure axial load
strength ratio Pu/Po of more than 0.85 (Fig. 11).

Figure 11 (reproduced from the paper by MacGregor,
Breen, and Pfrang [1970]) is based on an extensive theoretical
study on moment-curvature relationships for columns with
various reinforcement and axial load ratios. It is interesting
to note that the use of a Pu/Po ratio of 0.90 and an e/h ratio
of 0.1 with ρg of 1% in the proposed Eq. (3) gives an EI of
0.47EcIg, a value quite comparable to the 0.4EcIg of the ACI
Code (Eq. (10-12)). In actual practice, however, the rein-
forcement ratio for a column is generally more than 1%
(approximately 2%, for example), and, more importantly, the
axial load ratio Pu/Po is not permitted to exceed 0.56 (= 0.8
× 0.7) for tied columns or 0.64 (= 0.85 × 0.75) for columns
with spiral reinforcement (using φ-values from Appendix C
of ACI 318-02). In fact, Fig. 11 shows that for a reinforce-
ment ratio of 1% and a Pu/Po of 0.6 (both being the worst
possible cases), the magnitude of effective EI would vary
between 0.6 and 0.8EcIg. Therefore, the lower limit of EI
based on Fig. 11 should not be less than 0.6EcIg for any
practical column.

RECOMMENDATION FOR FRAME
ANALYSIS AND CONCLUSIONS

Based on results of the analytical study and their comparison
with the results of existing experimental research reported in
the companion paper (Khuntia and Ghosh 2004), the

Fig. 11—Comparison of ACI 318-95, Eq. (10-13) (same as
Eq. (10-12) in ACI 318-02) for EI with EI values from moment-
curvature diagrams (MacGregor, Breen, and Pfrang 1970).

Table 8—Effective EI of reinforced concrete
T-beams (fc′  = 4000 psi; ρ = 1.5%)

Ratio tf /h
[1]

Analytical
EIe/EcIg

[2]

Magnification 
over rectangular 

beam
[3]

Magnification per 
proposed Eq. (10)

[4]
Ratio

[5] = [3]/[4]
0.00 0.52 1.00 1.00 1.00
0.05 0.57 1.10 1.10 1.00
0.10 0.64 1.23 1.20 1.03
0.15 0.69 1.33 1.30 1.02
0.20 0.71 1.37 1.40 0.98
0.25 0.73 1.40 1.40 1.00

Mean = 1.00
s.d. = 0.02
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following recommendations are made concerning the effec-
tive EI of beams and columns to be used in the lateral anal-
ysis of frames in general and of frames including slender
columns in particular:

In frame analysis (both first- and second-order elastic), it
is recommended to initially assume beam EI = 0.35EcIg
(which occurs for a beam with a ρ of 1% per Eq. (7)) and
column EI = 0.70EcIg (which occurs with ρg = 1.5%, e/h =
0.20 and Pu/Po = 0.40 per Eq. (3)). On completion of lateral
analysis, however, the effective EI for beams and columns
need to be recalculated using Eq. (7) and (3), respectively.
Note that depending on the magnitude of e/h (or Mu/Puh), the
EIe value for columns will change. If the final EIe values are
different from the initially assumed values by more than 15%
(that is, if the column EIe is not within the range of 0.6 to
0.8EcIg), it is recommended to perform the analysis again using
the revised EIe. Figure 12 shows the effective flexural stiffness
of columns, which varies depending on the reinforcement,
axial load, and eccentricity ratio. It shows that the assumption
of EIe = 0.7EcIg is quite reasonable for most cases. The
assumption may not be appropriate for some cases, however,
especially when the reinforcement ratio is low and the
eccentricity ratio is high.

For additional recommendations, readers should refer to
the companion paper by Khuntia and Ghosh (2004).
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NOTATION
Ag = gross cross-sectional area, in.2

Ast = gross steel area in column, in.2

b = width of member, in.
bw = width of web of T-beams, in.
c = depth of neutral axis, in.
d = distance form extreme compression fiber to centroid of tension

reinforcement in flexural member
Ec = modulus of elasticity of concrete, ksi
Es = modulus of elasticity of reinforcing steel, ksi
EI = flexural stiffness of member or cross section, in.2-lb
e = eccentricity of axial load, in.
e/h = eccentricity ratio = M/Ph = (Mu/Puh in context of strength design)
fc = compressive stress in concrete at a strain of εc, psi
fc′ = specified compressive strength of concrete, psi
fy = yield strength of reinforcement, ksi
h = overall depth of member, in.
I = moment of inertia of cross section, in.4

Ibeam = effective moment of inertia of flexural member, in.4

Icr = moment of inertia of cracked cross section of flexural member,
calculated using transformed area concept

Ie = effective moment of inertia of cross section, in.4 
IeT = effective moment of inertia of T-beam, in.4

Ig = moment of inertia of gross concrete section about centroidal
axis, neglecting reinforcement, in.4

Is = moment of inertia of reinforcing steel about centroidal axis, in.4

M = bending moment, in.-lb = Mu in context of strength design
Mn = nominal flexural strength, in.-lb
Mu = factored moment or required moment strength at section, in.-lb
n = modular ratio = Es/Ec
P = axial load, kips = Pu in context of strength design
Pn = nominal axial load strength, kips
Po = nominal axial load strength at zero eccentricity, kips
Pu = factored axial load or required axial load strength, kips
Pu/Po = axial load ratio
tf = flange thickness of T-beams, in.
V = lateral force, kips
wc = unit weight of concrete, lb/ft3

∆ = story drift, in.
δ = deflection of compression member relative to chord joining

ends of column in deflected frame, in.
εc = compressive strain in concrete, in./in.
εmax = maximum compressive strain in concrete, in./in.
εo = compressive strain in concrete at peak stress, in./in.
εs = tensile strain in steel, in./in.
εy = yield strain in steel, in./in.
φ = strength reduction factor
 = curvature at section, rad./in.
γ = ratio of distance between centerlines of outermost bars to overall

dimension of section
ρ = tensile reinforcement ratio in flexural member, As/bd, %
ρg = gross reinforcement ratio in compression member, Ast/Ag, %
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